## THE IN SILICO SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S THERAPEUTIC

by

Autumn Meek

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

at

Dalhousie University Halifax, Nova Scotia December 2011

© Copyright by Autumn Meek, 2011

### DALHOUSIE UNIVERSITY

#### DEPARTMENT OF CHEMISTRY

The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled "THE IN SILICO SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S THERAPEUTIC" by Autumn Meek in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

Dated: December 9, 2011

\_\_\_\_\_

\_\_\_\_\_

External Examiner:

Research Supervisor:

Examining Committee:

Departmental Representative:

### DALHOUSIE UNIVERSITY

DATE: December 9, 2011

### AUTHOR: Autumn Meek

### TITLE: THE IN SILICO SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S THERAPEUTIC

DEPARTMENT OR SCHOOL: Department of Chemistry

DEGREE: PhD CONVOCATION: May YEAR: 2012

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions. I understand that my thesis will be electronically available to the public.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

The author attests that permission has been obtained for the use of any copyrighted material appearing in the thesis (other than the brief excerpts requiring only proper acknowledgement in scholarly writing), and that all such use is clearly acknowledged.

Signature of Author

Philippians 4:13

For my family

# TABLE OF CONTENTS

| LIST OF TABLES                                                                                   | xvi         |
|--------------------------------------------------------------------------------------------------|-------------|
| LIST OF FIGURES                                                                                  | xxxi        |
| ABSTRACT                                                                                         | xxxv        |
| LIST OF ABBREVIATIONS USED                                                                       | .xxxvi      |
| ACKNOWLEDGEMENTS                                                                                 | xl          |
| CHAPTER 1: INTRODUCTION                                                                          | 1           |
| 1.1 Alzheimer's Disease and $\beta$ -Amyloid                                                     | 1           |
| 1.1.1 ACETYLCHOLINE AND ITS ROLE IN ALZHEIMER'S DISEASE                                          | 2           |
| 1.1.2 β-Amyloid and the Amyloid Cascade                                                          | 3           |
| 1.1.2.1 The Generation of $\beta$ -Amyloid from Amyloid Precursor Protein                        | 3           |
| 1.1.2.2 $\beta$ -Amyloid Aggregation and Toxicity                                                | 6           |
| 1.1.2.3 Familial Alzheimer's Disease as Evidence of the Role of β-Amylo<br>in Disease Initiation | / <i>ID</i> |
| 1.1.2.4 $\beta$ -Amyloid and Neurofibrillary Tangles                                             | 9           |
| 1.1.3 Why Research Alzheimer's Disease?                                                          | 11          |
| 1.1.3.1 CURRENT ALZHEIMER 'S DRUGS                                                               | 12          |
| 1.1.4 CURRENT RESEARCH IN TREATING ALZHEIMER'S DISEASE                                           | 15          |
| 1.1.4.1 Drugs Targeting β-Amyloid Aggregation                                                    | 15          |
| 1.1.4.2 Drugs Promoting Clearance of $\beta$ -Amyloid from the Brain                             | 16          |
| 1.1.4.3 Drugs Targeting the Reduction of the Production of $A\beta$                              | 16          |
| 1.1.4.4 Drugs Targeting Other Aspects of Alzheimer's Disease                                     | 17          |
| 1.1.5 CURRENT METHODS IN DIAGNOSING ALZHEIMER'S DISEASE                                          | 18          |
| 1.1.5.1 Biomarkers Used to Diagnose Alzheimer's Disease                                          | 18          |
| 1.1.5.2 Imaging Agents for Alzheimer's Disease                                                   | 19          |
| 1.1.6 DEFINING THE DRUG MOLECULE                                                                 | 20          |
| 1.1.6.1 Characteristic Features of Drug Molecules                                                | 20          |
| 1.1.6.2 Requirements for a Bioavailable Drug Molecule                                            | 22          |

| 1.1.7 THE PROMISCUOUS DRUG CONCEPT                                                                                        | 23 |
|---------------------------------------------------------------------------------------------------------------------------|----|
| 1.1.7.1 HHQK                                                                                                              | 24 |
| 1.2 Molecular Modelling                                                                                                   | 24 |
| 1.2.1 What are Force Fields?                                                                                              | 24 |
| 1.2.2 THE DREIDING2.21 Force Field                                                                                        | 26 |
| 1.2.3 THE CHARMM FORCE FIELD AND QUANTA                                                                                   | 29 |
| 1.2.4 Energy Minimization Algorithms                                                                                      | 32 |
| 1.2.4.1 The Steepest Descent Algorithm                                                                                    | 33 |
| 1.2.4.2 The Conjugate Gradient Algorithm                                                                                  | 34 |
| 1.2.4.3 The Truncated Newton Algorithm                                                                                    | 35 |
| 1.3 QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS                                                                         | 36 |
| 1.4 Research Goals                                                                                                        | 40 |
| CHAPTER 2: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S<br>DRUG TARGETING HHQK: PHOSPHOSERINE                            | 43 |
| 2.1 The HHQK Region of $\beta$ -Amyloid as a Binding Target                                                               | 43 |
| 2.2 Identification of Phosphoserine as an Endogenous Molecule to Targe                                                    | Т  |
| THE HHQK REGION OF $\beta$ -AMYLOID                                                                                       | 44 |
| 2.3 Phosphoserine in the Brain                                                                                            | 45 |
| 2.4 Expansion to Target the EVHHQK Region of $\beta$ -amyloid                                                             | 46 |
| 2.5 In Vacuo Calculations of Phosphoserine Interacting with $\beta$ -amyloid                                              | 47 |
| 2.5.1 Selection of $\beta$ -Amyloid Conformers                                                                            | 48 |
| 2.5.2 PREPARATION OF THE PHOSPHOSERINE MOLECULE                                                                           | 53 |
| 2.5.3 Calculating Gas Phase Interactions Between Phosphoserine and Various Conformers of $\beta$ -amyloid.                | 54 |
| 2.5.3.1 Selecting Initial Orientations for Optimization                                                                   | 54 |
| 2.5.3.2 Optimization of the Gas Phase Systems                                                                             | 55 |
| 2.5.4 Gas Phase Results of Phosphoserine Interacting with $\beta$ -amyloid                                                | 56 |
| 2.5.4.1 Results of the GAS Phase Calculations of Phosphoserine<br>Interacting with the 1AMB Conformer of $\beta$ -amyloid | 56 |
| 2.5.4.2 Results of the GAS Phase Calculations of Phosphoserine<br>Interacting with the 1AMC Conformer of $\beta$ -amyloid | 59 |

| 2.5.4.3 Results of the Gas Phase Calculations of Phosphoserine<br>Interacting with the 1AML Conformer of $\beta$ -Amyloid | . 61 |
|---------------------------------------------------------------------------------------------------------------------------|------|
| 2.5.4.4 Results of the GAS Phase Calculations of Phosphoserine<br>Interacting with the 1BA4 Conformer of $\beta$ -Amyloid | . 63 |
| 2.5.4.5 Results of the Gas Phase Calculations of Phosphoserine<br>Interacting with the 11YT Conformer of β-Amyloid        | . 65 |
| 2.5.4.6 Results of the Gas Phase Calculations of Phosphoserine<br>Interacting with the 2BP4 Conformer of $\beta$ -Amyloid | . 66 |
| 2.6 Solution Phase Calculations of Phosphoserine Interacting with $\beta$ -                                               |      |
| Amyloid                                                                                                                   | . 68 |
| 2.6.1 THE USE OF EXPLICIT SOLVATION                                                                                       | 69   |
| 2.6.2 Set-Up of the Solution Phase Calculations of Phosphoserine Interacting with $\beta$ -Amyloid                        | 70   |
| 2.6.2.1 Solvating the System                                                                                              | . 70 |
| 2.6.2.2 Periodic Boundary Conditions                                                                                      | . 72 |
| 2.6.2.3 Minimization of the Solvated Phosphoserine- $\beta$ -Amyloid System                                               | . 73 |
| 2.6.2.4 Energy Calculations of the Solvated Aβ-Phosphoserine<br>Interactions                                              | . 73 |
| 2.6.2.5 Determination of Binding Interactions                                                                             | . 75 |
| 2.6.3 Solution Phase Results of Phosphoserine Interacting with Six Different $\beta$ -Amyloid Conformers                  | 75   |
| 2.6.3.1 Results of the Solution Phase Interaction Between Phosphoserine<br>and the 1AMB Conformer of β-Amyloid            | . 76 |
| 2.6.3.2 Results of the Solution Phase Interaction Between Phosphoserine<br>and the 1AMC Conformer of β-Amyloid            | . 80 |
| 2.6.3.3 Results of the Solution Phase Interaction Between Phosphoserine<br>And the 1AML Conformer of β-Amyloid            | . 82 |
| 2.6.3.4 Results of the Solution Phase Interaction Between Phosphoserine and the 1BA4 Conformer of $\beta$ -Amyloid        | . 84 |
| 2.6.3.5 Results of the Solution Phase Interaction Between Phosphoserine<br>and the 1IYT Conformer of $\beta$ -Amyloid     | . 87 |
| 2.6.3.6 Results of the Solution Phase Interaction Between Phosphoserine and the 2BP4 Conformer of $\beta$ -Amyloid        | . 89 |
| 2.7 Biological Support of Phosphoserine Interacting with $\beta\text{-}Amyloid$                                           | . 92 |

| 2.8 PHOSPHOSERINE INTERACTING WITH BBXB                                                                        | 94  |
|----------------------------------------------------------------------------------------------------------------|-----|
| 2.8.1 SET-UP OF BBXB OPTIMIZATIONS                                                                             | 94  |
| 2.8.1.1 Interleukin-4                                                                                          | 94  |
| 2.8.1.2 Interleukin-12                                                                                         | 95  |
| 2.8.1.3 Interleukin-13                                                                                         | 96  |
| 2.8.1.4 S100β                                                                                                  | 96  |
| 2.8.1.5 RANTES                                                                                                 | 97  |
| 2.8.1.6 ICAM-1                                                                                                 | 97  |
| 2.8.1.7 Optimization Methods                                                                                   | 98  |
| 2.8.2 RESULTS OF THE OPTIMIZATION OF PHOSPHOSERINE WITH SELECTED<br>PROTEINS CONTAINING BBXB                   | 99  |
| 2.9 Conclusions                                                                                                | 101 |
| 2.10 INTERPRETATION                                                                                            | 103 |
| CHAPTER 3: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S<br>DRUG TARGETING HHQK                                | 106 |
| 3.1 The HHQK and LVFF regions of $\beta$ -Amyloid as Binding Targets                                           | 106 |
| 3.2 IDENTIFICATION OF AMINO ACIDS AND THEIR METABOLITES AS TARGET                                              |     |
| Molecules                                                                                                      | 107 |
| 3.3 Phenylalanine and $\beta$ -Amyloid                                                                         | 107 |
| 3.3.1 Gas Phase Interactions Between Phenylalanine and $\beta$ -Amyloid                                        | 109 |
| 3.3.1.1 Selection of Initial Orientations for Optimization                                                     | 109 |
| 3.3.1.2 Optimization of the Gas Phase Systems                                                                  | 110 |
| 3.3.2 Gas Phase Results of Phenylalanine Interacting with $\beta$ -Amyloid                                     | 110 |
| 3.3.3 Solution Phase Optimization of Phenylalanine Interacting with $\beta$ -Amyloid                           | 116 |
| 3.3.3.1 Solvation and Minimization Set-Up for Phenylalanine and $\beta$ -<br>Amyloid                           | 117 |
| 3.3.4 Solution Phase Results of Phenylalanine Interacting with Six Different Conformations of $\beta$ -Amyloid | 118 |
| 3.3.5 Conclusions of Phenylalanine Interacting with $\beta$ -Amyloid                                           | 123 |
| 3.4 Dopamine and β-Amyloid                                                                                     | 124 |
|                                                                                                                |     |

| 3.4.1 Gas Phase Interactions Between Dopamine and Different Conformers of $\beta$ -Amyloid          | 125 |
|-----------------------------------------------------------------------------------------------------|-----|
| 3.4.1.1 Selection of Initial Orientations for Optimization                                          | 125 |
| 3.4.1.2 Optimization of the Gas Phase Systems                                                       | 126 |
| 3.4.2 Gas Phase Results of Dopamine Interacting with $\beta$ -Amyloid                               | 127 |
| 3.4.3 Solution Phase Results for Dopamine Interacting with $\beta$ -Amyloid                         | 131 |
| 3.4.4 Conclusions of Dopamine Interacting with $\beta$ -Amyloid                                     | 138 |
| 3.5 Tryptophan and β-Amyloid                                                                        | 138 |
| 3.5.1 Preparation of the $\beta$ -Amyloid Conformers for Optimization                               | 140 |
| 3.5.2 Gas Phase Interactions Between D- and L-Tryptophan and $\beta$ -Amyloid                       | 140 |
| 3.5.2.1 Preparation of D- and L-Tryptophan for Optimization                                         | 141 |
| 3.5.2.2 Selection of Initial Orientations for Optimization of Tryptophan and $\beta$ -Amyloid       | 141 |
| 3.5.2.3 Optimization of the Gas Phase Systems                                                       | 142 |
| 3.5.3 Gas Phase Results of the Optimization of D-Tryptophan and L-Tryptophan with $\beta$ -Amyloid  | 142 |
| 3.5.4 Solution Phase Optimization of D-Tryptophan and L-tryptophan with $\beta\text{-}Amyloid$      | 148 |
| 3.5.4.1 Solvation and Minimization Set-Up for D- and L-Tryptophan and $\beta$ -Amyloid              | 148 |
| 3.5.5 Solution Phase Results of the D-Tryptophan and L-Tryptophan Interacting with $\beta$ -Amyloid | 149 |
| 3.5.6 Conclusions of D- and L-Tryptophan Interacting with $\beta$ -Amyloid                          | 158 |
| 3.6 Tryptamine and $\beta$ -Amyloid                                                                 | 159 |
| 3.6.1 Gas Phase Interactions Between Tryptamine and $\beta$ -Amyloid                                | 160 |
| 3.6.1.1 Selection of Initial Orientations for Gas Phase Optimization                                | 160 |
| 3.6.1.2 Optimization of the Gas Phase Systems                                                       | 160 |
| 3.6.2 Gas Phase Results of Tryptamine Interacting with $\beta$ -Amyloid                             | 161 |
| 3.6.3 Solution Phase Results for Tryptamine Interacting with $\beta$ -Amyloid                       | 162 |

| 3.6.4 Conclusions of Tryptamine Interacting with $\beta\text{-}Amyloid$                                     | .169 |
|-------------------------------------------------------------------------------------------------------------|------|
| 3.7 3-Hydroxyanthranilic Acid and $\beta$ -Amyloid                                                          | 169  |
| 3.7.1 Gas Phase Interactions Between 3-hydroxyanthranilic acid and $\beta$ -Amyloid                         | .170 |
| 3.7.1.1 Preparation of 3-hydroxyanthranilic acid for Optimization                                           | .170 |
| 3.7.1.2 Selection of Initial Orientations for Optimization of 3HAA and $\beta$ -Amyloid                     | .170 |
| 3.7.1.3 Optimization of the Gas Phase Systems                                                               | .171 |
| 3.7.2 Gas Phase Results of the Optimization of 3-hydroxyanthranilic acid with $\beta$ -Amyloid              | .171 |
| 3.7.3 Solution Phase Results for 3-hydroxyanthranilic acid Interacting with $\beta$ -Amyloid                | .184 |
| 3.7.4 Conclusions of 3-hydroxyanthranilic acid Interacting with $\beta$ -Amyloid In Silico                  | .210 |
| 3.8 BIOLOGICAL SUPPORT OF 3-HYDROXYANTHRANILIC ACID AS A LEAD<br>MOLECULE                                   | .211 |
| 3.9 A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP STUDY OF 3-<br>HYDROXYANTHRANILIC ACID AND ITS ANALOGUES | 214  |
| 3.9.1 DEVELOPMENT OF A SERIES OF ANALOGUES BASED ON<br>3-HYDROXYANTHRANILIC ACID                            | .215 |
| 3.9.2 DEVELOPMENT OF A QSAR FOR ACTIVITY PREDICTION                                                         | .220 |
| 3.9.3 DEVELOPMENT OF A BINARY QSAR TO PREDICT 3HAA ANALOGUE<br>ACTIVITY                                     | .220 |
| 3.9.4 PREDICTION OF ACTIVITY OF A SERIES OF ANALOGUES BASED ON 3-<br>HYDROXYANTHRANILIC ACID                | .225 |
| 3.10 NOVEL BI-AROMATIC COMPOUNDS TARGETING THE BBXB REGION OF<br>PROTEINS INVOLVED IN ALZHEIMER'S DISEASE   | 228  |
| 3.10.1 PREPARATION OF THE LEAD MOLECULES AND PROTEINS                                                       | .231 |
| 3.10.1.1 β-Amyloid                                                                                          | .232 |
| $3.10.1.2  \alpha_l$ -ACT                                                                                   | .232 |
| 3.10.1.3 АСНЕ                                                                                               | .233 |
| 3.10.1.4 Apoe4                                                                                              | .233 |

| 3.10.1.5 B7-1                                                                                                                                                                                                                                                                                                                                                                                                                   | 233                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| 3.10.1.6 BHMT                                                                                                                                                                                                                                                                                                                                                                                                                   | 234                                                           |
| 3.10.1.7 C1QA                                                                                                                                                                                                                                                                                                                                                                                                                   | 234                                                           |
| 3.10.1.8. IFN-y                                                                                                                                                                                                                                                                                                                                                                                                                 | 234                                                           |
| 3.10.1.9 IL-1βCE                                                                                                                                                                                                                                                                                                                                                                                                                | 235                                                           |
| 3.10.1.10 MIP-1α AND MIP-1β                                                                                                                                                                                                                                                                                                                                                                                                     | 235                                                           |
| 3.10.1.11 NEP                                                                                                                                                                                                                                                                                                                                                                                                                   | 235                                                           |
| 3.10.1.12 SDF-1                                                                                                                                                                                                                                                                                                                                                                                                                 | 235                                                           |
| 3.10.1.13 Transferrin                                                                                                                                                                                                                                                                                                                                                                                                           | 236                                                           |
| 3.10.2 GAS PHASE OPTIMIZATION OF THE NCE COMPOUNDS WITH BBXB                                                                                                                                                                                                                                                                                                                                                                    | 236                                                           |
| 3.10.3 RESULTS OF THE OPTIMIZATION OF THE NCE COMPOUNDS WITH BBXB                                                                                                                                                                                                                                                                                                                                                               | 237                                                           |
| 3.10.4 Conclusions on the NCE Molecules Interacting with Proteins<br>Containing BBXB                                                                                                                                                                                                                                                                                                                                            | 256                                                           |
| 3.11 NCE-217 AS A DRUG MOLECULE CAPABLE OF TARGETING BBXB                                                                                                                                                                                                                                                                                                                                                                       | . 257                                                         |
| 3.11.1 GAS PHASE OPTIMIZATION OF NCE-0217 AND PROTEINS BEARING BBXB                                                                                                                                                                                                                                                                                                                                                             | 258                                                           |
| 3.11.2 GAS PHASE RESULTS OF THE OPTIMIZATION OF NCE-0217 WITH PROTEINS BEARING BBXB                                                                                                                                                                                                                                                                                                                                             | 259                                                           |
| 3.11.3 CONCLUSIONS OF NCE-0217 OPTIMIZED WITH PROTEINS BEARING BBXB                                                                                                                                                                                                                                                                                                                                                             | 264                                                           |
| 3.11.4 DEVELOPMENT OF A QSAR FOR ANALOGUES OF NCE-0217                                                                                                                                                                                                                                                                                                                                                                          | 265                                                           |
| 3.11.4.1 Development of the QSAR model of NCE-0217                                                                                                                                                                                                                                                                                                                                                                              | 265                                                           |
| 3.11.4.2 Results of the NCE-0217 QSAR                                                                                                                                                                                                                                                                                                                                                                                           | 269                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |
| 3.12 CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                | . 269                                                         |
| 3.12 CONCLUSIONS                                                                                                                                                                                                                                                                                                                                                                                                                | . 269<br>270                                                  |
| 3.12 CONCLUSIONS<br>3.13 INTERPRETATION<br>CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S<br>DRUG TARGETING EVHHQK                                                                                                                                                                                                                                                                                                    | 269<br>270<br>273                                             |
| <ul> <li>3.12 CONCLUSIONS</li> <li>3.13 INTERPRETATION.</li> <li>CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK.</li> <li>4.1 γ-AMINOBUTYRIC ACID</li> </ul>                                                                                                                                                                                                                                    | 269<br>270<br>273<br>. 274                                    |
| <ul> <li>3.12 CONCLUSIONS</li> <li>3.13 INTERPRETATION.</li> <li>CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK.</li> <li>4.1 γ-AMINOBUTYRIC ACID</li> <li>4.1.1 GAS PHASE OPTIMIZATIONS OF GABA AND β-AMYLOID</li> </ul>                                                                                                                                                                       | 269<br>270<br>273<br>. 274<br>274                             |
| <ul> <li>3.12 CONCLUSIONS</li> <li>3.13 INTERPRETATION.</li> <li>CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK.</li> <li>4.1 γ-AMINOBUTYRIC ACID</li> <li>4.1.1 GAS PHASE OPTIMIZATIONS OF GABA AND β-AMYLOID</li></ul>                                                                                                                                                                        | 269<br>270<br>273<br>. 274<br>274<br>274                      |
| <ul> <li>3.12 CONCLUSIONS</li> <li>3.13 INTERPRETATION.</li> <li>CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK.</li> <li>4.1 γ-AMINOBUTYRIC ACID</li> <li>4.1.1 GAS PHASE OPTIMIZATIONS OF GABA AND β-AMYLOID</li> <li>4.1.1 PREPARATION OF SYSTEMS FOR OPTIMIZATIONS</li> <li>4.1.1.2 SELECTION OF SYSTEMS FOR OPTIMIZATION</li> </ul>                                                        | 269<br>270<br>273<br>. 274<br>274<br>274<br>274<br>275        |
| <ul> <li>3.12 CONCLUSIONS</li> <li>3.13 INTERPRETATION.</li> <li>CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK.</li> <li>4.1 γ-AMINOBUTYRIC ACID</li> <li>4.1.1 GAS PHASE OPTIMIZATIONS OF GABA AND β-AMYLOID</li> <li>4.1.1 PREPARATION OF SYSTEMS FOR OPTIMIZATIONS</li> <li>4.1.1.2 SELECTION OF SYSTEMS FOR OPTIMIZATION</li> <li>4.1.1.3 OPTIMIZATION OF THE GAS PHASE SYSTEMS</li> </ul> | 269<br>270<br>273<br>. 274<br>274<br>274<br>274<br>275<br>275 |

| 4.1.3 The Solution Phase Optimization of GABA and $\beta$ -Amyloid                                                                               | .277 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 4.1.4 The Results of the Solution Phase Optimization of GABA and $\beta$ -                                                                       | 278  |
| AMTLOID                                                                                                                                          | .270 |
| 4.2 β-Alanine                                                                                                                                    | 285  |
| 4.2.1 The Gas Phase Optimization of $\beta$ -Alanine and $\beta$ -Amyloid                                                                        | .285 |
| 4.2.2 The Gas Phase Results of $\beta$ -Alanine Interacting with $\beta$ -Amyloid                                                                | .286 |
| 4.2.3 The Solution Phase Optimization of $\beta$ -Alanine and $\beta$ -Amyloid                                                                   | .287 |
| 4.2.4 The Results of the Solution Phase Optimization of $\beta$ -Alanine and $\beta$ -Amyloid                                                    | .288 |
| 4.3 Homotaurine                                                                                                                                  | 295  |
| 4.3.1 Gas Phase Optimizations of Homotaurine and $\beta$ -Amyloid                                                                                | .295 |
| $4.3.2$ The Gas Phase Results of Homotaurine Interacting with $\beta\mbox{-}Amyloid$ .                                                           | .296 |
| 4.3.3 The Solution Phase Optimization of Homotaurine and $\beta$ -Amyloid                                                                        | .297 |
| 4.3.4 The Results of the Solution Phase Optimization of Homotaurine and $\beta\text{-}Amyloid$                                                   | .297 |
| 4.4 3-Aminopropyl Dihydrogen Phosphate                                                                                                           | 304  |
| 4.4.1 Gas Phase Optimizations of 3-Aminopropyl Dihydrogen Phosphate and $\beta$ -Amyloid                                                         | .304 |
| 4.4.2 Results of the Gas Phase Optimizations of 3-Aminopropyl Dihydrogen Phosphate and $\beta$ -Amyloid                                          | .305 |
| 4.4.3 The Solution Phase Optimization of 3-Aminopropyl Dihydrogen Phosphate and $\beta$ -Amyloid                                                 | .307 |
| 4.3.4 The Results of the Solution Phase Optimization of 3-Aminopropyl Dihydrogen Phosphate and $\beta$ -Amyloid                                  | 307  |
| 4.5 Semi-Empirical Energy Calculations of GABA, $\beta$ -Alanine,<br>Homotaurine and 3-Aminopropyl Dihydrogen Phosphate with<br>$\beta$ -Amyloid | 314  |
| 4.5.1 SELECTION OF SYSTEMS FOR SEMI-EMPIRICAL CALCULATIONS                                                                                       | 314  |
|                                                                                                                                                  |      |
| 4.5.2 SEMI-EMPIRICAL ENERGY CALCULATION SET-UP                                                                                                   | .315 |
| 4.5.3 RESULTS OF THE SEMI-EMPIRICAL ENERGY CALCULATIONS                                                                                          | .315 |

| 4.6 Conclusions on GABA, $\beta$ -Alanine, Homotaurine and 3-Aminopropyl Dihydrogen Phosphate Interacting with the EVHHQK Region of $\beta$ -Amyloid. | 319      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 4.7 INTERPRETATION                                                                                                                                    | 320      |
| CHAPTER 5: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S<br>DRUG TARGETING LVFF                                                                       | 323      |
| 5.1 Interactions Between an Indole and the HHQK and LVFF Regions of $\beta\text{-}Amyloid$                                                            | 323      |
| 5.1.1 Isolation of the HHQK and LVFF Regions of $\beta$ -Amyloid                                                                                      | 324      |
| 5.1.2 THE GAS PHASE OPTIMIZATION OF AN INDOLE WITH HHQK AND LVFF                                                                                      | 325      |
| 5.1.3 The Results of the Gas Phase Optimizations of an Indole and the HHQK and LVFF regions of $\beta$ -Amyloid                                       | 326      |
| 5.1.4 THE SOLUTION PHASE OPTIMIZATION OF AN INDOLE WITH HHQK AND LVFF                                                                                 | 329      |
| 5.1.5 The Results of the Solution Phase Optimizations of an Indole and the HHQK and LVFF regions of $\beta$ -Amyloid                                  | 329      |
| 5.2 Interactions Between a Biindole and the HHQK and LVFF Regions of $\beta$ -Amyloid                                                                 | 336      |
| 5.2.1 THE GAS PHASE OPTIMIZATION OF A BIINDOLE WITH HHQK AND LVFF                                                                                     | 337      |
| 5.2.2 The Results of the Gas Phase Optimizations of a Biindole and the HHQK and LVFF regions of $\beta$ -Amyloid                                      | 338      |
| 5.2.3 THE SOLUTION PHASE OPTIMIZATION OF A BIINDOLE WITH HHQK AND LVFF                                                                                | 341      |
| 5.2.4 The Results of the Solution Phase Optimizations of a Biindole and the HHQK and LVFF Regions of $\beta$ -Amyloid                                 | )<br>342 |
| 5.3 Interactions Between a Bi-aromatic Molecule and the HH and FF Regions of $\beta$ -Amyloid                                                         | 354      |
| 5.3.1 PREPARATION OF THE BI-AROMATIC SYSTEMS FOR OPTIMIZATION                                                                                         | 354      |
| 5.3.2 Gas Phase Results of the Optimization of a Bi-aromatic Molecule with HH and FF of $\beta$ -Amyloid                                              | 356      |
| 5.3.3 Results of the Semi-empirical Optimization of a Bi-aromatic Molecule with HH and FF on β-Amyloid                                                | 358      |

| 5.4 Conclusions on Aromatic Compounds Binding to HHQK and LVFF of $\beta\text{-}Amyloid$                          | . 359 |
|-------------------------------------------------------------------------------------------------------------------|-------|
| 5.5 Interpretation                                                                                                | 359   |
| CHAPTER 6: THE SEARCH FOR A DIAGNOSTIC AGENT FOR ALZHEIMER'S DISEASE                                              | 362   |
| 6.1 SOLAPSONE AS AN IMAGING AGENT FOR ALZHEIMER'S DISEASE                                                         | . 362 |
| 6.1.1 PREPARATION OF SOLAPSONE, EDTA, AND DPDP                                                                    | 365   |
| 6.1.2 GAS PHASE OPTIMIZATION OF SOLAPSONE, EDTA, AND DPDP CHELATING $GD^{3+}$ and $MN^{2+}$                       | 366   |
| 6.1.3 SOLUTION PHASE OPTIMIZATION OF SOLAPSONE, EDTA, AND DPDP<br>CHELATING GD <sup>3+</sup> AND MN <sup>2+</sup> | 367   |
| 6.1.4 Conclusions on Solapsone, EDTA and DPDP Chelating $\text{Gd}^{3+}$ and $\text{Mn}^{2+}$ .                   | 368   |
| 6.2 The Optimization of a Solapsone-Gd <sup>3+</sup> Complex with $\beta$ -Amyloid                                | . 370 |
| 6.2.1 PREPARATION OF β-AMYLOID-SOLAPSONE-GD <sup>3+</sup> Systems for Gas Phase Optimization                      | 370   |
| 6.2.2 The Gas Phase Results of Solapsone-Gd <sup>3+</sup> Optimized with $\beta$ -Amyloid.                        | 371   |
| 6.2.3 The Solution Phase Optimization of Solapsone-Gd <sup>3+</sup> with β-Amyloid.                               | 381   |
| 6.2.4 Results of the Solution Phase Optimization of Solapsone-Gd $^{3^+}$ with $\beta\text{-Amyloid}$             | 381   |
| 6.3 SOLAPSONE AS AN AMYLOID ANTI-AGGREGANT                                                                        | . 395 |
| 6.3.1 Gas Phase Optimizations of Solapsone with $\beta$ -Amyloid                                                  | 395   |
| $6.3.2$ Results of the Gas Phase Optimization of Solapsone and $\beta$ -Amyloid.                                  | 396   |
| 6.3.3 Results of the Solution Phase Optimization of Solapsone with $\beta$ - Amyloid                              | 423   |
| 6.4 BIOLOGICAL VALIDATION OF SOLAPSONE-GD <sup>3+</sup> AS AN IMAGING AGENT                                       | . 452 |
| 6.5 CONCLUSIONS ON SOLAPSONE AS A DIAGNOSTIC IMAGING AGENT FOR<br>Alzheimer's Disease                             | . 454 |
| 6.6 INTERPRETATION                                                                                                | 455   |
| CHAPTER 7: CONCLUSIONS                                                                                            | 457   |
| 7.1 Phosphoserine                                                                                                 | . 457 |

| 7.2 HHQK AS A TARGET FOR ANTI-ALZHEIMER'S DRUGS                                               | . 457 |
|-----------------------------------------------------------------------------------------------|-------|
| 7.3 BBXB AND THE "PROMISCUOUS DRUG" CONCEPT                                                   | . 458 |
| 7.4 EVHHQK as a Target for Anti-Alzheimer's Drugs                                             | . 458 |
| 7.5 LVFF AS A TARGET FOR ANTI-ALZHEIMER'S DRUGS                                               | . 459 |
| 7.6 SOLAPSONE AS AN IMAGING AGENT FOR ALZHEIMER'S DISEASE                                     | . 459 |
| 7.7 General Conclusions                                                                       | . 460 |
| References                                                                                    | 461   |
| Appendix 1: The Library of Endogenous Molecules of the Brain                                  | 469   |
| Appendix 2: Method for Uniting Two 30 Å Water Boxes in QUANTA                                 | .492  |
| Appendix 3: Sample Initial File for Solvation in QUANTA Using United Water<br>Boxes           | 493   |
| Appendix 4: CHARMM .STR File for Uniting Two 30 Å Water Boxes for Solvating<br>Larger Systems | 503   |
| Appendix 5: Methodology of Biological Assays                                                  | 514   |
| Appendix 6: Protein Energies of Aβ                                                            | 516   |
| Appendix 7: Analogues of 3-Hydroxyanthranilic Acid                                            | 524   |
| Appendix 8: BBXB Protein Energies                                                             | 527   |
| Appendix 9: Anaolgues of NCE-0217                                                             | 528   |
| Appendix 10: Library of Known Drugs                                                           | 545   |
| Appendix 11: Gas Phase Results of Solapsone-Gd <sup>3+</sup> and Solapsone                    | 561   |

## LIST OF TABLES

| Table 2.1: Total energies of the six $\beta$ -amyloid conformers as calculated using the DREIDING2.21 force field for gas phase calculations in Cerius <sup>2</sup> | 52 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 2.2 Total energy of phosphoserine in the gas phase as calculated in Cerius <sup>2</sup> using the DREIDING2.21 force field                                    | 54 |
| Table 2.3: Gas phase results of phosphoserine interacting with the 1AMB conformer of β-amyloid.                                                                     | 57 |
| Table 2.4: Potential interactions of phosphoserine and the 1AMB conformer of Aβ for solvation.                                                                      | 58 |
| Table 2.5: Gas phase results of phosphoserine interacting with the 1AMC conformer of β-amyloid                                                                      | 60 |
| Table 2.6: Potential interactions of phosphoserine and the 1AMC conformer of Aβ for solvation                                                                       | 60 |
| Table 2.7: Gas phase results of phosphoserine interacting with the 1AML conformer of β-amyloid                                                                      | 62 |
| Table 2.8: Potential interactions of phosphoserine and the 1AML conformer of Aβ for solvation                                                                       | 63 |
| Table 2.9: Gas phase results of phosphoserine interacting with the 1BA4 conformer of β-amyloid                                                                      | 64 |
| Table 2.10: Potential interactions of phosphoserine and the 1BA4 conformer of Aβ for solvation                                                                      | 65 |
| Table 2.11: Gas phase results of phosphoserine interacting with the 1IYT conformer of β-amyloid                                                                     | 66 |
| Table 2.12: Gas phase results of phosphoserine interacting with the 2BP4 conformer of β-amyloid                                                                     | 67 |
| Table 2.13: Potential interactions of phosphoserine and the 2BP4 conformer of Aβ for solvation                                                                      | 68 |
| Table 2.14: Total energies of the six β-amyloid conformers and phosphoserine calculated in a solvated environment                                                   | 76 |
| Table 2.15: The solution phase results of phosphoserine interacting with the 1AMB conformer of β-amyloid                                                            | 77 |
| Table 2.16: The solution phase results of phosphoserine interacting with the 1AMC conformer of β-amyloid                                                            | 80 |

| Table 2.17: The solution phase results of phosphoserine interacting with the 1AML conformer of β-amyloid                                  | 82  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2.18: The solution phase results of phosphoserine interacting with the 1BA4 conformer of β-amyloid.                                 | 85  |
| Table 2.19: The solution phase results of phosphoserine interacting with the 1IYT conformer of β-amyloid.                                 | 87  |
| Table 2.20: The solution phase results of phosphoserine interacting with the 2BP4 conformer of β-amyloid.                                 | 90  |
| Table 2.21: Gas phase optimization of phosphoserine interacting with the BBXB motif on various proteins implicated in Alzheimer's disease | 100 |
| Table 3.1: Gas phase energy of phenylalanine                                                                                              | 108 |
| Table 3.2: Gas phase results of phenylalanine interacting with the 1AMB conformer of β-amyloid.                                           | 112 |
| Table 3.3: Gas phase results of phenylalanine interacting with the 1AMC conformer of β-amyloid                                            | 113 |
| Table 3.4: Gas phase results of phenylalanine interacting with the 1AML conformer of β-amyloid                                            | 113 |
| Table 3.5: Gas phase results of phenylalanine interacting with the 1BA4 conformer of β-amyloid                                            | 114 |
| Table 3.6: Gas phase results of phenylalanine interacting with the 1IYT conformer of β-amyloid                                            | 114 |
| Table 3.7: Gas phase results of phenylalanine interacting with the 1Z0Q conformer of β-amyloid                                            | 115 |
| Table 3.8: Selected interactions for optimization of phenylalanine with β-amyloid in the solution phase                                   | 116 |
| Table 3.9: Total energies of phenylalanine in the solution phase                                                                          | 118 |
| Table 3.10: The solution phase results of phenylalanine interacting with the 1AMB conformer of β-amyloid                                  | 120 |
| Table 3.11: The solution phase results of phenylalanine interacting with the 1AMC conformer of β-amyloid                                  | 120 |
| Table 3.12: The solution phase results of phenylalanine interacting with the 1AML conformer of β-amyloid                                  | 121 |
| Table 3.13: The solution phase results of phenylalanine interacting with the 1BA4 conformer of β-amyloid.                                 | 121 |

| Table 3.14: | The solution phase results of phenylalanine interacting with the 1IYT conformer of $\beta$ -amyloid.  | .122 |
|-------------|-------------------------------------------------------------------------------------------------------|------|
| Table 3.15: | The solution phase results of phenylalanine interacting with the $1Z0Q$ conformer of $\beta$ -amyloid | .122 |
| Table 3.16: | Gas phase energy of dopamine                                                                          | .125 |
| Table 3.17: | Gas phase results of dopamine interacting with the 1AMB conformer of $\beta$ -amyloid                 | .128 |
| Table 3.18: | Gas phase results of dopamine interacting with the 1AMC conformer of $\beta$ -amyloid                 | .128 |
| Table 3.19: | Gas phase results of dopamine interacting with the 1AML conformer of β-amyloid                        | .129 |
| Table 3.20: | Gas phase results of dopamine interacting with the 1BA4 conformer of $\beta$ -amyloid                 | .129 |
| Table 3.21: | Gas phase results of dopamine interacting with the 1IYT conformer of β-amyloid                        | .130 |
| Table 3.22: | Gas phase results of dopamine interacting with the 1Z0Q conformer of $\beta$ -amyloid                 | .130 |
| Table 3.23: | Selected interactions of dopamine interacting with β-amyloid for optimization in the solution phase   | .131 |
| Table 3.24: | Total energies of dopamine in the solution phase                                                      | .132 |
| Table 3.25: | The solution phase results of dopamine interacting with the 1AMB conformer of $\beta$ -amyloid        | .134 |
| Table 3.26: | The solution phase results of dopamine interacting with the 1AMC conformer of $\beta$ -amyloid        | .135 |
| Table 3.27: | The solution phase results of dopamine interacting with the 1AML conformer of $\beta$ -amyloid        | .135 |
| Table 3.28: | The solution phase results of dopamine interacting with the 1BA4 conformer of $\beta$ -amyloid        | .136 |
| Table 3.29: | The solution phase results of dopamine interacting with the 1IYT conformer of $\beta$ -amyloid        | .136 |
| Table 3.30: | The solution phase results of dopamine interacting with the 1Z0Q conformer of $\beta$ -amyloid        | .137 |
| Table 3.31: | Gas phase energies of D- and L-tryptophan                                                             | .141 |

| Table 3.32: | The gas phase results of D- and L-tryptophan interacting with the 1AMB conformer of $\beta$ -amyloid.       | .143 |
|-------------|-------------------------------------------------------------------------------------------------------------|------|
| Table 3.33: | The gas phase results of D- and L-tryptophan interacting with the 1AMC conformer of $\beta$ -amyloid.       | .144 |
| Table 3.34: | The gas phase results of D- and L-tryptophan interacting with the 1AML conformer of $\beta$ -amyloid.       | .144 |
| Table 3.35: | The gas phase results of D- and L-tryptophan interacting with the 1BA4 conformer of $\beta$ -amyloid.       | .145 |
| Table 3.36: | The gas phase results of D- and L-tryptophan interacting with the 1IYT conformer of $\beta$ -amyloid        | .145 |
| Table 3.37: | The gas phase results of D- and L-tryptophan interacting with the 1Z0Q conformer of $\beta$ -amyloid        | .146 |
| Table 3.38: | Selected systems of D- and L-tryptophan for solution phase optimization.                                    | .147 |
| Table 3.39: | Energies of solvated D-tryptophan and L-tryptophan                                                          | .149 |
| Table 3.40: | The solution phase results of D- and L-tryptophan interacting with the 1AMB conformer of $\beta$ -amyloid   | .151 |
| Table 3.41: | The solution phase results of D- and L-tryptophan interacting with the 1AMC conformer of $\beta$ -amyloid   | .152 |
| Table 3.42: | The solution phase results of D- and L-tryptophan interacting with the 1AML conformer of β-amyloid          | .153 |
| Table 3.43: | The solution phase results of D- and L-tryptophan interacting with the 1BA4 conformer of β-amyloid          | .154 |
| Table 3.44: | The solution phase results of D- and L-tryptophan interacting with the 1IYT conformer of $\beta$ -amyloid   | .155 |
| Table 3.45: | The solution phase results of D- and L-tryptophan interacting with the $1Z0Q$ conformer of $\beta$ -amyloid | .156 |
| Table 3.46: | Gas phase energies of tryptamine                                                                            | .160 |
| Table 3.47: | The gas phase results of tryptamine interacting with $\beta$ -amyloid                                       | .162 |
| Table 3.48: | Total energies of tryptamine calculated in a solvated environment                                           | .164 |
| Table 3.49: | The solution phase results of tryptamine interacting with the 1AMB conformer of $\beta$ -amyloid            | .165 |

| Table 3.50: 1 | The solution phase results of tryptamine interacting with the 1AMC conformer of $\beta$ -amyloid                         | .166 |
|---------------|--------------------------------------------------------------------------------------------------------------------------|------|
| Table 3.51: 1 | The solution phase results of tryptamine interacting with the 1AML conformer of $\beta$ -amyloid                         | .166 |
| Table 3.52: 7 | The solution phase results of tryptamine interacting with the 1BA4 conformer of $\beta$ -amyloid                         | .167 |
| Table 3.53: 7 | The solution phase results of tryptamine interacting with the 1IYT conformer of $\beta$ -amyloid                         | .168 |
| Table 3.54: 7 | The solution phase results of tryptamine interacting with the $1IZOQ$ conformer of $\beta$ -amyloid                      | .169 |
| Table 3.55: 0 | Gas phase energy of 3-hydroxyanthranilic acid                                                                            | .170 |
| Table 3.56: 1 | The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMB conformer of β-amyloid   | .172 |
| Table 3.57: 1 | The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMC conformer of β-amyloid   | .173 |
| Table 3.58:   | The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AML conformer of β-amyloid   | .174 |
| Table 3.59: 1 | The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1BA4 conformer of β-amyloid   | .175 |
| Table 3.60: 7 | The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of β-amyloid   | .176 |
| Table 3.61: 1 | The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1Z0Q conformer of β-amyloid   | .177 |
| Table 3.62: 5 | Selected systems of 3-hydroxyanthranilic acid and the HHQK region of $A\beta$ for solvation                              | .178 |
| Table 3.63: 1 | The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMB conformer of β-amyloid | .179 |
| Table 3.64: 7 | The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMC conformer of β-amyloid | .179 |
| Table 3.65: 7 | The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AML conformer of β-amyloid | .180 |
| Table 3.66: 7 | The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of β-amyloid | .180 |
|               |                                                                                                                          |      |

| Table 3.67: | The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1IYT conformer of $\beta$ -amyloid      | .180 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 3.68: | The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1Z0Q conformer of $\beta$ -amyloid      | .181 |
| Table 3.69: | Selected systems of 3-hydroxyanthranilic acid and the EVHHQK region of $A\beta$ for solvation.                                       | .182 |
| Table 3.70: | The gas phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of $\beta$ -amyloid.                             | .183 |
| Table 3.71: | Selected systems of 3-hydroxyanthranilic acid and the LVFF region of $A\beta$ for solvation.                                         | .184 |
| Table 3.72: | The solution phase energy of 3-hydroxyanthranilic acid                                                                               | .185 |
| Table 3.73: | The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMB conformer of $\beta$ -amyloid   | .186 |
| Table 3.74: | The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMC conformer of $\beta$ -amyloid   | .188 |
| Table 3.75: | The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AML conformer of $\beta$ -amyloid   | .190 |
| Table 3.76: | The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1BA4 conformer of β-amyloid          | .192 |
| Table 3.77: | The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of β-amyloid          | .193 |
| Table 3.78: | The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1Z0Q conformer of $\beta$ -amyloid   | .195 |
| Table 3.79: | The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMB conformer of β-amyloid        | .198 |
| Table 3.80: | The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMC conformer of β-amyloid        | .199 |
| Table 3.81: | The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AML conformer of β-amyloid        | .200 |
| Table 3.82: | The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of $\beta$ -amyloid | .201 |
| Table 3.83: | The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1IYT conformer of β-amyloid        | .202 |
|             |                                                                                                                                      |      |

| Table 3.84: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1Z0Q conformer of β-amyloid | th<br>203 |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Table 3.85: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AMB conformer of β-amyloid   | th<br>205 |
| Table 3.86: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AMC conformer of β-amyloid   | th<br>206 |
| Table 3.87: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AML conformer of β-amyloid   | th<br>207 |
| Table 3.88: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1IYT conformer of β-amyloid   | th<br>208 |
| Table 3.89: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1Z0Q conformer of β-amyloid   | th<br>209 |
| Table 3.90: 3HAA analogues and their calculated IC <sub>50</sub> s                                                                        | 219       |
| Table 3.91: Descriptors used in the QSAR for 3HAA                                                                                         | 222       |
| Table 3.92: Predicted activities for the training and validations sets of 3HAA analogues 1-50.                                            | 224       |
| Table 3.93: Predicted and observed activities of analogues 51-76 of 3HAA                                                                  | 227       |
| Table 3.94: Identification of the amino acids composing the BBXB motif                                                                    | 231       |
| Table 3.95: Energies of the four NCE molecules                                                                                            | 232       |
| Table 3.96: Results of the optimization of the lead molecules and $\alpha_1$ -ACT                                                         | 239       |
| Table 3.97: Results of the optimization of the lead molecules and $A\beta$                                                                | 239       |
| Table 3.98: Results of the optimization of the lead molecules and AChE                                                                    | 240       |
| Table 3.99: Results of the optimization of the lead molecules and Apoe4                                                                   | 240       |
| Table 3.100: Results of the optimization of the lead molecules and B7-1                                                                   | 241       |
| Table 3.101: Results of the optimization of the lead molecules and BHMT                                                                   | 241       |
| Table 3.102: Results of the optimization of the lead molecules and C1qA                                                                   | 242       |
| Table 3.103: Results of the optimization of the lead molecules and ICAM-1                                                                 | 243       |
| Table 3.104: Results of the optimization of the lead molecules and IFN-γ                                                                  | 243       |
| Table 3.105: Results of the optimization of the lead molecules and IFN-γ at two binding sites                                             | 244       |
| Table 3.106: Results of the optimization of the lead molecules and IL-1βCE                                                                | 245       |

| Table 3.107:  | Results of the optimization of the lead molecules and IL-4                                                                 | .246 |
|---------------|----------------------------------------------------------------------------------------------------------------------------|------|
| Table 3.108:  | Results of the optimization of the lead molecules and IL-12                                                                | .247 |
| Table 3.109:  | Results of the optimization of the lead molecules and IL-13                                                                | .247 |
| Table 3.110:  | Results of the optimization of the lead molecules and MIP-1 $\alpha$                                                       | .248 |
| Table 3.111:  | Results of the optimization of the lead molecules and MIP-1 $\alpha$ at two binding sites.                                 | .249 |
| Table 3.112:  | Results of the optimization of the lead molecules and MIP-1 $\beta$                                                        | .250 |
| Table 3.113:  | Results of the optimization of the lead molecules and MIP-1ß at two<br>binding sites                                       | .251 |
| Table 3.114:  | Results of the optimization of the lead molecules and NEP                                                                  | .252 |
| Table 3.115:  | Results of the optimization of the lead molecules and RANTES                                                               | .252 |
| Table 3.116:  | Results of the optimization of the lead molecules and RANTES at two<br>binding sites                                       | .253 |
| Table 3.117:  | Results of the optimization of the lead molecules and S100 <sup>β</sup>                                                    | .254 |
| Table 3.118:  | Results of the optimization of the lead molecules and SDF-1                                                                | .254 |
| Table 3.119:  | Results of the optimization of the lead molecules and Transferrin                                                          | .255 |
| Table 3.120:  | Gas phase energy of NCE-0217                                                                                               | .258 |
| Table 3.121:  | The gas phase results of the optimization of NCE-0217 with A $\beta$ , C1qA, ICAM-1, IFN- $\gamma$ , IL-4, Il-12 and IL-13 | .260 |
| Table 3.122:  | The gas phase results of the optimization of NCE-0217 with MIP-1 $\alpha$ , MIP-1 $\beta$ , and RANTES                     | .261 |
| Table 3.123:  | Descriptors used for the QSAR of NCE-0217 analogues                                                                        | .267 |
| Table 3.124:  | Predicted activities for the training and validation sets of the NCE-0217 analogues                                        | .268 |
| Table 4.1: Ga | as phase energies of GABA                                                                                                  | 275  |
| Table 4.2: Th | ne gas phase results of GABA interacting with $\beta$ -amyloid                                                             | .277 |
| Table 4.3: Sc | olution phase energies of GABA                                                                                             | .278 |
| Table 4.4: Th | ne solution phase results of GABA interacting with the 1AMB onformer of β-amyloid                                          | .279 |

| Table 4.5: The solution phase results of GABA interacting with the 1AMC conformer of β-amyloid.                    | 280 |
|--------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.6: The solution phase results of GABA interacting with the 1AML conformer of β-amyloid                     | 281 |
| Table 4.7: The solution phase results of GABA interacting with the 1BA4 conformer of β-amyloid.                    | 282 |
| Table 4.8: The solution phase results of GABA interacting with the 1IYT conformer of β-amyloid.                    | 283 |
| Table 4.9: The solution phase results of GABA interacting with the 1Z0Q conformer of β-amyloid.                    | 284 |
| Table 4.10: The gas phase energies of $\beta$ -alanine                                                             | 285 |
| Table 4.11: The gas phase results of $\beta$ -alanine interacting with $\beta$ -amyloid                            | 287 |
| Table 4.12: Solution phase energies of β-alanine                                                                   | 288 |
| Table 4.13: The solution phase results of $\beta$ -alanine interacting with the 1AMB conformer of $\beta$ -amyloid | 289 |
| Table 4.14: The solution phase results of β-alanine interacting with the 1AMC conformer of β-amyloid               | 290 |
| Table 4.15: The solution phase results of $\beta$ -alanine interacting with the 1AML conformer of $\beta$ -amyloid | 291 |
| Table 4.16: The solution phase results of β-alanine interacting with the 1BA4 conformer of β-amyloid.              | 292 |
| Table 4.17: The solution phase results of β-alanine interacting with the 1IYT conformer of β-amyloid               | 293 |
| Table 4.18: The solution phase results of β-alanine interacting with the 1Z0Q conformer of β-amyloid               | 294 |
| Table 4.19: The gas phase energies of homotaurine                                                                  | 295 |
| Table 4.20: The gas phase results of homotaurine interacting with $\beta$ -amyloid                                 | 296 |
| Table 4.21: Solution phase energies of homotaurine                                                                 | 297 |
| Table 4.22: The solution phase results of homotaurine interacting with the 1AMB conformer of $\beta$ -amyloid      | 298 |
| Table 4.23: The solution phase results of homotaurine interacting with the 1AMC conformer of β-amyloid.            | 299 |
|                                                                                                                    |     |

| Table 4.24: The solution phase results of homotaurine interacting with the 1AML conformer of β-amyloid.                           | 300 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 4.25: The solution phase results of homotaurine interacting with the 1BA4 conformer of $\beta$ -amyloid                     | 301 |
| Table 4.26: The solution phase results of homotaurine interacting with the 1IYT conformer of β-amyloid                            | 302 |
| Table 4.27: The solution phase results of homotaurine interacting with the 1Z0Q conformer of β-amyloid.                           | 303 |
| Table 4.28: The gas phase energies of 3-aminopropyl dihydrogen phosphate                                                          | 304 |
| Table 4.29: The gas phase results of 3-aminopropyl dihydrogen phosphate interacting with β-amyloid                                | 306 |
| Table 4.30: Solution phase energies of 3-aminopropyl dihydrogen phosphate                                                         | 307 |
| Table 4.31: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1AMB conformer of β-amyloid     | 308 |
| Table 4.32: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1AMC conformer of β-amyloid     | 309 |
| Table 4.33: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1AML conformer of β-amyloid     | 310 |
| Table 4.34: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1BA4 conformer of β-amyloid     | 311 |
| Table 4.35: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1IYT conformer of β-amyloid     | 312 |
| Table 4.36: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1Z0Q conformer of β-amyloid     | 313 |
| Table 4.37: Energies of GABA, β-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate calculated at the AM1 level of theory | 316 |
| Table 4.38: AM1 energies of GABA interacting with β-amyloid                                                                       | 316 |
| Table 4.39: AM1 energies of $\beta$ -alanine interacting with $\beta$ -amyloid                                                    | 317 |
| Table 4.40: AM1 energies of homotaurine interacting with β-amyloid                                                                | 317 |
| Table 4.41: AM1 energies of 3-aminopropyl dihydrogen phosphate interacting with β-amyloid                                         | 318 |
| Table 5.1: The gas phase energies of an indole                                                                                    | 325 |

| Table 5.2: The gas phase results of an indole interacting with the HHQK region of<br>β-amyloid                              | 327  |
|-----------------------------------------------------------------------------------------------------------------------------|------|
| Table 5.3: The gas phase results of an indole interacting with the LVFF region of $\beta$ -amyloid                          | 328  |
| Table 5.4: The solution phase energies of an indole                                                                         | .329 |
| Table 5.5: The solution phase results of an indole interacting with HHQK and LVFF on the 1AMB conformer of $\beta$ -amyloid | 330  |
| Table 5.6: The solution phase results of an indole interacting with HHQK and LVFF on the 1AMC conformer of $\beta$ -amyloid | 331  |
| Table 5.7: The solution phase results of an indole interacting with HHQK and LVFF on the 1AML conformer of β-amyloid        | 332  |
| Table 5.8: The solution phase results of an indole interacting with HHQK and LVFF on the 1BA4 conformer of $\beta$ -amyloid | .333 |
| Table 5.9: The solution phase results of an indole interacting with HHQK and LVFF on the 1IYT conformer of β-amyloid        | 334  |
| Table 5.10: The solution phase results of an indole interacting with HHQK and LVFF on the 1Z0Q conformer of β-amyloid       | 335  |
| Table 5.11: The gas phase energies of a biindole                                                                            | .337 |
| Table 5.12: The gas phase results of a biindole interacting with the HHQK region of $\beta$ -amyloid.                       | .339 |
| Table 5.13: The gas phase results of a biindole interacting with the LVFF region of $\beta$ -amyloid.                       | .340 |
| Table 5.14: The solution phase energies of a biindole                                                                       | .341 |
| Table 5.15: The solution phase results of a biindole interacting with the HHQK region on the 1AMB conformer of β-amyloid    | 342  |
| Table 5.16: The solution phase results of a biindole interacting with the HHQK region on the 1AMC conformer of β-amyloid    | 343  |
| Table 5.17: The solution phase results of a biindole interacting with the HHQK region on the 1AML conformer of β-amyloid    | 344  |
| Table 5.18: The solution phase results of a biindole interacting with the HHQK region on the 1BA4 conformer of β-amyloid    | 345  |
| Table 5.19: The solution phase results of a biindole interacting with the HHQK region on the 1IYT conformer of β-amyloid    | 346  |

| Table 5.20: The solution phase results of a biindole interacting with the HHQK region on the 1Z0Q conformer of $\beta$ -amyloid | 347 |
|---------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 5.21: The solution phase results of a biindole interacting with the LVFF region on the 1AMB conformer of β-amyloid        | 348 |
| Table 5.22: The solution phase results of a biindole interacting with the LVFF region on the 1AMC conformer of β-amyloid        | 349 |
| Table 5.23: The solution phase results of a biindole interacting with the LVFF region on the 1AML conformer of $\beta$ -amyloid | 350 |
| Table 5.24: The solution phase results of a biindole interacting with the LVFF region on the 1BA4 conformer of $\beta$ -amyloid | 351 |
| Table 5.25: The solution phase results of a biindole interacting with the LVFF region on the 1IYT conformer of $\beta$ -amyloid | 352 |
| Table 5.26: The solution phase results of a biindole interacting with the LVFF region on the 1Z0Q conformer of $\beta$ -amyloid | 353 |
| Table 5.27: The gas phase and semi-empirical energies of 1,2-diphenylethene                                                     | 355 |
| Table 5.28: The gas phase results of 1,2-diphenylethene interacting with HH and FF on $\beta$ -amyloid.                         | 357 |
| Table 5.29: Results of the semi-empirical calculations of a bi-aromatic molecule with HH and FF on $\beta$ -amyloid.            | 358 |
| Table 6.1: Gas phase results of solapsone, EDTA and DPDP chelating Gd <sup>3+</sup>                                             | 367 |
| Table 6.2: Gas phase results of solapsone, EDTA and DPDP chelating Mn <sup>2+</sup>                                             | 367 |
| Table 6.3: Solution phase results of solapsone, EDTA and DPDP chelating Gd <sup>3+</sup>                                        | 368 |
| Table 6.4: Solution phase results of solapsone, EDTA and DPDP chelating Mn <sup>2+</sup>                                        | 368 |
| Table 6.5: The gas phase energies of solapsone chelating gadolinium                                                             | 371 |
| Table 6.6: Selected results of the gas phase minimization of solapsone- $Gd^{3+}$ with the 1AMB conformer of $\beta$ -amyloid   | 373 |
| Table 6.7: Selected results of the gas phase minimization of solapsone- $Gd^{3+}$ with the 1AMC conformer of $\beta$ -amyloid   | 374 |
| Table 6.8: Selected results of the gas phase minimization of solapsone- $Gd^{3+}$ with the 1AML conformer of $\beta$ -amyloid   | 375 |
| Table 6.9: Selected results of the gas phase minimization of solapsone- $Gd^{3+}$ with the 1BA4 conformer of $\beta$ -amyloid   | 376 |

| Table 6.10: | Selected results of the gas phase minimization of solapsone- $Gd^{3+}$ with the HHQK region of the 1IYT conformer of $\beta$ -amyloid            | .377 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 6.11: | Selected results of the gas phase minimization of solapsone- $Gd^{3+}$ with the LVFF region of the 1IYT conformer of $\beta$ -amyloid            | .378 |
| Table 6.12: | Selected results of the gas phase minimization of solapsone-Gd <sup>3+</sup> with the HHQK region of the 1Z0Q conformer of $\beta$ -amyloid      | .379 |
| Table 6.13: | Selected results of the gas phase minimization of solapsone-Gd <sup>3+</sup> with the LVFF region of the 1Z0Q conformer of $\beta$ -amyloid      | .380 |
| Table 6.14: | The solution phase energies of solapsone-Gd <sup>3+</sup>                                                                                        | .381 |
| Table 6.15: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the HHQK region of the 1AMB conformer of $\beta$ -amyloid                    | .382 |
| Table 6.16: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the LVFF region of the 1AMB conformer of $\beta$ -amyloid                    | .383 |
| Table 6.17: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the HHQK region of the 1AMC conformer of $\beta$ -amyloid                    | .384 |
| Table 6.18: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the LVFF region of the 1AMC conformer of $\beta$ -amyloid                    | .385 |
| Table 6.19: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the HHQK region of the 1AML conformer of $\beta$ -amyloid                    | .386 |
| Table 6.20: | The solution phase results of solapsone-Gd <sup><math>3+</math></sup> interacting with the LVFF region of the 1AML conformer of $\beta$ -amyloid | .387 |
| Table 6.21: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the HHQK region of the 1BA4 conformer of $\beta$ -amyloid                    | .388 |
| Table 6.22: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the LVFF region of the 1BA4 conformer of $\beta$ -amyloid                    | .389 |
| Table 6.23: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the HHQK region of the 1IYT conformer of $\beta$ -amyloid                    | .390 |
| Table 6.24: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the LVFF region of the 1IYT conformer of $\beta$ -amyloid                    | .391 |
| Table 6.25: | The solution phase results of solapsone- $Gd^{3+}$ interacting with the HHQK region of the 1Z0Q conformer of $\beta$ -amyloid                    | .392 |
| Table 6.26: | The solution phase results of solapsone-Gd <sup><math>3+</math></sup> interacting with the LVFF region of the 1Z0Q conformer of $\beta$ -amyloid | .393 |
| Table 6.27: | The gas phase energies of solapsone                                                                                                              | .395 |

| Table 6.28: | The gas phase results of solapsone interacting with the HHQK region of the 1AMB conformer of $\beta$ -amyloid      | 397  |
|-------------|--------------------------------------------------------------------------------------------------------------------|------|
| Table 6.29: | The gas phase results of solapsone interacting with the LVFF region of the 1AMB conformer of $\beta$ -amyloid      | .398 |
| Table 6.30: | The gas phase results of solapsone interacting with the HHQKLVFF region of the 1AMB conformer of $\beta$ -amyloid  | .399 |
| Table 6.31: | The gas phase results of solapsone interacting with the HHQK region of the 1AML conformer of $\beta$ -amyloid      | .403 |
| Table 6.32: | The gas phase results of solapsone interacting with the LVFF region of the 1AML conformer of $\beta$ -amyloid      | .405 |
| Table 6.33: | The gas phase results of solapsone interacting with the HHQKLVFF region of the 1AML conformer of $\beta$ -amyloid  | .406 |
| Table 6.34: | The gas phase results of solapsone interacting with the HHQK region of the 1BA4 conformer of $\beta$ -amyloid      | .409 |
| Table 6.35: | The gas phase results of solapsone interacting with the LVFF region of the 1BA4 conformer of $\beta$ -amyloid      | .410 |
| Table 6.36: | The gas phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of $\beta$ -amyloid  | .411 |
| Table 6.37: | The gas phase results of solapsone interacting with the HHQK region of the 1IYT conformer of $\beta$ -amyloid      | .413 |
| Table 6.38: | The gas phase results of solapsone interacting with the LVFF region of the 1IYT conformer of $\beta$ -amyloid      | .414 |
| Table 6.39: | The gas phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\beta$ -amyloid  | .415 |
| Table 6.40: | The gas phase results of solapsone interacting with the HHQK region of the 1Z0Q conformer of $\beta$ -amyloid.     | .418 |
| Table 6.41: | The gas phase results of solapsone interacting with the LVFF region of the 1Z0Q conformer of $\beta$ -amyloid.     | .420 |
| Table 6.42: | The gas phase results of solapsone interacting with the HHQKLVFF region of the 1Z0Q conformer of $\beta$ -amyloid  | .421 |
| Table 6.43: | The solution phase energies of solapsone                                                                           | .423 |
| Table 6.44: | The solution phase results of solapsone interacting with the HHQK region of the 1AMB conformer of $\beta$ -amyloid | .424 |
|             |                                                                                                                    |      |

| Table 6.45: | The solution phase results of solapsone interacting with the LVFF region of the 1AMB conformer of $\beta$ -amyloid      | .425 |
|-------------|-------------------------------------------------------------------------------------------------------------------------|------|
| Table 6.46: | The solution phase results of solapsone interacting with the HHQKLVFF region of the 1AMB conformer of $\beta$ -amyloid  | .426 |
| Table 6.47: | The solution phase results of solapsone interacting with the HHQK region of the 1AML conformer of β-amyloid             | .430 |
| Table 6.48: | The solution phase results of solapsone interacting with the LVFF region of the 1AML conformer of β-amyloid             | .432 |
| Table 6.49: | The solution phase results of solapsone interacting with the HHQKLVFF region of the 1AML conformer of $\beta$ -amyloid  | .433 |
| Table 6.50: | The solution phase results of solapsone interacting with the HHQK region of the 1BA4 conformer of $\beta$ -amyloid      | .436 |
| Table 6.51: | The solution phase results of solapsone interacting with the LVFF region of the 1BA4 conformer of $\beta$ -amyloid      | .437 |
| Table 6.52: | The solution phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of β-amyloid         | .438 |
| Table 6.53: | The solution phase results of solapsone interacting with the HHQK region of the 1IYT conformer of $\beta$ -amyloid      | .440 |
| Table 6.54: | The solution phase results of solapsone interacting with the LVFF region of the 1IYT conformer of $\beta$ -amyloid      | .442 |
| Table 6.55: | The solution phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of $\beta$ -amyloid  | .443 |
| Table 6.56: | The solution phase results of solapsone interacting with the HHQK region of the 1Z0Q conformer of $\beta$ -amyloid      | .446 |
| Table 6.57: | The solution phase results of solapsone interacting with the LVFF region of the 1Z0Q conformer of $\beta$ -amyloid      | .448 |
| Table 6.58: | The solution phase results of solapsone interacting with the HHQKLVFF region of the 1Z0Q conformer of $\beta$ -amyloid. | .449 |

# LIST OF FIGURES

| Figure 1.1: Acetylcholine                                                                         | 2  |
|---------------------------------------------------------------------------------------------------|----|
| Figure 1.2: Enzymatic cleavage of APP                                                             | 4  |
| Figure 1.3: The amino acid sequence of β-amyloid                                                  | 5  |
| Figure 1.4: Interaction between β-amyloid and a membrane surface                                  | 6  |
| Figure 1.5: The aggregation pathway of β-amyloid from soluble monomer to insoluble amyloid plaque | 7  |
| Figure 1.6: Characteristic features of Alzheimer's disease present in the brain                   | 10 |
| Figure 1.7: Donepezil                                                                             | 13 |
| Figure 1.8: Rivastigmine                                                                          | 13 |
| Figure 1.9: Galantamine                                                                           | 14 |
| Figure 1.10: Memantine                                                                            | 14 |
| Figure 1.11: Drug molecule interacting with target receptor                                       | 21 |
| Figure 1.12: Steepest descent approach                                                            | 33 |
| Figure 1.13: Conjugate gradient approach                                                          | 35 |
| Figure 2.1: Phosphoserine at physiological pH                                                     | 44 |
| Figure 2.2: The charged amino acid side chains of the EVHHQK region of β-<br>amyloid              | 47 |
| Figure 2.3: The 1AMB conformer of β-amyloid                                                       | 49 |
| Figure 2.4: The 1AMC conformer of β-amyloid                                                       | 49 |
| Figure 2.5: The 1AML conformer of β-amyloid                                                       | 50 |

| Figure 2.6: The 1BA4 conformer of β-amyloid                                                                                                            | 50         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 2.7: The 1IYT conformer of β-amyloid                                                                                                            | 51         |
| Figure 2.8: The 2BP4 conformer of β-amyloid                                                                                                            | 51         |
| Figure 2.9: Neutral phosphoserine molecule with grid search numbers indicated                                                                          | 53         |
| Figure 2.10: The gas phase interaction occurring between phosphoserine and the His13 and Lys16 residues of the 1AMB conformer of β-amyloid             | 59         |
| Figure 2.11: The interactions between phosphoserine and the 1AMB conformer of<br>β-amyloid in an aqueous environment                                   | 72         |
| Figure 2.12: The binding interactions occurring between phosphoserine and the 1AMB conformer of β-amyloid upon minimization in an aqueous environment. | 79         |
| Figure 2.13: (A) ThT assay of phosphoserine at different concentrations                                                                                | 93         |
| Figure 3.1: Phenylalanine as charged for physiological pH                                                                                              | 107        |
| Figure 3.2: Dopamine as charged for physiological pH                                                                                                   | 124        |
| Figure 3.3: Identification of the functional groups on dopamine                                                                                        | 127        |
| Figure 3.4 Tryptophan charged for physiological pH                                                                                                     | 139        |
| Figure 3.5: L-tryptophan and D-tryptophan                                                                                                              | 139        |
| Figure 3.6: Tryptamine at physiological pH                                                                                                             | 159        |
| Figure 3.7: 3-hydroxyanthranilic acid at physiological pH                                                                                              | 169        |
| Figure 3.8: Binding interaction between 3HAA and β-amyloid                                                                                             | 210        |
| Figure 3.9: Transmission electron microscopy (TEM) of Aβ <sub>40</sub> (20 μM) in the absence (left) and presence (right) of 3-HAA (100 μM)            | 212        |
| Figure 3.10: Thioflavin-T assay of 3-hydroxyanthranilic acid at various concentration interacting with Aβ                                              | ons<br>212 |

| Figure 3.11: Thioflavin S assay of 3-hydroxyanthranilic acid interacting with tau | 214 |
|-----------------------------------------------------------------------------------|-----|
| Figure 3.12: 3HAA analogues 1-25                                                  | 217 |
| Figure 3.13: 3HAA analogues 26-50                                                 | 218 |
| Figure 3.14: 3HAA analogues 51-76                                                 | 226 |
| Figure 3.15: NCE-0103, NCE-0112, NCE-0216, and NCE-0325                           | 229 |
| Figure 3.16: Regions of NCE compounds identified for interactions with BBXB       | 238 |
| Figure 3.17: Example of NCE-0325 binding to IL-1βCE                               | 256 |
| Figure 3.18: NCE-0217                                                             | 258 |
| Figure 3.19: Interaction between NCE-0217 and RANTES                              | 264 |
| Figure 4.1: GABA at physiological pH                                              | 274 |
| Figure 4.2: β-alanine at physiological pH                                         | 285 |
| Figure 4.3: Homotaurine at physiological pH                                       | 295 |
| Figure 4.4: 3-Aminopropyl dihydrogen phosphate at physiological pH                | 304 |
| Figure 5.1: Indole                                                                | 324 |
| Figure 5.2: Biindole                                                              | 336 |
| Figure 5.3: 1,2-diphenylethene                                                    | 355 |
| Figure 6.1: Solapsone as charged for physiological pH                             | 363 |
| Figure 6.2: Heparin sulfate                                                       | 364 |
| Figure 6.3: EDTA and DPDP charged for physiological pH                            | 365 |
| Figure 6.4: Solapsone chelating gadolinium (III)                                  | 369 |
| Figure 6.5: Abbreviations of the functional groups on solapsone                   |     |

| Figure 6.6: | Solution phase interactions between the chelated solapsone- $Gd^{3+}$ complex and $\beta$ -amyloid | 394 |
|-------------|----------------------------------------------------------------------------------------------------|-----|
| Figure 6.7: | Solapsone interacting with $\beta$ -amyloid after solution phase optimization                      | 451 |
| Figure 6.8: | Synthesis of solapsone                                                                             | 452 |
| Figure 6.9: | Thioflavin T assay of solapsone and solapsone-Gd <sup>3+</sup>                                     | 453 |

# ABSTRACT

Alzheimer's disease (AD) is a progressive, degenerative neurological disorder for which there is no cure. The causative agent is  $\beta$ -amyloid (A $\beta$ ) which becomes neurotoxic upon conformational change from  $\alpha$ -helix to  $\beta$ -sheet. In silico methods have been used to indentify endogenous small molecules of the brain that are capable of binding to  $A\beta$  to inhibit conformational changes; this is a novel approach to the disease. Through the use of computational methods, several small molecules that are endogenous to the brain, such as phosphoserine, have been identified as being capable of binding to the monomeric forms of A $\beta$ ; *in vitro* studies support their role as anti-aggregants. One of the small molecules identified through these *in silico* methods, 3-hydroxyanthranilic acid (3HAA) has been developed through the use of Quantitative Structure-Activity Relationship (OSAR) studies to design more potent analogues. These *in silico* studies have also examined the capacity of synthetic compounds (structurally similar to endogenous molecules) to bind to both  $A\beta$  and other proteins affiliated with AD. Results indicate the potential for a single molecule to bind "promiscuously" to multiple proteins bearing a common BBXB (where B is a basic amino acid) motif affiliated with AD. This will allow for the development of molecules to target AD in a multifaceted approach. Furthermore, these small molecules can be selected through the use of "physinformatics" to bind with equal efficacy to the HHQK and LVFF regions (which play a role in the misfolding process) of A $\beta$ ; this will prevent conformational changes of the protein. A novel diagnostic imaging agent for AD has also been developed through computational methods; solapsone (formerly used to treat leprosy) has been identified as being structurally similar to species that bind to AB to initiate conformational changes. Results show that solapsone can chelate gadolinium, used in MRI, and bind to the soluble forms of AB, allowing for imaging of the toxic species in the human brain, and thus a definitive diagnosis of AD (which is not currently possible with living patients). Computational methods have proved useful in developing a new approach to treating AD, and designing a novel imaging agent.

# LIST OF ABBREVIATIONS USED

| 3HAA            | 3-hydroxyanthranilic acid                                     |
|-----------------|---------------------------------------------------------------|
| А               | (in AAXA) an aliphatic or aromatic amino acid                 |
| A*              | alanine, where * indicates its location on the protein chain  |
| Αβ              | β-amyloid                                                     |
| Αβ40            | β-amyloid (residues 1-40)                                     |
| Αβ42            | β-amyloid (residues 1-42)                                     |
| ACh             | acetylcholine                                                 |
| AChE            | acetylcholinesterase                                          |
| AChEI           | acetylcholinesterase inhibitor                                |
| $\alpha_1$ -ACT | alpha-1-antichymotrypsin                                      |
| AD              | Alzheimer's disease                                           |
| ADDLs           | Aβ-derived diffusible ligands                                 |
| АроЕ            | Apolipoprotein E                                              |
| Ароє4           | Apolipoprotein  e4                                            |
| APP             | Amyloid precursor protein                                     |
| APPs            | soluble shortened APP fragment                                |
| Ar              | an aromatic ring                                              |
| BACE1           | beta-site APP cleaving enzyme                                 |
| В               | a basic amino acid (in BBXB)                                  |
| B7-1            | T lymphocyte activation antigen                               |
| BBB             | blood-brain barrier                                           |
| BHMT            | betaine-homocysteine methyl transferase                       |
| C               | CO <sub>2</sub> <sup>-</sup> functional group                 |
| C*              | cysteine, where * indicates its position on the protein chain |
| ClqA            | complement component 1, q subcomponent, chain A               |
| CD      | circular dichroism                                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------|
| CHARMM  | Chemistry at HARvard Macromolecular Mechanics                                                                                |
| CS      | used to indicate the central SO <sub>2</sub> group on solapsone                                                              |
| CSF     | cerebrospinal fluid                                                                                                          |
| D*      | aspartic acid, where * indicates its position on the protein chain                                                           |
| DPDP    | dipyridoxyl diphosphate                                                                                                      |
| E*      | glutamic acid, where * indicates its position on the protein chain                                                           |
| EDTA    | ethylenediaminetetraacetic acid                                                                                              |
| EVHHQK  | amino acid residues glutamic acid11- valine12- histidine13-histidine14- glutamine15-lysine16 of the $\beta$ -amyloid peptide |
| F*      | phenylalanine, where * indicates its position on the protein chain                                                           |
| FF      | phenylalanine-phenylalanine                                                                                                  |
| FAD     | familial Alzheimer's disease                                                                                                 |
| G*      | glycine, where * indicates its position on the protein chain                                                                 |
| H*      | histidine, where * indicates its position on the protein chain                                                               |
| HH      | histidine-histidine                                                                                                          |
| HHQK    | amino acid residues histidine<br>13-histidine<br>14-glutamine<br>15-lysine<br>16 of the $\beta$ -amyloid peptide             |
| I*      | isoleucine, where * indicates its position on the protein chain                                                              |
| ICAM-1  | intercellular adhesion molecule 1                                                                                            |
| IFN-γ   | interferon-gamma                                                                                                             |
| IL-1βCE | interleukin-1 $\beta$ converting enzyme                                                                                      |
| IL-4    | interleukin 4                                                                                                                |
| IL-12   | interleukin 12                                                                                                               |
| IL-13   | interleukin 13                                                                                                               |
| In      | represents interactions with an indole                                                                                       |
| InB     | represents interactions with the benzyl ring of an indole                                                                    |

| InP    | represents interactions with the pyrrole ring of an indole                  |
|--------|-----------------------------------------------------------------------------|
| K*     | lysine, where * indicates its position on the protein chain                 |
| L*     | leucine, where * indicates its position on the protein chain                |
| LB1    | used to indicate the first benzyl ring on the left side of solapsone        |
| LB2    | used to indicated the furthest benzyl ring on the left side of solapsone    |
| LNH    | used to indicate the –NH- on the left side of solapsone                     |
| LS1    | used to indicate the first sulfonate group on the left side of solapsone    |
| LS2    | used to indicate the furthest sulfonate group on the left side of solapsone |
| LVFF   | amino acid residues leucine17-valine18-phenylalanine19-phenylalanine20      |
| M*     | methionine, where * indicates its position on the protein chain             |
| MIP-1a | macrophage inflammatory protein-1a                                          |
| MIP-1β | macrophage inflammatory protein-1ß                                          |
| MOE    | Molecular Operating Environment                                             |
| MRI    | magnetic resonance imaging                                                  |
| Ν      | NH <sub>3</sub> <sup>+</sup> functional group                               |
| N*     | asparagine, where * indicates its position on the protein chain             |
| NCE    | novel chemical entity                                                       |
| NEP    | neprilysin                                                                  |
| NFTs   | neurofibrillary tangles                                                     |
| NMDA   | N-methyl-D-aspartate                                                        |
| NMR    | nuclear magnetic resonance                                                  |
| 0      | OH functional group                                                         |
| $O^1$  | OH group meta to the ethylamine on dopamine                                 |
| $O^2$  | OH group para to the ethylamine on dopamine                                 |
| p3     | non-amyloidogenic fragment cleaved from APP                                 |
| Р      | PO <sub>3</sub> H <sup>-</sup> functional group                             |

| P*     | proline, where * indicates its position on the protein chain                 |
|--------|------------------------------------------------------------------------------|
| PCA    | principal components analysis                                                |
| PDB    | Protein Data Bank                                                            |
| PES    | potential energy surface                                                     |
| PET    | positron emission tomography                                                 |
| PLS    | partial-least squares                                                        |
| PVS    | polyvinylsulfonate                                                           |
| Q*     | glutamine, where * indicates its position on the protein chain               |
| QSAR   | Quantitative Structure-Activity Relationship                                 |
| R*     | arginine, where * indicates its position on the protein chain                |
| RANTES | regulated upon activation, normal T-cell expressed, and secreted             |
| RB1    | used to indicate the first benzyl ring on the right side of solapsone        |
| RB2    | used to indicate the furthest benzyl ring on the right side of solapsone     |
| RCSB   | Research Collaboratory for Structural Bioinformatics                         |
| RNH    | used to indicate the -NH- on the right side of solapsone                     |
| RS1    | used to indicate the first sulfonate group on the right side of solapsone    |
| RS2    | used to indicate the furthest sulfonate group on the right side of solapsone |
| S      | SO <sub>3</sub> <sup>-</sup> functional group                                |
| S*     | serine, where * indicates its position on the protein chain                  |
| SDF-1  | stromal cell-derived factor-1                                                |
| Т      | threonine, where * indicates its position on the protein chain               |
| ThT    | thioflavin T                                                                 |
| V*     | valine, where * indicates its position on the protein chain                  |
| V*     | valine, where * indicates its position on the protein chain                  |
| W*     | tryptophan, where * indicates its position on the protein chain              |
| Х      | a variable representative of any non-specified amino acid                    |
| Y*     | tyrosine, where * indicates its position on the protein chain                |

# ACKNOWLEDGEMENTS

I would first like to thank God for His strength and guidance throughout this research. Second, the research encompassed in this thesis would not be complete without the assistance of my supervisor, Dr. Don Weaver.

I would like to acknowledge the assistance of Harman Clair for the assembly of the library of endogenous compounds.

Special thanks to Dr. Chris Barden for his assistance in providing the scripts for calculations in QUANTA, and his assistance with many computer crises.

Thanks to Todd Galloway, Rose Chen, and Gordon Simms for providing the biological data presented.

Gordon Simms is also acknowledged for his synthetic contributions with the 3HAA analogues. Arun Yadav is thanked for his synthetic work on solapsone.

Katharine Anderson, Laural Fisher, and Alaina McGrath were of assistance in providing the analogues of NCE-0217 for the QSAR.

I would like to thank my family for all their support and love throughout this process, and my mom for being an excellent proof-reader.

The Nova Scotia Health Research Foundation and the Gunn Family Studentship in Alzheimer's Research are thanked for their funding of this research.

Finally, thanks to the Toronto Maple Leafs for demonstrating that perseverance brings results. Go Leafs!

# **CHAPTER 1: INTRODUCTION**

Computational chemistry is an extremely useful field of chemistry in the realm of medicinal chemistry and drug design. A variety of techniques available to the computational chemist can be utilized in many aspects of the drug design process. The combined use of computationally calculated descriptors and biological activities can be used to perform quantitative structure-activity relationship (QSAR) studies in order to optimize the design of novel therapeutic molecules. Molecular dynamics simulations can be used to examine how certain molecules will interact with lipid membranes, and molecular modelling can be used to optimize systems to determine whether molecules will bind to proteins at a specific targeted region. These techniques are becoming an integral part of modern drug design, and are particularly useful in developing new drugs to treat Alzheimer's disease, its development, treatment and diagnosis. The latter part of the chapter will detail the background behind the computational methods used, and the goals of this research.

# 1.1 Alzheimer's Disease and $\beta$ -Amyloid

Alzheimer's disease, so named for Alois Alzheimer who first described the disease in 1907, is a neurodegenerative disorder that is both progressive and degenerative and is the leading cause of dementia among the elderly [1, 2]. This disease is becoming increasingly prevalent as the population ages. Currently there is no cure or drug to prevent this disease [3].

The psychological and physical manifestations of the disease are characterized by many symptoms, including behavioural changes and cognitive deterioration that lead to increasing requirements for care, particularly as the disease progresses from a mild to a severe form, which coincides with a decrease in the patient's functional independence [2, 3]. While the primary symptom is dementia, there can also be symptoms such as irritability or mood changes, depression, disinhibition, anxiety, sleep disorders and wandering [2]. The disease is therefore most often diagnosed through tests for these psychological and memory-related changes, along with the use of imaging techniques of which positron emission tomography (PET) is becoming quite useful since it can determine the acetylcholine levels (an important neurotransmitter in AD), available in the brain [3, 4].

#### **1.1.1 ACETYLCHOLINE AND ITS ROLE IN ALZHEIMER'S DISEASE**

The neurotransmitter acetylcholine (ACh) (Figure 1.1) is believed to play a role in cognition and memory since the levels of the neurotransmitter have been shown to be decreased in patients with Alzheimer's disease. This loss is due to a severe decrease in the number of cholinergic neurons (where synthesis of acetylcholine occurs) present in the basal forebrain and neocortex as well as decreased enzyme activity of choline acetyltransferase and acetylcholinesterase, which are enzymes involved in the production and degradation of acetylcholine [3, 5].

O

Figure 1.1: Acetylcholine

Acetylcholine is generated in cholinergic nerve terminals from acetyl coenzyme A and choline via the enzymatic activity of choline acetyltransferase. Decreased levels of this enzyme present in the brain means that less acetylcholine will be synthesized [6, 7]. As there is no cellular reuptake mechanism for acetylcholine, the neurotransmitter is catabolized into acetate and choline via the activity of acetylcholinesterase, enabling the choline to be recycled [6, 7]. Current drug treatments for Alzheimer's disease consist mainly of acetylcholinesterase inhibitors (AChEI), whose actions prevent the hydrolysis of acetylcholine thus increasing the concentration of the neurotransmitter in the synaptic cleft [7].

# 1.1.2 $\beta$ -Amyloid and the Amyloid Cascade

The most commonly accepted causative agent in the development and progression of Alzheimer's disease is  $\beta$ -amyloid (A $\beta$ ). The amyloid cascade hypothesis suggests that a neurotoxic cascade of events is initiated in the brain when A $\beta$  starts aggregating, and genetic evidence from patients with early-onset AD linking the onset of Alzheimer's disease with  $\beta$ -amyloid aggregation has also helped to support this now widely accepted hypothesis [8, 9].

#### **1.1.2.1** The Generation of $\beta$ -Amyloid from Amyloid Precursor Protein

β-Amyloid is an amphipathic peptide (having both hydrophilic and lipophilic regions) that is 39-43 amino acids in length and is generated by the proteolytic cleavage of the amyloid precursor protein (APP) [8, 10, 11]. APP is an integral membrane glycoprotein composed of a single transmembrane domain with a short cytoplasmic tail (where the C-terminus is located) and a longer extracellular domain (where the N-

terminus is located) and is cleaved enzymatically via one of two pathways: nonamyloidogenic or amyloidogenic [8, 11]. The non-amyloidogenic pathway produces soluble products and involves  $\alpha$ -secretase cleavage occurring within the A $\beta$  domain, releasing a soluble shortened form of APP, which is then followed by  $\gamma$ -secretase action at the terminal end of the A $\beta$  domain, releasing another soluble and non-amyloidogenic fragment (see Figure 1.2) [11]. In the amyloidogenic pathway, the initial enzymatic action involves beta-site APP cleaving enzyme (BACE1) that cleaves APP near the N-terminus of the  $\beta$ -amyloid domain, which is then followed by the same  $\gamma$ -secretase action, only in this case along with generating the soluble shortened APP there is also the potentially toxic  $\beta$ -amyloid peptide [11].



Figure 1.2: Enzymatic cleavage of APP: 1. Non-amyloidogenic pathway. 2. Amyloidogenic pathway.  $\alpha$  is the  $\alpha$ -secretase enzyme,  $\gamma$  is the  $\gamma$ -secretase enzyme and BACE1 is beta-site APP cleaving enzyme. APPs<sub> $\alpha$ </sub> and APPs<sub> $\beta$ </sub> represent soluble shortened fragments of APP, p3 represents a non-amyloidogenic fragment and A $\beta$  is the generated  $\beta$ -amyloid protein. Generated  $\beta$ -amyloid is between 39 and 43 amino acids in length (see Figure 1.3) and it is this length that plays a role in the self-aggregating nature of the peptide [10, 11]. Most of the A $\beta$  that is generated is 40 amino acids in length (A $\beta$ 40), comprising approximately 90 percent of generated  $\beta$ -amyloid, while a smaller portion is the 42 amino acid length peptide (A $\beta$ 42) – it is this longer peptide that seems to be of most relevance in the development of Alzheimer's disease [11, 12].



Figure 1.3: The amino acid sequence of β-amyloid.

Production of  $\beta$ -amyloid and its oligomerization appear to begin intracellularly, as APP can be found not only in the plasma membrane, but also in other locations such as the endoplasmic reticulum (ER) and the trans-Golgi network [13, 14]. Interestingly the form of generated A $\beta$  varies with location, as more A $\beta$ 42 is produced in the ER and intermediate compartment, while A $\beta$ 40 is produced more so in the Golgi apparatus and beyond [13]. The cholesterol content of the various membranes may play a role in influencing length of the produced A $\beta$  [13, 14].

It is of most importance to realize that  $\beta$ -amyloid is a naturally occurring substance found in the brain and cerebrospinal fluid (CSF) in a soluble non-toxic form; only when it undergoes a conformational change from random coil or  $\alpha$ -helix to a  $\beta$ -sheet conformation does A $\beta$  begin to take on neurotoxic properties [9, 10]. Given its length, the

42 amino acid length  $\beta$ -amyloid peptide is slightly more hydrophobic than shorter peptide forms, allowing it to self-aggregate more readily [8, 10, 15].

# **1.1.2.2** β-Amyloid Aggregation and Toxicity

The initiation of  $\beta$ -amyloid aggregation occurs when the peptide takes on a  $\beta$ sheet conformation, which is possibly instigated by the peptide interacting with lipid membranes [10, 14]. Evidence suggests that A $\beta$  interacts with negatively charged regions on the surface of membranes, causing both misfolding of the protein and damage to the membrane [16, 17]. Figure 1.4 shows where these potential membrane interactions can occur. The positively charged **HHQK** region can interact with negatively charged glycosaminoglycans on the membrane surface to allow conformational changes to occur around the hinge region: the cholesterol binding domains can further facilitate this transformation from  $\alpha$ -helix or random coil to  $\beta$ -sheet for the protein.



# Figure 1.4: Interaction between β-amyloid and a membrane surface. GAG represents glycosaminoglycans; Raft represents cholesterol rafts; CB represents a cholesterol binding domain, and H the hinge region where Aβ folding occurs.

 $A\beta$  first forms small aggregates in the form of dimers, trimers, larger oligomers

and protofilaments along with other intermediate structures, which then form larger

protofibrils, all of which are soluble, followed by the insoluble fibrils that deposit to form the amyloid plaques that are characteristic of Alzheimer's disease (Figure 1.5) [14, 18]. These plaques are non-toxic and do not correlate to the severity of the disease [31]. It appears that oligomerization of  $\beta$ -amyloid begins intraneuronally, as the intraneuronal A $\beta$ will appear first, and levels of intracellular A $\beta$  decrease as the extracellular levels increase and plaques appear [14, 19]. As well, the oligomerization may be dependent on the cholesterol levels of the membranes A $\beta$  interacts with as it can affect the folding process and speed of fibrillization [15]. It is likely that extracellular A $\beta$ , at least in part, originates from the intracellular A $\beta$  that causes lysis of the neuron as it aggregates [14].



Figure 1.5: The aggregation pathway of β-amyloid from soluble monomer to insoluble amyloid plaque

One of the most stable species of the early soluble stage appears to be the  $A\beta$ derived diffusible ligands (ADDLs), which are now suspected to be some of the neurotoxic species as their presence at even nanomolar concentrations has been shown to be toxic [11, 14, 16]. Other small soluble oligometric species are considered to be neurotoxic as well [16]. The ADDLs have been shown to inhibit long term potentiation, and can also cause disruption of cellular membranes and calcium dysregulation resulting in neuronal changes in the brain as well as being detrimental to memory; levels of soluble forms of A $\beta$  aggregates are relative to the severity of cognitive impairment and synaptic loss seen in individuals with AD [9, 11, 12, 19]. It has also been reported that the size of the oligomers formed plays a role in which aspects of the brain's functions are affected by the  $\beta$ -amyloid; the smaller oligomers seem to affect the synapses and certain forms of memory while the larger dodecamers appear to influence spatial memory in particular [9]. The oligometric forms of A $\beta$  are more hydrophobic than the fibrillar species, and can interact more readily with membranes, as well as having a higher diffusability, explaining why the oligomers are the more toxic species [18]. The causative agent in all of this appears in particular to be the longer A $\beta$ 42 as is evidenced in cases of early-onset Alzheimer's disease [9].

# **1.1.2.3** Familial Alzheimer's Disease as Evidence of the Role of $\beta$ -Amyloid in Disease Initiation

There are several genetic mutations that have been discovered that predispose certain families to early-onset Alzheimer's disease, also known as familial Alzheimer's disease (FAD); sporadic AD has not been linked to any such mutations. It appears that cases of FAD are caused either by an increased production of A $\beta$ 42 relative to A $\beta$ 40, or an overall increase in the production of all forms of the peptide, giving rise to proof that

certainly in some, if not all, cases the chief instigator of Alzheimer's disease is the  $\beta$ amyloid peptide [9].

Mutations occurring in the APP gene, which is located on chromosome 21, have been shown to increase the amount or alter the aggregation properties of  $\beta$ -amyloid [8, 9]. As well, some aggressive cases of Alzheimer's disease that occur earlier in life can also be initiated by mutations affecting the presenilin 1 and presenilin 2 genes. Presenilin forms the catalytic site of the  $\gamma$ -secretase enzyme that generates the C terminal end of the  $\beta$ -amyloid fragment; individuals inheriting these mutated genes have shown an increase in the ratio of A $\beta$ 42 to A $\beta$ 40 that occurs throughout their lifetime [9].

Although it is not guaranteed, there is also an increased chance that individuals with a specific allele of the Apolipoprotein E (ApoE) gene will develop Alzheimer's disease [8, 9, 12]. If an individual possesses the  $\varepsilon$ 4 allele, as opposed to  $\varepsilon$ 2 or  $\varepsilon$ 3, the individuals inheriting the gene are at an increased risk for developing late-onset AD, as opposed to FAD [8, 9, 20]. More recent studies have also indicated a relationship between the CALHM1 gene and an increased susceptibility for late-onset AD [20].

#### **1.1.2.4** β-Amyloid and Neurofibrillary Tangles

The other main feature present in the brains of individuals having Alzheimer's disease are neurofibrillary tangles (NFTs) that are composed primarily of tau protein [1]. These NFTs appear to be the result of processes later on in the neurotoxic cascade and are not an initial factor in the disease, as they cannot themselves cause amyloidosis [12, 18].

Tau is a microtubule-associated protein that is necessary for microtubule stability as well as being involved in their assembly and maintenance [21]. Microtubules are cellular components that are required for axonal transport, making them critical for neuronal function since breakdown in microtubules prevents vesicles containing molecules such as neurotransmitters being transported to and from the cell body to the synapse; they are also important in forming the cytoskeleton of cells [21, 22]. Therefore the consequences are severe when tau becomes abnormally phosphorylated – it can no longer bind to the microtubules to regulate their polymerization state, and thus can result in the disassembly of these very important support structures [11, 20, 21]. When the microtubules disassemble, the support system needed to maintain cell structure disappears and degradation will occur in the axons and dendrites [11].

The abnormally phosphorylated tau protein self-aggregates to form paired helical filaments that accumulate intraneuronally and thusly causes neuronal degeneration and death [21]. Tau pathology also contributes to the neuronal loss in Alzheimer's patients; however, its abnormal phosphorylation occurs after amyloidosis has started along with other neurotoxic effects [19]. Figure 1.6 shows the pathological artefacts of tau and amyloid in the brain.

Besides the abovementioned neurotoxic effects related to the self-aggregated form of  $\beta$ -amyloid and NFTs, other neurotoxic effects appear to be caused by oxidative stress related to the methionine 35 residue of the  $\beta$ -amyloid peptide [23]. This oxidative stress can result in protein oxidation as well as lipid peroxidation [8]. Inflammation also appears in the vicinity of neurofibrillary tangles and  $\beta$ -amyloid plaques. Overall, the effects of aggregated  $\beta$ -amyloid on the brain are highly unfavourable and as of yet there are no drugs available to halt this aggregation to prevent Alzheimer's disease [11].



Figure 1.6: Characteristic features of Alzheimer's disease present in the brain: intraneuronal neurofibrillary tangles and extracellular β-amyloid plaques

# **1.1.3 WHY RESEARCH ALZHEIMER'S DISEASE?**

Alzheimer's disease is currently one of the most significant diseases being researched due to its increasing prevalence and an increasingly ageing society. In 2010 approximately 35.6 million people in the world were living with Alzheimer's disease, and this number will almost double every twenty years; in North America those numbers are expected to increase by approximately 63% in that same time frame [24]. In Canada one in twenty people over the age of 65 has AD today, and that number increases to an astounding one in four people over the age of 85 [25].

After the initial diagnosis of Alzheimer's disease, death usually occurs in individuals between seven and ten years later; it should be noted that there are always

exceptions to the rule [25]. It has also been suggested that the progression from mild to severe Alzheimer's disease occurs over a period of six years; however, the older the person is when diagnosed, the shorter the survival rate [3]. Research by Brookmeyer *et al* has predicted that delaying disease progression by therapeutic means for a two year period could decrease the number of late stage cases by about 7 million but the number of new cases would increase by 5.2 million; on the other hand, if the onset of the disease could be delayed by two years, the number of cases of Alzheimer's disease will drop by 22.8 million, and even a one year delay in onset results in 11.8 million fewer cases of AD [3]. Therefore the design and development of drugs capable of preventing, or at least delaying the onset of disease could greatly impact and ease the worldwide burden of Alzheimer's disease as opposed to current methods which can only delay the symptomatic progression.

#### **1.1.3.1** CURRENT ALZHEIMER'S DRUGS

In Canada, there are two classes of drugs currently available for the treatment of Alzheimer's disease. The first class of drugs consists of three acetylcholinesterase inhibitors which are used for symptomatic treatment in patients suffering from mild to moderate AD: donepezil, rivastigmine and galantamine [25, 26]. The second class of drugs consists of a single drug which is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been conditionally approved by Health Canada for use in the treatment of moderate to severe Alzheimer's disease: memantine [25, 27].

Donepezil, also known as Aricept or E2020 (Figure 1.7), is a non-competitive and reversible inhibitor of acetylcholinesterase that functions mainly through  $\pi$ - $\pi$  and cation- $\pi$  interactions along the gorge of the enzyme wherein the active site (a catalytic triad) is

located [28]. While it does not interact with the active site itself (making it noncompetitive) the drug molecule does prevent the Michaelis complex (the enzymesubstrate complex that in this case involves binding interactions forming between acetylcholine and the catalytic triad) from forming or possibly the deacylation process from occurring [28].



**Figure 1.7: Donepezil** 

Rivastigmine, also known as Exelon (Figure 1.8), is a pseudo-irreversible inhibitor of AChE and acts upon the catalytic triad in a process involving covalent binding where the enzyme treats the drug molecule as a substrate and generates a hydrolytic product, called NAP, which acts as a competitive but reversible inhibitor of the acetylcholinesterase enzyme [29].



**Figure 1.8: Rivastigmine** 

Galantamine (Figure 1.9), also known as Reminyl, is an extended release formulation; it is also known as galanthamine hydrobromide [25, 30]. Like rivastigmine, galantamine also acts upon the catalytic triad; however, it acts through hydrogen bonding interactions making it reversible [30]. The action of galantamine prevents the enzymatic activity in that the binding occurs with one of the residues of the catalytic triad, a serine residue, which needs to be activated in order to start the catalytic processing of acetylcholine [28, 30].

Unfortunately all of these current treatments provide only symptomatic relief of the disease, and in the case of the acetylcholinesterase inhibitors are only useful so long as acetylcholine is still being produced in the brain; as of yet there are currently no drugs available on the market to treat the pathological agent of importance –  $\beta$ -amyloid.



**Figure 1.9: Galantamine** 

Memantine (Figure 1.10), also known as Ebixa, acts by blocking the NMDA receptor channel to prevent excitotoxity due to an increase in the influx of calcium ions which is a result of the channel being opened for prolonged periods of time due to excess glutamate present in the brain [27]. It is believed that although excess glutamate is not the primary cause of Alzheimer's disease, its increased concentrations are partially responsible for the loss of cholinergic neurons and thus memantine is used to help prevent the overstimulation of these neurons [27]. Memantine can be used as a monotherapy or it can also be given in conjunction with one of the available acetylcholinesterase inhibitors [27].



Figure 1.10: Memantine

# **1.1.4 CURRENT RESEARCH IN TREATING ALZHEIMER'S DISEASE**

Current research towards the design and development of new drugs to treat Alzheimer's disease has unfortunately yielded unsuccessful results from clinical trials, even with multiple targets of interest.

# **1.1.4.1 Drugs Targeting \beta-Amyloid Aggregation**

There are currently no drugs on the market approved for treating Alzheimer's disease by targeting A $\beta$  aggregation. Tramiprosate, also known as homotaurine or Alzhemed, was successful in early stage trials, but failed to show efficacy in phase III trials (probably resulting from the methodology of the trial) [31]. PBT2, being developed by Prana Biotechnology Limited, has demonstrated success in phase II trials and works by binding complexes of A $\beta$  and copper or zinc to prevent oligomerization; further trials are awaited [31, 32]. Elan pharmaceuticals has finished phase II trials of *scyllo*-inositol; during the trial, high dosages resulted in deaths, so only low doses were continued in the study [31, 33]. Results of the study have been published and have demonstrated inconclusive results as to the efficacy of the drug due to the small trial size; however, there does seem to be some success in targeting A $\beta$ 42, which may be of use in the mild stage of AD [33]. A polyphenol, epigallocatechin-3-gallate, is currently undergoing a

phase II-III study and prevents A $\beta$  aggregation by binding to the monomeric form of  $\beta$ amyloid [31].

## 1.1.4.2 Drugs Promoting Clearance of $\beta$ -Amyloid from the Brain

Research is ongoing in the area of treating AD by removing or reducing the amount of  $\beta$ -amyloid in the brain. This methodology looks at the use of vaccines to target A $\beta$ , either actively or passively [31]. Active immunization involves provoking an immune response by introducing fragments of  $\beta$ -amyloid, however many of these therapies, such as CAD-106 and ACC-001 are only in phase II trials, and most have only completed phase I trials so far [31]. Passive immunization involves the use of monoclonal antibodies or polyclonal immunoglobulins that target the A $\beta$  protein. There is more progress in this field, with several phase III trials ongoing for compounds such as bapineuzumab, solanezumab and intravenously administered immunoglobulins [31]. The difficulty with these vaccination strategies is that there is the potential for more adverse affects occurring in the case of active immunization, while passive immunization is a costly and time-consuming task [31]. While the benefits of vaccination strategies are recognized, there is some risk involved in this scenario as the monomeric form of A $\beta$  may play a neuroprotective role.

#### 1.1.4.3 Drugs Targeting the Reduction of the Production of $A\beta$

The major focus of drug researchers in the search for new ways to treat Alzheimer's disease is to target the enzymes involved in the secretion of A $\beta$  from APP. There are three enzymes involved in the cleavage of APP:  $\alpha$ -secretase is involved in the non-amyloidogenic pathway, BACE1 involved in the amyloidogenic pathway, and  $\gamma$ secretase, which plays a role in both pathways (see Figure 1.2). Drugs that activate  $\alpha$ -

secretase have only reached phase II clinical trials, but have shown indications of reducing the production of A $\beta$  [31]. In terms of  $\gamma$ -secretase inhibitors and modulators, the results have been less than favourable: Eli Lilly halted the phase III trial of semagacestat when it was discovered that the drug had no effect on improving cognition and may lead to increased incidence of skin cancer [34]. Drugs targeting BACE1 have also resulted in little progress; those that have reached phase III trials have demonstrated no efficacy in improving patient outcomes [31]. There are some BACE1 inhibitors in the earlier stages of clinical trials, and it is hoped that they will deliver more promising results [31, 34].

# **1.1.4.4 Drugs Targeting Other Aspects of Alzheimer's Disease**

There is some research focussing on targets other than A $\beta$  to treat AD. Molecules that target the tau protein are being investigated, with Rember (a tau anti-aggregant) being the only drug currently in phase III trials [31, 34]. Results of the only other tau drug to reach phase III, valproate, were disappointing, with no effect on the cognition of Alzheimer's patients [31].

Another phase III trial looking at dimebon as a monotherapy for Alzheimer's disease targeting mitochondria failed to demonstrate any effect on mental status, but is being looked at as part of a combination therapy study for treating AD [31, 34].

Neurotrophins are another target, as nerve growth factor (NGF) is important for the survival of cholinergic neurons that are damaged by the disease [31]. Methods to introduce NGF into the brain are being examined, with phase II trials ongoing.

The current methods for diagnosing Alzheimer's disease and tracking its progression have not been sufficient enough to provide the success desired in curing AD.

# **1.1.5 CURRENT METHODS IN DIAGNOSING ALZHEIMER'S DISEASE**

The diagnosis of Alzheimer's disease in a living patient is dependent on the results of tests that examine the mental status of the individual in question. The decline in cognitive function of an individual is an important factor in diagnosing AD, but is not useful in detecting the disease at a very early stage, before the damage to neurons is significant. While there is a lack of consensus on the use of biomarkers to help diagnose the disease, some methods are available, and others are being investigated.

#### **1.1.5.1** BIOMARKERS USED TO DIAGNOSE ALZHEIMER'S DISEASE

Currently, there are four identified biomarkers useful to diagnose Alzheimer's disease: Aβ42, Aβ40, total tau, and phospho-tau-181 [35, 36]. Tau and hyperphosporylated tau levels are both increased in patients with AD, while levels of Aβ42 or the Aβ42/Aβ40 ratio are significantly reduced, and all of these are needed to diagnose the disease in its sporadic form [35]. The drawback to collecting these biomarkers is that they are obtained by examining the cerebrospinal fluid of the patient, and therefore require a lumbar puncture [35]. Analysis of these biomarkers also requires the use of costly assays, and to date blood plasma biomarkers have not been useful in identifying sporadic AD [35]. It is likely that in the case of biomarkers, especially if blood plasma is the desired source, a combination of stable elements must be identified to use in combination to diagnose the disease [35].

#### **1.3.5.2** *Imaging Agents for Alzheimer's Disease*

There are no truly commercial diagnostic imaging agents available on the market for AD; however, there are some currently in development and some are being used in clinical trials of Alzheimer's drugs.

Magnetic resonance imaging (MRI) is used to look at brain volumes, as there is a decrease in the amount of grey matter in individuals with AD as the disease progresses [36]. Studies looking at the use of functional MRI are being expanded to more centres, and this technique is used to determine the effects of drugs on regional brain activation by measuring the blood oxygen-dependent level signals [36].

Positron emission tomography (PET) is the focus of most diagnostic compounds being developed so far. The more noted imaging agent is Pittsburgh compound B (<sup>11</sup>C-PIB) which binds to amyloid plaques in the brain [36, 37]. There are two notable downfalls to this imaging agent, the first being that <sup>11</sup>C-PIB does not bind to the soluble forms of  $\beta$ -amyloid (and the soluble oligomers are the toxic species). The second downfall is that the half-life of <sup>11</sup>C-PIB is only 20.4 minutes [36, 37]. PET is also used to look at glucose consumption, as a labelled sugar can be used to identify regions of reduced uptake, indicative of the damaged neurons that occur in AD. Molecules continue to be developed for PET use, such as [<sup>18</sup>F] AV-45, which also binds to A $\beta$  plaques, and has a significantly longer half-life than <sup>11</sup>C-PIB [37].

Single photon emission computed tomography (SPECT) presents an alternative to PET for diagnostic imaging of AD in that it is available in more hospitals than PET scanners, and the half-lives of the radionuclei are significantly longer [38]. Several

imaging agents for  $A\beta$  plaques are being developed, and are based largely on Congo Red and thioflavin-T, which are known to bind to amyloid aggregates as they are used in staining and fluorescence studies [38].

# **1.1.6 DEFINING THE DRUG MOLECULE**

To understand what is needed to design and develop a new drug, in particular for Alzheimer's disease, it is relevant to know the features of a drug molecule and what properties it must have in order to be bioavailable.

#### **1.1.6.1 CHARACTERISTIC FEATURES OF DRUG MOLECULES**

How each drug molecule interacts with its targeted receptor and moves throughout the body is determined by its functional groups and their geometrical arrangement [39]. The functional groups determine the chemical and physical properties of the drug molecule and their geometry in space should be specific enough that they will only bind with the targeted receptor: this should reduce toxicity. If the molecule is too flexible it will be able to bind to other receptors, which can have potentially negative effects [39]. The biological response elicited by the binding of the drug molecule to the target receptor should be beneficial in nature and can result in many different biological responses depending on the receptor in question: the acetylcholinesterase inhibitors mentioned earlier in this chapter bind to their target receptors to block an enzymatic pathway, while other drug molecules can be used to block neurotransmitter receptors, and so forth [39]. Figure 1.11 shows the interaction between a drug molecule and its target receptor.

The structural frame to which the functional groups of the drug molecule are attached in order to maintain a specific three-dimensional arrangement should not be involved in the interaction themselves, and thus it is generally preferable to use a chemically inert structure composed of hydrocarbons [39]. Rigidity in the framework is also preferable to minimize geometry changes that could affect the target specificity of the molecule and thereby reduce side-effects [39]. In addition the molecule must be able to traverse the hydrophilic and lipophilic regions of the body in order to reach its desired destination, so this chemistry must also be accounted for when designing novel drugs [39]. In the particular case of Alzheimer's disease, drugs need to enter the brain in order to take action; this presents an added obstacle as the drug molecules must pass through the blood-brain barrier (BBB) which is composed of multiple lipid bilayers – drugs must have a proper balance of hydrophilicity and lipophilicity in order to pass through this barrier [39].



Figure 1.11: Drug molecule interacting with target receptor

#### **1.1.6.2** REQUIREMENTS FOR A BIOAVAILABLE DRUG MOLECULE

There are certain physical and chemical properties that must be met by a drug-like molecule in order for it to be an effective drug molecule assuming an appropriate receptor can be identified [39]. These properties are best summed up by the Rule of Five as proposed by Lipinski: first the molecular weight should be less than 500 g/mol, since the molecule must be small enough to be transported throughout the body [39, 40]. Second, the molecule should have a logP value less than 5 (where logP is the logarithm of the octanol-water partition coefficient) since the molecule must have a certain lipophilicity in order to allow it to cross lipid layers but also have enough hydrophilicity that it can dissolve in the blood and circulate through the body [39, 40]. Third and fourth the molecule should not have more than five hydrogen bonding donors and no more than ten hydrogen bonding acceptors; too many polar groups results in rapid elimination of the drug from the body since the kidneys will filter out highly polar molecules more quickly, resulting in little therapeutic effect of the drug as its half life would be very short (a drug half life is defined as the time it takes for half of the drug molecules delivered to the desired target to be metabolized) [39, 40]. There are exceptions to the above rules should the drug be an analogue of molecules that are transported actively across cell membranes (as opposed to passive diffusion, which is the normal entry method for most drug molecules) [39, 40].

It should also be noted that if these drug molecules must cross the blood-brain barrier there are further limitations; in particular the logP value must be between 1.5 and 3.0 so as not to be too hydrophilic or consequently so lipophilic that it cannot reach the brain [39]. It is also suggested that there be even fewer hydrogen donors or acceptors (three is usually the maximum) and it is very unlikely that any charged molecules will be able to pass this barrier if entry is being sought via passive diffusion [39]. If the drug molecule is being transported actively into the brain as a structural analogue of either Lphenylalanine or D-glucose (both being molecules that are actively transported across the BBB), there is more leeway in the type and number of functional groups as well as the size of the drug molecule [39].

Drug molecules can be designed to mimic molecules already present in the body (several such molecules will be examined in the research presented in this thesis) or they can be designed to target pathways involved in the production or elimination of certain molecules [39]. The difficulty with designing drugs for Alzheimer's disease lies in ensuring that they are capable of meeting the above requirements in order to cross the BBB.

#### **1.1.7 THE PROMISCUOUS DRUG CONCEPT**

It has been proposed that a novel way of approaching the treatment of AD would be to design a "promiscuous" drug capable of interacting with many of the proteins involved in disease [41]. Analysis of multiple proteins related to Alzheimer's disease has revealed a common **BBXB** motif (or pattern of amino acids), where B represents a basic amino acid [41]. This **BBXB** motif is found only on proteins affiliated with AD. The concept is therefore to design or find a small molecule that is capable of binding to this specific pattern of amino acids. A single molecule could thus act in a "promiscuous" manner by binding to the same motif on multiple proteins, allowing for a multifaceted approach to treating the disease using a single drug molecule.

#### 1.1.7.1 HHQK

One of the identified **BB**X**B** motifs is the **HHQK** region of β-amyloid [41]. This region is particularly significant as it is highly positively charged, and can interact with the negatively charged regions (such as glycosaminoglycans) on the surface of membranes to allow for conformational conversions to occur. Designing and developing small molecules to bind to this **HHQK** region should prevent such membrane interactions from occurring, and thereby unwanted conformational changes that result in neurotoxicity.

# **1.2 MOLECULAR MODELLING**

Molecular modelling involves the use of empirical molecular mechanics force fields to study the conformational energies of molecules. There are a wide variety of force fields available to the computational chemist, ranging from generic force fields that are applicable to a wide range of molecular systems and atom types to those that are specific to small molecules, nucleic acids or proteins.

# **1.2.1 WHAT ARE FORCE FIELDS?**

A force field is composed of a functional form (energy equations) and parameters that are used to calculate the energy of a system based on the inter- and intramolecular forces of that system [42]. Force fields ignore electron contributions, calculating energies based solely on nuclear contributions [42]. As they are empirical in nature, there is no absolutely correct form for a force field; therefore, a force field can be selected based on its suitability for a particular system given that the parameters can determine how well a particular force field functions with certain systems [42].

Each force field has a functional form and parameters with four basic components being common to all force fields; these can be grouped into terms related to bonding interactions and terms related to nonbonding interactions [42]. Energy terms describing the deviation of bond lengths and angles from specified equilibrium values, as well as torsional changes, are the terms related to bonding interactions, whereas electrostatic and van der Waals energy terms compose the non-bonding interaction terms [42]. Depending on the force field in question, *ad hoc* hydrogen bonding terms can also be included.

The parameters that help define a force field give the various constants necessary for the functional form in terms of atom types [42]. The atom type contains information about the atom such as its hybridization state, the atomic number and, depending on the force field, information about the local environment of the atom [42]. Atom types can be more or less specific, depending on the type of force field being used for molecular modelling. A more generic force field, such as DREIDING2.21, will assign all atoms of the same element the same atomic type, whereas some more specialized force fields, such as CHARMM, will assign different atom types to a particular element depending on the nature of the local environment of the atom; for example, a nitrogen atom in a ring is assigned a different atom type than one in a peptide [42, 43, 44].

Parameters are instituted for force fields based on the properties that the force field is designed to predict [42]. In the realm of molecular modelling, force fields are most typically designed to reproduce structural properties of systems [42]. Another asset of these force fields is that their parameters allow for transferability of the force field – new parameters do not have to be defined for each individual molecule in a system, which is to say that related molecules can be treated using the same force field [42]. An example

of the transferability of force fields would be the CHARMM force field, which can be applied to any protein-based system, and can be used for energy calculations, or dynamics simulations of the proteins interacting with other molecules, or energy minimizations, allowing for optimal protein geometries to be located [44].

## **1.2.2 THE DREIDING2.21 FORCE FIELD**

Optimizations performed in the Cerius<sup>2</sup> molecular modelling environment involve the use of the DREIDING2.21 force field [43, 45]. The DREIDING2.21 force field is a simple, generic force field applicable to a variety of systems from organic and biological molecules to main-group inorganic molecules, and allows for structural predictions as well as dynamics simulations [43]. The force field treats all atoms of the same atomic type identically, with types being assigned automatically based on the topology of the structure in question [43]. The functional form of the DREIDING2.21 force field is as follows:

$$E = E_{val} + E_{nb} \tag{1.1}$$

This equation sums the total energy from the energy of valence interactions (e.g. bonding interactions),  $E_{val}$  and the energy of nonbonding interaction energies,  $E_{nb}$ .

These two energy terms are summations of various energy interactions as follows:

$$E_{val} = E_B + E_A + E_T + E_1$$
(1.2)

and

$$E_{nb} = E_{vdw} + E_Q + E_{hb} \tag{1.3}$$

Looking at the valence energy terms, the bond stretching energy,  $E_B$ , is defined by default as a harmonic oscillator where:

$$E_{\rm B} = \frac{1}{2}k_{\rm e}({\rm R}-{\rm R}_{\rm e})^2 \tag{1.4}$$

In this case,  $k_e$  is the stretching constant at equilibrium, R is the variable bond length and  $R_e$  is the equilibrium value of the bond length. The bond-angle bending energy,  $E_A$ , is calculated using a harmonic cosine function:

$$E_{A} = E_{IJK} = \frac{1}{2}C_{IJK} [\cos\theta_{IJK} - \cos\theta_{J}]^{2}$$
(1.5)

 $\theta$  is defined as the angle between bonds *IJ* and *JK* for two bonds sharing a common atom, and  $\theta^0_J$  is the equilibrium angle while

$$C_{IJK} = K_{IJK} / (\sin\theta^0_J)^2$$
(1.6)

where  $K_{IJK}$  is a force constant, independent of I,J and K, defined as:

$$K_{IJK} = 100 \text{ (kcal/mol)/rad}^2$$
(1.7)

The dihedral angle torsion energy term,  $E_T$ , is expressed in the form of a cosine series expansion:

$$E_{T} = E_{IJLK} = \frac{1}{2} V_{JK} \{ 1 - \cos \left[ n_{JK} (\varphi - \varphi^{0}_{JK}) \right] \}$$
(1.8)

The periodicity is described by  $n_{JK}$ , the dihedral angle by  $\varphi$ , the equilibrium torsional angle by  $\varphi^0_{JK}$ , while  $V_{JK}$  is a barrier to the rotation and is dependent on the specific case being calculated [42, 43]. The parameters for the torsional term in DREIDING2.21 are based on hybridization rather than on the particular atoms involved [43]. The energy of

the inversion terms,  $E_1$ , which are terms that describe the ease or difficulty of maintaining planarity, is described as follows:

$$E_1 = E^d_{IJKL} = \frac{1}{2}C_I(\cos\psi - \cos\psi^0_I)^2$$
(1.9)

*IJKL* represents four atoms connected together with *I* being the central atom, and  $\psi$  is therefore equal to the angle between the *IL* bond and the *JKL* plane. The equilibrium angle is  $\psi_I^0$  and

$$C_I = K_{I} / (\sin \psi_{I}^{0})^2$$
 (1.10)

 $K_I$  is the force constant and is a parameter determined by the nature of the molecule – whether the system is planar or nonplanar.

The non-bonding energy term has two components, the first being van der Waals interactions, also referred to as dispersion interactions,  $E_{vdw}$ , which is expressed by a Lennard-Jones type function as the default:

$$E^{LJ}_{vdw} = D_0[\rho^{-12} - 2\rho^{-6}]$$
(1.11)

where

$$\rho = R/R_0 \tag{1.12}$$

The bond length is represented by R, the van der Waals bond length by  $R_0$ , and the van der Waals well depth by  $D_0$ . The values for  $D_0$  and  $R_0$  are calculated by the following equations:

$$\mathbf{D}_{0ij} = \left[\mathbf{D}_{0ii} \mathbf{D}_{0jj}\right]^{1/2} \tag{1.13}$$

$$\mathbf{R}_{0ij} = \frac{1}{2} (\mathbf{R}_{0ii} + \mathbf{R}_{0jj}) \tag{1.14}$$

The two atoms being examined in an interaction are represented by *i* and *j* [2]. The other component of the non-bonding energy term is the electrostatic interaction energy,  $E_Q$ , which uses Gasteiger charge estimates and is calculated using a version of Coulomb's law for a system in vacuum [42, 43].

$$E_Q = (322.0637)Q_1Q_2/\epsilon R_{ij}$$
(1.15)

The 322.0637 term is a conversion factor used for converting the energy into kcal/mol,  $Q_1$  and  $Q_2$  are the point charges, measured in electron units, the dielectric constant is  $\varepsilon$  and the distance between the two atoms is  $R_{ij}$ , measured in angstroms [43]. The DREIDING2.21 force field also contains a term for calculating energies associated with explicit hydrogen bonding within the non-bonding energy term and is represented by  $E_{hb}$ .

$$E_{hb} = D_{hb} [5(R_{hb}/R_{DA})^{12} - 6(R_{hb}/R_{DA})^{10}] \cos^4(\theta_{DHA})$$
(1.16)

The hydrogen donor, the hydrogen atom, and the hydrogen acceptor are represented by D, H, and A, respectively, while the bond angle between these atoms is  $\theta_{DHA}$ . The distance between the donor and acceptor atoms (D and A) is given by  $R_{DA}$  while the values for  $D_{hb}$  and  $R_{hb}$  are dependent on the charge calculation method. Further details on the functional form and parameters of this force field are described by Mayo *et al* [43].

#### **1.2.3 THE CHARMM FORCE FIELD AND QUANTA**

The QUANTA program, from Accelrys Inc., uses the CHARMM (Chemistry at HARvard Macromolecular Mechanics) force field [3, 5]. The CHARMM22 version of this force field is available from MOE (Molecular Operating Environment Inc.), and has been parameterized specifically for proteins, with an emphasis on solution phase interactions in water [47, 48].

The CHARMM force field calculates the energy of a system using a functional form containing bonded and non-bonded interaction energies based on atomic coordinates [44]. The equation for the force field is as follows:

$$E = E_{b} + E_{\theta} + E_{\phi} + E_{\omega} + E_{vdW} + E_{el} + E_{hb} + E_{cr} + E_{c\phi}$$
(1.17)

The energy terms associated with bonding interactions are  $E_b$ ,  $E_{\theta}$ ,  $E_{\phi}$ , and  $E_{\omega}$ , with  $E_b$  being the bond potential energy which is calculated via the following:

$$E_{b} = \Sigma k_{b} (r - r_{0})^{2}$$
(1.18)

The bond length is r, which is measured in angstroms, and  $k_b$  is a force constant which is selected based on the atom type along with  $r_0$  which is the minimal value of the bond length [44, 46]. The energy term associated with bond angles is given the following form [49]:

$$E_{\theta} = \Sigma k_{\theta} (\theta - \theta_0)^2 \tag{1.19}$$

The bond angle is represented by  $\theta$ , and the minimum of the bond angle by  $\theta_{0}$ , while  $k_{\theta}$  is the force constant specified by the CHARMM parameters [49]. Both the bond length and bond angle energy terms are treated as harmonic oscillators in the form of Hooke's Law [44]. The torsional energy depends on the angle between four connected atoms with rotation occurring around the middle pair of atoms and is calculated by [44, 50]:

$$E_{\phi} = \Sigma |k_{\phi}| - k_{\phi} \cos(n\phi) \tag{1.20}$$

The n is a geometric constant that is equal to 1, 2, 3, 4, or 6 and is dependent on the parameters selected in CHARMM, the  $k_{\phi}$  is the force constant and the  $\phi$  is the dihedral angle of the system in question [44, 50]. The remaining bonding energy term is the improper inversion term which involves planarity in molecules and takes the form of a harmonic oscillator:

$$E_{\omega} = \Sigma k_{\omega} (\omega - \omega_0)^2 \tag{1.21}$$

The improper torsion angle is represented by  $\omega$ , and the minimum torsion angle by  $\omega_0$  and  $k_{\omega}$  is the force constant [44].

The non-bonding interaction terms begin with the van der Waals energy term,  $E_{vdW}$ , which is calculated via:

$$E_{vdW} = \sum_{excl(i,j)=1} (A_{ij}/r_{ij}^{12} - B_{ij}/r_{ij}^{6}) sw(r_{ij}^{2}, r_{on}^{2}, r_{off}^{2})$$
(1.22)

The equation involves a switching function, sw, which is equal to either 1 or 0 as determined by a set of formulae that are detailed in the CHARMM force field documentation [44]. The van der Waals bond length minima are represented by  $A_{ij}$  and  $B_{ij}$ while the measured distance between two atoms *i* and *j* is represented by  $r_{ij}$ . The exclusion term excl(i,j) = 1 refers to the excluded list that is generated for the system under study – atoms that are too close (i.e. in a bonding situation) are to be excluded from the calculation; a cutoff distance is also determined such that those atoms too far away to interact are not included [44, 50]. The electrostatic energy term,  $E_{el}$ , is given by [44, 50]:

$$E_{el} = \sum_{excl(i,j)=1} q_i q_j / 4\pi \varepsilon_0 r_{ij}$$
(1.23)

The partial atomic charges on each of the two atoms involved in the calculation are given by  $q_i$  and  $q_j$  while the distance between the two atoms is given by  $r_{ij}$  and the dielectric constant is  $\varepsilon_0$  [44, 50].

Although there is a hydrogen bonding term available in the CHARMM force field, it is often excluded as the hydrogen bonding interactions can be accurately represented by the electrostatic and van der Waals terms [48].

The other two energy terms involved in the functional form are related to atom harmonics,  $E_{cr}$  and dihedral constraints  $E_{c\phi}$ ; as these are energies related to constraints

applicable to atoms in the system but were not used in calculations involved in the research for this thesis, the equations will not be given here but are found in Brooks, et al. [44].

### **1.2.4 ENERGY MINIMIZATION ALGORITHMS**

Energy minimization algorithms are used in molecular modelling to assist in identifying the lowest energy, optimal molecular conformation of a system [42]. The use of this energy minimization technique is an essential part of the presented research.

In order for molecular modelling to be viable, the Born-Oppenheimer approximation is applied, which states that for molecules in the electronic ground state, the energy can be considered a function of the nuclear coordinates, and will only change when the nuclear positions change [42]. The energy of a system is thus described by the potential energy surface (PES), where the energy varies with the nuclear coordinates [42]. The goal of these minimization algorithms is to find a local minimum point on the potential energy surface, since a minimum point corresponds to a relatively stable structure or conformation; stable structures are lower in energy than unstable structures and therefore a lower energy conformation will be equivalent to a minimum point on the potential energy surface [42]. These energy minimization techniques, sometimes called geometry optimization algorithms since they find the optimal geometry/conformation for a system, find only the minimum points on the potential energy surface and thus may not actually correspond to the active form of a biological system, particularly since existing in a low energy state is not the only criterion for an active drug molecule [42].
There are many algorithms available for energy minimization [45, 49]. Some of these algorithms are only applicable to small systems. For example, the Newton Raphson algorithm is best suited for systems with 200 or fewer atoms [42]. In the case of molecular modelling, particularly in the case of systems involving explicit solvation, the systems being studied usually contain several thousand atoms, and there are two algorithms particularly suited to the minimization of such large systems: steepest descent and conjugate gradient [42]. These two minimization algorithms are available in QUANTA and Cerius<sup>2</sup> [45, 46]. In the MOE program, however, three consecutive energy minimization algorithms are applied to a system regardless of the number of atoms present: steepest descent, conjugate gradient and truncated Newton [51].

#### **1.2.4.1 The Steepest Descent Algorithm**

Steepest descent is a particularly useful algorithm when starting with an initial conformation in a high energy state [42]. It is a first order minimization method that involves the atomic coordinates being changed gradually as the system is moved closer to an energy minimum point; thus the positional shifts are gentler than some of the other methods. However, the steepest descent algorithm is more likely to generate a low energy structure regardless of the system being optimized [42, 44, 52]. Movements along the PES are made in a direction parallel to the net force, and the direction and gradient of each successive step is orthogonal to the previous step – this stepwise manner is the main reason that the steepest descents method tends to be nonconvergent in larger systems (Figure 1.12) [42, 44].



Figure 1.12: Steepest descent approach

One method for taking these steps downhill is the arbitrary step approach. The step size taken for each iteration is also modified, starting off with a predetermined value and then adjusted according to whether the previous step taken resulted in an increase or decrease in the potential energy; a multiplicative factor is applied to the step size which will either augment or diminish the next step taken [42].

More commonly a line search approach is used for both the steepest descents and conjugate gradient methods of minimization; the line search approach is one dimensional and follows along the direction vector that is determined at each iteration [42, 52]. The line search brackets the minimum along the line, where the minimum point is lower in energy than the two points bracketing it; the distance between these points is then gradually decreased by each iterative step [42].

#### **1.2.4.2** The Conjugate Gradient Algorithm

The other very useful algorithm for optimizing the conformational energies of complex biological systems is the conjugate gradient approach. Unlike steepest descents, it is preferable to apply this algorithm only when the system is close to a minimum on the PES, particularly when larger systems are being studied [52]. Like the steepest descent

algorithm, a line search approach is also taken for the conjugate gradient minimization method; however, the direction of the steps taken differs in that, while the gradients are still orthogonal the direction of the steps is conjugate (Figure 1.13) [42, 52]. These conjugate directions will allow the minimum to be reached in fewer steps than in steepest descents; for example, if one is dealing with a quadratic function, containing M variables, the minimum will be reached in M number of steps – two variables results in two steps until the minimum is achieved [42].



Figure 1.13: Conjugate gradient approach

It is useful to first run steepest descents to relieve strain in high energy systems and then to run the conjugate gradient algorithm to attain a minimum point on the potential energy surface and by doing so, also obtain a stable structure for the system [52]. These algorithms are the most useful for dealing with the large atomic systems that are studied via molecular modelling [42].

#### 1.2.4.3 The Truncated Newton Algorithm

Unlike the steepest descent and conjugate gradient algorithms, the truncated Newton algorithm is a second-order method [42]. Second-order methods use the second derivative, which deals with the curvature of the energy function, to predict where a minimum will be located along the direction chosen on the PES using the gradient [42, 51, 52]. Given that the algorithm involves solving the Newton equations, which can be an intensive, computationally demanding process, an iterative linear equation solver is employed to solve these equations in an approximate manner that guarantees the minimum will be reached [51, 52, 53]. This iterative solver is terminated after relatively few iterations, leading to the moniker of truncated Newton [51, 53].

The Molecular Operating Environment uses these three algorithms sequentially. Initially several iterations of the steepest descents algorithm are used to bring the gradient down to a more reasonable range and continues only in the direction of energy descent [47, 51, 53]. The conjugate gradients algorithm is then applied to improve the search for a low energy minimum, bringing the gradient down further so that the truncated Newton algorithm can then be applied to find the lowest energy minimum for the energy function [51, 53].

#### **1.3 QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIPS**

The use of quantitative structure-activity relationship (QSAR) studies is an extremely useful molecular modelling tool for the development of novel drug molecules. The concept of a QSAR involves the assumption that the physical properties of a compound are related to its structure and therefore related compounds (e.g. in the same family of compounds) will have similar properties [54]. The basis is then that mathematical models can be used to first relate and then predict a particular property for sets of compounds: molecular descriptors are calculated for various data sets and then statistical tools are applied to improve the predictive capacity of the descriptors by determining which of the descriptors are relevant to the desired property (for example the

biological activity of the compounds) and eliminating those which have no significant contribution [54]. While techniques related to QSAR have existed since the mid 1800s, molecular modelling allows for an expanded range of descriptors to be calculated for each compound and detailed statistical analyses to be performed at minimal costs in the process of designing new drugs [54].

Molecular descriptors calculated in QSAR studies cover a wide range of properties: physicochemical, electronic, topological and geometric [39]. These descriptors can use the molecular structure to calculate such properties as bond lengths and angles, molecular dipoles and the polar surface area, the number of particular atom types or the logP, all of which can play an important role in the biological activity of a particular compound [39, 55]. Over 330 descriptors can be calculated in MOE for QSAR studies, encompassing two-dimensional (e.g. number of aromatic rings) and three-dimensional descriptors (e.g. the van der Waals volume) [51].

Quantitative structure-activity relationship studies are performed in an iterative fashion in combination with the syntheses of diverse molecules with highly variable biological activity data in order to improve the design of novel drug molecules to obtain maximal efficacy. The process of performing a QSAR requires a set of molecules with known properties. In the case of the presented research this will involve data related to the biological activity of the molecules in question. This training set of molecules contains a selection of compounds with known properties and a significant number of molecular descriptors are calculated for each of the molecules in the set [54, 55].

Statistical analyses in the form of multivariate analyses such as principal components analysis (PCA) and partial-least squares (PLS) are applied to the calculated descriptors to find the most relevant contributions to generate a linear equation capable of predicting the desired property [54]. In PCA, the original data is transformed into linear combinations of the original variables that account for the variance covered by the descriptors, with most of the variance covered in the first principal component (the new variables are referred to as principal components) [56]. In PLS, the data is transformed such that the most variance is represented while retaining the correlation between the dependent and independent variables [56]. In MOE, a binary QSAR model is also available which is non-linear and uses probability distributions to determine how well descriptors can predict the activity or inactivity of molecules [K].

If a large number of descriptors have been calculated for the QSAR, their number is reduced based on their contributions to the predictiveness of the QSAR as otherwise there is a risk of overfitting the data. Overfitting the data means that while the predictions of activity for the training set of compounds will be extremely accurate, the model will be unlikely to provide accurate predictions for the validation set. Descriptors can be "weeded out" based on measures of their importance to correctly predicting activity, and correlation to other descriptors. Two different descriptors may both describe the same property accurately, therefore only one would be needed for the QSAR. As well, some descriptors may provide no information relative to the molecules that are being studied and can thus be eliminated from the QSAR.

The QSAR methods involving linear equations are be validated through the use of statistics such the  $r^2$ , bootstrap  $r^2$  and cross-validation methods which deal with the

goodness of fit of the generated mathematical model [54, 56]. The  $r^2$  value, the square of the correlation coefficient, measures the goodness of fit of the data and better prediction are obtained the closer this value is to 1, and the bootstrap  $r^2$  is the average squared correlation coefficient [56]. The cross-validated  $r^2$  value is a variation of this measurement where either one or more molecules from the training set are left out, with the remaining molecules used for a model to predict the property of the excluded compound; this value is usually lower than the  $r^2$  value [56]. Validation of a binary QSAR involves evaluating the sensitivity and the specificity of the model; the sensitivity is measured as the number of correctly predicted actives divided by the number of observed actives, while the selectivity is measured as the number of correctly predicted inactives divided by the number of observed inactives [57]. These two values can be added together and divided by the total number of compounds to determine the overall accuracy of the model [57]. As this is a binary model, Cohen's kappa can also be calculated to determine how accurate the model is by taking into account the correct predictions that could occur by chance; the best model will have a kappa value that is close to 1 [58].

After a mathematical model has been generated for the training set of data with good statistical values, the linear equation is then applied to a validation set of data, which contains a mixture of active and inactive molecules [54]. Successful application of the model will allow for the model to be applied to further related compounds with unknown activity in order to determine which molecules should be selected for synthesis. Unsuccessful models may be the result of not having calculated enough descriptors to adequately relate the structural features to the desired property or may be due to the presence of outliers which will need to be dealt with on an individual basis; overfitting of

the data may also occur when too many descriptors are used [54]. These QSAR studies can be repeated as many times as necessary to improve the activity of lead compounds in the design of novel therapeutics.

Both QSAR studies and molecular mechanics in the field of molecular modelling are useful tools in the development and design of novel therapeutics for Alzheimer's disease.

#### **1.4 RESEARCH GOALS**

This research encompasses several goals related to the design and development of novel therapeutics for the treatment of Alzheimer's disease, and also a novel approach to identifying the disease presence in individuals using a known drug in a new and functional manner.

The  $\beta$ -amyloid peptide, as it exists at physiological pH within the brain, contains a highly positively charged region that is believed to be directly involved in its conformational changes, this region is designated as the **HHQK** peptidic segment. More specifically, this region is concentrated in both aromatic rings capable of  $\pi$ - $\pi$  interactions, and cationic charged side chains capable of multiple interaction types. Given this knowledge, the use of highly negatively charged molecules as well as aromatic rings capable of forming aromatic- $\pi$  interactions as potential therapeutics, presents itself as an option for targeting this area of interest, as these functional groups should allow for binding to this charged region on the A $\beta$  peptide.

In this thesis, computational methods will be used to identify endogenous molecules of the brain that may bind to  $\beta$ -amyloid to prevent its aggregation. This is a

new approach to the disease, as no one has examined small molecules that already exist in the brain for their potential anti-AD properties, or even postulated their existence. This research topic is the continuation of work performed in the Master's thesis by the author entitled "Endogenous Therapeutics for Alzheimer's Disease: Zwitterionic Molecules." Others have suggested peptidic macromolecules as supposed endogenous anti-Alzheimer's agents, but none of them are small molecules, and none of them are potential therapeutics [59].

Through the use of these computational methods, an endogenous molecule that exhibits excellent activity in binding to  $\beta$ -amyloid was identified (Chapter 2). The preliminary research in this chapter, encompassing Sections 2.2-2.6, is from the author's Master's thesis work, and is further expanded on in the rest of the chapter. These endogenous molecules present ideal targets as compounds that already exist in the brain are less likely to cause the side effects that non-endogenous molecules may incur. The enzymatic processes involved in the syntheses and metabolism of these molecules can be targeted to increase levels in the brain, or they can be used to design structurally relevant molecules capable of crossing the blood-brain barrier.

The use of computational methods to identify and develop endogenous (and structurally related synthetic) molecules for AD is also a novel approach. These computational techniques have been used to examine the binding of endogenous and synthetic molecules to a common BBXB motif on proteins involved in Alzheimer's disease in order to validate the "promiscuous drug" concept (Chapter 3). Computational methods were also used to develop analogues of endogenous molecules through the use of a QSAR (Chapter 3).

Furthermore, both endogenous and synthetic molecules were examined for their potential to bind to the **HHQK** region of  $A\beta$ , due to its role in the protein misfolding process (Chapter 3). The EV**HHQK** region was also targeted for binding studies with endogenous and synthetic molecules via computational methods (Chapter 4).

The nearby LVFF region of  $\beta$ -amyloid was also examined as a potential target for identified molecules to bind to in order to prevent aggregation (Chapter 5). The binding strength of molecules with both the **HHQK** and LVFF regions was compared to determine if a single molecule could target both regions with the same efficacy.

Computational methods have also been used to examine the repurposing of a known drug for use as a diagnostic agent for Alzheimer's disease (Chapter 6). The results of these studies will allow for the development of a novel diagnostic agent for AD, capable of binding to the soluble forms of A $\beta$ , allowing for both earlier diagnosis of the disease and definitive diagnosis.

## CHAPTER 2: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING HHQK: PHOSPHOSERINE

It is understood that the clinical course of Alzheimer's disease is quite variable from one afflicted person to another. One potential explanation for this variability arises from the possibility that there are "endogenous" protective factors; i.e. chemicals naturally occurring within humans that have anti-amyloidogenic properties. The research in this chapter focuses on the concept of an endogenous molecule of the brain that will bind to β-amyloid in its monomeric form to prevent aggregation from occurring.

#### 2.1 THE HHQK REGION OF $\beta$ -Amyloid as a Binding Target

The **HHQK** region of  $A\beta$ , residues His13-His14-Gln15-Lys16, is postulated to be a key component in the interactions that lead to the misfolding of  $A\beta$  as it has a highly positively charged region that can interact with the surface of membranes [16, 17, 41]. This **HHQK** segment also fits the **BBXB** motif identified as being present in various proteins involved in Alzheimer's disease [41]. Molecules containing negatively charged functional groups or aromatic rings should be able to interact with this charged region to block it from other unwanted interactions and thus prevent protein misfolding.

# 2.2 Identification of Phosphoserine as an Endogenous Molecule to Target the HHQK Region of $\beta$ -amyloid

To identify a molecule capable of interacting with the **HHQK** region, we put in place an *in silico* library of endogenous compounds. Using standard textbooks of biochemistry and neurochemistry, coupled with an exhaustive review of literature, we assembled a list of 1,451 compounds (having a molecular weight less than 600) that are naturally occurring within the human brain (these are listed in Appendix 1). A library was constructed containing these compounds in energy minimized, fully extended conformations. This library was screened against the identified **BBXB** motif and phosphoserine (Figure 2.1) is one of the endogenous molecules that was identified through this virtual screening campaign.



Figure 2.1: Phosphoserine at physiological pH

Phosphoserine is a small endogenous molecule of the brain that is believed to play a role in Alzheimer's disease. Despite suggestions that this role is destructive as proposed by Klunk *et al*, it is in fact possible that phosphoserine has a protective role in the brain by binding to  $\beta$ -amyloid to prevent the conformational conversions that result in neurotoxic aggregates [60, 61]. Given that phosphoserine is already endogenous to the brain, and is shown to be capable of binding to this **HHQK** region, it presents greater possibilities for developing drugs that will be able to prevent  $\beta$ -amyloid neurotoxicity.

#### **2.3 PHOSPHOSERINE IN THE BRAIN**

There is some controversy over the role of phosphoserine in Alzheimer's disease. Studies by Molina *et al* have shown that levels of phosphoserine are decreased in the brains of patients with Alzheimer's disease, while having higher levels of phosphoserine in plasma compared to age- and sex-matched patients [62]. In contrast, studies by Klunk and Mason *et al* have shown a correlation between levels of phosphoserine and the presence of  $\beta$ -amyloid plaques; the highest levels of phosphoserine are located in the regions containing the fewest plaques [60, 61]. Klunk has measured normal levels of phosphoserine in the brain to be 0.3 mM, with an increase of up to 1mM in the brain of Alzheimer's patients [63]. Thus controversy arises over whether brain levels of phosphoserine are actually increased or decreased in the disease.

Klunk suggests since phosphoserine bears structural similarity to glutamate, which is an excitatory neurotransmitter, that phosphoserine could therefore act as an NMDA antagonist and be a cause of the memory disturbances in Alzheimer's patients [60]. According to Mason and Klunk, given that levels of phosphoserine is highest in regions with fewer plaques, it may play a role in the pathogenesis of the disease [60, 63, 64]. They further conclude these increased levels of phosphoserine result in membrane changes that lead to the abnormal processing of APP to generate A $\beta$  [64].

More recent studies by Wu *et al* suggest rather that the excitotoxicity is the result of D-serine, which is a metabolite of phosphoserine and a potent co-agonist of the NMDA receptor [65]. The rate limiting step in the conversion of L-serine to D-serine is suspected to be the catabolism of phosphoserine to L-serine [66]. If the brain levels of phosphoserine are increased as Klunk *et al* claim, it may be that increased levels of D-serine would have more of an effect than phosphoserine.

None of the studies have actually studied the impact that phosphoserine could have on the aggregation of  $A\beta$ . It could be alternatively interpreted that as levels of phosphoserine are higher in regions with fewer plaques, that it plays a neuroprotective role to prevent amyloid aggregation from occurring. It is possible that phosphoserine may not be detrimental but could be part of the brain's response as a preventative agent in order to protect the brain.

At physiological pH, phosphoserine contains three charged functional groups: a positively charged amino group, a negatively charged carboxylate group and a negatively charged phosphate group. These charged residues are therefore capable of interacting with the **HHQK** region of the  $\beta$ -amyloid peptide, which itself is highly positively charged at physiological pH.

#### 2.4 EXPANSION TO TARGET THE EVHHQK REGION OF $\beta$ -Amyloid

As the phosphoserine molecule is in a zwitterionic state at physiological pH, it was realized that the targeted region of A $\beta$  could be expanded to EVHHQK, residues eleven to sixteen which are glutamic acid11 (Glu11), valine12 (Val12), histidine13 (His13), histidine14 (His14), glutamine15 (Gln15), and lysine16 (Lys16). Potential interactions could occur between the positively charged amino group on phosphoserine and the negatively charged glutamic acid residue in EVHHQK, while the negatively charged groups could interact with the positively charged histidine and lysine residues. The EVHHQK region presents four charged sites (see Figure 2.2) with which

phosphoserine can interact with, in the form of electrostatic interactions, between positively charged amino and negatively charged functional groups and vice versa; hydrogen bonding interactions can also occur as both the charged functional groups and amino acid side chains present themselves as hydrogen bond donors and acceptors.



Figure 2.2: The charged amino acid side chains of the EVHHQK region of βamyloid. The acidic Glu11 group is highlighted in red while the basic His13, His14 and Lys16 residues are highlighted in blue.

## 2.5 In Vacuo Calculations of Phosphoserine Interacting with $\beta$ - amyloid

The first phase in determining if phosphoserine could bind to  $\beta$ -amyloid was to minimize A $\beta$ -phosphoserine systems *in vacuo* to determine if stable binding interactions could occur. In calculating the gas phase interaction between phosphoserine and the target

EVHHQK region of  $\beta$ -amyloid, some preliminary work was required to set up the molecules in order to perform the molecular modelling tasks.

#### **2.5.1 Selection of \beta-Amyloid Conformers**

Six different conformations of  $\beta$ -amyloid were selected from the RCSB Protein Data Bank (PDB) to be tested for their capacity to bind to and interact with phosphoserine [67]. These six conformers ranged in length from 16 to 42 amino acids long, and the variety of conformers allowed for a better determination as to whether phosphoserine was capable of binding to the EVHHQK region of  $\beta$ -amyloid or not.

The six selected conformers, given by their PDB identifications, were as follows: 1AMB, 1AMC, 1AML, 1IYT, IBA4, and 2BP4 [67, 68, 69, 70, 71, 72, 73]. All structures were obtained via the use of NMR and under acidic conditions; therefore the structures required some preparation before they could be used for the gas phase calculations [68-73]. The 1AMB and 1AMC conformers are composed of residues one through 28 of the A $\beta$  and both have  $\alpha$ -helical conformations (Figure 2.3 and 2.4) [68, 69]. The 1AML conformer (Figure 2.5) represents the 1-40 length A $\beta$  found in the brain in a random-coil conformation whereas 1BA4 (Figure 2.6), also composed of amino acids 1-40 of A $\beta$ , has a more  $\alpha$ -helical form, although there is a kink in the coil due to a hydrogen-bonded turn being present [70, 71]. 1IYT (Figure 2.7) is composed of 42 amino acids residues, and has a conformation closer to the more toxic A $\beta$  form and is composed of two  $\alpha$ -helices separated by a sharper hydrogen bonded turn [72]. The shortest conformer studied is the 2BP4 conformer (Figure 2.8) which spans the first through sixteenth residues of the  $\beta$ amyloid peptide and exists in an  $\alpha$ -helical form [73].



Figure 2.3: The 1AMB conformer of β-amyloid



Figure 2.4: The 1AMC conformer of β-amyloid



Figure 2.5: The 1AML conformer of β-amyloid



Figure 2.6: The 1BA4 conformer of β-amyloid



Figure 2.7: The 1IYT conformer of β-amyloid



Figure 2.8: The 2BP4 conformer of β-amyloid

The six selected conformers were studied using the Cerius<sup>2</sup> program [45]. The first step was to charge the amino acid side chains such that they would be representative of the charged state as seen at physiological pH. This involved either protonating or deprotonating the side chains and terminal ends as required.

The next step was to locate a structure consistent with an energy minimum on the PES, as this provided a stable, low energy structure with which to work. PDB files of the  $\beta$ -amyloid conformers were downloaded and opened in the Cerius<sup>2</sup> program [45, 67]. Given that the peptide sequences contain polar and charged molecules, the backbones (i.e. the -N-C<sub>a</sub>-C<sub>=0</sub>- chain) were constrained to prevent a collapse of the structures during the gas phase calculations, since in a vacuum these elements will be attracted to each other whereas in an aqueous environment the charges will be shielded by the water molecules. Once the backbone of the conformer was constrained, the DREIDING2.21 force field was used to provide energy minimizations using a steepest descent approach [43]. This resulting low energy conformer for the  $\beta$ -amyloid conformation was saved for use both in gas phase and solution phase calculations. The final energies from each conformer that were used in calculating the energy differences for the following gas phase calculations are denoted in Table 2.1.

| Conformer | Total Energy<br>(kcal/mol) |
|-----------|----------------------------|
| 1AMB      | 268.7                      |
| 1AMC      | 248.3                      |
| 1AML      | 443.4                      |
| 1BA4      | 268.2                      |
| 1IYT      | 298.7                      |
| 2BP4      | 101.4                      |

| <b>Table 2.1:</b> | Total energies of the six $\beta$ -amyloid conformers as calculated using the |
|-------------------|-------------------------------------------------------------------------------|
|                   | DREIDING2.21 force field for gas phase calculations in Cerius <sup>2</sup>    |

#### **2.5.2 PREPARATION OF THE PHOSPHOSERINE MOLECULE**

An optimized molecule of phosphoserine was constructed for use in the calculations. In order to find a low energy, stable structure a conformational search was performed; being a gas phase calculation, a neutral structure of the molecule was constructed in order to prevent self-interactions from occurring.



#### Figure 2.9: Neutral phosphoserine molecule with grid search numbers indicated

An extended, neutral conformation of phosphoserine was constructed, with four torsional angles (1-2-3-4, 2-3-4-5, 3-4-5-6, 4-5-6-7 as shown in Figure 2.9) selected and a grid search was performed in 30° steps from -180.0° to 150.0° [45]. From the resulting structures that were generated during the search, the lowest energy structure was found that was also in an extended conformation (as opposed to being folded in on itself). The selected model was then charged for physiological pH, with a protonated amino group, and deprotonated carboxylate and phosphate groups; the charges were then equilibrated using the Gasteiger algorithm [64]. Finally, all atoms except for the hydrogens were constrained and a steepest descent minimization was performed to ensure the hydrogens were located at the optimal geometries to produce a low energy stable structure. This

model of phosphoserine was used for each of the gas phase calculations, and the total energy of the molecule is given in Table 2.2.

## Table 2.2 Total energy of phosphoserine in the gas phase as calculated in Cerius2using the DREIDING2.21 force field

| Ligand        | Total Energy |
|---------------|--------------|
|               | (kcal/mol)   |
| Phosphoserine | -42.0        |

## 2.5.3 Calculating Gas Phase Interactions Between Phosphoserine and Various Conformers of $\beta$ -amyloid.

The purpose of the gas phase calculations was to determine which orientations, if any, of phosphoserine and  $\beta$ -amyloid would result in binding interactions. Should these binding interactions occur, a select few of the most energetically favourable systems would then be examined via solution phase calculations to mimic the natural conditions of the brain, where such interactions would occur *in vivo*.

#### 2.5.3.1 Selecting Initial Orientations for Optimization

Before the systems were prepared, it was determined that in order for a favourable interaction to occur, two of the charged functional groups should be oriented towards two of the charged side chains in the EVHHQK segment of  $\beta$ -amyloid. Each initial interaction therefore contains two of the charged phosphoserine groups being oriented towards two different charged side chains on A $\beta$ ; the overall number of these potential interactions varies between the different conformations of A $\beta$  being examined.

Experimental studies on drug-receptor interactions showed that the best distance to establish favourable interactions was a distance of approximately 3.0 Å between the functional group and the amino acid side chain. Given these distance requirements, any

possible orientation of phosphoserine and  $\beta$ -amyloid that resulted in a distance greater than roughly 3 Å between the two was rejected: in some cases the side chains of the amino acids were on opposite sides of the  $\beta$ -amyloid peptide and were too far apart to be selected for an initial orientation.

#### 2.5.3.2 Optimization of the Gas Phase Systems

Each of the possible binding orientations available was modelled in the Cerius<sup>2</sup> program [45]. Once phosphoserine was oriented appropriately towards the peptide, the backbone of the peptide was constrained (to prevent self-interactions) and the system was then optimized (to find the lowest energy system) using the steepest descent algorithm. The resulting system was then saved, the energies calculated and finally examined for potential binding interactions: given that all of the charged side chains and amino acids are also capable of forming hydrogen bonds, bonding interactions were determined to have formed in some of the orientations between phosphoserine and  $\beta$ -amyloid.

To determine the favourability of the potential binding interactions that occurred following optimization, the binding energy was determined. The binding energy, which is based on the total energy of the system, was calculated as follows:

$$\Delta E_{\text{bind}} = E_{A\beta \text{phos}} - E_{A\beta} - E_{\text{phos}}$$
(2.1)

where  $E_{A\beta phos}$  is the total energy of the optimized  $\beta$ -amyloid-phosphoserine system,  $E_{A\beta}$  is the total energy of the  $\beta$ -amyloid conformer involved in the interaction, and  $E_{phos}$  is the total energy of the phosphoserine molecule, all calculated in the gas phase with the DREIDING2.21 force field [43].

#### 2.5.4 Gas Phase Results of Phosphoserine Interacting with $\beta$ -amyloid

The main results of the gas phase interactions between phosphoserine and  $\beta$ amyloid were summarized in the following tables according to the selected A $\beta$  conformer. They include the initial orientations that were selected, the resulting orientations after optimization, the binding energy and the number of internal hydrogen bonds that formed. Phosphoserine had a tendency to form internal hydrogen bonds – that is bonds between its charged functional groups, when minimized with  $\beta$ -amyloid in the gas phase. These internal hydrogen bonds needed to be accounted for when determining which interactions were suitable for solution phase calculations: they lowered the energy state of the system, which made the interaction appear more favourable than it truly was with respect to phosphoserine interacting with A $\beta$ .

The initial and final orientations of the functional groups were listed so that the functional group, represented by  $NH_3^+$ ,  $CO_2^-$ , or  $PO_3^-$ , is located under columns indicating the Glu11-Lys16 amino acids of  $\beta$ -amyloid: in a few cases bonding interactions occurred outside the specified region and were noted as such. The final orientation observed only shows interactions where bonding interactions have formed. The calculated  $\Delta E_{bind}$  energies are listed in kcal/mol.

## 2.5.4.1 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1AMB Conformer of $\beta$ -amyloid

There were twenty-four possible arrangements for phosphoserine to be oriented such that two functional groups were interacting with two of the four charged side chains on the 1AMB conformer of  $\beta$ -amyloid. Results in Table 2.3 showed that not all of these initial orientations resulted in binding interactions. As the purpose of the experiment was to determine whether or not phosphoserine is capable of binding to  $\beta$ -amyloid, the phosphoserine molecule should bind to A $\beta$  in at least two different places, therefore those systems that did not result in binding at sufficient sites were not selected for future calculations.

|                  | l     | nitial Or                    | ientatio                     | n     |                 |                | Final Orientation |                  |                              |       |                                    |            | Internal |
|------------------|-------|------------------------------|------------------------------|-------|-----------------|----------------|-------------------|------------------|------------------------------|-------|------------------------------------|------------|----------|
| Glu11            | Val12 | His13                        | His14                        | Gln15 | Lys16           | Glu11          | Val12             | His13            | His14                        | Gln15 | Lys16                              | (kcal/mol) | H-Bonds  |
|                  |       | PO3                          | CO2                          |       |                 |                |                   | PO3 <sup>-</sup> | CO2                          |       |                                    | -41.2      | 1        |
|                  |       | CO <sub>2</sub>              | PO <sub>3</sub> <sup>-</sup> |       |                 |                |                   | CO2              |                              |       |                                    | -34.2      | 1        |
|                  |       | CO2                          | ${\rm NH_3}^+$               |       |                 |                |                   | CO <sub>2</sub>  |                              |       |                                    | -73.0      | 3        |
|                  |       | $NH_3^+$                     | CO <sub>2</sub>              |       |                 |                |                   |                  |                              |       |                                    | -61.1      | 2        |
|                  |       | PO3                          | $NH_3^+$                     |       |                 |                |                   | PO3              |                              |       |                                    | -48.3      | 1        |
|                  |       | $NH_3^+$                     | PO <sub>3</sub> <sup>-</sup> |       |                 |                |                   |                  |                              |       |                                    | -5.5       | 1        |
| $NH_3^+$         |       |                              | CO <sub>2</sub>              |       |                 | ${\rm NH_3}^+$ |                   |                  | CO <sub>2</sub>              |       |                                    | -43.7      | 1        |
| CO2              |       |                              | ${\rm NH_3}^+$               |       |                 | ${\rm NH_3}^+$ |                   |                  |                              |       |                                    | -25.0      | 1        |
| CO2              |       |                              | PO3                          |       |                 |                |                   |                  | PO <sub>3</sub> <sup>-</sup> |       |                                    | 1.2        | 1        |
| PO3              |       |                              | CO <sub>2</sub>              |       |                 |                |                   |                  |                              |       |                                    | -22.7      | 2        |
| PO3              |       |                              | ${\rm NH_3}^+$               |       |                 |                |                   |                  |                              |       |                                    | 2.7        | 1        |
| $NH_3^+$         |       |                              | PO3                          |       |                 | ${\rm NH_3}^+$ |                   |                  | PO <sub>3</sub>              |       |                                    | -32.8      | 1        |
|                  |       | CO2                          |                              |       | PO3             |                |                   |                  |                              |       | PO3 <sup>-</sup> /CO2 <sup>-</sup> | -61.3      | 0        |
|                  |       | PO3                          |                              |       | CO2             |                |                   |                  |                              |       | CO <sub>2</sub>                    | -56.1      | 1        |
|                  |       | CO <sub>2</sub>              |                              |       | ${\rm NH_3}^+$  |                |                   |                  |                              |       | CO <sub>2</sub>                    | -66.1      | 4        |
|                  |       | $NH_3^+$                     |                              |       | CO <sub>2</sub> |                |                   |                  |                              |       | CO <sub>2</sub>                    | -67.2      | 3        |
|                  |       | PO3                          |                              |       | ${\rm NH_3}^+$  |                |                   | PO3              |                              |       | CO <sub>2</sub>                    | -79.7      | 1        |
|                  |       | $NH_3^+$                     |                              |       | PO3             |                |                   | CO2              |                              |       | PO <sub>3</sub> <sup>-</sup>       | -74.8      | 1        |
| $NH_3^+$         |       | CO <sub>2</sub> <sup>-</sup> |                              |       |                 | ${\rm NH_3}^+$ |                   |                  |                              |       |                                    | -38.4      | 1        |
| CO2              |       | $NH_3^+$                     |                              |       |                 |                |                   |                  | CO <sub>2</sub>              |       |                                    | 2.6        | 1        |
| CO <sub>2</sub>  |       | PO <sub>3</sub> <sup>-</sup> |                              |       |                 |                |                   |                  | CO <sub>2</sub>              |       |                                    | -28.2      | 1        |
| PO3              |       | CO <sub>2</sub> <sup>-</sup> |                              |       |                 |                |                   |                  | PO3                          |       |                                    | -26.2      | 1        |
| PO3 <sup>-</sup> |       | ${\rm NH_3}^+$               |                              |       |                 |                |                   | CO2 <sup>-</sup> | $PO_3^{-}$                   |       |                                    | -54.3      | 2        |
| $NH_3^+$         |       | PO3                          |                              |       |                 | ${\rm NH_3}^+$ |                   |                  |                              |       |                                    | -53.2      | 1        |

Table 2.3: Gas phase results of phosphoserine interacting with the 1AMB conformer of β-amyloid

Examination of the results eliminated eighteen of the twenty-four interactions as viable options for the solution phase calculations. The remaining six were ranked in order of energy. The number of internal hydrogen bonds that formed was also taken in to consideration when choosing four of the remaining systems for aqueous treatment (see Table 2.4). The interaction is specified by the initial orientation of the system, where P, N,

and C are not representative of amino acids but rather the charged functional groups present on phosphoserine; the amino acids are identified by their one-letter abbreviation for naming simplicity.

### Table 2.4: Potential interactions of phosphoserine and the 1AMB conformer of Aβ for solvation

| Interaction | $\Delta E_{bind}$ |
|-------------|-------------------|
| HPHQKN      | -79.7             |
| HNHQKP      | -74.8             |
| EPVHN       | -54.3             |
| ENVHHC      | -43.7             |
| HPHC        | -41.2             |
| ENVHHP      | -32.8             |

From this information, the HPHQKN, HNHQKP, ENVHHC, and HPHC

interactions were selected for solution phase calculations; EPVHN although seemingly lower in energy than the last two orientations selected, also had two binding interactions forming within the phosphoserine molecule, which made the binding energy seem more favourable than it truly was. Figure 2.10 shows the binding interaction resulting from the minimization of the phosphoserine-A $\beta$  system where the amino and phosphate groups were oriented towards the His13 and Lys16 residues initially.



#### Figure 2.10: The gas phase interaction occurring between phosphoserine and the His13 and Lys16 residues of the 1AMB conformer of β-amyloid. Hydrogen bonds are represented by the turquoise lines.

## 2.5.4.2 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1AMC Conformer of $\beta$ -amyloid

Table 2.5 shows the results of the twenty-four combinations of initial orientations

that were available for phosphoserine to interact with the 1AMC conformer of  $\beta$ -amyloid.

Three of the interactions resulted in binding occurring between phosphoserine and the

Tyr10 amino acid on  $A\beta$ .

| Initial Orientation |       |                              |                 |       |                 | Final Orientation            |                 |       |                 |                 |       |                              | $\Delta E_{bind}$ | Internal |
|---------------------|-------|------------------------------|-----------------|-------|-----------------|------------------------------|-----------------|-------|-----------------|-----------------|-------|------------------------------|-------------------|----------|
| Glu11               | Val12 | His13                        | His14           | Gln15 | Lys16           | Tyr10                        | Glu11           | Val12 | His13           | His14           | Gln15 | Lys16                        | (kcal/mol)        | H-Bonds  |
| ${\rm NH_3}^+$      |       |                              | CO2             |       |                 |                              | ${\rm NH_3}^+$  |       |                 | CO2             |       |                              | -20.8             | 1        |
| CO <sub>2</sub>     |       |                              | ${\rm NH_3}^+$  |       |                 |                              |                 |       |                 |                 |       |                              | 14.3              | 1        |
| CO <sub>2</sub>     |       |                              | PO <sub>3</sub> |       |                 |                              | ${\rm NH_3}^+$  |       |                 | PO <sub>3</sub> |       |                              | -20.2             | 2        |
| PO <sub>3</sub>     |       |                              | CO <sub>2</sub> |       |                 |                              |                 |       |                 | CO <sub>2</sub> |       |                              | -24.4             | 1        |
| PO3                 |       |                              | ${\rm NH_3}^+$  |       |                 |                              |                 |       |                 | CO2             |       |                              | -21.2             | 4        |
| ${\rm NH_3}^+$      |       |                              | PO <sub>3</sub> |       |                 |                              | ${\rm NH_3}^+$  |       |                 |                 |       |                              | -30.9             | 1        |
| PO <sub>3</sub>     |       | ${\rm NH_3}^+$               |                 |       |                 | ${\rm NH_3}^+$               | PO <sub>3</sub> |       | CO <sub>2</sub> | PO <sub>3</sub> |       |                              | -43.6             | 2        |
| ${\rm NH_3}^+$      |       | PO3                          |                 |       |                 |                              | ${\rm NH_3}^+$  |       |                 |                 |       |                              | -26.5             | 1        |
| ${\rm NH_3}^+$      |       | CO <sub>2</sub>              |                 |       |                 |                              |                 |       | CO <sub>2</sub> |                 |       |                              | -23.1             | 1        |
| CO2                 |       | ${\rm NH_3}^+$               |                 |       |                 | ${\rm NH_3}^+$               |                 |       |                 | CO <sub>2</sub> |       |                              | 6.6               | 1        |
| CO2                 |       | PO3                          |                 |       |                 |                              |                 |       |                 |                 |       |                              | -25.1             | 1        |
| PO3                 |       | CO <sub>2</sub>              |                 |       |                 | PO <sub>3</sub> <sup>-</sup> |                 |       | CO <sub>2</sub> |                 |       |                              | -32.7             | 1        |
|                     |       | ${\rm NH_3}^+$               | CO <sub>2</sub> |       |                 |                              |                 |       |                 | CO <sub>2</sub> |       |                              | 14.8              | 1        |
|                     |       | CO <sub>2</sub>              | ${\rm NH_3}^+$  |       |                 |                              |                 |       | CO <sub>2</sub> |                 |       |                              | -12.0             | 0        |
|                     |       | CO <sub>2</sub>              | PO3             |       |                 |                              |                 |       | CO <sub>2</sub> |                 |       |                              | -25.6             | 1        |
|                     |       | PO3                          | CO <sub>2</sub> |       |                 |                              |                 |       | PO <sub>3</sub> |                 |       |                              | -17.5             | 1        |
|                     |       | PO <sub>3</sub>              | ${\rm NH_3}^+$  |       |                 |                              |                 |       | PO <sub>3</sub> |                 |       |                              | -20.9             | 1        |
|                     |       | ${\rm NH_3}^+$               | PO <sub>3</sub> |       |                 |                              |                 |       |                 |                 |       |                              | 1.4               | 1        |
|                     |       | ${\rm NH_3}^+$               |                 |       | CO <sub>2</sub> |                              |                 |       |                 |                 |       | CO <sub>2</sub>              | -24.4             | 1        |
|                     |       | CO <sub>2</sub>              |                 |       | ${\rm NH_3}^+$  |                              |                 |       |                 |                 |       | ${\rm NH_3}^+$               | -54.3             | 3        |
|                     |       | CO <sub>2</sub>              |                 |       | PO <sub>3</sub> |                              |                 |       | CO <sub>2</sub> |                 |       | PO <sub>3</sub>              | -46.2             | 1        |
|                     |       | PO <sub>3</sub>              |                 |       | CO <sub>2</sub> |                              |                 |       |                 |                 |       | CO <sub>2</sub>              | -34.5             | 1        |
|                     |       | ${\rm NH_3}^+$               |                 |       | PO <sub>3</sub> |                              |                 |       | CO <sub>2</sub> |                 |       | PO <sub>3</sub> <sup>-</sup> | -69.1             | 1        |
|                     |       | PO <sub>3</sub> <sup>-</sup> |                 |       | ${\rm NH_3}^+$  |                              |                 |       |                 |                 |       | CO2                          | -48.5             | 1        |

### Table 2.5: Gas phase results of phosphoserine interacting with the 1AMC conformer of β-amyloid

Only seven of the twenty-four interactions demonstrated potential for solution phase calculations. Table 2.6 summarizes the potential of these interactions according to their binding energy.

## Table 2.6: Potential interactions of phosphoserine and the 1AMC conformer of Aβ for solvation

| Interaction | $\Delta E_{bind}$ |
|-------------|-------------------|
| HNHQKP      | -69.1             |
| HCHQKP      | -46.2             |
| EPVHN       | -43.6             |
| EPVHC       | -32.7             |
| ENVHHC      | -20.8             |
| ECVHHP      | -20.2             |
| ECVHN       | 6.6               |

Analysis revealed the four best interactions to use for solution phase calculations were HNHQKP, HCHQKP, EPVHC and ENVHHC; due to the presence of two internal bonding interactions in phosphoserine, EPVHN was ruled out as a possible selection since the true energy of interaction was most likely less favourable than indicated. Although EPVHC had one binding interaction outside the EVHHQK region, it was still deemed acceptable for use in solution phase calculations due to the fact that binding was occurring at two different amino acid side chains and the favourable energy of the interaction.

## 2.5.4.3 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1AML Conformer of $\beta$ -Amyloid

There were twenty-four possible orientations for phosphoserine to be arranged in to interact with the 1AML conformer of  $\beta$ -amyloid, the results of which are presented in Table 2.7.

| Initial Orientation          |       |                              |                 |       |                 |                | Final Orientation |                 |                 |                 |                              |                    |            | Internal |
|------------------------------|-------|------------------------------|-----------------|-------|-----------------|----------------|-------------------|-----------------|-----------------|-----------------|------------------------------|--------------------|------------|----------|
| Glu11                        | Val12 | His13                        | His14           | Gln15 | Lys16           | Glu11          | Val12             | His13           | His14           | Gln15           | Lys16                        | Other              | (kcal/mol) | H-Bonds  |
| ${\rm NH_3}^+$               |       |                              | PO <sub>3</sub> |       |                 | ${\rm NH_3}^+$ |                   |                 |                 |                 |                              |                    | -51.8      | 1        |
| PO <sub>3</sub> <sup>−</sup> |       |                              | ${\rm NH_3}^+$  |       |                 |                |                   |                 | PO <sub>3</sub> | PO <sub>3</sub> |                              | $\text{CO}_2^{-a}$ | -30.0      | 1        |
| PO3                          |       |                              | CO <sub>2</sub> |       |                 |                |                   |                 |                 | PO <sub>3</sub> |                              | $PO_3^{-b}$        | -20.7      | 1        |
| CO <sub>2</sub>              |       |                              | PO <sub>3</sub> |       |                 |                |                   |                 |                 | CO <sub>2</sub> |                              |                    | -14.2      | 1        |
| CO2                          |       |                              | ${\rm NH_3}^+$  |       |                 |                |                   |                 |                 | CO <sub>2</sub> |                              |                    | -48.6      | 3        |
| ${\rm NH_3}^+$               |       |                              | CO <sub>2</sub> |       |                 |                |                   |                 |                 |                 |                              | ${\rm NH_3}^{+ a}$ | -36.0      | 1        |
| ${\rm NH_3}^+$               |       |                              |                 |       | PO3             | ${\rm NH_3}^+$ |                   |                 |                 |                 | PO3                          |                    | -32.6      | 1        |
| PO3                          |       |                              |                 |       | ${\rm NH_3}^+$  |                |                   |                 |                 |                 |                              |                    | 19.3       | 1        |
| PO <sub>3</sub> <sup>−</sup> |       |                              |                 |       | CO <sub>2</sub> |                |                   |                 |                 |                 | CO <sub>2</sub>              |                    | -37.7      | 1        |
| CO2                          |       |                              |                 |       | PO <sub>3</sub> |                |                   |                 |                 |                 | PO <sub>3</sub> <sup>-</sup> |                    | -24.6      | 1        |
| CO2                          |       |                              |                 |       | ${\rm NH_3}^+$  | ${\rm NH_3}^+$ |                   |                 |                 |                 |                              | $CO_2^{-b}$        | 6.2        | 1        |
| ${\rm NH_3}^+$               |       |                              |                 |       | CO <sub>2</sub> | ${\rm NH_3}^+$ |                   |                 |                 |                 | CO2                          |                    | -41.0      | 1        |
|                              |       | ${\rm NH_3}^+$               |                 |       | PO <sub>3</sub> |                |                   |                 |                 |                 | PO <sub>3</sub> <sup>-</sup> |                    | -50.2      | 1        |
|                              |       | $PO_3^{-}$                   |                 |       | ${\rm NH_3}^+$  |                |                   |                 |                 |                 | CO2                          |                    | -46.0      | 2        |
|                              |       | CO <sub>2</sub>              |                 |       | PO <sub>3</sub> |                |                   |                 |                 |                 | PO <sub>3</sub> <sup>-</sup> |                    | -32.5      | 1        |
|                              |       | PO <sub>3</sub>              |                 |       | CO <sub>2</sub> |                |                   |                 |                 |                 | CO2                          |                    | -34.3      | 1        |
|                              |       | CO <sub>2</sub>              |                 |       | ${\rm NH_3}^+$  |                |                   |                 |                 |                 | CO2                          |                    | -36.0      | 3        |
|                              |       | ${\rm NH_3}^+$               |                 |       | CO <sub>2</sub> |                |                   |                 |                 |                 | CO <sub>2</sub>              |                    | -11.6      | 1        |
|                              |       | $PO_3^{-}$                   | ${\rm NH_3}^+$  |       |                 |                |                   | PO <sub>3</sub> |                 |                 |                              | $PO_3^{-c}$        | -48.9      | 2        |
|                              |       | ${\rm NH_3}^+$               | PO3             |       |                 |                |                   |                 |                 |                 |                              |                    | -6.8       | 1        |
|                              |       | CO <sub>2</sub>              | PO <sub>3</sub> |       |                 |                |                   | CO <sub>2</sub> |                 |                 |                              |                    | -28.3      | 1        |
|                              |       | PO <sub>3</sub> <sup>-</sup> | CO <sub>2</sub> |       |                 |                |                   |                 |                 |                 |                              |                    | -18.6      | 1        |
|                              |       | ${\rm NH_3}^+$               | CO <sub>2</sub> |       |                 |                |                   |                 |                 |                 |                              |                    | 6.1        | 1        |
|                              |       | CO <sub>2</sub>              | ${\rm NH_3}^+$  |       |                 |                |                   |                 |                 |                 |                              | CO2 <sup>- c</sup> | -16.3      | 2        |

Table 2.7: Gas phase results of phosphoserine interacting with the 1AML conformer of βamyloid

a = Ser8, b = His6, c = Tyr10

Several of the arrangements resulted in binding interactions occurring between phosphoserine and regions outside the area of interest to this study.

Of these twenty-four initial arrangements, only six had binding interactions occurring at two or more sites on  $\beta$ -amyloid, and these are listed in Table 2.8.

| Interaction | $\Delta E_{bind}$ |
|-------------|-------------------|
| HPHN        | -48.9             |
| ENVHHQKC    | -41.0             |
| ENVHHQKP    | -32.6             |
| EPVHHN      | -30.0             |
| EPVHHC      | -20.7             |
| ECVHHQKN    | 6.2               |

### Table 2.8: Potential interactions of phosphoserine and the 1AML conformer of Aβ for solvation

The first four, with the lowest binding energies, appear to be the most favourable interactions and were selected for solution phase calculations. Although the HPHN interaction had the lowest energy, it also had two internal bonding interactions that formed in phosphoserine, as opposed to only one for all the other interactions; despite this, the energy minus the extra hydrogen bond should still be more favourable than the two higher energy interactions and so it was selected for further calculations. The HPHN and EPVHHN systems were selected although there were binding interactions occurring outside the region of EV**HHQK**, as they were suitably favourable interactions meeting the requirement that binding occur at a minimum of two different side chains of Aβ.

#### 2.5.4.4 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 1BA4 Conformer of β-Amyloid

Given that the 1BA4 conformer of A $\beta$  has a hydrogen bond turn present, this resulted in the side chains being further apart or on opposite sides of the peptide chain than in a strictly  $\alpha$ -helical chain structure. As a result there were only twelve orientations in which phosphoserine was capable of binding to  $\beta$ -amyloid, and the final results of the gas phase minimizations are summarized in Table 2.9. There were more instances in which the final binding interactions involved amino acid side chains outside the EVHHQK region of interest. In particular, initial orientations where phosphoserine was positioned to interact with the Glu11 and Lys16 side chains resulted in several binding interactions occurring with the Asp1 residue; given that the terminal amino acid also has a charged amino group, it was capable of interacting with both the positively and negatively charged functional groups on phosphoserine.

There were only five final binding orientations where phosphoserine formed bonding interactions with  $A\beta$  at two or more sites, which are listed in Table 2.10. All of the selected interactions had only one internal hydrogen bond and therefore the four that were selected for further calculations in an aqueous environment were determined based on the binding energy alone.

| Initial Orientation |       |                              |                              |       | Final Orientation |                                    |                |       |                 |       |       |                              | $\Delta E_{bind}$ | Internal   |         |
|---------------------|-------|------------------------------|------------------------------|-------|-------------------|------------------------------------|----------------|-------|-----------------|-------|-------|------------------------------|-------------------|------------|---------|
| Glu11               | Val12 | His13                        | His14                        | Gln15 | Lys16             | Asp1                               | Glu11          | Val12 | His13           | His14 | Gln15 | Lys16                        | Other             | (kcal/mol) | H-Bonds |
| ${\rm NH_3}^+$      |       |                              |                              |       | CO <sub>2</sub>   |                                    | ${\rm NH_3}^+$ |       |                 |       |       | CO <sub>2</sub> <sup>-</sup> |                   | 0.7        | 1       |
| CO2                 |       |                              |                              |       | ${\rm NH_3}^+$    | $NH_3^+$                           |                |       |                 |       |       | CO2                          | ${\rm NH_3}^+$ a  | -21.8      | 1       |
| PO3                 |       |                              |                              |       | CO <sub>2</sub>   | NH3 <sup>+</sup> /CO2 <sup>-</sup> |                |       |                 |       |       | CO2                          | $NH_3^{+ b}$      | -18.6      | 1       |
| CO2                 |       |                              |                              |       | PO <sub>3</sub>   | PO3                                |                |       |                 |       |       | PO <sub>3</sub>              |                   | -9.6       | 1       |
| PO3                 |       |                              |                              |       | ${\rm NH_3}^+$    | $NH_3^+$                           |                |       |                 |       |       |                              |                   | -6.9       | 1       |
| $NH_3^+$            |       |                              |                              |       | PO <sub>3</sub>   |                                    | ${\rm NH_3}^+$ |       |                 |       |       |                              |                   | 0.1        | 0       |
|                     |       | ${\rm NH_3}^+$               | CO <sub>2</sub>              |       |                   |                                    |                |       |                 |       |       | PO <sub>3</sub>              |                   | -25.8      | 2       |
|                     |       | CO <sub>2</sub> <sup>-</sup> | ${\rm NH_3}^+$               |       |                   |                                    |                |       |                 |       |       |                              |                   | -15.9      | 2       |
|                     |       | ${\rm NH_3}^+$               | PO <sub>3</sub>              |       |                   |                                    |                |       | CO2             |       |       |                              |                   | -41.9      | 2       |
|                     |       | PO <sub>3</sub>              | ${\rm NH_3}^+$               |       |                   |                                    |                |       | PO <sub>3</sub> |       |       |                              |                   | -46.7      | 2       |
|                     |       | CO <sub>2</sub>              | PO <sub>3</sub>              |       |                   |                                    |                |       | CO2             | PO3   |       |                              |                   | -25.5      | 1       |
|                     |       | PO <sub>3</sub> <sup>-</sup> | CO <sub>2</sub> <sup>-</sup> |       |                   |                                    |                |       | PO3             |       |       |                              |                   | -25.3      | 1       |

Table 2.9: Gas phase results of phosphoserine interacting with the 1BA4 conformer of β-amyloid

a = Glu3, b = Asp23

| Table 2.10: | Potential interactions of phosphoserine and the 1BA4 conformer of | ίΑβ |
|-------------|-------------------------------------------------------------------|-----|
|             | for solvation                                                     |     |

| Interaction | $\Delta E_{bind}$ |
|-------------|-------------------|
| HCHP        | -25.5             |
| ECVHHQKN    | -21.8             |
| EPVHHQKC    | -18.6             |
| ECVHHQKP    | -9.6              |
| ENVHHQKC    | 0.7               |

The four binding interactions chosen were HCHP, ECVHHQKN, EPVHHQKC, and ECVHHQKP. While the former had binding interactions within the EV**HHQK** region, the latter three interactions bound more so to amino acid side chains found outside of this focused region. However, given the few number of interactions available for the 1BA4  $\beta$ -amyloid conformer, they were determined to be acceptable for the solution phase calculations.

## 2.5.4.5 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 11YT Conformer of $\beta$ -Amyloid

Due to the nature of the 1IYT conformer, in which a sharp hydrogen bonded turn is present that separates the two  $\alpha$ -helical chains present in the structure, there were only eighteen available orientations in which phosphoserine could be placed for potential interaction. These orientations and the results of their minimization calculations in the gas phase are summarized in Table 2.11.

Of the resulting final binding orientations, only four had bonding interactions that bind phosphoserine to  $A\beta$  at two different sites, thus these four were selected for further analysis in the solution phase: HCHP, HNHQKP, HPHQKC and HCHQKP, all of which also had favourable binding energies.

| Initial Orientation          |       |                              |                              |       |                              |                | Final Orientation |                              |                  |       |                              | $\Delta E_{bind}$ | Internal |
|------------------------------|-------|------------------------------|------------------------------|-------|------------------------------|----------------|-------------------|------------------------------|------------------|-------|------------------------------|-------------------|----------|
| Glu11                        | Val12 | His13                        | His14                        | Gln15 | Lys16                        | Glu11          | Val12             | His13                        | His14            | Gln15 | Lys16                        | (kcal/mol)        | H-Bonds  |
| ${\rm NH_3}^+$               |       |                              | $PO_3^-$                     |       |                              | ${\rm NH_3}^+$ |                   |                              |                  |       |                              | -33.0             | 1        |
| PO <sub>3</sub> <sup>-</sup> |       |                              | ${\rm NH_3}^+$               |       |                              |                |                   |                              |                  |       |                              | 21.3              | 1        |
| ${\rm NH_3}^+$               |       |                              | CO2 <sup>-</sup>             |       |                              | ${\rm NH_3}^+$ |                   |                              |                  |       |                              | -25.1             | 0        |
| CO <sub>2</sub> <sup>-</sup> |       |                              | ${\rm NH_3}^+$               |       |                              |                |                   |                              |                  |       |                              | -4.7              | 1        |
| PO <sub>3</sub> <sup>-</sup> |       |                              | CO <sub>2</sub> <sup>-</sup> |       |                              |                |                   |                              |                  |       |                              | 10.1              | 1        |
| CO <sub>2</sub> <sup>-</sup> |       |                              | PO <sub>3</sub> <sup>-</sup> |       |                              |                |                   |                              |                  |       |                              | 12.8              | 2        |
|                              |       | $PO_3^-$                     | ${\rm NH_3}^+$               |       |                              |                |                   |                              |                  |       |                              | -36.4             | 2        |
|                              |       | ${\rm NH_3}^+$               | PO <sub>3</sub> <sup>-</sup> |       |                              |                |                   |                              |                  |       |                              | 13.7              | 1        |
|                              |       | ${\rm NH_3}^+$               | CO <sub>2</sub> <sup>-</sup> |       |                              |                |                   |                              |                  |       |                              | 3.4               | 1        |
|                              |       | CO <sub>2</sub> <sup>-</sup> | ${\rm NH_3}^+$               |       |                              |                |                   | CO <sub>2</sub> <sup>-</sup> |                  |       |                              | -11.2             | 1        |
|                              |       | $PO_3^-$                     | CO <sub>2</sub> <sup>-</sup> |       |                              |                |                   |                              | CO2 <sup>-</sup> |       |                              | -23.8             | 1        |
|                              |       | CO <sub>2</sub> <sup>-</sup> | PO <sub>3</sub> <sup>-</sup> |       |                              |                |                   | CO <sub>2</sub> <sup>-</sup> | $PO_3^{-}$       |       |                              | -26.0             | 1        |
|                              |       | CO <sub>2</sub> <sup>-</sup> |                              |       | ${\rm NH_3}^+$               |                |                   | CO <sub>2</sub> <sup>-</sup> |                  |       |                              | -20.9             | 1        |
|                              |       | ${\rm NH_3}^+$               |                              |       | CO2 <sup>-</sup>             |                |                   |                              |                  |       | CO2 <sup>-</sup>             | -1.1              | 1        |
|                              |       | ${\rm NH_3}^+$               |                              |       | PO <sub>3</sub> <sup>-</sup> |                |                   | CO <sub>2</sub> <sup>-</sup> |                  |       | PO <sub>3</sub> <sup>-</sup> | -61.0             | 2        |
|                              |       | PO <sub>3</sub> <sup>-</sup> |                              |       | ${\rm NH_3}^+$               |                |                   | PO <sub>3</sub> <sup>-</sup> |                  |       |                              | -10.1             | 1        |
|                              |       | $PO_3^-$                     |                              |       | CO2 <sup>-</sup>             |                |                   | $PO_3^-$                     |                  |       | CO2 <sup>-</sup>             | -48.2             | 1        |
|                              |       | CO2 <sup>-</sup>             |                              |       | PO <sub>3</sub> <sup>-</sup> |                |                   | CO2 <sup>-</sup>             |                  |       | PO <sub>3</sub> <sup>-</sup> | -43.8             | 1        |

 Table 2.11: Gas phase results of phosphoserine interacting with the 1IYT conformer of β-amyloid

## 2.5.4.6 Results of the Gas Phase Calculations of Phosphoserine Interacting with the 2BP4 Conformer of $\beta$ -Amyloid

There were twenty-four available orientations for phosphoserine being optimized interacting with the 2BP4 conformer of  $\beta$ -amyloid. Given that the 2BP4 conformer is the shortest of the conformers that was examined (ending at the Lys16 residue that terminates the Glu11-Lys16 region of interest) it is possible that some of the resulting binding positions were not representative of those seen in the brain. With the longer forms of  $\beta$ -amyloid there could be potential for more side chain interactions occurring in the brain with those amino acids following Lys16 in the peptide sequence of amino acids. Table 2.12 summarizes the results of the gas phase optimizations.

Of the twenty-four final binding orientations, fifteen had interactions form between phosphoserine at two or more side chains on A $\beta$ . This higher number of

favourable binding interactions was most likely due to the fact that the terminal region of the peptide chain was more exposed to the empty space around it, resulting in more freedom of movement for the phosphoserine molecule such that it could find more, lower energy, stable structures. Table 2.13 lists these systems resulting in acceptable binding interactions ranked according to their binding energies. Three of the final binding orientations revealed that phosphoserine had formed interactions with the Tyr10 side chain of  $\beta$ -amyloid.

**Final Orientation** Initial Orientation ∆E<sub>bind</sub> Internal Glu11 Val12 His13 His14 Gln15 Lys16 Tyr10 Glu11 Val12 His13 His14 Gln15 Lys16 (kcal/mol) H-Bonds PO3 CO2-PO3 co, -8.5 1 CO2<sup>-</sup> PO<sub>3</sub> 18.7 1  $NH_3^+$ PO3  $NH_3^+$ PO3 -41.9 1 PO3  $NH_3^+$ 39.2 1  $CO_2^{-1}$ CO2 CO, 2  $NH_3^+$ -30.4  $NH_3^+$ CO2 CO2  $NH_3^+$ CO<sub>2</sub> -45.9 1 PO3  $NH_3^+$ PO3 PO3 -22.9 1  $CO_2^{-1}$  $NH_3^+$ PO3 -56.9 1  $NH_3^+$ CO,  $CO_{2}^{-1}$ -40.9 4 CO2<sup>-</sup>/PO3 CO2  $NH_3^+$  $CO_2^{-1}$ -42.5 1 PO<sub>3</sub> CO2<sup>-</sup> CO<sub>2</sub>  $CO_2^{-}$ -50.5 1 PO3 CO2 PO3 PO<sub>3</sub><sup>-</sup> -59.3 1 PO3<sup>-</sup>  $NH_3^+$ PO<sub>3</sub><sup>-</sup> -10.7 1  $NH_3^+$ PO3 PO3 -29.2 1 3  $NH_3^+$ CO2<sup>-</sup> CO2<sup>-</sup> -44.0  $CO_2^{-1}$  $NH_3^+$  $CO_2^{-}$ -50.1 3 CO2<sup>-</sup> PO3 CO2 CO2<sup>-</sup> PO3 -41.2 1 PO<sub>3</sub> CO2<sup>-</sup> PO3 PO<sub>3</sub>  $CO_2^{-1}$ -50.8 1 CO2<sup>-</sup>  $PO_3^{-1}$ CO2<sup>-</sup> -51.1 PO3 1 PO3 PO3 -51.3 1 CO2 CO2  $NH_3^+$ PO3 CO<sub>2</sub> PO3 -50.7 1 PO<sub>3</sub> NH<sub>3</sub><sup>+</sup> PO3 PO3 -32.5 1 CO<sub>2</sub>  $NH_3^+$ CO<sub>2</sub> CO<sub>2</sub> -39.1 1  $NH_3^+$ CO<sub>2</sub>  $CO_2^{-1}$ -43.5 3

Table 2.12: Gas phase results of phosphoserine interacting with the 2BP4 conformer of β-amyloid

| Interaction | $\Delta E_{bind}$ |  |  |  |  |
|-------------|-------------------|--|--|--|--|
| HPHC        | -59.3             |  |  |  |  |
| HCQKP       | -51.3             |  |  |  |  |
| HPQKC       | -51.1             |  |  |  |  |
| HPHQKC      | -50.8             |  |  |  |  |
| HNQKP       | -50.7             |  |  |  |  |
| HCHP        | -50.5             |  |  |  |  |
| ENVHHC      | -45.9             |  |  |  |  |
| HCHN        | -42.5             |  |  |  |  |
| ENVHHP      | -41.9             |  |  |  |  |
| HCHQKP      | -41.2             |  |  |  |  |
| HCQKN       | -39.1             |  |  |  |  |
| HPQKN       | -32.5             |  |  |  |  |
| ECVHHN      | -30.4             |  |  |  |  |
| HPHN        | -22.9             |  |  |  |  |
| EPVHHC      | -8.5              |  |  |  |  |

## Table 2.13: Potential interactions of phosphoserine and the 2BP4 conformer of Aβ for solvation

Analysis of the initial orientations that resulted in favourable binding interactions revealed that the four lowest energy interactions were the best choice for calculations in the aqueous phase: HPHC, HCQKP, HPQKC, and HPHQKC all had very favourable binding energies, as well as only having one internal bonding interaction within the phosphoserine molecule, which made them all acceptable interactions for further analysis.

# 2.6 Solution Phase Calculations of Phosphoserine Interacting with $\beta$ -Amyloid

To appropriately model the interactions that could occur between phosphoserine and  $\beta$ -amyloid within the brain, solution phase calculations needed to be performed. In the brain, phosphoserine and A $\beta$  are found in an aqueous environment at physiological pH. The presence of water molecules (among other species present in the brain) can therefore alter how these two charged species will interact with each other.
#### **2.6.1 THE USE OF EXPLICIT SOLVATION**

To simulate the binding interactions that possibly occur in the brain between phosphoserine and  $\beta$ -amyloid, an explicit solvation method was used.

Given the biological nature of the system, having explicit water molecules present was best to mimic the aqueous environment of the brain. Implicit solvation involves the dielectric constant and although the dielectric constant could be modified to mimic the shielding effects water has on charged species, it was not the best method when looking at systems of this nature [42]. By having explicit water molecules present, the true interactions that could occur between the various species present in a system was better represented since the molecules and the peptide side chains could have interactions with water that would also affect how they interacted with each other, as well as geometric positioning.

The Cerius<sup>2</sup> program that was used for the gas phase calculations of phosphoserine interacting with A $\beta$  was determined to lack the appropriate tools for modelling solvated environments, so the QUANTA program was selected [45, 46]. The QUANTA program uses the CHARMM force field, and explicit solvation of water molecules uses the simple TIP3P water molecule [44, 46].

The TIP3P model of water is a rigid model that involves three electrostatic interaction sites; two positively charged hydrogen atoms that sum up to balance the negatively charged oxygen atom [42]. Van der Waals calculations of the water molecules involve only the oxygen atom and not the hydrogen atoms [42]. This model is most commonly used since it provides a fairly accurate model of the properties of water that

are suitable to the type of calculations being performed in this research, while also minimizing the computational cost that occurs when more complex water models are used [42].

## 2.6.2 Set-Up of the Solution Phase Calculations of Phosphoserine Interacting with $\beta$ -Amyloid

The method used for modelling the potential binding interactions between phosphoserine and  $A\beta$  was selected to minimize computational cost. This was accomplished by selecting four of the resulting interactions of the gas phase calculations that met specific requirements and then solvating these systems. Only four interactions were selected due to the large computational cost associated with running minimization algorithms on solvated systems. Four calculations were determined to be an adequate number to establish whether the binding interactions would be significantly altered between the gas and solution phases. They should also be sufficient to determine favourable binding interactions in trends with a total of twenty-four results for solvated systems.

### 2.6.2.1 Solvating the System

If the gas phase interaction between phosphoserine and the various conformers of  $\beta$ -amyloid resulted in interactions occurring at two or more different amino acid side chains on the peptide, and had a favourable binding energy that was due to the interaction alone and not to the formation of multiple interactions within the phosphoserine molecule, it was selected as a viable option for solvation. The four lowest energy interactions that met these criteria were selected for solvation as this minimized the computational cost involved. By taking a binding interaction known to exist in the gas phase, it could then be

determined what action the presence of water molecules would exert on the system, whether to encourage the binding or to disrupt it. It would have been more computationally demanding to begin again with separated phosphoserine and  $\beta$ -amyloid models and run the same calculations in a solvated environment.

The selected interaction was then solvated, depending on the size of the system, with one or two 30 Å x 30 Å x 30 Å boxes of water molecules. The QUANTA program only has two sizes of water boxes available, 15 Å x 15 Å x 15 Å and 30 Å x 30 Å x 30 Å, neither of which was large enough to solvate the entire peptide except in the case of the 2BP4 conformer [46]. This problem was solved by writing a script that allowed for two 30 Å x 30 Å x 30 Å water boxes to be united. The detailed method and scripts used can be found in Appendices 2-4.

For those systems requiring two 30 Å boxes to be solvated, a program was started to capture the commands in QUANTA and a 30 Å water box was positioned over an atom to solvate part of the system, and then the capture program was terminated [46]. This saved file contained information on the position of the atoms and the water molecules that were introduced to the system. Part of this information was selected, saved and read into the above mentioned script: a second atom from the peptide was selected to place a second water box upon and the file was saved. This saved file was then streamed into the QUANTA program and resulted in two water boxes being positioned on the  $\beta$ amyloid-phosphoserine complex (a detailed methodology is given in Appendix 2) [46]. In most cases this positioning resulted in some overlap of the boxes which caused some of the water molecules to become merged together. These molecules were then separated where possible to regenerate single water molecules that would not be too close to the

other molecules, or they were deleted as some of the overlapping water molecules were quite mangled. All of these molecules were fixed or deleted as necessary before any other operation was performed on the system. Figure 2.11 shows one of the solvated interactions where two 30 Å water boxes were united together for the system.



Figure 2.11: The interactions between phosphoserine and the 1AMB conformer of β-amyloid in an aqueous environment

#### 2.6.2.2 PERIODIC BOUNDARY CONDITIONS

Once the system was solvated, periodic boundary conditions were introduced. The boundary conditions were necessary to prevent the water molecules from expanding infinitely into space once minimization of the system was commenced. The boundary conditions were set to be equal to the size of the water boxes solvating the system and according to the spatial orientation of the boxes. For the 1AMB, 1AMC, 1AML, and 1BA4 conformers the periodic boundary conditions were therefore set to be 60 Å x 30 Å x 30 Å (in the x, y, and z directions). 1IYT had a different spatial orientation of the water boxes and therefore the periodic boundaries were set for 30 Å x 30 Å x 60 Å. Given that

the 2BP4 conformer of  $\beta$ -amyloid was small enough to be solvated by one 30 Å water box, the periodic boundaries were set to 30 Å x 30 Å x 30 Å.

#### 2.6.2.3 MINIMIZATION OF THE SOLVATED PHOSPHOSERINE-β-AMYLOID SYSTEM

Once the interacting systems selected from the gas phase calculations were set up for the calculations, the energy minimization step was performed. Unlike the gas phase calculations, no constraints were placed upon the peptide backbone as the water molecules would help to shield the charged species from interacting with each other; those changes that did occur were more likely reflective of the positioning that could exist in a biological environment.

Given the large size of the system – a few hundred peptide and phosphoserine atoms plus several thousand atoms comprising the water molecules – a minimum on the potential energy surface was unlikely to be attained when using the steepest descent minimization algorithm; therefore the steepest descent energy minimization was used to bring the system close to an energy minimum on the PES until it took at least twenty-five iterative steps for the energy of the system to change by 1 kcal/mol. Upon reaching this slow energy change, the minimization was halted and the conjugate gradient energy minimization algorithm was utilized to bring the system to an energy minimum.

#### 2.6.2.4 Energy Calculations of the Solvated $A\beta$ -Phosphoserine Interactions

Once an energy minimum was attained, the total energy of the system was measured, ignoring the solvent contributions to the energy of the system, and then the electrostatic energy was measured while also ignoring solvent contributions. A third energy was measured while ignoring the solvent contributions and constraining the

protein backbone in order to determine the electrostatic energy based solely on the amino acid side chains and phosphoserine.

The three energies that were calculated for analytical purposes are therefore; the total binding energy of the system ignoring solvent contributions:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{\text{phos}}$$
(2.2)

 $E_{tot}$  is the total energy of the phosphoserine-A $\beta$  system,  $E_{A\beta}$  is the total energy of the  $\beta$ amyloid conformer and  $E_{phos}$  is the total energy of phosphoserine, all of which were calculated after minimization in the solution phase, but ignoring the solvent contributions to the energy.

The electrostatic energy of the system, after minimization in the solution phase and also ignoring the solvent contributions was calculated by:

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{elephos}$$
(2.3)

The electrostatic energy of the final phosphoserine-A $\beta$  system is given by  $E_{ele}$  and subtracting the electrostatic energy of A $\beta$ ,  $E_{eleA\beta}$ , and phosphoserine,  $E_{elephos}$ , gives the overall change in the electrostatic energy for that particular system.

The final energy calculation examined the electrostatic contributions based solely on the phosphoserine and amino acid side chain contributions, ignoring the backbone contributions to this energy (since the backbone atoms could interact electrostatically in maintaining or altering the conformation of the peptide). The equation used is identical to the previous one except that the electrostatic energy was calculated with a constrained protein backbone:

$$\Delta E_{elecpb} = E_{elecpb} - E_{elecpbA\beta} - E_{elephos}$$
(2.4)

 $E_{elecpb}$  is the electrostatic energy of the interacting phosphoserine and  $\beta$ -amyloid system with a constrained protein backbone for the peptide involved,  $E_{elecpbA\beta}$  is the electrostatic energy of the  $\beta$ -amyloid conformer with the backbone constrained, and the  $E_{elephos}$ remains unconstrained since the molecule is not a protein.

#### **2.6.2.5 DETERMINATION OF BINDING INTERACTIONS**

To determine if binding interactions occurred as a result of the minimization of the solvated phosphoserine-A $\beta$  systems, two methods were used. First the QUANTA program has an option to display hydrogen bonds present in the system. This feature was applied to the final optimized system once the solvent contributions were ignored for better visualization of the possible interactions [46].

It was discovered that MOE (Molecular Operating Environment) allowed for ligand interactions to be determined, including potential  $\pi$ - $\pi$  and cation- $\pi$  interactions, as well as electrostatic interactions [47]. The final binding orientations were then imported into the MOE environment to determine if any of the other possible types of binding interactions were present [47].

### 2.6.3 SOLUTION PHASE RESULTS OF PHOSPHOSERINE INTERACTING WITH SIX DIFFERENT β-AMYLOID CONFORMERS

The results of the minimizations of phosphoserine interacting with  $\beta$ -amyloid in an aqueous environment are summarized in tables according to the A $\beta$  conformer being examined. The initial binding orientation that resulted from the gas phase calculations is given, followed by the final binding orientation that resulted from the optimized, solvated system. The calculated total energy, electrostatic energy, and electrostatic energy involving a constrained protein backbone are given (solvent contributions to the system were not included when calculating these energies), as well as the differences in these energies calculated using the previously mentioned equations. Hydrogen bonding interactions are denoted by peach coloured cells, while electrostatic interactions are marked by blue coloured cells in the tables. The energies of the  $\beta$ -amyloid conformers and phosphoserine used to calculate the binding energies of the solution phase interactions are given in Table 2.14.

| Conformer     | E <sub>tot</sub> | E <sub>ele</sub> | E <sub>elecpb</sub> |
|---------------|------------------|------------------|---------------------|
| 1AMB          | -314.52          | -270.43          | -55.10              |
| 1AMC          | -314.53          | -280.48          | -66.97              |
| 1AML          | -404.92          | -346.18          | -54.90              |
| 1BA4          | -420.10          | -369.83          | -57.33              |
| 1IYT          | -530.26          | -404.59          | -72.85              |
| 2BP4          | -177.10          | -153.70          | -39.15              |
|               |                  |                  |                     |
|               | E <sub>tot</sub> | $E_{ele}$        |                     |
| Phosphoserine | -11.31           | -12.76           |                     |

 Table 2.14: Total energies of the six β-amyloid conformers and phosphoserine calculated in a solvated environment

### 2.6.3.1 Results of the Solution Phase Interaction Between Phosphoserine and the 1AMB Conformer of $\beta$ -Amyloid

The solution phase calculations resulted in fewer bonding interactions than in the gas phase, but this was understandable given the presence of water molecules in the system. In most cases the functional groups remained in similar orientations to the final result of the gas phase minimizations, with both hydrogen bonding and electrostatic interactions occurring. The results of the final orientations of the functional groups,

binding interactions and the calculated binding energies are tabulated in Table 2.15.

Electrostatic interactions are in blue, while hydrogen bonds are in peach.

### Table 2.15: The solution phase results of phosphoserine interacting with the 1AMB conformer of β-amyloid

| A) | Amino Acid          | Glu11    | Val12    | His13                                                      | His14                        | Gln15 | Lys16                        |
|----|---------------------|----------|----------|------------------------------------------------------------|------------------------------|-------|------------------------------|
|    | Initial Orientation |          |          | CO <sub>2</sub>                                            |                              |       | PO <sub>3</sub>              |
|    | Final Orientation   |          |          | CO <sub>2</sub> <sup>-</sup> /PO <sub>3</sub> <sup>-</sup> |                              |       | PO <sub>3</sub> <sup>-</sup> |
|    | E <sub>tot</sub>    | -1382.31 | kcal/mol |                                                            |                              |       |                              |
|    | E <sub>ele</sub>    | -1416.29 | kcal/mol |                                                            |                              |       |                              |
|    | E <sub>elecpb</sub> | -586.11  | kcal/mol |                                                            |                              |       |                              |
|    | $\Delta E_{tot}$    | -1056.48 | kcal/mol |                                                            |                              |       |                              |
|    | $\Delta E_{ele}$    | -1133.10 | kcal/mol |                                                            |                              |       |                              |
|    | $\Delta E_{elecpb}$ | -531.00  | kcal/mol |                                                            |                              |       |                              |
|    |                     |          |          |                                                            |                              |       |                              |
| B) | Amino Acid          | Glu11    | Vall2    | His13                                                      | His14                        | Gln15 | Lys16                        |
|    | Initial Orientation |          |          | PO <sub>3</sub> <sup>-</sup>                               | CO <sub>2</sub> <sup>-</sup> |       |                              |
|    | Final Orientation   |          |          | PO <sub>3</sub> <sup>-</sup>                               | CO <sub>2</sub>              |       |                              |
|    | E <sub>tot</sub>    | -327.32  | kcal/mol |                                                            |                              |       |                              |
|    | E <sub>ele</sub>    | -284.97  | kcal/mol |                                                            |                              |       |                              |
|    | E <sub>elecpb</sub> | -69.12   | kcal/mol |                                                            |                              |       |                              |
|    | $\Delta E_{tot}$    | -1.49    | kcal/mol |                                                            |                              |       |                              |
|    | $\Delta E_{ele}$    | -1.78    | kcal/mol |                                                            |                              |       |                              |
|    | $\Delta E_{elecpb}$ | -14.02   | kcal/mol |                                                            |                              |       |                              |

| C) | Amino Acid          | Glu11             | Val12     | His13                        | His14 | Gln15   | Lys16                        | Leu17             |
|----|---------------------|-------------------|-----------|------------------------------|-------|---------|------------------------------|-------------------|
|    | Initial Orientation |                   |           | PO <sub>3</sub> <sup>-</sup> |       |         | CO <sub>2</sub> <sup>-</sup> |                   |
|    | Final Orientation   |                   |           | PO <sub>3</sub>              |       |         | CO <sub>2</sub>              | CO <sub>2</sub> - |
|    | E <sub>tot</sub>    | -346.16           | kcal/mol  |                              |       |         |                              |                   |
|    | E <sub>ele</sub>    | -295.17           | kcal/mol  |                              |       |         |                              |                   |
|    | E <sub>elecpb</sub> | -77.42            | kcal/mol  |                              |       |         |                              |                   |
|    | $\Delta E_{tot}$    | -20.33            | kcal/mol  |                              |       |         |                              |                   |
|    | $\Delta E_{ele}$    | -11.99            | kcal/mol  |                              |       |         |                              |                   |
|    | $\Delta E_{elecpb}$ | -22.32            | kcal/mol  |                              |       |         |                              |                   |
| ο, | A                   | CL 11             | X 7- 11 C |                              | 12 11 | -14     | $C \sim 15$                  | I -16             |
| D) | Amino Acid          | GIUTT             | vall 2    | 2 His                        | 13 H  | 1514    | GINIS                        | Lysio             |
|    | Initial Orientation | $\mathrm{NH_3}^+$ |           |                              | C     | $O_2^-$ |                              |                   |
|    | Final Orientation   | $\mathrm{NH_3}^+$ |           |                              | C     | $O_2^-$ | $CO_2^-$                     |                   |
|    | E <sub>tot</sub>    | -1219.67          | / kcal/mo | ol                           |       |         |                              |                   |
|    | E <sub>ele</sub>    | -1268.40          | ) kcal/mo | ol                           |       |         |                              |                   |
|    | E <sub>elecpb</sub> | -440.86           | 6 kcal/m  | ol                           |       |         |                              |                   |
|    | $\Delta E_{tot}$    | -893.84           | kcal/mo   | ol                           |       |         |                              |                   |
|    | $\Delta E_{ele}$    | -985.21           | kcal/mo   | ol                           |       |         |                              |                   |
|    | $\Delta E_{elecpb}$ | -385.76           | 6 kcal/m  | ol                           |       |         |                              |                   |

Three of the four systems examined retained at least one of the initial hydrogen bonding interactions, while two systems also demonstrated electrostatic binding interactions. In some cases the groups were close enough to each other for potential binding interactions to have occurred, even if they were not recognized as such by the molecular modelling programs. Figure 2.12 shows one of the resulting binding interactions from the solution phase calculations (orientation C) with the water molecules removed for clarity's sake – hydrogen bonds are represent by turquoise lines, while electrostatic interactions are represented by purple lines.



### Figure 2.12: The binding interactions occurring between phosphoserine and the 1AMB conformer of β-amyloid upon minimization in an aqueous environment. The hydrogen bond is in turquoise, while the electrostatic interaction is in purple.

There is significant variation in binding energies of the systems which is likely

due at least in part to the initial set-up of the system: the positioning of the water boxes was not identical and therefore resulted in varying amounts of overlapping water molecules that needed to be removed in order for calculations to proceed. Given that the numbers hold no true value to real life situations, they were only being used for comparative purposes to determine the favourability of interacting phosphoserine-A $\beta$ systems. The only general conclusion that could be made for all four systems is that the binding interactions were favourable given the low  $\Delta E_{elecpb}$  energies.

### 2.6.3.2 Results of the Solution Phase Interaction Between Phosphoserine and the 1AMC Conformer of $\beta$ -Amyloid

The solution phase results of phosphoserine and the 1AMC conformer of  $A\beta$  showed fewer bonding interactions occurred than seen in the gas phase. Table 2.16 summarizes these results and it was seen that only two of the four selected systems retained hydrogen bonding interactions upon optimization in a solvated environment.

### Table 2.16: The solution phase results of phosphoserine interacting with the 1AMC conformer of β-amyloid

| A) | Amino Acid                                                                                                                               | Glu1                                                                                   | 1                               | Val12                                         | His1                          | 3                                     | His14           | Gln   | 15 L                                    | ys16                             | 5                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------|-----------------|-------|-----------------------------------------|----------------------------------|---------------------------------------|
|    | Initial Orientation                                                                                                                      | n NH <sub>3</sub>                                                                      | ,+<br>3                         |                                               |                               |                                       | $\rm CO_2^-$    |       |                                         |                                  |                                       |
|    | Final Orientation                                                                                                                        | n NH <sub>3</sub>                                                                      | +                               |                                               |                               |                                       | CO <sub>2</sub> |       |                                         |                                  |                                       |
|    | E <sub>tot</sub>                                                                                                                         | -326                                                                                   | .54                             | kcal/mol                                      |                               |                                       |                 |       |                                         |                                  |                                       |
|    | E <sub>ele</sub>                                                                                                                         | -289                                                                                   | .86                             | kcal/mol                                      |                               |                                       |                 |       |                                         |                                  |                                       |
|    | E <sub>elecpb</sub>                                                                                                                      | -75                                                                                    | .52                             | kcal/mol                                      |                               |                                       |                 |       |                                         |                                  |                                       |
|    | $\Delta E_{tot}$                                                                                                                         | -0                                                                                     | .69                             | kcal/mol                                      |                               |                                       |                 |       |                                         |                                  |                                       |
|    | $\Delta E_{ele}$                                                                                                                         | 3                                                                                      | .38                             | kcal/mol                                      |                               |                                       |                 |       |                                         |                                  |                                       |
|    | $\Delta E_{elecpb}$                                                                                                                      | -8                                                                                     | .55                             | kcal/mol                                      |                               |                                       |                 |       |                                         |                                  |                                       |
|    |                                                                                                                                          |                                                                                        |                                 |                                               |                               |                                       |                 |       |                                         |                                  |                                       |
|    |                                                                                                                                          |                                                                                        |                                 |                                               |                               |                                       |                 |       |                                         |                                  |                                       |
| B) | Amino Acid                                                                                                                               | Tyr10                                                                                  | Glu                             | 11 Val12                                      | His13                         | His14                                 | Gln15           | Lys16 | Leul                                    | 7                                | Vall8                                 |
| B) | Amino Acid<br>Initial Orientation                                                                                                        | Tyr10<br>NH <sub>3</sub> <sup>+</sup>                                                  | Glu                             | 11 Val12                                      | His13                         | His14                                 | Gln15           | Lys16 | Leul                                    | 7                                | Vall 8                                |
| B) | Amino Acid<br>Initial Orientation<br>Final Orientation                                                                                   | Tyr10<br>NH <sub>3</sub> <sup>+</sup>                                                  | Glu                             | 11 Val12                                      | His13<br>$CO_2^-$<br>$CO_2^-$ | His14<br>PO <sub>3</sub> -            | Gln15           | Lys16 | Leul $CO_2^{-}/N$                       | 7<br>H <sub>3</sub> <sup>+</sup> | Vall8<br>CO <sub>2</sub> -            |
| B) | Amino Acid<br>Initial Orientation<br>Final Orientation<br>E <sub>tot</sub>                                                               | Tyr10<br>NH <sub>3</sub> <sup>+</sup><br>-318.06                                       | Glu                             | 111 Vall2                                     | His13<br>$CO_2^-$<br>$CO_2^-$ | His14<br>PO3 <sup>-</sup>             | Gln15           | Lys16 | Leu1<br>CO <sub>2</sub> <sup>-</sup> /N | 7<br>H <sub>3</sub> <sup>+</sup> | Vall 8 $CO_2^-$                       |
| B) | Amino Acid<br>Initial Orientation<br>Final Orientation<br>E <sub>tot</sub><br>E <sub>ele</sub>                                           | Tyr10<br>NH <sub>3</sub> <sup>+</sup><br>-318.06<br>-297.70                            | Glu<br>kcal                     | ll 1 Vall 2<br>l/mol<br>l/mol                 | His13<br>$CO_2^-$<br>$CO_2^-$ | His14<br>PO <sub>3</sub> -            | Gln15           | Lys16 | Leu1<br>CO <sub>2</sub> <sup>-</sup> /N | 7<br>H <sub>3</sub> <sup>+</sup> | Vall 8 $CO_2^-$                       |
| B) | Amino Acid<br>Initial Orientation<br>Final Orientation<br>E <sub>tot</sub><br>E <sub>ele</sub><br>E <sub>elecpb</sub>                    | Tyr10<br>NH <sub>3</sub> <sup>+</sup><br>-318.06<br>-297.70<br>-82.61                  | Glu<br>kca<br>kca               | 111 Vall2<br>l/mol<br>l/mol<br>l/mol          | His13<br>$CO_2^-$<br>$CO_2^-$ | His14                                 | Gln15           | Lys16 | Leu1<br>CO <sub>2</sub> <sup>-</sup> /N | 7<br>H <sub>3</sub> <sup>+</sup> | Val18<br>CO <sub>2</sub> <sup>-</sup> |
| B) | Amino Acid<br>Initial Orientation<br>Final Orientation<br>$E_{tot}$<br>$E_{ele}$<br>$E_{elecpb}$<br>$\Delta E_{tot}$                     | Tyr10<br>NH <sub>3</sub> <sup>+</sup><br>-318.06<br>-297.70<br>-82.61<br>7.78          | Glu<br>kcal<br>kcal<br>kcal     | ll 1 Vall 2<br>l/mol<br>l/mol<br>l/mol        | His13<br>$CO_2^-$<br>$CO_2^-$ | His14<br>PO <sub>3</sub> <sup>-</sup> | Gln15           | Lys16 | Leul<br>CO <sub>2</sub> /N              | 7<br>H <sub>3</sub> <sup>+</sup> | Vall 8<br>CO <sub>2</sub> -           |
| B) | Amino Acid<br>Initial Orientation<br>Final Orientation<br>$E_{tot}$<br>$E_{ele}$<br>$E_{elecpb}$<br>$\Delta E_{tot}$<br>$\Delta E_{tot}$ | Tyr10<br>NH <sub>3</sub> <sup>+</sup><br>-318.06<br>-297.70<br>-82.61<br>7.78<br>-4.46 | Glu<br>kca<br>kca<br>kca<br>kca | l11 Val12<br>l/mol<br>l/mol<br>l/mol<br>l/mol | His13<br>$CO_2^-$<br>$CO_2^-$ | His14<br>PO <sub>3</sub> -            | Gln15           | Lys16 | Leu1<br>CO2 <sup>-</sup> /N             | 7<br>H <sub>3</sub> <sup>+</sup> | Val18<br>CO <sub>2</sub> <sup>-</sup> |

| C) | Amino Acid          | Glu11   | Val12    | His1.                        | 3 His  | s14 | Gln15           | Lys16                        |
|----|---------------------|---------|----------|------------------------------|--------|-----|-----------------|------------------------------|
|    | Initial Orientation |         |          | CO <sub>2</sub>              | -      |     |                 | PO <sub>3</sub> <sup>-</sup> |
|    | Final Orientation   |         |          | CO <sub>2</sub>              | -      |     |                 | PO <sub>3</sub> <sup>-</sup> |
|    | E <sub>tot</sub>    | -330.66 | kcal/mol |                              |        |     |                 |                              |
|    | E <sub>ele</sub>    | -290.69 | kcal/mol |                              |        |     |                 |                              |
|    | E <sub>elecpb</sub> | -78.22  | kcal/mol |                              |        |     |                 |                              |
|    | $\Delta E_{tot}$    | -4.82   | kcal/mol |                              |        |     |                 |                              |
|    | $\Delta E_{ele}$    | 2.55    | kcal/mol |                              |        |     |                 |                              |
|    | $\Delta E_{elecpb}$ | -11.25  | kcal/mol |                              |        |     |                 |                              |
| וח | Amino Acid          | Gh11    | Val12    | His13                        | His14  | Gh1 | 5 Ivs1          | 6   Leu17                    |
| 0, |                     | Oluri   | v ull 2  | 111313                       | 111517 | Om  | 5 Lyst          | J Leur /                     |
|    | Initial Orientation |         |          | CO <sub>2</sub>              |        |     | PO <sub>3</sub> |                              |
|    | Final Orientation   |         |          | CO <sub>2</sub> <sup>-</sup> |        |     | PO <sub>3</sub> | PO <sub>3</sub>              |
|    | E <sub>tot</sub>    | -325.77 | kcal/mol |                              |        |     |                 |                              |
|    | E <sub>ele</sub>    | -287.44 | kcal/mol |                              |        |     |                 |                              |
|    | E <sub>elecpb</sub> | -72.66  | kcal/mol |                              |        |     |                 |                              |
|    | $\Delta E_{tot}$    | 0.08    | kcal/mol |                              |        |     |                 |                              |
|    | $\Delta E_{ele}$    | 5.80    | kcal/mol |                              |        |     |                 |                              |
|    | $\Delta E_{elecpb}$ | -5.69   | kcal/mol |                              |        |     |                 |                              |

For the most part, the interactions retained the same orientation of phosphoserine functional groups towards the amino acid side chains they were bonded to in the gas phase. Interestingly, those systems where hydrogen bonding still occurred upon minimization in aqueous solution were higher in energy than those that did not result in bonding interactions. It is possible then that there may indeed have been some electrostatic-type interactions occurring in the EVHHQK region of interest for these lower energy systems, or it may have been that the side chains in these particular systems had engaged in more electrostatic interactions than in those systems where hydrogen bonding occurred.

## 2.6.3.3 Results of the Solution Phase Interaction Between Phosphoserine and the 1AML Conformer of $\beta$ -Amyloid

All four solution phase calculations involving phosphoserine and the 1AML conformer of  $\beta$ -amyloid resulted in at least one bonding interaction forming between the two. The results of these interactions are summarized in Table 2.17. The cell in green indicates where a hydrogen bond had formed as well as an electrostatic interaction occurring between the functional groups on phosphoserine and the backbone atoms of the amino acid residue. Peach coloured cells indicate hydrogen bonds. The pink cell represents an electrostatic interaction between the phosphoserine functional groups and atoms forming the peptide backbone.

### Table 2.17: The solution phase results of phosphoserine interacting with the 1AML conformer of β-amyloid

| A) | Amino Acid          | Glu11                        | Val12    | His13 | His14 | Gln15 | Lys16                        |
|----|---------------------|------------------------------|----------|-------|-------|-------|------------------------------|
|    | Initial Orientation | $\mathrm{NH_3}^+$            |          |       |       |       | PO <sub>3</sub> <sup>-</sup> |
|    | Final Orientation   | $\mathrm{NH_3}^+$            |          |       |       |       | PO <sub>3</sub> <sup>-</sup> |
|    |                     | PO <sub>3</sub> <sup>-</sup> |          |       |       |       |                              |
|    |                     |                              |          |       |       |       |                              |
|    | Etot                | -382.18                      | kcal/mol |       |       |       |                              |
|    | E <sub>ele</sub>    | -356.36                      | kcal/mol |       |       |       |                              |
|    | E <sub>elecpb</sub> | -64.98                       | kcal/mol |       |       |       |                              |
|    |                     |                              |          |       |       |       |                              |
|    | $\Delta E_{tot}$    | 34.04                        | kcal/mol |       |       |       |                              |
|    | $\Delta E_{ele}$    | 2.58                         | kcal/mol |       |       |       |                              |
|    | $\Delta E_{elecpb}$ | -10.08                       | kcal/mol |       |       |       |                              |



| D) | Amino Acid          | Glu11             | Val12           | His13 | His14 | Gln15 | Lys16           |
|----|---------------------|-------------------|-----------------|-------|-------|-------|-----------------|
|    | Initial Orientation | $\mathrm{NH_3}^+$ |                 |       |       |       | CO <sub>2</sub> |
|    | Final Orientation   | $\mathrm{NH_3}^+$ | PO <sub>3</sub> |       |       |       | CO <sub>2</sub> |
|    |                     |                   |                 |       |       |       | PO <sub>3</sub> |
|    | E <sub>tot</sub>    | -413.13           | kcal/mol        |       |       |       |                 |
|    | E <sub>ele</sub>    | -357.45           | kcal/mol        |       |       |       |                 |
|    | E <sub>elecpb</sub> | -62.14            | kcal/mol        |       |       |       |                 |
|    | $\Delta E_{tot}$    | 3.09              | kcal/mol        |       |       |       |                 |
|    | $\Delta E_{ele}$    | 1.49              | kcal/mol        |       |       |       |                 |
|    | $\Delta E_{elecpb}$ | -7.24             | kcal/mol        |       |       |       |                 |

All of the solution phase results for phosphoserine interacting with the 1AML conformer of A $\beta$  resulted in the formation of at least one calculable binding interaction. All except one of the systems (orientation C) had functional groups close enough to the other amino acid side chains in the EVHHQK region of interest that electrostatic interactions might be possible. All of the final binding interactions exhibited similar, slightly favourable energies as well, indicating that the orientation of phosphoserine towards  $\beta$ -amyloid may have favourable results.

## 2.6.3.4 Results of the Solution Phase Interaction Between Phosphoserine and the 1BA4 Conformer of $\beta$ -Amyloid

Three of the four solvated interactions of phosphoserine interacting with the 1BA4 conformer of  $\beta$ -amyloid resulted in calculable binding interactions, the results of which are summarized in Table 2.18. Hydrogen bonds are represented by peach coloured cells, and electrostatic interactions that occurred between the phosphoserine functional groups and the backbone atoms of the amino acids are given in pink.

| A) | Amino Acid          | Asp1                                                       | Glu3                         | Glu11                        | Val12     | His13  | His14 Gln1                                                 | 5 Ly                         | ys16                         |
|----|---------------------|------------------------------------------------------------|------------------------------|------------------------------|-----------|--------|------------------------------------------------------------|------------------------------|------------------------------|
|    | Initial Orientation | $\mathrm{NH_3}^+$                                          | $\mathrm{NH_3}^+$            |                              |           |        |                                                            | С                            | $O_2^-$                      |
|    | Final Orientation   | $\mathrm{NH_3}^+$                                          | NH3 <sup>+</sup>             | CO <sub>2</sub> <sup>-</sup> |           |        |                                                            | CO <sub>2</sub>              | /NH3 <sup>+</sup>            |
|    | E <sub>tot</sub>    | -419.52                                                    | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | E <sub>ele</sub>    | -372.65                                                    | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | Eelecpb             | -63.59                                                     | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | $\Delta E_{tot}$    | 11.88                                                      | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | $\Delta E_{ele}$    | 9.94                                                       | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | $\Delta E_{elecpb}$ | -6.26                                                      | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
| B) | Amino Acid          | Asp1                                                       | Glu11                        | Val12 Hi                     | is13 His1 | 4 Gln1 | 5 Lys16                                                    | Phe19                        | Asp23                        |
|    | Initial Orientation | CO <sub>2</sub> <sup>-</sup> /NH <sub>3</sub> <sup>+</sup> |                              |                              |           |        | CO <sub>2</sub> <sup>-</sup>                               |                              | NH <sub>3</sub> <sup>+</sup> |
|    | Final Orientation   | CO <sub>2</sub> <sup>-</sup> /NH <sub>3</sub> <sup>+</sup> | PO <sub>3</sub> <sup>-</sup> |                              |           |        | CO <sub>2</sub> <sup>-</sup> /PO <sub>3</sub> <sup>-</sup> | PO <sub>3</sub> <sup>-</sup> | $\mathrm{NH_3}^+$            |
|    |                     | CO <sub>2</sub>                                            |                              |                              |           |        |                                                            |                              |                              |
|    | Etat                | -448 74                                                    | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | E <sub>ele</sub>    | -376.84                                                    | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | E <sub>elecpb</sub> | -70.85                                                     | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | $\Delta E_{tot}$    | -17.34                                                     | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | $\Delta E_{ele}$    | 5.74                                                       | kcal/m                       | ol                           |           |        |                                                            |                              |                              |
|    | $\Delta E_{elecpb}$ | -13.52                                                     | kcal/m                       | ol                           |           |        |                                                            |                              |                              |

# Table 2.18: The solution phase results of phosphoserine interacting with the 1BA4 conformer of β-amyloid

| C) | Amino Acid          | Asp1                         | Glu11                        | Val12 | His13                        | His14 | Gln15                              | Lys16                        | Phe19                        | Glu22           |
|----|---------------------|------------------------------|------------------------------|-------|------------------------------|-------|------------------------------------|------------------------------|------------------------------|-----------------|
|    | Initial Orientation | PO <sub>3</sub> <sup>-</sup> |                              |       |                              |       |                                    | PO <sub>3</sub> <sup>-</sup> |                              |                 |
|    | Final Orientation   | PO <sub>3</sub>              | PO <sub>3</sub> <sup>-</sup> |       |                              |       |                                    | PO <sub>3</sub> <sup>-</sup> | CO <sub>2</sub> <sup>-</sup> | CO <sub>2</sub> |
|    | E <sub>tot</sub>    | -417.99                      | kcal/m                       | ol    |                              |       |                                    |                              |                              |                 |
|    | E <sub>ele</sub>    | -372.88                      | kcal/m                       | ol    |                              |       |                                    |                              |                              |                 |
|    | E <sub>elecpb</sub> | -68.85                       | kcal/m                       | ol    |                              |       |                                    |                              |                              |                 |
|    | $\Delta E_{tot}$    | 13.42                        | kcal/m                       | ol    |                              |       |                                    |                              |                              |                 |
|    | $\Delta E_{ele}$    | 9.71                         | kcal/m                       | ol    |                              |       |                                    |                              |                              |                 |
|    | $\Delta E_{elecpb}$ | -11.52                       | kcal/m                       | ol    |                              |       |                                    |                              |                              |                 |
| D) | Amino Acid          | Glu11                        | Va                           | ıl12  | His13                        | His   | s14                                | Gln15                        | Lys                          | 16              |
|    | Initial Orientation |                              |                              |       | $CO_2^-$                     | PC    | <b>)</b> <sub>3</sub> <sup>-</sup> |                              |                              |                 |
|    | Final Orientation   |                              |                              |       | CO <sub>2</sub> <sup>-</sup> | PC    | <b>)</b> <sub>3</sub> <sup>-</sup> |                              |                              |                 |
|    | E <sub>tot</sub>    | -417.9                       | 94 kcal                      | /mol  |                              |       |                                    |                              |                              |                 |
|    | E <sub>ele</sub>    | -374.3                       | 87 kcal                      | /mol  |                              |       |                                    |                              |                              |                 |
|    | Eelecpb             | -70.4                        | 11 kcal                      | /mol  |                              |       |                                    |                              |                              |                 |
|    | $\Delta E_{tot}$    | 13.4                         | l6 kcal                      | /mol  |                              |       |                                    |                              |                              |                 |
|    | $\Delta E_{ele}$    | 8.2                          | 22 kcal                      | /mol  |                              |       |                                    |                              |                              |                 |
|    | $\Delta E_{elecpb}$ | -13.0                        | )8 kcal                      | /mol  |                              |       |                                    |                              |                              |                 |

The highest energy interaction had no computable hydrogen bonds or electrostatic interactions, although it is very possible that there were some electrostatic interactions occurring between phosphoserine and  $\beta$ -amyloid. The remaining interactions formed hydrogen bonds, as well as possible electrostatic interactions in two cases, and all had similar, somewhat favourable energies, indicating potential binding orientations that may exist in the brain.

### 2.6.3.5 Results of the Solution Phase Interaction Between Phosphoserine and the 11YT Conformer of $\beta$ -Amyloid

The solution phase results of phosphoserine interacting with the 1IYT conformer of  $\beta$ -amyloid revealed that only two of the systems formed bonding interactions. Table 2.19 summarizes the final binding orientations and energies of interaction. Electrostatic interactions are represented by blue coloured cells, and hydrogen bonds by peach coloured cells.

### Table 2.19: The solution phase results of phosphoserine interacting with the 1IYT conformer of β-amyloid

| A) | Amino Acid          | Glu11   | Val12    | His13                        | His14 | Gln15 | Lys16                        |
|----|---------------------|---------|----------|------------------------------|-------|-------|------------------------------|
|    | Initial Orientation |         |          | CO <sub>2</sub> <sup>-</sup> |       |       | PO <sub>3</sub> <sup>-</sup> |
|    | Final Orientation   |         |          | CO <sub>2</sub>              |       |       | PO <sub>3</sub> <sup>-</sup> |
|    | E <sub>tot</sub>    | -578.21 | kcal/mol |                              |       |       |                              |
|    | E <sub>ele</sub>    | -543.54 | kcal/mol |                              |       |       |                              |
|    | E <sub>elecpb</sub> | -220.07 | kcal/mol |                              |       |       |                              |
|    | ΔE.                 | -53 64  | kcal/mol |                              |       |       |                              |
|    | $\Delta E_{ele}$    | -126.20 | kcal/mol |                              |       |       |                              |
|    | $\Delta E_{elecpb}$ | -146.50 | kcal/mol |                              |       |       |                              |

| B) | Amino Acid                                                                                          | Glu11                                              | Val12                                                    | His13                        | His14 | Gln15 | Lys16                        |
|----|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|------------------------------|-------|-------|------------------------------|
|    | Initial Orientation                                                                                 |                                                    |                                                          | CO <sub>2</sub>              |       |       | PO <sub>3</sub>              |
|    | Final Orientation                                                                                   |                                                    |                                                          | CO <sub>2</sub>              |       |       | PO <sub>3</sub>              |
|    | E <sub>tot</sub>                                                                                    | -611.38                                            | kcal/mol                                                 |                              |       |       |                              |
|    | E <sub>ele</sub>                                                                                    | -571.99                                            | kcal/mol                                                 |                              |       |       |                              |
|    | E <sub>elecpb</sub>                                                                                 | -245.84                                            | kcal/mol                                                 |                              |       |       |                              |
|    | $\Delta E_{tot}$                                                                                    | -86.81                                             | kcal/mol                                                 |                              |       |       |                              |
|    | $\Delta E_{ele}$                                                                                    | -154.64                                            | kcal/mol                                                 |                              |       |       |                              |
|    | $\Delta E_{elecpb}$                                                                                 | -172.27                                            | kcal/mol                                                 |                              |       |       |                              |
|    |                                                                                                     |                                                    |                                                          |                              |       |       |                              |
| C) | Amino Acid                                                                                          | Glu11                                              | Val12                                                    | His13                        | His14 | Gln15 | Lys16                        |
|    | Initial Orientation                                                                                 |                                                    |                                                          | PO <sub>3</sub> <sup>-</sup> |       |       | CO <sub>2</sub> <sup>-</sup> |
|    |                                                                                                     |                                                    |                                                          |                              |       |       |                              |
|    | Final Orientation                                                                                   |                                                    |                                                          | PO <sub>3</sub>              |       |       | CO <sub>2</sub>              |
|    | Final Orientation<br>E <sub>tot</sub>                                                               | -573.06                                            | kcal/mol                                                 | PO <sub>3</sub> <sup>-</sup> |       |       | CO <sub>2</sub>              |
|    | Final Orientation $E_{tot}$ $E_{ele}$                                                               | -573.06<br>-537.38                                 | kcal/mol<br>kcal/mol                                     | PO <sub>3</sub> <sup>-</sup> |       |       | CO <sub>2</sub>              |
|    | Final Orientation<br>$E_{tot}$<br>$E_{ele}$<br>$E_{elecpb}$                                         | -573.06<br>-537.38<br>-212.69                      | kcal/mol<br>kcal/mol<br>kcal/mol                         | PO <sub>3</sub> <sup>-</sup> |       |       | CO <sub>2</sub>              |
|    | Final Orientation<br>$E_{tot}$<br>$E_{ele}$<br>$E_{elecpb}$<br>$\Delta E_{tot}$                     | -573.06<br>-537.38<br>-212.69<br>-47.49            | kcal/mol<br>kcal/mol<br>kcal/mol<br>kcal/mol             | PO <sub>3</sub> <sup>-</sup> |       |       | CO <sub>2</sub>              |
|    | Final Orientation<br>$E_{tot}$<br>$E_{ele}$<br>$E_{elecpb}$<br>$\Delta E_{tot}$<br>$\Delta E_{ele}$ | -573.06<br>-537.38<br>-212.69<br>-47.49<br>-120.03 | kcal/mol<br>kcal/mol<br>kcal/mol<br>kcal/mol<br>kcal/mol | PO <sub>3</sub> <sup>-</sup> |       |       | CO <sub>2</sub>              |

| D) | Amino Acid          | Glu11   | Val12    | His13                        | His14                        | Gln15 | Lys16 | Leu17             |
|----|---------------------|---------|----------|------------------------------|------------------------------|-------|-------|-------------------|
|    | Initial Orientation |         |          | CO <sub>2</sub> <sup>-</sup> | PO <sub>3</sub> <sup>-</sup> |       |       |                   |
|    | Final Orientation   |         |          | $CO_2^-$                     | PO <sub>3</sub> <sup>-</sup> |       |       | CO <sub>2</sub> - |
|    | E <sub>tot</sub>    | -595.40 | kcal/mol |                              |                              |       |       |                   |
|    | E <sub>ele</sub>    | -548.57 | kcal/mol |                              |                              |       |       |                   |
|    | E <sub>elecpb</sub> | -219.92 | kcal/mol |                              |                              |       |       |                   |
|    | $\Delta E_{tot}$    | -70.83  | kcal/mol |                              |                              |       |       |                   |
|    | $\Delta E_{ele}$    | -131.23 | kcal/mol |                              |                              |       |       |                   |
|    | $\Delta E_{elecpb}$ | -146.34 | kcal/mol |                              |                              |       |       |                   |

Those systems that resulted in binding interactions had lower, more favourable energies than those that did not. The favourable binding interactions also occurred within the EVHHQK region of interest, and those that did not still had relatively favourable energies, as well as being oriented towards side chains in the same focused region of A $\beta$ .

### 2.6.3.6 Results of the Solution Phase Interaction Between Phosphoserine and the 2BP4 Conformer of $\beta$ -Amyloid

All four systems of phosphoserine and the 2BP4 conformer of A $\beta$  optimized in an aqueous environment resulted in binding interactions. Hydrogen bonds are denoted by a peach colour, electrostatic interactions between phosphoserine and the amino acid side chains in blue, and electrostatic interactions between phosphoserine and the peptide backbone in pink. A cation- $\pi$  interaction that formed is in periwinkle. The final orientations and energies are given in Table 2.20, note that orientation C also involved the formation of a hydrogen bond within the phosphoserine molecule.

| A) | Amino Acid          | Glu11   | Vall2    | His13                        | His14    | Gln15 | Lys16                        |
|----|---------------------|---------|----------|------------------------------|----------|-------|------------------------------|
|    | Initial Orientation |         |          | CO <sub>2</sub>              |          |       | PO <sub>3</sub> <sup>-</sup> |
|    | Final Orientation   |         |          | PO <sub>3</sub> <sup>-</sup> | $CO_2^-$ |       | PO <sub>3</sub> <sup>-</sup> |
|    |                     |         |          | CO <sub>2</sub> <sup>-</sup> |          |       |                              |
|    | E <sub>tot</sub>    | -400.63 | kcal/mol |                              |          |       |                              |
|    | E <sub>ele</sub>    | -3/7.85 | kcal/mol |                              |          |       |                              |
|    | E <sub>elecpb</sub> | -2/4.23 | kcal/mol |                              |          |       |                              |
|    | $\Delta E_{tot}$    | -212.23 | kcal/mol |                              |          |       |                              |
|    | $\Delta E_{ele}$    | -211.39 | kcal/mol |                              |          |       |                              |
|    | $\Delta E_{elecpb}$ | -223.77 | kcal/mol |                              |          |       |                              |
|    |                     |         |          |                              |          |       |                              |
| B) | Amino Acid          | Glu11   | Vall2    | His13                        | His14    | Gln15 | Lys16                        |
|    | Initial Orientation |         |          | PO <sub>3</sub> <sup>-</sup> |          |       | PO <sub>3</sub> <sup>-</sup> |
|    | Final Orientation   |         |          | PO <sub>3</sub> <sup>-</sup> | $CO_2^-$ |       | PO <sub>3</sub> <sup>-</sup> |
|    |                     |         |          | $CO_2^-$                     |          |       |                              |
|    | _                   |         | , .      |                              |          |       |                              |
|    | E <sub>tot</sub>    | -381.92 | kcal/mol |                              |          |       |                              |
|    | E <sub>ele</sub>    | -357.66 | kcal/mol |                              |          |       |                              |
|    | E <sub>elecpb</sub> | -254.75 | kcal/mol |                              |          |       |                              |

# Table 2.20: The solution phase results of phosphoserine interacting with the 2BP4 conformer of β-amyloid

| nol |
|-----|
| юl  |
| юl  |
|     |

| C) | Amino Acid          | Glu11   | Val12    | His13                            | His14                        | Gln15 | Lys16                        |  |
|----|---------------------|---------|----------|----------------------------------|------------------------------|-------|------------------------------|--|
|    | Initial Orientation |         |          | PO <sub>3</sub> <sup>-</sup>     | PO <sub>3</sub> <sup>-</sup> |       | CO <sub>2</sub> <sup>-</sup> |  |
|    | Final Orientation   |         |          | PO <sub>3</sub> <sup>-</sup>     | PO <sub>3</sub> <sup>-</sup> |       | CO <sub>2</sub> -            |  |
|    |                     |         |          |                                  | $\mathrm{NH_3}^+$            |       |                              |  |
|    | E <sub>tot</sub>    | -405.36 | kcal/mol |                                  |                              |       |                              |  |
|    | E <sub>ele</sub>    | -381.41 | kcal/mol |                                  |                              |       |                              |  |
|    | E <sub>elecpb</sub> | -277.56 | kcal/mol |                                  |                              |       |                              |  |
|    | $\Delta E_{tot}$    | -216.95 | kcal/mol |                                  |                              |       |                              |  |
|    | $\Delta E_{ele}$    | -214.95 | kcal/mol |                                  |                              |       |                              |  |
|    | $\Delta E_{elecpb}$ | -227.10 | kcal/mol |                                  |                              |       |                              |  |
| D) | Amino Acid          | Glu11   | Val12    | His13                            | His14                        | Gln15 | Lys16                        |  |
| ,  |                     |         |          |                                  |                              |       |                              |  |
|    | Initial Orientation |         |          | $PO_3$                           |                              |       | $CO_2$                       |  |
|    | Final Orientation   |         |          | CO <sub>2</sub> /PO <sub>3</sub> | PO <sub>3</sub>              |       | CO <sub>2</sub>              |  |
|    | E <sub>tot</sub>    | -405.40 | kcal/mol |                                  |                              |       |                              |  |
|    | E <sub>ele</sub>    | -388.24 | kcal/mol |                                  |                              |       |                              |  |
|    | E <sub>elecpb</sub> | -283.13 | kcal/mol |                                  |                              |       |                              |  |
|    | $\Delta E_{tot}$    | -217.00 | kcal/mol |                                  |                              |       |                              |  |
|    | $\Delta E_{ele}$    | -221.78 | kcal/mol |                                  |                              |       |                              |  |
|    | $\Delta E_{elecpb}$ | -232.67 | kcal/mol |                                  |                              |       |                              |  |

All four interactions appeared to be favourable in terms of low energy as well as functional group orientation. Every one of the four interacting systems formed hydrogen bonds. There did not appear to be a significant correlation between the binding energies and the types of measureable binding interactions that formed; however, it was unknown what the other unmeasured interactions would also be contributing to these energies.

### **2.7** BIOLOGICAL SUPPORT OF PHOSPHOSERINE INTERACTING WITH $\beta$ -Amyloid

The computational findings were supported through experimental means using thioflavin T (ThT), circular dichroism (CD) and transmission electron microscopy (TEM) *in vitro* assays (performed by Todd Galloway). The effect of phosphoserine in preventing both  $\beta$ -amyloid aggregation and  $\beta$ -amyloid conformational change ( $\alpha$ -helix to  $\beta$ -sheet) was examined via these methods. The methods for these assays are given in Appendix 5.

First, the ThT assay showed that phosphoserine was able to reduce the aggregation of  $\beta$ -amyloid from monomers to oligomers (dimers, trimers ... dodecamers) by more than 60% in a dose dependent fashion at concentrations of 0.01-5 mM (See Figure 2.13A). At the same dose range, CD studies showed that phosphoserine was able to inhibit the  $\alpha$ -helix to  $\beta$ -sheet conformational change over a time period of 140 hrs. The ThT and CD studies were done with A $\beta$ 40. The TEM studies used A $\beta$ 42, which is more prone to aggregation than the A $\beta$ 40 variant [8, 10, 15]. Images were taken using freshly prepared A $\beta$ 42 in the presence of DMSO, the control sample, and in the presence of 1 mM phosphoserine. The TEM images in Figure 2.13B show the effects of the presence of phosphoserine on the aggregation of  $\beta$ -amyloid, after a twenty-four hour incubation period compared to the control sample. It is dramatically apparent from these images that phosphoserine inhibited the aggregation of  $\beta$ -amyloid when compared to the control sample, which shows marked clumping of the peptide.



Figure 2.13: (A) ThT assay of phosphoserine at different concentrations; (B) Transmission electron microscopy images of Aβ42 incubated with DMSO (left) and 1 mM phosphoserine (right) for a twenty-four hour period.

#### **2.8 PHOSPHOSERINE INTERACTING WITH BBXB**

Additional selected gas phase optimizations were performed looking at whether phosphoserine demonstrates the capacity to bind to **BBXB** regions other than the **HHQK** region of  $\beta$ -amyloid. Research by Meier-Stephenson *et al* has suggested that this **BBXB** motif is present on a variety of proteins affiliated with Alzheimer's disease; a "promiscuous drug" could be identified to bind to this common motif for a multifaceted approach to treating AD [41].

To this effect, six proteins identified as playing a role in Alzheimer's disease and having the **BB**X**B** motif were selected for optimization with phosphoserine: Interleukin-4, Interleukin-12, Interleukin-13, S100β, RANTES, and ICAM-1[75, 76, 77, 78, 79, 80].

### 2.8.1 SET-UP OF BBXB OPTIMIZATIONS

Each of the six proteins was optimized in the gas phase for physiological pH conditions. Structures of each of the proteins were first obtained from the RCSB protein data bank and are identified as follows: Interleukin-4 – 2B8U, Interleukin-12 – 1F45, Interleukin-13 – 3BPO, S100 $\beta$  – 1UW0, RANTES – 1HRJ, and ICAM-1 – 1IAM [67, 75-80]. Each protein then underwent specific preparations to be in the correct state for optimization in the QUANTA environment [46].

#### **2.8.1.1** INTERLEUKIN-4

Interleukin-4 (IL-4) is a pleiotropic cytokine that plays a key signalling role in the immune system as well as provoking allergic response that can lead to hypersensitivity [75]. This protein plays a role in immune response and expresses the **BBXB** motif in two

places: as histidine-histidine-glutamic acid-lysine and as histidine-arginine-histidinelysine [41].

The protein structure of interleukin-4 was downloaded from the RSCB website and first edited in MOE [51]. Hydrogen atoms were added to the structure, and extraneous molecules and any solvent atoms present were deleted from the system. The histidine residues present in the protein were protonated and the file format of the structure was then converted and imported into QUANTA [46]. Atoms were retyped as necessary and the system was then optimized via steepest descents with a constrained protein backbone. The optimized structure was then saved for use in further calculations.

### 2.8.1.2 INTERLEUKIN-12

Interleukin-12 (IL-12) is another cytokine with an immunomodulatory role [76]. This protein is involved in enhancing the cytotoxic activity of natural killer and cytotoxic T-cells, as well as inducing the production of interferon- $\gamma$  (IFN- $\gamma$ ), another inflammatory protein [76]. The **BBXB** motif found in the interleukin-12 amino acid sequence is histidine-lysine-leucine-lysine [41].

The same procedure as in section 2.6.1.1 was followed for the interleukin-12 protein with two exceptions. Before optimization of the system could occur, there were some carboxylate groups that were incorrectly represented as aldehydes, and thus needed to be corrected, and some of the asparagine side chains were missing a proton. Once these adjustments were made, the protein backbone was constrained and then the minimization calculation was run.

#### 2.8.1.3 INTERLEUKIN-13

Interleukin-13 (IL-13) is an inflammatory cytokine with a similar function to IL-4, and presents a **BBXB** motif of histidine-leucine-lysine-lysine [41, 77].

The structure of interleukin-13 was downloaded from the protein data bank into MOE, where hydrogen atoms were added, solvent molecules and other unrelated species were deleted, and the histidine residues were protonated [51]. The PDB structure contained more than just the interleukin-13 chain, so the unnecessary chains were deleted from the system, whereupon the file format was converted and then imported into QUANTA [5]. Optimization then proceeded upon atom retyping and the constraint of the protein backbone.

### 2.8.1.4 S100β

S100 $\beta$  is a calcium binding protein that is found primarily in the cytoplasm of glial cells and plays a role in regulating cellular architecture [78]. Microglia cells are known to cluster at the sites of amyloid deposits in the AD brain, and an increased expression of S100 $\beta$  is seen in these areas [71, 74]. It is postulated that S100 $\beta$  may therefore play a role in the neuropathology of Alzheimer's disease, and it expresses the common **BBXB** motif in the form of histidine-lysine-leucine-lysine, and lysine-leucine-lysine [41].

The structure of S100 $\beta$  was imported directly into QUANTA, whereupon the histidine residues were protonated and some binding situations that were highly unlikely were deleted [46]. The protein backbone was constrained and minimization of the system occurred via steepest descents.

#### 2.8.1.5 RANTES

RANTES (regulated on activation, normal T-cell expressed and secreted) is a member of the interleukin superfamily of proteins, and is an inflammatory cytokine [79]. In its role it can activate leukocytes and incite their accumulation [79]. It appears that in its natural form, RANTES exists as a dimer; this presents two identical **BBXB** receptors as targets for interaction in the form of arginine-lysine-asparagine-arginine [41].

The RANTES protein was imported into MOE where the two histidine residues present were protonated, and the file format was then converted for QUANTA [46, 51]. The backbone was constrained the system was optimized using the steepest descents algorithm.

#### 2.8.1.6 ICAM-1

ICAM-1, or intracellular adhesion molecule-1, is a protein that can play two roles in the human body; it can help provide adhesion between white blood cells and endothelial cells to allow the passage of white blood cells to the site of injury or stress, or it can act as a receptor for human rhinovirus [22, 80]. ICAM-1 could therefore play a detrimental role in AD in that it allows for increased inflammation, which can cause further damage to the neurons. The **BBXB** motif presents itself twice in ICAM-1 as arginine-arginine-aspartic acid-histidine and as arginine-aspartic acid-histidine-histidine [41].

The protein structure required minimal adjustments with only histidine residues being protonated before the structure was converted to an appropriate format and imported into QUANTA [46]. It was discovered that some of the asparagine residues

were missing hydrogen atoms, so these corrections were made before the system was optimized via steepest descents with a constrained protein backbone.

#### 2.8.1.7 Optimization Methods

Gas phase optimizations were performed to see if potential interactions could occur between phosphoserine and other proteins involved in AD bearing the common **BBXB** motif. These optimizations were performed in the gas phase in the QUANTA program using the CHARMM22 force field [46].

For each simulation, the phosphoserine molecule was set at a distance of 3.0 Å away from the **BBXB** region on the protein such that two of the charged functional groups were oriented towards two of the charged amino acid side chains. The protein backbone was constrained and the system was optimized using the steepest descents algorithm. The final optimized systems were imported into MOE to determine what interactions could occur between the phosphoserine molecule and the proteins [51]. The total energy of the system was calculated using the following equation:

$$E_{tot} = E_{A\beta prot} - E_{prot} - E_{phos}$$
(2.5)

 $E_{A\beta prot}$  represents the total energy of the optimized phosphoserine-protein system,  $E_{prot}$  the energy of the protein optimized by itself, and  $E_{phos}$  the energy of the optimized phosphoserine molecule. Similarly, the van der Waals energy was calculated using the following equation:

$$E_{VdW} = E_{A\beta protVdW} - E_{protVdW} - E_{phosVdW}$$
(2.6)

The overall van der Waals energy of the system,  $E_{VdW}$ , is calculated by subtracting the individual van der Waals energies from the protein,  $E_{protVdW}$ , and phosphoserine,

 $E_{phosVdW}$ , from the van der Waals energy of the optimized phosphoserine-protein system,  $E_{A\beta protVdW}$ . The electrostatic energy of the binding interactions occurring between phosphoserine and the protein was calculated using equation 2.7.

$$E_{Ele} = E_{A\beta protEle} - E_{protEle} - E_{phosEle}$$
(2.7)

The calculated electrostatic energies of the individual protein,  $E_{protEle}$ , and phosphoserine,  $E_{phosEle}$ , were subtracted from the electrostatic energy of the optimized system,  $E_{A\beta protEle}$ , to determine the electrostatic energy of interaction.

### 2.8.2 RESULTS OF THE OPTIMIZATION OF PHOSPHOSERINE WITH SELECTED PROTEINS CONTAINING BBXB

The results of these optimizations are summarized in Table 2.21. Hydrogen bonds that formed between phosphoserine and the protein are indicated by the orange coloured cells; the darker the colour, the more hydrogen bonding interactions that are occurring.

| Protein | Initial Orientation          |                              |                 | Final Orientation            |                              |                              |                              |                              |                              | Binding Energy (kcal/mol)    |         |          |         |
|---------|------------------------------|------------------------------|-----------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------|----------|---------|
| TIOCE   | R149                         | R150                         | D151            | H152                         | R125                         | L147                         | R149                         | R150                         | D151                         | H152                         | Total   | VdW      | Ele     |
| ICAM-1  | $CO_2^-$                     | PO <sub>3</sub> <sup>-</sup> |                 |                              |                              |                              | $CO_2^-$                     |                              | $CO_2$                       |                              | -103.69 | 4.40     | -84.81  |
|         | co -                         |                              |                 | <b>DO</b> -                  |                              | PO <sub>3</sub> <sup>-</sup> | CO <sub>2</sub> -            |                              |                              | PO <sub>3</sub> <sup>-</sup> | 102.76  | 4.22     | 72.00   |
|         | $CO_2$                       |                              |                 | $PO_3$                       |                              |                              | PO <sub>3</sub> <sup>-</sup> |                              |                              |                              | -103.76 | -4.33    | -72.99  |
|         | PO <sub>3</sub> <sup>-</sup> |                              |                 | $CO_2^{-}$                   | $CO_2^{-}$                   |                              |                              |                              |                              | $CO_2^-$                     | -117.79 | 1.20     | -98.39  |
|         | R150                         | D151                         | H152            | H153                         | R150                         | D151                         | H152                         | H153                         |                              | 2                            |         |          |         |
|         | $CO_2^-$                     |                              |                 | PO <sub>3</sub> <sup>-</sup> | $CO_2^-$                     |                              |                              | PO <sub>3</sub> <sup>-</sup> |                              |                              | -113.88 | 3.97     | -95.80  |
| IL-4    | H58                          | H59                          | E60             | K61                          | S57                          | H58                          | H59                          | E60                          | K61                          |                              |         |          |         |
|         | $CO_2^-$                     | PO <sub>3</sub>              |                 |                              |                              | $CO_2^{-}$                   |                              |                              |                              |                              | -103.87 | 5.22     | -86.86  |
|         | PO <sub>3</sub> <sup>-</sup> | $CO_2^-$                     |                 |                              | I                            | PO3 <sup>-</sup> /CO         | $_2 \text{ CO}_2^-$          |                              |                              |                              | -106.32 | 2.50     | -86.59  |
|         | PO <sub>2</sub> <sup>-</sup> | NH <sub>2</sub> <sup>+</sup> |                 |                              |                              | PO <sub>2</sub> <sup>-</sup> |                              |                              |                              |                              | -118.33 | 4.58     | -99.18  |
|         | NH <sub>2</sub> <sup>+</sup> | PO                           |                 |                              |                              | - 5                          | PO <sub>2</sub> <sup>-</sup> |                              |                              |                              | -137 13 | 3 10     | -116.26 |
|         | CO -                         | 103                          |                 | PO -                         |                              |                              | -                            |                              |                              |                              | -104.92 | 8 11     | -88.43  |
|         | DO -                         |                              |                 | 103<br>CO -                  | -<br>DO -                    | -                            |                              | -                            | -                            |                              | 116.26  | 4 1 4    | -00.45  |
|         | PO <sub>3</sub>              |                              |                 | $CO_2$                       | PO <sub>3</sub>              | <b>GO</b> -                  |                              |                              | $CO_2$                       |                              | -110.50 | 4.14     | -98.08  |
|         | $NH_3^+$                     |                              |                 | PO <sub>3</sub> <sup>-</sup> | NH <sub>3</sub>              | $CO_2$                       |                              |                              |                              |                              | -123.79 | 2.54     | -101.70 |
|         | 1174                         | D.7.5                        | 117/            | 1/ 22                        | $CO_2^{-1}$                  |                              |                              |                              |                              | 070                          |         |          |         |
|         | H/4                          | R/5                          | H/6             | K//                          | Q/1                          | H/4                          | R75                          | H76                          | K//                          | Q78                          | 116.00  | <u> </u> | 101.56  |
|         | $CO_2$                       |                              |                 | $PO_3$                       |                              | $CO_2$                       |                              |                              | $PO_3$                       |                              | -116.28 | 6.49     | -101.56 |
|         | PO <sub>3</sub> <sup>-</sup> |                              |                 | $CO_2^-$                     |                              | $PO_3^-$                     |                              |                              |                              |                              | -102.88 | 5.69     | -87.38  |
|         | NH3 <sup>+</sup>             |                              |                 | PO <sub>3</sub> <sup>-</sup> | $NH_3^+/C$                   | $CO_2^-$                     |                              |                              |                              |                              | -112.67 | 5.63     | -98.14  |
|         | $CO_2^-$                     | PO <sub>3</sub> <sup>-</sup> |                 |                              |                              | $CO_2$                       |                              |                              |                              | CO <sub>2</sub>              | -117.69 | 3.21     | -99.76  |
|         | PO <sub>3</sub> -            | CO <sub>2</sub> -            |                 |                              | $CO_2^-$                     |                              | $CO_2^-$                     |                              |                              |                              | -12.49  | 4.99     | -105.74 |
|         | $\mathrm{NH_3}^+$            | PO <sub>3</sub>              |                 |                              |                              |                              |                              |                              |                              | $CO_2^-$                     | -128.46 | 6.18     | -111.69 |
| IL-12   | H194                         | K195                         | K196            | K197                         | K84                          | H194                         | K195                         | L196                         | K197                         |                              |         |          |         |
|         | PO <sub>3</sub> -            | CO <sub>2</sub> -            |                 |                              | -                            | -                            | -                            | -                            | -                            |                              | -127.56 | 5.92     | -110.39 |
|         | $CO_2^-$                     | PO <sub>3</sub> <sup>-</sup> |                 |                              |                              | $CO_2^-$                     | PO <sub>3</sub> <sup>-</sup> |                              |                              |                              | -128.89 | 1.95     | -110.86 |
|         | NH3 <sup>+</sup>             | PO <sub>3</sub> <sup>-</sup> |                 |                              |                              |                              | PO <sub>3</sub> <sup>-</sup> |                              |                              |                              | -132.38 | 2.63     | -111.75 |
|         | $CO_2^{-1}$                  | -                            |                 | PO <sub>2</sub> <sup>-</sup> |                              | PO <sub>2</sub> <sup>-</sup> |                              |                              | PO <sub>2</sub> <sup>-</sup> |                              | -139.92 | 5.83     | -119.72 |
|         | $PO_2^{-1}$                  |                              |                 | $CO_{2}^{-}$                 |                              | 5                            |                              |                              | CO <sub>2</sub> -            |                              | -114 73 | 3 73     | -95 54  |
|         | ло,<br>NH <sup>+</sup>       |                              |                 | PO -                         | PO -                         |                              |                              |                              | PO -                         |                              | 152 71  | 5 3 5    | 13/ 38  |
|         | 11113                        | co -                         |                 | PO -                         | 103                          | PO -                         |                              |                              | PO -                         |                              | 107.94  | 2.25     | -134.30 |
|         |                              | CO <sub>2</sub>              |                 | PO3                          |                              | $PO_3$                       |                              |                              | PO <sub>3</sub>              |                              | -127.84 | 3.31     | -106.45 |
| п 12    | 11102                        | PO <sub>3</sub>              | V 104           | V105                         | 4.21                         | 11103                        | T 102                        | 1/104                        | V105                         |                              | -119.50 | 1.58     | -96.72  |
| 112-13  | п102                         | L105                         | K104            | <u>CO</u>                    | A21                          | П102                         | L103                         | K104                         | K105                         |                              | 100.94  | 7 75     | 06 00   |
|         | PO <sub>3</sub>              |                              |                 | CO <sub>2</sub>              | PO <sub>3</sub>              |                              |                              |                              | <b>DO</b> -                  |                              | -100.84 | 7.75     | -80.88  |
|         | $CO_2$                       |                              |                 | $PO_3$                       | $CO_2$                       |                              |                              |                              | $PO_3$                       |                              | -102.01 | 5.81     | -86.00  |
| DANTEG  | NH <sub>3</sub>              | 17.45                        | 1146            | PO <sub>3</sub>              |                              | <b>B</b> 44                  |                              | N146                         | PO <sub>3</sub>              |                              | -106.51 | 6.04     | -93.18  |
| RANIES  | R44                          | K45                          | N46             | R47                          | 51                           | R44                          | K45                          | N46                          | R47                          |                              |         |          |         |
|         |                              | $CO_2^-$                     |                 | PO <sub>3</sub> <sup>-</sup> |                              |                              | $CO_2$                       |                              |                              |                              | -228.19 | 3.03     | -198.16 |
|         |                              | _                            |                 | -                            |                              |                              | PO <sub>3</sub> <sup>-</sup> |                              |                              |                              |         |          |         |
|         |                              | PO <sub>3</sub> <sup>-</sup> |                 | CO <sub>2</sub>              | CO <sub>2</sub> <sup>-</sup> |                              | PO <sub>3</sub> <sup>-</sup> |                              | CO <sub>2</sub> <sup>-</sup> |                              | -224.69 | -3.95    | -199.94 |
| S100β   | H25                          | K26                          | L27             | K28                          | H25                          | K26                          | L27                          | K28                          |                              |                              |         |          |         |
|         | $CO_2$                       | PO <sub>3</sub> <sup>-</sup> |                 |                              | $CO_2^-$                     |                              |                              |                              |                              |                              | -96.90  | 4.23     | -77.08  |
|         | PO <sub>3</sub> <sup>-</sup> | $CO_2$                       |                 |                              |                              | CO <sub>2</sub>              |                              |                              |                              |                              | -116.33 | 1.81     | -94.44  |
|         | $\mathrm{NH_3}^+$            | PO <sub>3</sub> <sup>-</sup> |                 |                              |                              | PO <sub>3</sub> <sup>-</sup> |                              |                              |                              |                              | -111.16 | 5.10     | -90.39  |
|         | K26                          | L27                          | K28             | K29                          | K26                          | L27                          | K28                          | K29                          |                              |                              |         |          |         |
|         |                              |                              | $CO_2^-$        | PO <sub>3</sub> <sup>-</sup> | PO <sub>3</sub> <sup>-</sup> |                              |                              |                              |                              |                              | -133.40 | 1.35     | -107.59 |
|         |                              | <u>.</u>                     | PO <sub>3</sub> | CO <sub>2</sub>              |                              |                              | PO <sub>3</sub> <sup>-</sup> |                              |                              |                              | -122.05 | 3.83     | -98.47  |

 Table 2.21: Gas phase optimization of phosphoserine interacting with the BBXB motif on various proteins implicated in Alzheimer's disease

Although only a sample of some of the proteins involved in Alzheimer's disease containing the **BBXB** motif were examined, the results indicate phosphoserine has the potential to bind to the **BBXB** motif on more proteins than just A $\beta$ . A more detailed study would allow for trends to be determined; however, the results do indicate binding between phosphoserine and multiple sites within the **BBXB** region on five of the six proteins examined.

Energetically speaking, the interactions between phosphoserine and the proteins are favourable. Some of the interactions resulted in a more collapsed phosphoserine molecule where the phosphate and amino groups were interacting within itself. Despite these self interactions, the energies still appear to be more favourable than those between phosphoserine and  $\beta$ -amyloid.

These results indicate that phosphoserine is capable of binding not only to **HHQK** as seen in earlier sections of this chapter, but to other **BBXB** motifs as well in a gas phase environment. This indicates that an endogenous molecule such as phosphoserine could bind to multiple proteins involved in the disease process of AD.

### **2.9 CONCLUSIONS**

Overall results of the gas phase calculations showed that phosphoserine is capable of binding to  $\beta$ -amyloid in such a manner as to interact with two different amino acids in the Glu11-Val12-His13-His14-Gln15-Lys16 region. Sufficient interactions resulted from the gas phase minimizations for the four most energetically favourable systems, where binding occurred at two or more sites, to be selected and optimized in a solvated environment.

The solution phase calculations resulted in fewer bonding interactions forming between the charged amino acid side chains and the functional groups on phosphoserine, but this was not surprising given the presence of water molecules in the systems which could have altered the sterics of the interactions, as well as modifying conformations depending on the hydrophobicity or hydrophilicity of the amino acids.

Examination of the results of the solution phase calculations revealed that there are three main binding sites within the EVHHQK region of  $\beta$ -amyloid: His13, His14 and Lys16. Sixteen of the twenty-four interactions had potential binding interactions with His13, in the form of hydrogen bonding, and possible electrostatic interactions. The carboxylate and phosphate functional groups on phosphoserine seemed to interact almost equally with the His13 residue. Potential binding interactions also occurred at the Lys16 residue in sixteen of the twenty-four possible cases. There were a significant number of hydrogen bonds that formed at this site (eleven) and there was also the potential for nonhydrogen bonding, electrostatic-type interactions to occur. Lys16 favoured binding interactions with the phosphate group slightly more than the carboxylate group of phosphoserine. Binding interactions at the His14 residue involved some hydrogen bonding, as well as possible electrostatic interactions, although they only occurred in eleven of the twenty-four minimized systems. There were an equal number of interactions occurring at the His14 side chain with the phosphate and carboxylate functional groups. Overall, it appeared that there was no significant difference between which of the negative functional groups was interacting with these three residues. The Glu11 amino acid residue was also involved in seven potential binding interactions, mainly occurring with the amino and phosphate groups of phosphoserine. The remaining phosphoserine-

A $\beta$  interactions all involved amino acids outside of the four charged amino acids of interest in the EVHHQK region of the peptide.

Closer examination of the results showed that nearly half of the solvated systems had potential binding interactions occurring at both the His13 and Lys16 residues. These interactions favoured carboxylate interactions occurring at the His13 residue and phosphate interactions occurring at the Lys16 residue in a two-to-one ratio over the opposite orientation. Four of these eleven interactions also had the capacity to bind to or interact with the His14 residue. There were another four cases where His13 and His14 were both involved in binding interactions not including Lys16. These interactions involving both histidine and lysine residues appeared to be the most favoured binding interactions, where binding occurs at two or more sites on the peptide, particularly in the EVHHQK region.

### **2.10** INTERPRETATION

It could be suggested based on these observed results, that phosphoserine not only will bind to and interact with  $\beta$ -amyloid *in vacuo*, but also in a solvated environment (such as would exist in the brain). The His13-Lys16 binding interactions are particularly favourable, since it is possible that in binding to these two amino acid side chains, phosphoserine would prevent them from interacting with other proteins or lipid bilayers and thus prevent conformational conversions. Prevention of conversion from  $\alpha$ -helical and random coil to  $\beta$ -sheet conformations should prevent the toxic form of  $\beta$ -amyloid from forming so that no soluble aggregates will be available to inflict neurodegeneration and neurotoxicity.

Biological evidence further supports the computational findings that phosphoserine can interact with  $\beta$ -amyloid to prevent aggregation from occurring. It can be seen from the *in vitro* assays that phosphoserine clearly inhibits the aggregation of A $\beta$ , which would indicate a potential neuroprotective role.

Furthermore, there is computational evidence that phosphoserine could also interact with other proteins involved in the AD process. Phosphoserine therefore represents an endogenous molecule of the brain that may play a multi-faceted role in the prevention of Alzheimer's disease. These results also support the idea that a single drug molecule could target multiple receptors involved in a disease in a way that would allow for better success at treating the disease rather than targeting a single receptor alone.

Phosphoserine represents a viable endogenous molecule of the brain that can be exploited in designing a drug to prevent  $\beta$ -amyloid conformational conversions. Given the lowered concentrations in the Alzheimer's brain according to Molina *et al*, and its potential role as the brain's response to amyloid aggregation due to high local concentrations in regions free from plaques, phosphoserine may play a protective role in the brain. It may therefore be possible to develop a drug molecule targeting the enzymatic pathways involved in the synthesis and metabolism of phosphoserine that will increase the levels of phosphoserine in order to prevent  $\beta$ -amyloid aggregation.

If levels of phosphoserine are instead elevated in the brain as Klunk *et al* have observed, then drugs that target the catabolism of phosphoserine may be of use to maintain these higher levels. Alternatively, if levels were to remain sufficiently high as part of the brain's natural response to  $A\beta$  aggregation, serine racemase could be targeted
to prevent increased levels of D-serine from forming (as a result of the increased levels of phosphoserine).

Looking at the favourable solution phase results, supported by the biological data, it is therefore likely that increased phosphoserine levels in the brain will allow more phosphoserine to interact with and bind to the stable, non-toxic forms of A $\beta$  and prevent it from taking on neurotoxic properties, and potentially other proteins involved in the disease as well. Phosphoserine therefore presents itself as a possible drug molecule for at least delaying the onset of Alzheimer's disease or at best preventing the disease from commencing.

# CHAPTER 3: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING HHQK

The previous chapter dealt with the potential interactions between a small endogenous molecule of the brain and the HHQK region of  $\beta$ -amyloid. Additional endogenous molecules of the brain were also identified as potential targets for this region.

#### 3.1 THE HHQK AND LVFF REGIONS OF $\beta$ -Amyloid as Binding Targets

Two regions of  $\beta$ -amyloid play an important role in the misfolding of the protein; the region containing residues His13-His14-Gln15-Lys16 (**HHQK**) and the region containing residues Leu17-Val18-Phe19-Phe20 (LVFF).

The highly positively charged region of **HH**Q**K** is postulated to be a key component in the interactions that lead to the misfolding of Aβ and also fits the **BB**X**B** motif identified as being present in various proteins involved in Alzheimer's disease [41]. Molecules that contain negatively charged functional groups or aromatic rings should be able to interact with this charged region through various binding interactions to block unwanted interactions with membrane surfaces from occurring.

Situated immediately next to the **HHQK** region of  $A\beta$  is the LVFF region, which also has been identified as another potential region for small molecules to bind to in order to prevent protein misfolding [82]. This represents more of an **AAXA** motif, where A is an aliphatic or aromatic amino acid and X is any other amino acid residue. Systems can be visually examined to determine if aliphatic interactions with these side chains may be occurring, and aromatic-aromatic interactions are capable of being identified within the MOE program [47]. In this chapter, some of the small molecules be examined will also be analyzed for their potential to bind to both the **HHQK** and LVFF regions of  $\beta$ -amyloid.

## 3.2 IDENTIFICATION OF AMINO ACIDS AND THEIR METABOLITES AS TARGET MOLECULES

As stated in Chapter 2, Section 2.2, a library of endogenous compounds of the brain was searched for potential drug targets capable of interacting with the **BBXB** motif. Several small molecules were identified in this process including the amino acids tryptophan, phenylalanine and their metabolites. These molecules were examined through *in silico* methods for their potential to bind to both the **HHQK** and LVFF regions of  $\beta$ -amyloid.

#### **3.3 Phenylalanine and \beta-Amyloid**

The library of endogenous molecules of the brain, when screened against the identified **BBXB** motif, identified phenylalanine (Figure 3.1) as one of the endogenous molecules which possessed the necessary features to interact with this region. The structure of phenylalanine also presents regions capable of interacting with the LVFF region of A $\beta$  as well.



Figure 3.1: Phenylalanine as charged for physiological pH

A geometry optimized phenylalanine structure was built for the following calculations, whereupon a grid scan was performed on the molecule over three possible torsional angles in a stepwise fashion of 30° increments from 0° to 330°. The lowest energy conformation resulting from this search was selected and then minimized via steepest descent followed by conjugate gradient minimization. The resulting structure was considered geometry optimized and used in setting up the systems for energy minimization in the gas phase; the energy is given in Table 3.1.

#### Table 3.1: Gas phase energy of phenylalanine

Total Energy (kcal/mol) Phenylalanine 3.20

Both gas phase and solution phase calculations were performed examining the potential binding interactions between phenylalanine and the **HHQK** and LVFF regions of the  $\beta$ -amyloid peptide and both sets of calculations were performed in QUANTA using the CHARMM force field [46, 48, 50]. Solution phase geometry optimizations were performed to determine if interactions that occurred between phenylalanine and A $\beta$  would still occur in an environment more representative of the brain.

As there are no crystal structures available of  $\beta$ -amyloid to give its exact conformation, six NMR based structures were selected for interacting with the phenylalanine molecule – these six different structures allow for determination of the potential binding interactions with small molecules like phenylalanine in a variety of A $\beta$ conformations. The structures were obtained from the RCSB Protein Data Bank (PDB) and range in length from 28 to 42 amino acids and encapsulate both the **HHQK** and LVFF regions of interest. The six selected conformers, given by their PDB identifications, were as follows: 1AMB, 1AMC, 1AML, IBA4, 1IYT, and 1Z0Q [67, 68, 69, 70, 71, 72, 83]. While the phosphoserine optimizations looked at the 2BP4 conformer, it was not long enough to be used for these optimizations as LVFF was of interest too and the terminal end was residue 16 [73]. The 1Z0Q conformer was selected as it is composed of residues 1-42 [83]. These structures were imported into QUANTA, charged appropriately for physiological pH and then optimized with a constrained protein backbone to find the lowest energy gas phase conformation [46]. The energies of the proteins can be found in Appendix 6.

#### 3.3.1 Gas Phase Interactions Between Phenylalanine and $\beta$ -Amyloid

Gas phase optimizations were performed to determine if phenylalanine was capable of binding to the **HHQK** and LVFF regions of  $\beta$ -amyloid. If interactions did occur, selected favourable interactions would be further examined via solution phase calculations to better determine if such interactions would occur *in vivo*.

#### 3.3.1.1 Selection of Initial Orientations for Optimization

Previous research by the author has indicated that separating the phenylalanine molecule from the desired peptide region of  $\beta$ -amyloid by a distance of 3.0 Å is the most effective for determining whether favourable or unfavourable interactions will occur. Systems were set up such that two of the amino, carboxylate or aromatic functional groups of phenylalanine could interact with two of the **HHQK** or LVFF side chains of interest. Some interactions could not be tested as the amino acid side chains were either too far apart for the small phenylalanine molecule to interact with, or were on opposite sides of the peptide.

#### 3.3.1.2 Optimization of the Gas Phase Systems

Each of the potential binding interactions was modelled in the QUANTA program using the CHARMM force field [46, 48, 50]. The phenylalanine molecule was oriented towards the peptide at the appropriate distance and then the backbone of the protein conformation was constrained before the system was optimized. Given the nature of gas phase optimizations, constraining the protein backbone prevents collapse of the protein structure due to intramolecular interactions in the gas phase. Minimization was first performed using the steepest descent algorithm followed by conjugate gradient to ensure a minimum point was reached on the PES. The optimized system was then examined for potential binding interactions. The final interactions were next examined in the Molecular Operating Environment for other possible interactions such as cation- $\pi$  and  $\pi$ - $\pi$ interactions [47].

To determine the relative favourability of the optimized systems, the binding energy was determined using the following formula:

$$\Delta E_{\text{bind}} = E_{A\beta \text{phen}} - E_{A\beta} - E_{\text{phen}}$$
(3.1)

Where the total binding energy is equal to the energy of the optimized phenylalanine- $\beta$ amyloid system,  $E_{A\beta phen}$ , minus the individual contributions of separately optimized phenylalanine,  $E_{A\beta phen}$ , and  $\beta$ -amyloid,  $E_{A\beta}$ .

#### 3.3.2 Gas Phase Results of Phenylalanine Interacting with $\beta$ -Amyloid

The main results of the gas phase optimizations of phenylalanine interacting with different conformations of  $A\beta$  are summarized in the following tables according to the

selected  $\beta$ -amyloid conformer and contain information of the initial and final phenylalanine orientations.

The tables also contain the calculated binding energies (in kcal/mol) and the number of measureable binding interactions that have occurred. The amino acid side chains are represented by single letter notations and their position on the peptide chain. The functional groups are also represented by abbreviations where C represents the  $CO_2^-$  functional group, N the  $NH_3^+$  functional group and Ar represents the aromatic ring present in phenylalanine.

Tables 3.2 through 3.7 summarize the results of the gas phase minimizations of phenylalanine with each of the six A $\beta$  conformers: 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q respectively. Interactions covered **HHQK** and LVFF, as well as overlapping possibilities between the two regions. The number of measureable bonds occurring for each system was, respectively, eleven, thirteen, nine, four, ten and ten.

Although interactions between the amino functional group and the lysine side chain are likely to be repulsive, these orientations were still included for comparison of what potential binding interactions could occur, or if rearrangements would happen.

For each of the  $\beta$ -amyloid conformers examined for potential interactions with phenylalanine, the overall binding energies, as well as the electrostatic and van der Waals energies were compared to determine which interactions were most favourable. It was determined that by selecting the overall most energetically favourable binding interactions (where potential binding could occur at two or more sites) would reflect a range of favourable van der Waals interactions, electrostatic interactions and overall

111

energetically favourable systems. Therefore, for each  $A\beta$  conformation, the six systems selected for optimization in the solution phase exhibited the most favourable binding energies and involved phenylalanine interacting with  $\beta$ -amyloid at two or more amino acid side-chains.

|     |     | Ini | tial Or | ientati | on  |     |     |      |     |     | Final | Orient | ation |     |     |      | $\Delta E_{bind}$ | Measureable |
|-----|-----|-----|---------|---------|-----|-----|-----|------|-----|-----|-------|--------|-------|-----|-----|------|-------------------|-------------|
| H13 | H14 | Q15 | K16     | L17     | V18 | F19 | F20 | H13  | H14 | Q15 | K16   | L17    | V18   | F19 | F20 | Х    | (kcal/mol)        | Bonds       |
| С   | Ar  |     |         |         |     |     |     | С    | Ar  |     |       |        |       |     |     |      | -12.99            | 1           |
| Ar  | С   |     |         |         |     |     |     | Ar   | С   |     |       |        |       |     |     |      | -13.66            | 0           |
| Ν   | Ar  |     |         |         |     |     |     |      | Ar  |     |       |        |       |     |     | C/Ar | -10.98            | 2           |
| Ar  | Ν   |     |         |         |     |     |     | Ar   | Ν   |     |       |        |       |     |     | Ar   | -12.25            | 0           |
| Ar  |     |     | С       |         |     |     |     | Ar   |     |     | С     |        |       |     |     |      | -8.28             | 2           |
| С   |     |     | Ar      |         |     |     |     | C/Ar |     |     | Ar    |        |       |     |     | Ar   | -10.53            | 1           |
| Ar  |     |     | Ν       |         |     |     |     | N/Ar |     |     | Ν     |        |       |     |     | Ar   | -9.15             | 1           |
| Ν   |     |     | Ar      |         |     |     |     | Ν    |     |     | Ar    |        |       |     |     |      | -8.09             | 1           |
|     |     |     |         | Ar      |     |     | Ν   |      |     |     |       | Ar     |       |     | Ν   | Ν    | -10.31            | 0           |
|     |     |     |         |         | Ar  | Ν   |     |      |     |     |       |        | Ar    | Ν   |     | Ar   | -13.55            | 0           |
|     |     |     |         |         |     | Ar  | Ν   |      |     |     |       |        |       | Ar  | Ν   | Ar   | -11.47            | 0           |
|     |     |     |         |         |     | Ν   | Ar  |      |     |     |       |        |       | Ν   | Ar  |      | -8.79             | 0           |
|     |     |     | С       | Ar      |     |     |     | С    |     |     | С     | Ar     |       |     |     |      | -9.31             | 2           |
|     |     |     | Ν       | Ar      |     |     |     |      |     |     | Ar    | Ar/N   |       |     | Ar  |      | -10.48            | 0           |
| С   |     |     |         | Ar      |     |     |     | С    |     |     |       | Ar/C   |       |     |     |      | -10.16            | 2           |
| Ν   |     |     |         | Ar      |     |     |     | Ar   |     |     |       | Ar     |       |     |     |      | -9.15             | 0           |
|     | Ν   |     |         |         | Ar  |     |     |      | Ar  |     |       |        | Ar    |     |     |      | -8.24             | 0           |
|     | С   |     |         |         | Ar  |     |     |      | С   |     |       |        | Ar    |     |     |      | -9.70             | 0           |
|     | С   |     |         | Ar      |     |     |     |      | С   |     |       | Ar     | Ar    |     |     |      | -10.87            | 0           |
|     | Ν   |     |         | Ar      |     |     |     |      | Ν   |     |       | Ar     | Ar    |     |     |      | -11.36            | 1           |
|     |     |     | Ar      |         |     |     | Ν   |      |     |     |       | Ar     | Ar    | Ν   |     |      | -12.80            | 2           |
|     |     |     | С       |         |     |     | Ar  |      |     |     | С     | Ν      |       |     | Ar  |      | -13.38            | 2           |
|     |     |     | Ν       |         |     |     | Ar  |      |     |     |       | N/Ar   |       |     | Ar  |      | -13.01            | 0           |

Table 3.2: Gas phase results of phenylalanine interacting with the 1AMB conformer of β-amyloid

|     |     | Ini | tial Or | ientat | ion |     |     |      |     |     | Fi  | nal Orie | entatio | n    |     |        | $\Delta E_{bind}$ | Measureable |
|-----|-----|-----|---------|--------|-----|-----|-----|------|-----|-----|-----|----------|---------|------|-----|--------|-------------------|-------------|
| H13 | H14 | Q15 | K16     | L17    | V18 | F19 | F20 | H13  | H14 | Q15 | K16 | L17      | V18     | F19  | F20 | Х      | (kcal/mol)        | Bonds       |
| Ar  | Ν   |     |         |        |     |     |     | Ar   | Ν   |     |     |          |         |      |     | Ar/C/N | -14.07            | 2           |
| Ν   | Ar  |     |         |        |     |     |     | Ν    | Ar  |     |     |          |         |      |     | C/Ar   | -12.20            | 2           |
| Ar  | С   |     |         |        |     |     |     | Ar   | С   |     |     |          |         |      |     | Ar     | -13.88            | 0           |
| С   | Ar  |     |         |        |     |     |     | С    | Ar  |     |     |          |         |      |     | Ar     | -14.93            | 1           |
| Ar  |     |     | Ν       |        |     |     |     | Ar/N |     |     | Ν   |          |         |      |     | Ar     | -11.30            | 1           |
| Ν   |     |     | Ar      |        |     |     |     | Ar   |     |     | С   | Ar       |         |      |     |        | -10.12            | 2           |
| Ar  |     |     | С       |        |     |     |     | Ar   |     |     | С   | Ar       |         |      |     |        | -9.19             | 1           |
| С   |     |     | Ar      |        |     |     |     | С    |     |     | Ar  |          |         |      |     |        | -6.84             | 1           |
|     |     |     |         | Ar     |     |     | Ν   |      |     |     |     | Ar       |         |      | Ν   |        | -8.67             | 0           |
|     |     |     |         |        | Ar  | Ν   |     |      |     |     |     |          | Ar      | Ν    |     | Ar     | -9.72             | 0           |
|     |     |     |         |        |     | Ν   | Ar  |      |     | Ar  | Ar  |          |         | Ar/N |     | Ar     | -13.19            | 1           |
|     |     |     |         |        |     | Ar  | Ν   |      |     |     |     |          |         | Ar   | Ν   | Ν      | -11.22            | 0           |
| Ν   |     |     |         | Ar     |     |     |     | N/Ar |     |     |     | Ar       |         |      |     |        | -10.90            | 1           |
|     | Ν   |     |         |        | Ar  |     |     |      | Ν   |     |     |          | Ar      |      |     |        | -9.89             | 0           |
|     | С   |     |         |        | Ar  |     |     |      | С   |     |     |          | Ar      |      |     |        | -10.91            | 0           |
| С   |     |     |         | Ar     |     |     |     | С    |     |     |     | Ar       |         |      |     |        | -12.27            | 1           |
|     |     |     | С       | Ar     |     |     |     | С    |     |     | С   | Ar       |         |      |     |        | -8.89             | 0           |
|     |     |     | Ν       | Ar     |     |     |     |      |     |     |     | Ar/N     |         |      | Ar  |        | -10.42            | 0           |
|     |     |     | Ar      |        |     |     | Ν   |      |     |     | Ar  |          |         |      | Ν   |        | -12.69            | 2           |
|     |     |     | С       |        |     |     | Ar  | С    |     |     | С   | Ar       |         |      |     |        | -8.88             | 1           |
|     |     |     | Ν       |        |     |     | Ar  |      |     |     | Ar  | Ar       |         |      | Ar  |        | -9.65             | 1           |

Table 3.3: Gas phase results of phenylalanine interacting with the 1AMC conformer of β-amyloid

Table 3.4: Gas phase results of phenylalanine interacting with the 1AML conformer of β-amyloid

|     |     | In  | itial Or | ientati | on  |     |     |      |     |     | Fina | al Orie | entation | 1   |     |        | $\Delta E_{bind}$ | Measureable |
|-----|-----|-----|----------|---------|-----|-----|-----|------|-----|-----|------|---------|----------|-----|-----|--------|-------------------|-------------|
| H13 | H14 | Q15 | K16      | L17     | V18 | F19 | F20 | H13  | H14 | Q15 | K16  | L17     | V18      | F19 | F20 | Х      | (kcal/mol)        | Bonds       |
| Ar  | С   |     |          |         |     |     |     | Ar   | С   |     |      |         |          |     |     | Ar/C   | -20.27            | 1           |
| С   | Ar  |     |          |         |     |     |     | С    | Ar  |     |      |         |          |     |     | Ar/N   | -12.71            | 0           |
| Ν   | Ar  |     |          |         |     |     |     | Ν    | Ar  |     |      |         |          |     |     | Ar/C/N | -17.54            | 0           |
| Ar  | Ν   |     |          |         |     |     |     | Ar/N | Ν   |     |      |         |          |     |     | N/Ar   | -15.63            | 1           |
| Ar  |     |     | С        |         |     |     |     | Ar   |     |     | С    |         |          |     |     |        | -5.70             | 0           |
| С   |     |     | Ar       |         |     |     |     | С    |     |     | Ar   |         |          |     |     |        | -11.71            | 0           |
| Ν   |     |     | Ar       |         |     |     |     | Ar   |     |     | Ar   |         |          |     |     |        | -6.63             | 0           |
| Ar  |     |     | Ν        |         |     |     |     | Ar   |     |     | Ν    |         |          |     |     | Ar     | -6.72             | 0           |
|     |     |     |          | Ar      |     |     | Ν   | Ar   |     |     |      | Ar      |          |     | Ν   | N/Ar   | -14.02            | 2           |
|     |     |     |          |         | Ar  | Ν   |     |      |     | Ν   |      |         |          | Ν   |     | Ar/N/C | -18.37            | 0           |
|     |     |     |          |         |     | Ν   | Ar  |      |     |     |      |         |          | Ar  | Ar  |        | -10.43            | 0           |
|     |     |     |          |         |     | Ar  | Ν   |      |     |     |      |         |          | Ar  | Ν   |        | -8.79             | 0           |
|     | С   |     |          |         | Ar  |     |     |      | С   |     |      |         |          |     |     | N/Ar   | -18.57            | 1           |
|     | Ν   |     |          |         | Ar  |     |     |      |     |     |      |         |          |     |     | С      | -14.05            | 1           |
|     |     |     | Ar       |         |     | Ν   |     |      |     |     | Ar   |         |          | Ν   |     |        | -10.96            | 1           |
|     |     |     | С        |         |     | Ar  |     |      |     |     | С    |         |          | Ar  |     |        | -6.87             | 1           |
|     |     |     | Ν        |         |     | Ar  |     |      |     |     |      |         |          | Ar  |     |        | -7.76             | 0           |
| Ar  |     |     |          |         |     |     | Ν   | Ar   |     |     |      |         |          |     | Ν   | Ν      | -14.02            | 2           |
| С   |     |     |          |         |     |     | Ar  | С    |     |     |      |         |          |     | Ar  |        | -16.01            | 1           |
| Ν   |     |     |          |         |     |     | Ar  |      |     |     |      |         |          |     | Ar  | Ar     | -12.92            | 0           |

|     |     | In  | itial Or | ientati | on  |     |     |      |      |     | Final C | Prientat | tion |     |     |    | $\Delta E_{bind}$ | Measureable |
|-----|-----|-----|----------|---------|-----|-----|-----|------|------|-----|---------|----------|------|-----|-----|----|-------------------|-------------|
| H13 | H14 | Q15 | K16      | L17     | V18 | F19 | F20 | H13  | H14  | Q15 | K16     | L17      | V18  | F19 | F20 | Х  | (kcal/mol)        | Bonds       |
| Ar  | Ν   |     |          |         |     |     |     | Ar   | Ν    |     |         |          |      |     |     |    | -10.84            | 0           |
| Ν   | Ar  |     |          |         |     |     |     | N/Ar | Ar   |     |         |          |      |     |     |    | -9.69             | 2           |
| С   | Ar  |     |          |         |     |     |     | С    | Ar   |     |         |          |      |     |     |    | -10.88            | 2           |
| Ar  | С   |     |          |         |     |     |     | Ar   | Ar/C |     |         |          |      |     |     |    | -11.99            | 1           |
|     |     |     |          | Ar      |     |     | Ν   |      |      |     |         | Ar       |      |     | Ν   |    | -6.22             | 0           |
|     |     |     |          |         | Ar  | Ν   |     |      |      | Ar  |         |          | Ar   | Ν   |     |    | -8.43             | 0           |
|     | С   |     |          | Ar      |     |     |     |      | С    |     |         | Ar       |      |     |     |    | -6.60             | 0           |
|     | Ν   |     |          | Ar      |     |     |     |      |      |     |         | Ar/N     |      |     |     |    | -9.34             | 0           |
|     |     |     | Ar       |         |     | Ν   |     |      |      |     |         |          |      | Ν   |     | Ar | -15.77            | 1           |
|     | Ν   |     |          |         | Ar  |     |     |      | Ν    | Ar  |         | Ar       | Ar   |     |     |    | -12.04            | 0           |
|     | С   |     |          |         | Ar  |     |     |      | С    | Ar  |         | Ar       | Ar   |     |     |    | -11.85            | 0           |

Table 3.5: Gas phase results of phenylalanine interacting with the 1BA4 conformer of β-amyloid

| <b>Table 3.6:</b> | Gas phase results of phenylalanine interacting with the 1IYT conformer |
|-------------------|------------------------------------------------------------------------|
|                   | of β-amyloid                                                           |

|     |     | Ini | tial Or | ientati | on  |     |     |      |     |     | Final | Orient | ation |      |      |    | $\Delta E_{bind}$ | Measureable |
|-----|-----|-----|---------|---------|-----|-----|-----|------|-----|-----|-------|--------|-------|------|------|----|-------------------|-------------|
| H13 | H14 | Q15 | K16     | L17     | V18 | F19 | F20 | H13  | H14 | Q15 | K16   | L17    | V18   | F19  | F20  | Х  | (kcal/mol)        | Bonds       |
| Ar  | С   |     |         |         |     |     |     | Ar   |     |     |       |        |       |      |      |    | -11.81            | 1           |
| С   | Ar  |     |         |         |     |     |     | С    | Ar  |     |       | Ar     |       |      |      |    | -13.07            | 0           |
| Ν   | Ar  |     |         |         |     |     |     | N/Ar | Ar  |     |       |        |       |      |      |    | -11.39            | 2           |
| Ar  | Ν   |     |         |         |     |     |     | Ar   |     |     |       | Ar     |       |      |      |    | -8.61             | 1           |
| Ν   |     |     | Ar      |         |     |     |     |      |     |     | Ar    |        |       |      | Ar   |    | -8.50             | 0           |
| Ar  |     |     | Ν       |         |     |     |     | Ar   |     |     | Ν     |        |       |      |      |    | -8.84             | 0           |
| С   |     |     | Ar      |         |     |     |     | С    |     |     | Ar    |        |       |      | Ar   |    | -11.98            | 1           |
| Ar  |     |     | С       |         |     |     |     | Ar   |     |     | С     |        |       |      |      | Ar | -10.53            | 1           |
|     |     |     |         | Ar      |     |     | Ν   |      |     |     |       | Ar     |       |      | N/Ar |    | -8.34             | 1           |
|     |     |     |         |         | Ar  | Ν   |     |      |     |     |       |        | Ar    | Ν    |      |    | -10.74            | 0           |
|     |     |     |         |         |     | Ar  | Ν   |      |     |     | Ar    |        |       | Ar   | Ν    |    | -8.27             | 0           |
|     |     |     |         |         |     | Ν   | Ar  |      |     |     |       |        |       | Ar   | Ar   | Ar | -13.15            | 0           |
| С   |     |     |         | Ar      |     |     |     | С    |     |     |       | Ar     |       |      |      |    | -11.52            | 0           |
| Ν   |     |     |         | Ar      |     |     |     | Ν    |     |     |       | Ar     |       |      |      |    | -8.86             | 1           |
|     | С   |     |         | Ar      |     |     |     |      | С   |     |       | Ar     |       |      |      |    | -7.14             | 0           |
|     | Ν   |     |         | Ar      |     |     |     |      | Ν   |     |       | Ar     | Ar    |      |      |    | -12.15            | 1           |
|     |     |     | С       |         |     |     | Ar  |      |     |     | С     |        |       | Ar   | Ar/C |    | -9.81             | 0           |
|     |     |     | Ar      |         |     |     | Ν   |      |     |     | Ar    |        |       | Ar   |      |    | -8.05             | 1           |
|     |     |     | Ν       |         |     |     | Ar  |      |     |     |       |        |       | Ar   | Ar   |    | -8.83             | 0           |
|     |     |     | С       |         |     | Ar  |     |      |     |     | С     |        |       | Ar/C |      |    | -8.95             | 2           |
|     |     |     | Ar      |         |     | Ν   |     |      |     |     | Ar    |        |       | N/Ar |      |    | -7.92             | 0           |
|     |     |     | Ν       |         |     | Ar  |     |      |     |     |       |        |       | Ar/N |      |    | -9.65             | 0           |

|     |     | In  | itial Or | ientatio | on  |     |     |      |      |     | Final C |      | $\Delta E_{bind}$ | Measureable |     |    |            |       |
|-----|-----|-----|----------|----------|-----|-----|-----|------|------|-----|---------|------|-------------------|-------------|-----|----|------------|-------|
| H13 | H14 | Q15 | K16      | L17      | V18 | F19 | F20 | H13  | H14  | Q15 | K16     | L17  | V18               | F19         | F20 | Х  | (kcal/mol) | Bonds |
| Ν   | Ar  |     |          |          |     |     |     | Ν    | Ar   |     |         |      |                   |             |     | Ar | -13.65     | 2     |
| Ar  | Ν   |     |          |          |     |     |     | Ar   |      |     |         |      |                   |             |     |    | -7.82      | 0     |
| С   | Ar  |     |          |          |     |     |     | С    | Ar   |     | С       |      |                   |             |     |    | -14.05     | 1     |
| Ar  | С   |     |          |          |     |     |     | Ar   | С    |     | Ar      |      |                   |             |     |    | -16.10     | 3     |
| Ν   |     |     | Ar       |          |     |     |     | Ar   |      |     | Ar      |      |                   |             |     |    | -6.49      | 0     |
| Ar  |     |     | Ν        |          |     |     |     | Ar   |      |     | Ar      |      |                   |             |     |    | -9.62      | 1     |
| Ar  |     |     | С        |          |     |     |     | Ar/C |      |     | С       |      |                   |             |     |    | -11.24     | 2     |
| С   |     |     | Ar       |          |     |     |     | С    |      |     | Ar      |      |                   |             |     |    | -7.89      | 1     |
|     |     |     |          | Ar       |     |     | Ν   |      |      |     |         | Ar   |                   |             | N/C |    | -13.68     | 1     |
|     |     |     |          | Ar       |     | Ν   |     |      |      |     |         | Ar   |                   | Ar          | Ar  |    | -9.03      | 0     |
|     |     |     |          |          |     | Ν   | Ar  |      |      |     |         |      |                   |             | Ar  |    | -7.97      | 0     |
|     |     |     |          |          |     | Ar  | Ν   |      |      |     |         |      |                   | Ar          |     |    | -3.42      | 0     |
|     | Ν   |     |          |          | Ar  |     |     |      | Ar   |     |         |      | Ar                |             |     |    | -10.75     | 0     |
|     | С   |     |          |          | Ar  |     |     |      | C/Ar |     |         |      | Ar                |             |     |    | -14.77     | 0     |
|     | Ν   |     |          | Ar       |     |     |     |      | Ar   |     |         |      |                   |             |     |    | -14.33     | 1     |
|     | С   |     |          | Ar       |     |     |     |      | Ν    |     |         | C/Ar |                   |             |     |    | -15.88     | 1     |
|     |     |     | С        |          |     | Ar  |     |      |      |     | С       |      |                   | Ar          |     |    | -13.94     | 2     |
|     |     |     | Ν        |          |     | Ar  |     |      |      |     | N/Ar    |      |                   | Ar          |     |    | -13.87     | 0     |
|     |     |     | Ar       |          |     | Ν   |     |      |      |     | Ar      |      |                   | С           |     |    | -13.75     | 0     |

Table 3.7: Gas phase results of phenylalanine interacting with the 1Z0Q conformer of β-amyloid

The interactions that were chosen as the most favourable, with binding occurring at two or more sites for each of the conformers can be summarized in the following table. The amino acid side chains are represented by their single letter abbreviations, and the functional groups of phenylalanine interacting with those side chains are highlighted in purple.

| Interaction | Binding Energy | Interaction B  | inding Energy |
|-------------|----------------|----------------|---------------|
|             | (kcal/mol)     |                | (kcal/mol)    |
| 14          | AMB            | 1B             | A4            |
| HArHC       | -13.66         | HNQKLVAr       | -12.04        |
| VArFN       | -13.55         | HArHC          | -11.99        |
| KCLVFFAr    | -13.38         | HCQKLVAr       | -11.85        |
| HCHAr       | -12.99         | HCHAr          | -10.88        |
| KArLVFFN    | -12.80         | HArHN          | -10.84        |
| HArHN       | -12.25         | HNHAr          | -9.69         |
| 14          | AMC            | 11             | YT            |
| HCHAr       | -14.93         | HCHAr          | -13.07        |
| HArHN       | -14.07         | HNQKLAr        | -12.15        |
| HArHC       | -13.88         | <b>HCHQKAr</b> | -11.98        |
| FNFAr       | -13.19         | HCHQKLAr       | -11.52        |
| KArLVFFN    | -12.69         | HNHAr          | -11.39        |
| HCHQKLAr    | -12.27         | VArFN          | -10.74        |
| 1/          | AML            | 1Z             | 0Q            |
| HArHC       | -20.27         | HArHC          | -16.10        |
| VArFN       | -18.37         | HCQKLVAr       | -14.77        |
| HNHAr       | -17.54         | HCHAr          | -14.05        |
| HCHQKLVFFAr | -16.01         | LArVFFN        | -13.68        |
| HArHN       | -15.63         | HNHAr          | -13.65        |
| LArVFFN     | -14.02         | KCLVFAr        | -13.94        |

# Table 3.8: Selected interactions for optimization of phenylalanine with β-amyloid in the solution phase

# 3.3.3 Solution Phase Optimization of Phenylalanine Interacting with $\beta$ - Amyloid

Upon completion of the gas phase optimizations, six of the resulting energetically favourable interactions were selected from each A $\beta$  conformer for solution phase minimizations. Using these initial gas phase optimized systems allowed for more efficient solution phase calculations. The solution phase optimizations were also performed in QUANTA using the CHARMM force field [45, 47, 49].

#### 3.3.3.1 Solvation and Minimization Set-Up for Phenylalanine and $\beta$ -Amyloid

Solution phase calculations were performed using explicit solvation. As discussed in Chapter 2, Section 2.6.1, given the biological nature of the systems being examined, having explicit water molecules present was optimal to mimic the aqueous environment of the brain. The procedure for solvating the systems followed that which was outlined in Chapter 2, Sections 2.6.2.1-2.6.2.3.

The binding energies of the minimized solution phase interactions between phenylalanine and  $\beta$ -amyloid were calculated using three different equations:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{\text{phen}}$$
(3.2)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{elephen}$$
(3.3)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwphen}$$
(3.4)

The measured energies were the total binding energy,  $\Delta E_{tot}$ , the total electrostatic binding energy,  $\Delta E_{ele}$ , and the total van der Waals binding energy,  $\Delta E_{vdw}$ . All followed the same type of calculation where the energy contributions of the peptide conformer and the phenylalanine molecule were subtracted from the energy of the final minimized phenylalanine-A $\beta$  system as calculated via solution phase optimization and all energies were computed ignoring the energy contributions of the water molecules present in the system. The resulting optimized phenylalanine-A $\beta$  systems were examined for measurable binding interactions in both the QUANTA and MOE programs [46, 47].

The types of measurable binding interactions that occurred in these systems comprised hydrogen bonding, cation- $\pi$  interactions and  $\pi$ - $\pi$  interactions. Other interactions such as aliphatic-aromatic interactions may have been occurring as well; the

presence of these types of interactions was usually reflected in the system when functional groups remained in their initial orientations and were not displaced by interactions with water molecules.

## 3.3.4 SOLUTION PHASE RESULTS OF PHENYLALANINE INTERACTING WITH SIX DIFFERENT CONFORMATIONS OF β-Amyloid

The results of the solution phase optimizations of the phenylalanine- $\beta$ -amyloid systems have been summarized in tables for each conformation of  $\beta$ -amyloid. Initial and final binding orientations are given; the three calculated energies and any measureable binding interactions that occurred are indicated according to the following colour scheme: hydrogen-bonds are coloured orange, cation- $\pi$  interactions are green and  $\pi$ - $\pi$  interactions are blue. Interactions occurring outside the **HHQK** and LVFF regions of interest are also indicated. As in the gas phase calculations, the amino acids are represented in single letter notation with the respective site number on the peptide chain and the phenylalanine functional groups are represented by C, N, and Ar for the carboxylate, amino, and aromatic groups, respectively.

The final energies for the binding interactions were calculated using the following energies for phenylalanine in Table 3.9. The energies of the solvated proteins are given in Appendix 6.

|  | <b>Table 3.9:</b> | <b>Total energies</b> | of phen | vlalanine ir | the solution | phase |
|--|-------------------|-----------------------|---------|--------------|--------------|-------|
|--|-------------------|-----------------------|---------|--------------|--------------|-------|

$$\frac{E_{tot}}{Phenylalanine} \frac{E_{tot}}{4.32} \frac{E_{ele}}{2.76} \frac{E_{vdw}}{-0.12}$$

The results of the solution phase optimizations between phenylalanine and the 1AMB conformer of A $\beta$  are indicated in Table 3.10. Of the six interactions selected for solution phase optimization, four had measureable binding interactions. Three of the six systems also demonstrated potential binding interactions at His13 and His14. Overall the binding energies are very favourable.

Table 3.11 indicates the results of the solution phase optimization of potential interactions between phenylalanine and the 1AMC conformer of  $\beta$ -amyloid. Each of the six systems had measureable binding interactions when optimized and three of the six also exhibited possible binding at His13 and His14. One of the systems, despite demonstrating multiple binding interactions, had extremely unfavourable binding energies. With this one exception, the rest of the interactions demonstrated both favourable overall binding energies as well as favourable van der Waals energies.

The results of the solution phase interactions between phenylalanine and the 1AML A $\beta$  conformation are given in Table 3.12. Four of the six optimized systems resulted in measureable binding interactions and three of the six also demonstrated potential interactions at His13 and His14. There is no correlation between the number of measured binding interactions and the overall favourability of the total binding energies, which are all relatively favourable. Systems demonstrated a preference for van der Waals interactions over electrostatic interactions as seen in the calculated energies.

Table 3.13 denotes the results of the solution phase minimizations of the phenylalanine and the 1BA4  $\beta$ -amyloid systems. All of the systems had measureable binding interactions, and four of these also exhibited potential binding at the His13 and

119

His14 residues. The binding energies are favourable and the van der Waals energies are significantly more favourable than the electrostatic energies.

Table 3.10: The solution phase results of phenylalanine interacting with the 1AMB conformer of β-amyloid

|                     |      |     |       |     | Ami | no Acid |     |      |     |     | Etot     | Eele     | Evdw     | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|------|-----|-------|-----|-----|---------|-----|------|-----|-----|----------|----------|----------|------------------|------------------|------------------|
|                     | Y10  | H13 | H14   | Q15 | K16 | L17     | V18 | F19  | F20 | E22 | kcal/mol | kcal/mol | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation | Ar   | Ar  | С     |     |     |         |     |      |     |     |          |          |          |                  |                  |                  |
| Final Orientation   | Ar   | Ar  | С     |     |     |         |     |      |     |     | -365.38  | -278.30  | -179.14  | -55.18           | -10.63           | -16.74           |
| Initial Orientation |      |     |       | Ar  |     |         | Ar  | Ar/N |     | Ar  |          |          |          |                  |                  |                  |
| Final Orientation   |      |     |       |     |     | Ar      | Ar  | Ar/N |     | Ar  | -374.49  | -279.50  | -185.87  | -64.28           | -11.83           | -23.47           |
| Initial Orientation |      |     |       |     | С   | N       |     |      | Ar  |     |          |          |          |                  |                  |                  |
| Final Orientation   |      |     |       |     | С   | C/Ar/N  |     |      | Ar  |     | -375.09  | -277.51  | -184.14  | -64.89           | -9.83            | -21.75           |
| Initial Orientation | Ar   | С   | Ar    |     |     |         |     |      |     |     |          |          |          |                  |                  |                  |
| Final Orientation   | Ar/C | С   | Ar    |     |     |         |     |      |     |     | -374.48  | -281.38  | -185.68  | -64.27           | -13.71           | -23.29           |
| Initial Orientation |      |     |       |     | Ar  | Ν       |     |      | Ν   |     |          |          |          |                  |                  |                  |
| Final Orientation   |      |     |       |     | Ar  | Ν       |     |      | Ν   |     | -374.06  | -281.73  | -180.25  | -63.86           | -14.06           | -17.86           |
| Initial Orientation | Ar   | Ar  | N     |     |     |         |     |      |     |     |          |          |          |                  |                  |                  |
| Final Orientation   | Ar   | Ar  | Ar*/N |     | Ar  |         |     |      |     |     | -374.31  | -281.28  | -183.45  | -64.11           | -13.61           | -21.06           |

\*Indicates the functional group involved in the specified interaction that is occurring

## Table 3.11: The solution phase results of phenylalanine interacting with the 1AMC conformer of β-amyloid

|                     |       |     |     |     |     |     | Am  | ino Ac | id  |       |      | Etot     | E <sub>ele</sub> | E <sub>vdw</sub> | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|-------|-----|-----|-----|-----|-----|-----|--------|-----|-------|------|----------|------------------|------------------|------------------|------------------|------------------|
|                     | Y10   | E11 | V12 | H13 | H14 | Q15 | K16 | L17    | V18 | F19   | F20  | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation | Ar    |     |     | С   | Ar  |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
| Final Orientation   | Ar    |     |     | С   | Ar  |     |     | С      |     |       |      | -378.22  | -284.71          | -182.41          | -68.01           | -6.99            | -21.62           |
|                     |       |     |     |     |     |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
| Initial Orientation | C*/Ar | Ν   | _   | Ar  | Ν   |     |     |        | Ar  | Ar/N  |      |          |                  |                  |                  |                  |                  |
| Final Orientation   | C*/Ar | Ν   |     | Ar  | Ν   |     |     |        | Ar  | Ar/N  |      | -381.60  | -283.16          | -185.76          | -71.38           | -5.44            | -24.97           |
|                     |       |     |     |     |     |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
| Initial Orientation | Ar    |     |     | Ar  | С   |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
| Final Orientation   | Ar    |     |     | Ar  | С   |     |     |        |     |       |      | -317.10  | -273.30          | -166.17          | -6.89            | 4.42             | -5.38            |
|                     |       |     |     | С   |     |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
|                     |       |     |     |     |     |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
| Initial Orientation |       |     | Ar  |     |     | Ar  | Ar  |        |     | N/Ar  |      |          |                  |                  |                  |                  |                  |
| Final Orientation   |       |     | Ar  |     |     | Ar  | Ar  |        |     | N*/Ar |      | -373.62  | -291.48          | -177.56          | -67.13           | -7.20            | -22.28           |
|                     |       |     |     |     |     |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
| Initial Orientation |       |     |     |     |     |     | Ar  |        |     |       | N    |          |                  |                  |                  |                  |                  |
| Final Orientation   |       |     |     | Ar  |     |     | Ar  | Ar     |     |       | N*/C | -377.35  | -284.93          | -183.07          | -63.86           | -14.06           | -17.86           |
|                     |       |     |     |     |     |     |     |        |     |       |      |          |                  |                  |                  |                  |                  |
| Initial Orientation |       |     |     | С   |     |     |     | Ar     |     |       |      |          |                  |                  |                  |                  |                  |
| Final Orientation   |       |     |     | С   |     |     |     | Ar     |     |       |      | -377.93  | -279.24          | -188.35          | -67.71           | -1.52            | -27.56           |

Table 3.12: The solution phase results of phenylalanine interacting with the 1AML conformer of β-amyloid

|                     |    |    |    |      |       |     | Amir  | o Acid |     |     |     |       |     |      |      | Etot     | Eele     | Evdw     | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|----|----|----|------|-------|-----|-------|--------|-----|-----|-----|-------|-----|------|------|----------|----------|----------|------------------|------------------|------------------|
|                     | F4 | R5 | H6 | Y10  | H13   | H14 | Q15 K | 16 L17 | V18 | F19 | F20 | E22   | G29 | A30  | I31  | kcal/mol | kcal/mol | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation |    |    |    | C/Ar | Ar    | С   |       |        |     |     |     |       |     |      | C/Ar |          |          |          |                  |                  |                  |
| Final Orientation   |    |    |    | C/Ar | Ar    | С   |       |        |     |     |     |       |     |      | C/Ar | -476.07  | -357.78  | -243.39  | -75.47           | -14.36           | -30.78           |
|                     |    |    |    |      |       |     |       |        |     |     |     |       |     |      |      |          |          |          |                  |                  |                  |
| Initial Orientation |    |    |    |      | Ar    |     |       | Ar     |     |     | Ν   |       | Ν   | Ar   |      |          |          |          |                  |                  |                  |
| Final Orientation   |    |    |    |      | Ar    |     |       |        |     |     | Ν   |       |     | Ar   |      | -456.08  | -349.37  | -233.34  | -55.48           | -5.95            | -20.73           |
|                     |    |    |    |      |       |     |       |        |     |     |     |       |     |      |      |          |          |          |                  |                  |                  |
| Initial Orientation | Ar | Ar | С  |      |       |     | Ν     |        |     | Ν   |     | N*/Ar |     |      |      |          |          |          |                  |                  |                  |
| Final Orientation   |    | Ar | С  |      |       |     | N     |        | Ar  | Ν   |     | Ar    |     |      |      | -481.81  | -356.96  | -246.83  | -81.21           | -13.54           | -34.22           |
|                     |    |    |    |      |       |     |       |        |     |     |     |       |     |      |      |          |          |          |                  |                  |                  |
| Initial Orientation |    |    |    | Ar   | Ν     | Ar  |       |        |     |     |     |       |     |      | N/C  |          |          |          |                  |                  |                  |
| Final Orientation   |    |    |    | Ar   | Ν     | Ar  |       | N      |     |     |     |       |     |      | С    | -474.09  | -355.78  | -242.46  | -73.49           | -12.36           | -29.85           |
|                     |    |    |    |      |       |     |       |        |     |     |     |       |     |      |      |          |          |          |                  |                  |                  |
| Initial Orientation |    |    |    |      | С     |     |       |        |     |     | Ar  |       |     |      |      |          |          |          |                  |                  |                  |
| Final Orientation   |    |    |    |      | С     |     |       | Ar     |     |     | Ar  |       | Ar  | Ar/C |      | -472.44  | -350.94  | -238.93  | -71.84           | -7.51            | -26.31           |
|                     |    |    |    |      |       |     |       |        |     |     |     |       |     |      |      |          |          |          |                  |                  |                  |
| Initial Orientation |    |    |    | N/Ar | N/Ar* | Ν   |       |        |     |     |     |       |     |      | Ar   |          |          |          |                  |                  |                  |
| Final Orientation   |    |    |    | Ν    | N/Ar* | N/C |       |        |     |     |     |       |     |      | Ar   | -462.18  | -346.17  | -234.68  | -61.58           | -2.75            | -22.06           |

\*Indicates the functional group involved in the specified interaction that is occurring

Table 3.13: The solution phase results of phenylalanine interacting with the 1BA4 conformer of β-amyloid

|                     |     |      |       | Amino    | Acid     |             | Etot     | E <sub>ele</sub> | E <sub>vdw</sub> | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|-----|------|-------|----------|----------|-------------|----------|------------------|------------------|------------------|------------------|------------------|
|                     | V12 | H13  | H14   | Q15 K16  | L17      | V18 F19 F20 | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation |     | Ar   | Ar/C  |          |          |             |          |                  |                  |                  |                  |                  |
| Final Orientation   |     | Ar   | Ar*/C | Ar       | С        |             | -493.11  | -369.69          | -247.71          | -77.34           | -2.61            | -41.42           |
| Initial Orientation |     | С    | Ar    |          |          |             |          |                  |                  |                  |                  |                  |
| Final Orientation   |     | С    | Ar    |          |          |             | -489.66  | -374.64          | -239.99          | -73.88           | -7.57            | -33.70           |
| Initial Orientation |     | Ar   | N     |          |          |             |          |                  |                  |                  |                  |                  |
| Final Orientation   | Ar  | Ar   | Ν     | Ar       |          |             | -484.59  | -369.77          | -244.80          | -68.82           | -2.70            | -38.51           |
| Initial Orientation |     | N    | Ar    |          |          |             |          |                  |                  |                  |                  |                  |
| Final Orientation   |     | N/Aı | Ar    | Ar       |          |             | -487.59  | -367.77          | -241.49          | -71.82           | -0.70            | -35.20           |
| Initial Orientation |     |      | N     | Ar       | Ar       | Ar          |          |                  |                  |                  |                  |                  |
| Final Orientation   |     |      | N     | Ar       | Ar       | Ar          | -492.69  | -373.03          | -244.93          | -76.91           | -6.01            | -38.64           |
| Initial Orientation |     |      | C     | <b>A</b> | ۸        | A           |          |                  |                  |                  |                  |                  |
| Final Orientation   |     |      | C     | Ai<br>Ar | Ar<br>Ar | Ar          | -492.58  | -372.52          | -243.88          | -76.80           | -5.45            | -37.60           |

| c                   | onforn  | ner o | fβ  | -amyloid    | L           | U        |          | ·        | 5                |                  |                  |
|---------------------|---------|-------|-----|-------------|-------------|----------|----------|----------|------------------|------------------|------------------|
|                     |         |       |     | Amino Acid  |             | Etot     | Eele     | Evdw     | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|                     | Y10 V12 | H13   | H14 | Q15 K16 L17 | V18 F19 F20 | kcal/mol | kcal/mol | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation |         | С     | Ar  | Ar          |             |          |          |          |                  |                  |                  |
|                     |         |       |     |             |             |          |          |          |                  |                  |                  |

| Table 3.14: | The solution ph | ase results of | phenylalanine | e interacting wit | h the 1IYT |
|-------------|-----------------|----------------|---------------|-------------------|------------|
|             | conformer of β- | amyloid        |               |                   |            |

| Initial Orientation |    | C     | Ar |    |    | Ar |    |   |    |         |         |         |        |       |        |
|---------------------|----|-------|----|----|----|----|----|---|----|---------|---------|---------|--------|-------|--------|
| Final Orientation   |    | Ar*/C | Ar |    |    | Ar |    |   |    | -525.29 | -410.73 | -249.48 | -16.36 | -8.90 | -9.36  |
| Initial Orientation |    |       | N  |    |    | Ar | Ar |   |    |         |         |         |        |       |        |
| Final Orientation   |    |       | Ν  |    |    | Ar | Ar |   |    | -529.68 | -409.05 | -252.02 | -20.75 | -7.22 | -11.91 |
| Initial Orientation |    | С     |    |    | Ar |    |    | A | ٨r |         |         |         |        |       |        |
| Final Orientation   | С  |       |    |    | Ar |    | С  |   |    | -526.69 | -406.81 | -247.67 | -17.75 | -4.98 | -7.56  |
| Initial Orientation |    | С     |    |    |    | Ar |    |   |    |         |         |         |        |       |        |
| Final Orientation   |    | С     |    |    |    | Ar |    |   |    | -518.48 | -408.13 | -244.28 | -9.54  | -6.30 | -4.16  |
| Initial Orientation |    | N     | Ar |    |    |    |    |   |    |         |         |         |        |       |        |
| Final Orientation   | Ar | N/Ar  | Ar |    |    |    |    |   |    | -518.35 | -403.71 | -250.10 | -9.41  | -1.89 | -9.99  |
| Initial Orientation |    |       |    |    |    |    | Ar | N |    |         |         |         |        |       |        |
| Final Orientation   |    |       |    | Ar |    |    | Ar | Ν |    | -521.91 | -406.74 | -249.73 | -12.97 | -4.91 | -9.61  |

\*Indicates the functional group involved in the specified interaction that is occurring

| <b>Table 3.15:</b> | The solution phase results of phenylalanine interacting with the 1Z00 | 2 |
|--------------------|-----------------------------------------------------------------------|---|
|                    | conformer of β-amyloid                                                |   |

|                                          |        |     |        |          |     | Amino  | Acid    |          |     |     | Etot     | E <sub>ele</sub> | E <sub>vdw</sub> | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|------------------------------------------|--------|-----|--------|----------|-----|--------|---------|----------|-----|-----|----------|------------------|------------------|------------------|------------------|------------------|
|                                          | G9     | V12 | H13    | H14      | Q15 | K16 I  | .17 V18 | F19      | F20 | A21 | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation                      |        |     | Ar     | С        |     | Ar     |         |          |     |     |          |                  |                  |                  |                  |                  |
| Final Orientation                        |        |     | Ar     | С        |     | Ar     |         |          |     |     | -469.07  | -370.87          | -253.87          | -24.72           | -6.70            | -16.67           |
| Initial Orientation                      |        |     |        | C/Ar     |     |        | Ar      |          |     |     |          |                  |                  |                  |                  |                  |
| Final Orientation                        |        |     |        | С        |     |        | Ar Ar   |          |     | Ar  | -462.11  | -363.42          | -254.05          | -17.75           | 0.75             | -16.85           |
| Initial Orientation<br>Final Orientation |        |     | C<br>C | Ar<br>Ar |     | C<br>C |         |          |     |     | -458.21  | -365.91          | -248.30          | -13.86           | -1.74            | -11.10           |
| Initial Orientation<br>Final Orientation |        |     |        |          |     | Ar     |         | N/C<br>N |     | Ar  | -473.22  | -372.23          | -248.29          | -28.87           | -8.06            | -11.09           |
| Initial Orientation<br>Final Orientation | N<br>N |     | N<br>N | Ar<br>Ar |     |        |         |          |     |     | -470.81  | -367.01          | -250.96          | -26.46           | -2.84            | -13.76           |
| Initial Orientation                      |        |     |        |          |     | С      |         | Ar       |     |     |          |                  |                  |                  |                  |                  |
| Final Orientation                        |        | Ar  |        |          | Ar  | С      |         | Ar       |     |     | -474.07  | -373.55          | -251.84          | -29.72           | -9.38            | -14.63           |

The results of the optimization of phenylalanine with the 1IYT conformer of  $\beta$ amyloid in a solvated environment are given in Table 3.14. Half of the systems resulted in measureable binding interactions, and only two exhibited potential binding interactions at the His13 and His14 residues. The overall binding energies are significantly lower than the previously calculated interactions with other A $\beta$  conformations, and the van der Waals and electrostatic energies are very similar in range.

Phenylalanine and the 1Z0Q conformer of A $\beta$  were optimized in the solution phase and the results are indicated in Table 3.15. Four of the systems exhibited measureable binding interactions when optimized, and three of these also demonstrated the potential to interact with the His13 and His14 residues of  $\beta$ -amyloid. The total binding energies are moderately favourable compared to the others. Van der Waals energies are again slightly more favourable than the electrostatic binding energies.

#### 3.3.5 Conclusions of Phenylalanine Interacting with $\beta$ -Amyloid.

Overall, the results of the solution phase optimizations of phenylalanine and six different  $\beta$ -amyloid conformers indicate that potential binding interactions can occur. Cation- $\pi$  interactions tend to be somewhat favoured over hydrogen bonding, with only a few  $\pi$ - $\pi$  interactions, and most of these measureable interactions occur at the His13 and His14 residues of the peptide. Examining systems for potential binding at two or more sites reveals His13-His14 as the preferred interaction, with a few at His13-Leu17 and His14-Leu17. Overall, interactions occurring strictly within the LVFF region were not as favoured, even though phenylalanine should be capable of forming aromatic-aromatic interactions with the phenyl rings of Phe19 and Phe20.

In general, the measured binding energies did not exhibit a direct correlation to the number of measureable binding interactions; therefore it is possible that there are also

123

aliphatic-aromatic interactions occurring among other types of interactions that cannot be directly measured and/or visualized in the modelling programs.

#### **3.4 DOPAMINE AND \beta-Amyloid**

One of the amino acid metabolites identified by screening the library of endogenous compounds is dopamine (Figure 3.2) which is one of the products in the metabolic pathway of phenylalanine [39].



#### Figure 3.2: Dopamine as charged for physiological pH

Dopamine is a naturally occurring small molecule found in the human brain that plays a role as a neurotransmitter [39]. Although dopamine is often mentioned in relationship to Parkinson's disease, it also has altered levels in the brains of Alzheimer's patients. Research indicates that levels of dopamine in plasma are significantly lower in Alzheimer's patients when compared to controls [84]. It is suggested that while there is no loss of dopaminergic neurons as a result of AD, the enzymes involved in stimulating the release of dopamine from neurons are not as active or are decreased in concentration [84, 85]. As dopamine is a small molecule endogenous to the brain and L-DOPA can be given to patients to generate more dopamine in the brain, studies were performed to see if dopamine was capable of binding to the  $\beta$ -amyloid peptide, specifically at the **HHQK** and LVFF regions. The neutral dopamine molecule was subjected to a grid search from 0° to 330° in 30° steps, for each of the two torsional angles. The lowest energy structure generated from this search was first charged for physiological pH and was then minimized via steepest descent and conjugate gradient algorithms to find the lowest energy structure in the QUANTA program [46]. The energy of the optimized structure is given in Table 3.16.

| Table 3.16: | Gas phase | energy of | dopamine |
|-------------|-----------|-----------|----------|

|          | Total Energy |
|----------|--------------|
|          | (kcal/mol)   |
| Dopamine | -3.32        |

The potential binding interactions between dopamine and the specified regions of the A $\beta$  peptide were examined in both gas and solution phase environments. These optimizations were performed in QUANTA using the CHARMM force field [46, 48, 50]. The same six conformations of  $\beta$ -amyloid selected for use in the phenylalanine calculations were also used to perform these system optimizations.

### 3.4.1 GAS PHASE INTERACTIONS BETWEEN DOPAMINE AND DIFFERENT CONFORMERS OF β-AMYLOID

Gas phase minimizations were performed to see if dopamine was capable of forming binding interactions with the amino acid side chains in the **HHQK** and LVFF regions of the  $\beta$ -amyloid peptide.

#### 3.4.1.1 Selection of Initial Orientations for Optimization

Results from previous research have indicated that the optimal initial distance to separate a molecule of interest from the  $\beta$ -amyloid peptide is 3.0 Å: this distance is close enough that both attractive forces and repulsive forces can be exerted by the protein on

the molecule, which may not occur if they are separated by larger distances. The number of systems minimized depended on the location of the amino acids side chains in the **HHQK** and LVFF regions of interest; some of these were too far apart for dopamine to interact with. The systems were set up such that any two of the three functional groups on dopamine were oriented in a way where they could interact with two different amino acid side chains in the selected  $A\beta$  regions.

#### 3.4.1.2 Optimization of the Gas Phase Systems

The potential binding systems were all modelled in the QUANTA program using the CHARMM force field [47, 48, 50]. Systems were set up following the above procedure, the protein backbone was constrained to prevent self interactions, and then the systems were subjected to minimization first via the steepest descent algorithm and then the conjugate gradient algorithm. These optimized systems were saved for future reference and then examined for measureable binding interactions that may have occurred between dopamine and the  $\beta$ -amyloid peptide. The systems were also imported into MOE to determine if aromatic type interactions were occurring [47].

The relative favourability was determined by calculating the binding energy of each system using the following formula:

$$\Delta E_{\text{bind}} = E_{A\beta \text{dopa}} - E_{A\beta} - E_{\text{dopa}}$$
(3.5)

Where the total binding energy is equal to the energy of the optimized  $\beta$ -amyloiddopamine system,  $E_{A\beta dopa}$ , minus the individual contributions of separately optimized dopamine,  $E_{dopa}$ , and  $\beta$ -amyloid,  $E_{A\beta}$ . The protein energies are given in Appendix 6.

#### 3.4.2 Gas Phase Results of Dopamine Interacting with $\beta$ -Amyloid

The main results of the gas phase optimizations of dopamine interacting with different conformations of  $\beta$ -amyloid are summarized in the following tables according to the  $\beta$ -amyloid conformer. The initial and final binding orientations of the systems are given, with the amino acid side chains represented by their single letter abbreviation and the location in the peptide sequence. The dopamine functional groups are represented by Ar for the aromatic ring, N for the NH<sub>3</sub><sup>+</sup> group, and the two OH groups are represented by O<sup>1</sup> and O<sup>2</sup> where O<sup>1</sup> is *meta* to the ethylamine (Figure 3.3).



Figure 3.3: Identification of the functional groups on dopamine

The results for each  $A\beta$  conformer minimized with dopamine in the gas phase are given in Tables 3.17-3.22. Interactions in the **HHQK** and LVFF regions as well as overlapping possibilities between the two are shown for each system. The number of measureable bonds varied for each system with eight for the 1AMB conformer, eight for 1AMC, eight for 1AML, six systems for 1BA4, ten for 1IYT and six for the 1Z0Q A $\beta$  conformer.

Systems where measureable bonds were present did not always correlate to have the most energetically favourable interactions, therefore the selection of which of these systems would be subjected to solution phase optimization was based on different criteria. For each of the A $\beta$  conformers that were optimized with dopamine, six systems were selected for minimization in a solvated environment. These six systems had the lowest overall binding energies and the potential to interact with two different amino acid side chains within the specified regions of  $\beta$ -amyloid.

Table 3.17: Gas phase results of dopamine interacting with the 1AMB conformer of β-amyloid

|     |     | Initial | Ori  | entati | ion |     |     |                                   |         | Fir      | al Orien          | itation |           |                   |                   | $\Delta E_{bind}$ | Measureable |
|-----|-----|---------|------|--------|-----|-----|-----|-----------------------------------|---------|----------|-------------------|---------|-----------|-------------------|-------------------|-------------------|-------------|
| H13 | H14 | Q15 K   | \$16 | L17    | V18 | F19 | F20 | H13                               | H14 Q15 | K16      | L17               | V18     | F19       | F20               | Х                 | (kcal/mol)        | Bonds       |
| Ar  | Ν   |         |      |        |     |     |     | $O^2$                             | Ν       |          | $O^1$             |         |           |                   |                   | -11.12            | 3           |
| Ν   | Ar  |         |      |        |     |     |     | $O^2$                             | Ν       |          |                   |         |           |                   | Ar/O <sup>1</sup> | -11.20            | 0           |
| Ar  |     |         | Ν    |        |     |     |     | Ar                                |         | Ν        | Ν                 |         |           |                   |                   | -10.34            | 1           |
| Ν   |     |         | Ar   |        |     |     |     | Ν                                 |         | $O^2$    |                   |         |           |                   |                   | -9.46             | 1           |
|     |     |         |      | Ν      |     |     | Ar  |                                   |         |          | Ν                 |         |           | $O^2$             |                   | -9.31             | 0           |
|     |     |         |      | Ar     |     |     | Ν   |                                   |         |          | Ar/O <sup>2</sup> |         |           | N/Ar              |                   | -10.42            | 1           |
|     |     |         |      |        |     | Ar  | Ν   |                                   |         |          |                   |         | $O^1/O^2$ |                   |                   | -6.39             | 0           |
|     |     |         |      |        |     | Ν   | Ar  |                                   |         |          | Ar                |         |           | $O^1/O^2/Ar$      |                   | -9.16             | 0           |
| Ar  |     |         |      | Ν      |     |     |     | Ar/O <sup>1</sup> /O <sup>2</sup> |         |          | Ν                 |         |           |                   |                   | -11.44            | 1           |
| Ν   |     |         |      | Ar     |     |     |     | Ar/N                              |         |          | $C/O^2$           |         |           |                   |                   | -8.02             | 0           |
|     |     |         | Ar   | Ν      |     |     |     | Ar/N                              |         | $O^2/Ar$ | N/Ar              |         |           |                   |                   | -9.59             | 1           |
|     |     |         | Ν    | Ar     |     |     |     |                                   |         | N/Ar     | $O^1/O^2$         |         |           | Ar/O <sup>2</sup> |                   | -10.71            | 1           |
|     |     |         | Ar   |        |     |     | Ν   | $O^1/O^2$                         |         | $O^1$    | $O^2$             |         |           | Ν                 |                   | -7.30             | 1           |
|     |     |         | N    |        |     |     | Ar  | Ν                                 |         | N/Ar     |                   |         |           | $O^1/O^2$         |                   | -5.51             | 0           |

Table 3.18: Gas phase results of dopamine interacting with the 1AMC conformer of β-amyloid

|     |     | Initia | al Ori | entati | ion |     |     |           |       |     | F                 | inal Orienta      | tion |     |                   |          | $\Delta E_{bind}$ | Measureable |
|-----|-----|--------|--------|--------|-----|-----|-----|-----------|-------|-----|-------------------|-------------------|------|-----|-------------------|----------|-------------------|-------------|
| H13 | H14 | Q15    | K16    | L17    | V18 | F19 | F20 | H13       | H14   | Q15 | K16               | L17               | V18  | F19 | F20               | Х        | (kcal/mol)        | Bonds       |
| Ar  | Ν   |        |        |        |     |     |     | $O^1/O^2$ | Ν     |     |                   | $O^1$             |      |     |                   | Ar       | -14.99            | 1           |
| Ν   | Ar  |        |        |        |     |     |     | Ν         | $O^2$ |     |                   |                   |      |     |                   | $Ar/O^1$ | -16.06            | 2           |
| Ν   |     |        | Ar     |        |     |     |     | N/Ar      |       |     | Ar/O <sup>1</sup> |                   |      |     |                   |          | -9.10             | 3           |
| Ar  |     |        | Ν      |        |     |     |     | Ar/N      |       |     |                   |                   |      |     |                   | $O^2$    | -13.32            | 1           |
|     |     |        |        | Ν      |     |     | Ar  |           |       |     |                   | Ν                 |      |     | Ar/O <sup>1</sup> |          | -9.13             | 0           |
|     |     |        |        | Ar     |     |     | Ν   |           |       |     |                   | Ar/O <sup>1</sup> |      |     | Ν                 |          | -8.30             | 0           |
|     |     |        |        |        |     | Ν   | Ar  |           |       |     |                   |                   |      | Ν   | $O^2$             |          | -6.95             | 0           |
|     |     |        |        |        |     | Ar  | Ν   |           |       |     |                   |                   |      |     | Ν                 |          | -5.58             | 0           |
| Ar  |     |        |        | Ν      |     |     |     | Ar        |       |     |                   | Ν                 |      |     |                   |          | -6.93             | 1           |
| Ν   |     |        |        | Ar     |     |     |     | N/Ar      |       |     |                   | $Ar/O^1/O^2$      |      |     |                   |          | -11.03            | 2           |
|     |     |        | Ar     | Ν      |     |     |     | $O^2$     |       |     | Ar/O <sup>2</sup> | N/Ar              |      |     |                   |          | -8.95             | 1           |
|     |     |        | Ν      | Ar     |     |     |     | $O^1$     |       |     | Ν                 | $Ar/O^1/O^2$      |      |     |                   |          | -9.59             | 0           |
|     |     |        | Ν      |        |     |     | Ar  |           |       |     | Ν                 |                   |      |     | $O^1/O^2$         |          | -5.38             | 0           |
|     |     |        | Ar     |        |     |     | Ν   |           |       |     | Ar/O <sup>2</sup> | Ar                |      |     | N/Ar              |          | -9.28             | 2           |

|     |     | In  | itial O | rientat | ion |     |     |           |       |     | Final               | Orien | tation |           |               |                   | $\Delta E_{bind}$ | Measureable |
|-----|-----|-----|---------|---------|-----|-----|-----|-----------|-------|-----|---------------------|-------|--------|-----------|---------------|-------------------|-------------------|-------------|
| H13 | H14 | Q15 | K16     | L17     | V18 | F19 | F20 | H13       | H14   | Q15 | K16                 | L17   | V18    | F19       | F20           | Х                 | (kcal/mol)        | Bonds       |
| Ν   | Ar  |     |         |         |     |     |     | Ν         | $O^1$ |     |                     | $O^1$ |        |           |               | Ar                | -17.73            | 2           |
| Ar  | Ν   |     |         |         |     |     |     | $O^2$     | Ν     |     |                     |       |        |           |               | Ar/O <sup>1</sup> | -14.37            | 0           |
| Ar  |     |     | Ν       |         |     |     |     | $O^1/O^2$ |       |     | Ν                   |       |        |           |               |                   | -9.45             | 0           |
| Ν   |     |     | Ar      |         |     |     |     | Ν         |       |     | $O^1/O^2$           |       |        |           |               |                   | -6.89             | 1           |
|     |     |     |         | Ar      |     |     | Ν   |           |       |     | $O^1$               | $O^2$ |        |           | Ar/N          | $O^2$             | -21.04            | 2           |
|     |     |     |         | Ν       |     |     | Ar  |           |       |     |                     | Ν     |        |           | $0^{1}/0^{2}$ |                   | -8.09             | 0           |
|     |     |     |         |         |     | Ν   | Ar  |           |       |     |                     |       |        | Ν         | $O^{1}/O^{2}$ | Ν                 | -7.60             | 0           |
|     |     |     |         |         |     | Ar  | Ν   |           |       |     |                     |       |        | $O^1/O^2$ | Ν             |                   | -4.95             | 0           |
|     |     |     | Ν       |         |     | Ar  |     |           |       |     | Ν                   |       |        | $O^1/O^2$ |               |                   | -4.90             | 0           |
|     |     |     | Ar      |         |     | Ν   |     |           |       |     | $O^1$               |       |        | Ν         |               |                   | -4.93             | 1           |
|     |     |     | Ar      |         |     |     | Ν   |           |       |     | $O^1/O^2$           | Ν     |        | Ar        | Ν             |                   | -10.72            | 1           |
|     |     |     | Ν       |         |     |     | Ar  |           |       |     | N/Ar/O <sup>1</sup> |       |        | Ar        | $O^{1}/O^{2}$ |                   | -14.84            | 2           |
| Ν   |     |     |         |         |     |     | Ar  | Ν         |       |     | $O^1$               |       |        |           | $O^2$         | Ar                | -17.64            | 1           |
| Ar  |     |     |         |         |     |     | Ν   | $O^1/O^2$ |       |     |                     |       |        |           | Ν             | Ar                | -12.22            | 1           |

Table 3.19: Gas phase results of dopamine interacting with the 1AML conformer of β-amyloid

| <b>Table 3.20:</b> | Gas phase results of dopamine interacting with the 1BA4 conformer of |
|--------------------|----------------------------------------------------------------------|
|                    | β-amyloid                                                            |

|     |     | Initial Orient | ation |         |       |                   | Fina    | al Orien          | tation  |             |           | $\Delta E_{bind}$ | Meaureable |
|-----|-----|----------------|-------|---------|-------|-------------------|---------|-------------------|---------|-------------|-----------|-------------------|------------|
| H13 | H14 | Q15 K16 L1     | 7 V18 | F19 F20 | H13   | H14               | Q15 K16 | L17               | V18 F19 | F20         | Х         | (kcal/mol)        | Bonds      |
| Ν   | Ar  |                |       |         | Ν     | Ar                | $O^1$   |                   |         |             |           | -12.16            | 2          |
| Ar  | Ν   |                |       |         | $O^1$ | N/Ar              | $O^2$   |                   |         |             |           | -11.01            | 2          |
|     |     | А              | r     | Ν       |       |                   |         | Ar/O <sup>2</sup> |         | Ar/N        |           | -12.70            | 1          |
|     |     | Ν              | 1     | Ar      |       |                   |         | Ν                 |         | $O^1 / O^2$ |           | -11.31            | 0          |
|     | Ν   | А              | r     |         |       | Ν                 |         | Ar/O <sup>1</sup> |         |             |           | -8.94             | 1          |
|     | Ar  | Ν              | 1     |         |       | Ar/O <sup>1</sup> |         | Ν                 |         |             |           | -13.43            | 0          |
|     |     | Ar             |       | Ν       |       |                   | $O^2$   |                   | Ν       |             | $O^1/O^2$ | -13.36            | 3          |
|     |     | Ν              |       | Ar      |       |                   | Ν       |                   | Ar      |             | Ar        | -17.51            | 1          |

|     |     | Initial Or | ientati | on  |     |     |                                   |                                   |     | Final             | Orientatio        | on  |                                   |                                   |       | $\Delta E_{bind}$ | Measureable |
|-----|-----|------------|---------|-----|-----|-----|-----------------------------------|-----------------------------------|-----|-------------------|-------------------|-----|-----------------------------------|-----------------------------------|-------|-------------------|-------------|
| H13 | H14 | Q15 K16    | L17     | V18 | F19 | F20 | H13                               | H14                               | Q15 | K16               | L17               | V18 | F19                               | F20                               | Х     | (kcal/mol)        | Bonds       |
| Ar  | Ν   |            |         |     |     |     | $O^2$                             | N/O <sup>1</sup>                  |     |                   | Ar/O <sup>1</sup> |     |                                   |                                   |       | -10.78            | 0           |
| Ν   | Ar  |            |         |     |     |     | Ν                                 | $O^1/O^2$                         |     |                   | Ar                |     |                                   |                                   | $O^1$ | -10.88            | 3           |
| Ν   |     | Ar         |         |     |     |     | Ν                                 |                                   |     | $0^{1}/0^{2}$     |                   |     |                                   | Ar/O <sup>1</sup>                 |       | -11.38            | 2           |
| Ar  |     | Ν          |         |     |     |     | $O^2$                             |                                   |     | Ν                 |                   |     |                                   | Ar/N                              |       | -11.23            | 1           |
|     |     |            | Ν       |     |     | Ar  |                                   |                                   |     |                   |                   |     |                                   | $O^1/O^2$                         | $O^1$ | -8.83             | 0           |
|     |     |            | Ar      |     |     | Ν   |                                   |                                   |     |                   | $O^1/O^2$         |     |                                   | Ar/N                              |       | -8.15             | 1           |
|     |     |            |         |     | Ar  | Ν   |                                   |                                   |     | $O^2$             |                   |     | $O^1/O^2$                         | Ν                                 |       | -7.69             | 0           |
|     |     |            |         |     | Ν   | Ar  |                                   |                                   |     | Ar/O <sup>1</sup> |                   |     | Ν                                 | $O^1/O^2$                         | Ar    | -10.52            | 0           |
| Ar  |     |            | Ν       |     |     |     | Ar/O <sup>1</sup> /O <sup>2</sup> |                                   |     |                   | Ν                 |     |                                   |                                   |       | -6.46             | 1           |
| Ν   |     |            | Ar      |     |     |     | Ν                                 |                                   |     |                   | $O^1/O^2$         |     |                                   |                                   |       | -7.08             | 1           |
|     | Ar  |            | Ν       |     |     |     |                                   | Ar/O <sup>1</sup> /O <sup>2</sup> |     |                   | Ν                 |     |                                   |                                   | $O^1$ | -9.15             | 2           |
|     | Ν   |            | Ar      |     |     |     |                                   | Ν                                 |     |                   | $Ar/O^1/O^2$      | 2   | Ar                                | $O^1/O^2$                         |       | -6.78             | 0           |
| Ν   |     |            |         |     |     | Ar  | Ν                                 |                                   |     |                   |                   |     |                                   | Ar/O <sup>1</sup> /O <sup>2</sup> |       | -8.85             | 1           |
| Ar  |     |            |         |     |     | Ν   | $Ar/O^1/O^2$                      |                                   |     | Ν                 | Ar                |     |                                   | Ar/N                              |       | -11.94            | 0           |
|     |     | Ar         |         |     |     | Ν   |                                   |                                   |     | Ar/O <sup>2</sup> |                   |     | Ar/O <sup>2</sup>                 | Ar/N                              |       | -6.16             | 0           |
|     |     | Ν          |         |     |     | Ar  |                                   |                                   |     |                   |                   |     |                                   | $O^1/O^2$                         |       | -5.99             | 0           |
|     |     | Ν          |         |     | Ar  |     |                                   |                                   |     | Ν                 |                   |     | Ar/O <sup>1</sup> /O <sup>2</sup> |                                   | $O^1$ | -6.84             | 1           |
|     |     | Ar         |         |     | Ν   |     |                                   |                                   |     | $0^{1}/0^{2}$     |                   |     | Ar/N/O <sup>2</sup>               | Ar                                | Ar    | -6.34             | 1           |

Table 3.21: Gas phase results of dopamine interacting with the 1IYT conformer of β-amyloid

Table 3.22: Gas phase results of dopamine interacting with the 1Z0Q conformer of β-amyloid

|     |     | Initial O | rientat | ion   |       |    |                                   |           |     | Fi                                | nal Orientati                     | on  |                                   |                                     |       | $\Delta E_{bind}$ | Measureable |
|-----|-----|-----------|---------|-------|-------|----|-----------------------------------|-----------|-----|-----------------------------------|-----------------------------------|-----|-----------------------------------|-------------------------------------|-------|-------------------|-------------|
| H13 | H14 | Q15 K16   | L17     | V18 F | 19 F. | 20 | H13                               | H14       | Q15 | K16                               | L17                               | V18 | F19                               | F20                                 | Х     | (kcal/mol)        | Bonds       |
| Ν   | Ar  |           |         |       |       |    | Ν                                 | $O^1/O^2$ |     |                                   |                                   |     |                                   |                                     | Ν     | -11.55            | 2           |
| Ar  | Ν   |           |         |       |       |    | Ar/O <sup>2</sup>                 | Ν         |     |                                   | $O^1/O^2$                         |     |                                   |                                     | Ν     | -16.98            | 0           |
|     | Ar  | Ν         |         |       |       |    | Ar                                | $O^1/O^2$ |     | Ν                                 |                                   |     |                                   |                                     |       | -14.44            | 0           |
|     | Ν   | Ar        |         |       |       |    |                                   | Ν         |     | $O^1/O^2$                         | $O^2$                             |     |                                   |                                     |       | -5.94             | 0           |
| Ar  |     | Ν         |         |       |       |    | Ar/O <sup>1</sup> /O <sup>2</sup> |           |     | Ν                                 |                                   |     |                                   |                                     | $O^2$ | -10.75            | 2           |
| Ν   |     | Ar        |         |       |       |    | N/Ar                              |           |     | Ar/O <sup>1</sup> /O <sup>2</sup> |                                   |     |                                   |                                     |       | -11.46            | 3           |
|     |     |           | Ar      | 1     | Ň     |    |                                   |           |     |                                   | Ar/O <sup>1</sup> /O <sup>2</sup> |     | Ν                                 | Ν                                   |       | -12.69            | 0           |
|     |     |           | Ν       | A     | ٨r    |    |                                   |           |     |                                   | Ν                                 |     | Ar/O <sup>1</sup> /O <sup>2</sup> | Ar/O <sup>1</sup>                   |       | -7.65             | 0           |
|     |     |           | Ν       |       | A     | Ar |                                   |           |     |                                   |                                   |     |                                   | $O^1/O^2$                           |       | -5.28             | 0           |
|     |     |           | Ar      |       | 1     | N  |                                   |           |     |                                   | Ar/O <sup>1</sup> /O <sup>2</sup> |     |                                   | Ν                                   |       | -9.77             | 1           |
|     |     |           |         | A     | Ar 1  | N  |                                   |           |     |                                   |                                   |     | Ar/O <sup>1</sup> /O <sup>2</sup> | Ν                                   |       | -8.65             | 0           |
|     |     |           |         | 1     | N A   | Ar |                                   |           |     |                                   |                                   |     | Ν                                 | Ar/N/O <sup>1</sup> /O <sup>2</sup> |       | -7.72             | 0           |
|     |     | Ar        | Ν       |       |       |    |                                   |           |     | $O^1/O^2$                         | N/Ar                              |     |                                   |                                     |       | -8.57             | 1           |
|     |     | Ν         | Ar      |       |       |    |                                   |           |     | Ν                                 | $O^1/O^2$                         |     |                                   |                                     |       | -5.89             | 0           |
|     |     | Ar        |         | 1     | V     |    |                                   |           | Ν   | $N/O^1/O^2$                       |                                   |     | Ν                                 |                                     | Ar    | -18.50            | 5           |
|     |     | Ν         |         | A     | ٨r    |    |                                   |           |     |                                   |                                   |     | $O^1/O^2$                         |                                     |       | -12.35            | 0           |
|     | Ν   |           | Ar      |       |       |    |                                   | Ν         |     |                                   | $O^1/O^2$                         |     |                                   |                                     |       | -8.51             | 0           |
|     | Ar  |           | Ν       |       |       |    |                                   | $O^1/O^2$ |     |                                   |                                   |     |                                   |                                     |       | -9.48             | 0           |

The six selected systems from each conformer selected for optimization in a solvated environment are summarized in Table 3.23.

| Interaction | Binding Energy | Interaction | Binding Energy |
|-------------|----------------|-------------|----------------|
|             | (kcal/mol)     |             | (kcal/mol)     |
| 14          | AMB            | 1           | BA4            |
| HArHQKLN    | -11.44         | KNLVFAr     | -17.51         |
| HNHAr       | -11.20         | HArQKLN     | -13.43         |
| HArHN       | -11.12         | KArLVFN     | -13.36         |
| KNLAr       | -10.71         | LArVFFN     | -12.70         |
| LArVFFN     | -10.42         | HNHAr       | -12.16         |
| HArHQKN     | -10.34         | LNVFFAr     | -11.31         |
| 14          | AMC            | 1           | IYT            |
| HNHAr       | -16.06         | HArHQKLVFFN | -11.94         |
| HArHN       | -14.99         | HNHQKAr     | -11.38         |
| HNHQKLAr    | -11.03         | HArHQKN     | -11.23         |
| KArLVFFN    | -9.28          | HNHAr       | -10.88         |
| LNVFFAr     | -9.13          | HArHN       | -10.78         |
| HNHQKAr     | -9.10          | HArHQKLN    | -6.46          |
| 14          | AML            | 12          | ZOQ            |
| HNHAr       | -17.73         | KArLVFN     | -18.50         |
| HNHQKLVFFAr | -17.64         | HArHN       | -16.98         |
| KNLVFFAr    | -14.84         | HArQKN      | -14.44         |
| HArHN       | -14.37         | LArVFN      | -12.69         |
| HArHQKLVFFN | -12.22         | HNHAr       | -11.55         |
| KArLVFFN    | -10.72         | HNHQKAr     | -11.46         |

## Table 3.23: Selected interactions of dopamine interacting with β-amyloid for optimization in the solution phase

#### 3.4.3 Solution Phase Results for Dopamine Interacting with $\beta$ -Amyloid

Upon completion of the gas phase optimizations, six of the resulting energetically favourable interactions between dopamine and  $\beta$ -amyloid were selected from each A $\beta$  conformer for solution phase minimizations. Using these initial gas phase optimized systems allowed for more efficient solution phase calculations. The solution phase optimizations were also performed in QUANTA using the CHARMM force field [46, 48, 50]. The same procedure as described in section 3.3.3.1 was used for the solution phase optimization of dopamine and  $\beta$ -amyloid systems.

The final energies for the binding interactions were calculated using the energies listed in Table 3.24 and Appendix 6 via the following equations:

$$\Delta E_{tot} = E_{tot} - E_{A\beta} - E_{dopa}$$
(3.6)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eledopa}$$
(3.7)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwdopa}$$
(3.8)

where the energies of the solution phase optimized  $\beta$ -amyloid conformers and the dopamine molecule were subtracted from the total energies of the optimized system for each of the overall total energy, the electrostatic energy and the van der Waals energy of the systems. The energies were measured with the solvent contributions ignored.

 Table 3.24: Total energies of dopamine in the solution phase

|          | Ene              | rgies (kcal/r | nol)      |
|----------|------------------|---------------|-----------|
|          | E <sub>tot</sub> | $E_{ele}$     | $E_{vdw}$ |
|          |                  |               |           |
| Dopamine | 1.89             | -1.40         | -0.31     |

All of the resulting minimized systems were examined in MOE after optimization in QUANTA to determine where, if any, cation- $\pi$  or  $\pi$ - $\pi$  interactions are occurring [46, 47].

The results of the solution phase optimizations of the dopamine-A $\beta$  systems have been summarized in tables for each conformation of  $\beta$ -amyloid. Initial and final binding orientations are given along with the three calculated energies: the total binding energy, electrostatic binding energy and van der Waals binding energy. Any measureable binding interactions that occurred are indicated according to the following colour scheme: hydrogen-bonds are coloured orange, cation- $\pi$  interactions are green and  $\pi$ - $\pi$  interactions are blue. Interactions occurring outside the **HHQK** and LVFF regions of interest are also indicated according to the amino acid side chain with which binding may be occurring. As in the gas phase calculations, the amino acids are represented in single letter notation with the respective site number on the peptide chain and the dopamine functional groups are represented by N, Ar,  $O^1$  and  $O^2$  for the amino group, the aromatic ring, the OH *meta* to the ethylamine chain and the OH *para* to the ethylamine chain, respectively.

The results of the solution phase optimizations between dopamine and the 1AMB conformer of A $\beta$  are indicated in Table 3.25. All six optimized systems had measureable bonds and favourable binding energies, with the electrostatic and van der Waals energies being very similar in range. Two of the systems had potential binding interactions at His13 and His14. The other two systems exhibited potential binding interactions at both Lys16 and Phe20, one of which can also interact at Leu17 and Phe20.

The results of the solution phase minimized systems of dopamine and the 1AMC conformer of  $\beta$ -amyloid are given in Table 3.26. Five of the six systems demonstrated measureable binding interactions and two had potential interactions at His13 and His14 while one had potential interactions at Lys16 and Phe20 as well as two at Leu17 and Phe20. The total binding energies are favourable; however, the van der Waals energies are significantly lower than the electrostatic energies.

Table 3.27 summarizes the results of the optimization of dopamine and the 1AML conformer of A $\beta$  in a solvated environment. Four of the final systems contained measureable binding interactions. Overall the binding energies are very favourable with the exception of one system, with the electrostatic binding energies being much weaker

133

than the van der Waals binding energies. Two systems have potential interactions at His13 and His14, two at Leu17 and Phe20, and one at Lys16 and Phe20.

The results of the solution phase optimization of dopamine with the 1BA4 conformer are detailed in Table 3.28. While four of the six systems have measureable bonds forming, the binding energies are very unfavourable; however, the van der Waals energies are still significantly lower than the electrostatic energies. There are two systems presenting possible binding at both Leu17 and Phe20 and one at His13 and His14.

 Table 3.25: The solution phase results of dopamine interacting with the 1AMB conformer of β-amyloid

|                     |          |                                    |         | Amino A           | cid       |       |        | Etot     | Eele     | E <sub>vdw</sub> | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|----------|------------------------------------|---------|-------------------|-----------|-------|--------|----------|----------|------------------|------------------|------------------|------------------|
|                     | Y10      | H13                                | H14 Q15 | 5 K16             | L17       | V18 F | 19 F20 | kcal/mol | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation |          |                                    |         | N/Ar*             | $O^1/O^2$ |       | Ar     |          |          |                  |                  |                  |                  |
| Final Orientation   |          |                                    |         | N/Ar*             | $O^2$     |       | $O^2$  | -376.03  | -288.44  | -177.60          | -63.39           | -16.60           | -15.01           |
| Initial Orientation |          |                                    |         | Ar/O <sup>2</sup> |           |       | Ar/N   | *        |          |                  |                  |                  |                  |
| Final Orientation   |          |                                    |         | Ar/O <sup>2</sup> |           |       | N      | -382.25  | -284.97  | -187.26          | -69.61           | -13.14           | -24.67           |
| Initial Orientation |          | $O^2$                              | Ν       |                   | $O^1$     |       |        |          |          |                  |                  |                  |                  |
| Final Orientation   |          | $O^2$                              | Ν       |                   | $O^1$     |       |        | -376.35  | -283.25  | -181.39          | -63.72           | -11.42           | -18.8            |
| Initial Orientation | $Ar/O^1$ | $\Omega^2$                         | N       |                   |           |       |        |          |          |                  |                  |                  |                  |
| Final Orientation   | Ar       | N                                  | Ar      |                   |           |       |        | -376.87  | -287.27  | -181.26          | -64.23           | -15.44           | -18.67           |
| Initial Orientation |          | Ar                                 |         | N                 | N         |       |        |          |          |                  |                  |                  |                  |
| Final Orientation   |          | Ar                                 |         | N                 |           |       |        | -377.47  | -285.45  | -182.72          | -64.84           | -13.62           | -20.13           |
| Initial Orientation |          | $\Delta r^* / \Omega^1 / \Omega^2$ |         |                   | N         |       |        |          |          |                  |                  |                  |                  |
| Final Orientation   |          | Ar                                 |         | Ar                | N         |       |        | -376 77  | -285 28  | -181.80          | -64 13           | 13.45            | -19.21           |

# Table 3.26: The solution phase results of dopamine interacting with the 1AMC conformer of β-amyloid

|                     |     |       |           |       |       | Amin               | o Acid               |     |     |                   | Etot     | E <sub>ele</sub> | Evdw     | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|-----|-------|-----------|-------|-------|--------------------|----------------------|-----|-----|-------------------|----------|------------------|----------|------------------|------------------|------------------|
|                     | Y10 | E11   | H13       | H14   | Q15 1 | K16                | L17                  | V18 | F19 | F20               | kcal/mol | kcal/mol         | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation | Ar  | $O^1$ | Ν         | $O^1$ |       |                    |                      |     |     |                   |          |                  |          |                  |                  |                  |
| Final Orientation   | Ar  | $O^1$ | Ν         | Ar    |       |                    | Ν                    |     |     |                   | -390.48  | -290.97          | -192.20  | -77.83           | -9.09            | -31.21           |
| Initial Orientation | Ar  |       | $O^1/O^2$ | Ν     |       |                    |                      |     |     |                   |          |                  |          |                  |                  |                  |
| Final Orientation   | Ar  |       | $O^1/O^2$ | Ν     |       |                    | $O^1$                |     |     |                   | -389.77  | -290.15          | -193.28  | -77.12           | -8.26            | -32.29           |
| Initial Orientation |     |       | N/Ar      |       |       | I                  | Ar/O <sup>1</sup> /O | 2   |     |                   |          |                  |          |                  |                  |                  |
| Final Orientation   |     |       | N/Ar      |       |       | I                  | Ar/O <sup>1</sup> /O | 2   |     |                   | -378.27  | -292.41          | -179.05  | -65.62           | -10.53           | -18.06           |
| Initial Orientation |     |       |           |       | A     | r/O <sup>2</sup> * | Ar                   |     |     | N/Ar*             |          |                  |          |                  |                  |                  |
| Final Orientation   |     |       |           |       | A     | r/O <sup>2</sup> * | Ar                   |     |     | N/Ar*             | -376.01  | -286.72          | -180.12  | -63.36           | -4.84            | -19.13           |
| Initial Orientation |     |       |           |       |       |                    | N                    |     |     | Ar/O <sup>1</sup> |          |                  |          |                  |                  |                  |
| Final Orientation   |     |       |           |       |       |                    | Ν                    |     |     | Ar/O <sup>1</sup> | -377.56  | -294.82          | -174.90  | -64.91           | -12.93           | -13.91           |
| Initial Orientation |     |       | N/Ar      |       | A     | $r/O^{2}*$         |                      |     |     |                   |          |                  |          |                  |                  |                  |
| Final Orientation   |     |       | N/Ar      |       | А     | Ar/O <sup>2</sup>  |                      |     |     |                   | -376.80  | -286.06          | -181.15  | -64.15           | -4.18            | -20.17           |

\*Indicates the functional group involved in the specified interaction that is occurring

# Table 3.27: The solution phase results of dopamine interacting with the 1AML conformer of β-amyloid

|                     |      |                     |         | Amino A               | .cid        |           |       |                     | Etot     | Eele     | E <sub>vdw</sub> | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|------|---------------------|---------|-----------------------|-------------|-----------|-------|---------------------|----------|----------|------------------|------------------|------------------|------------------|
|                     | Y10  | H13                 | H14 Q15 | K16                   | L17 V18 F19 | F20       | A30   | I31                 | kcal/mol | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation |      |                     |         | $O^1$                 | $O^2$       | Ar*/N     | $O^2$ |                     |          |          |                  |                  |                  |                  |
| Final Orientation   |      |                     |         | $O^1/O^2$             | $O^2$       | Ar*/N     | Ar    |                     | -481.26  | -356.64  | -238.27          | -78.22           | -9.05            | -25.46           |
| Initial Orientation | Ar   | Ν                   | $O^1$   |                       |             |           |       | Ar                  |          |          |                  |                  |                  |                  |
| Final Orientation   |      | N*/Ar               | $O^1$   |                       |             |           |       | Ar/N                | -479.74  | -365.82  | -237.77          | -76.71           | -18.23           | -24.96           |
| Initial Orientation |      | Ν                   |         | $O^1$                 |             | $O^2$     | Ar    |                     |          |          |                  |                  |                  |                  |
| Final Orientation   |      |                     |         |                       | $O^1$       | $O^2$     | Ar    |                     | -478.65  | -364.29  | -238.87          | -75.62           | -16.70           | -26.05           |
| Initial Orientation |      |                     |         | N/Ar/O <sup>1</sup> * | Ar          | $O^1/O^2$ |       |                     |          |          |                  |                  |                  |                  |
| Final Orientation   |      |                     |         | Ν                     |             | $O^1/O^2$ |       |                     | -477.84  | -357.96  | -236.74          | -74.80           | -10.38           | -23.93           |
| Initial Orientation |      | $\Omega^1/\Omega^2$ |         |                       |             | N         | Ar    |                     |          |          |                  |                  |                  |                  |
| Final Orientation   |      | $O^1/O^2$           |         |                       | Ν           | N         | Ar    |                     | -421.21  | -352.81  | -229.37          | -18.17           | -5.23            | -16.56           |
| Initial Orientation | Δr   | $\Omega^2$          | N       |                       |             |           |       | $\Delta r/\Omega^1$ |          |          |                  |                  |                  |                  |
| Final Orientation   | Ar/N | Ar                  | N       |                       | Ν           |           |       | Ar                  | -475.08  | -354.34  | -240.05          | -72.05           | -6.80            | -27.24           |

|                     |    |       |           |     |       |       | Ami   | no Aci            | d   |     |                         | Etot     | E <sub>ele</sub> | E <sub>vdw</sub> | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|----|-------|-----------|-----|-------|-------|-------|-------------------|-----|-----|-------------------------|----------|------------------|------------------|------------------|------------------|------------------|
|                     | D1 | E3    | E11       | H13 | 3 H14 | Q151  | K16   | L17               | V18 | F19 | F20                     | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation |    |       | Ar        |     |       |       | Ν     |                   |     | Ar  |                         |          |                  |                  |                  |                  |                  |
| Final Orientation   |    |       | Ν         |     |       |       | N     |                   |     | Ar  |                         | -435.47  | -370.34          | -229.04          | -17.26           | 0.90             | -22.55           |
| Initial Orientation |    | $O^2$ | $O^1/O^2$ |     |       |       | $O^2$ |                   |     | Ν   |                         |          |                  |                  |                  |                  |                  |
| Final Orientation   | Ar |       | Ar        |     |       |       | $O^2$ |                   |     | Ν   |                         | -421.71  | -372.07          | -222.58          | -3.50            | -0.83            | -16.10           |
| Initial Orientation |    |       |           |     |       |       |       | Ar/O <sup>2</sup> |     |     | Ar/N*                   |          |                  |                  |                  |                  |                  |
| Final Orientation   |    |       |           |     |       |       |       | $O^1/O^2$         |     |     | Ν                       | -424.49  | -378.33          | -219.24          | -6.28            | -7.10            | -12.75           |
| Initial Orientation |    |       |           | Ν   | Ar    | $O^1$ |       |                   |     |     |                         |          |                  |                  |                  |                  |                  |
| Final Orientation   |    |       |           | Ν   | Ar    | $O^1$ |       |                   |     |     |                         | -405.52  | -369.45          | -214.37          | 12.69            | 1.78             | -7.89            |
| Initial Orientation |    |       |           |     | Ar    |       | Ar    | N/Ar              |     |     |                         |          |                  |                  |                  |                  |                  |
| Final Orientation   |    |       |           |     | $O^1$ |       |       | Ν                 |     |     |                         | -418.66  | -372.65          | -217.06          | -0.45            | -1.42            | -10.45           |
| Initial Orientation |    |       |           |     |       |       |       | N                 |     |     | $\Omega^{1}/\Omega^{2}$ |          |                  |                  |                  |                  |                  |
| Final Orientation   |    |       |           |     |       |       |       | N                 |     |     |                         | 420.68   | 377.04           | 217.60           | 2.47             | -5.80            | 11.21            |

Table 3.28: The solution phase results of dopamine interacting with the 1BA4 conformer of β-amyloid

 Final Orientation
 N
 O<sup>1</sup>
 -420.68
 -377.04
 -217.69
 -2.47
 -5.80
 -11.21

 \*Indicates the functional group involved in the specified interaction that is occurring

| <b>Table 3.29:</b> | The solution phase results of dopamine interacting with the 1IYT |
|--------------------|------------------------------------------------------------------|
|                    | conformer of β-amyloid                                           |

|                     |                |                     |            | А   | mino Acio           | ł                  |         |                       |     | Etot     | Eele     | Evdw     | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|---------------------|----------------|---------------------|------------|-----|---------------------|--------------------|---------|-----------------------|-----|----------|----------|----------|------------------|------------------|------------------|
|                     | Y10            | H13                 | H14        | Q15 | K16                 | L17                | V18 F19 | F20                   | D23 | kcal/mol | kcal/mol | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation |                | $O^{1}/O^{2}*$      |            |     | Ν                   | Ar                 |         | Ar/N                  |     |          |          |          |                  |                  |                  |
| Final Orientation   |                | Ar/O <sup>2</sup> * |            |     | Ν                   |                    |         | Ν                     |     | -530.85  | -417.92  | -249.73  | -19.47           | -11.93           | -9.42            |
| Initial Orientation |                | N                   |            |     | $\Omega^1/\Omega^2$ |                    |         | $\Delta r / \Omega^1$ |     |          |          |          |                  |                  |                  |
| Final Orientation   |                | .,                  |            |     | $O^1$               |                    |         | 0 <sup>1</sup>        |     | -530.24  | -415.49  | -246.25  | -18.87           | -9.50            | -5.94            |
| Initial Orientation |                | $O^2$               |            |     | N                   |                    |         | 4 #/NT                |     |          |          |          |                  |                  |                  |
| Final Orientation   |                | $O^2$               |            |     | N                   |                    |         | AI/IN                 |     | -531 70  | -417.81  | -247 16  | -20.33           | -11.82           | -6.85            |
| r mar o'renauton    |                | Ŭ                   |            |     |                     |                    |         |                       |     | 551.70   | 417.01   | 247.10   | 20.55            | 11.02            | 0.05             |
| Initial Orientation | $\mathbf{O}^1$ | Ν                   | $O^1/O^2$  |     |                     | Ar                 |         |                       |     |          |          |          |                  |                  |                  |
| Final Orientation   | $O^1$          | N/Ar                | $O^1/O^2*$ |     |                     |                    |         |                       |     | -528.94  | -416.04  | -248.79  | -17.56           | -10.05           | -8.48            |
| Initial Orientation |                | $O^2$               | $N/O^1$    |     |                     | A.r/O <sup>1</sup> |         |                       |     |          |          |          |                  |                  |                  |
| Final Orientation   |                | $0^{1}/0^{2}$       | N/O        |     |                     | AI/0               |         |                       |     | -523 18  | -413.40  | -248 10  | -11.81           | -7.41            | -7.79            |
| i indi Griendation  |                | 0.0                 | 1          |     |                     | 0                  |         |                       |     | 525.10   | 415.40   | 2-10.10  | -11.01           |                  | -1.19            |
| Initial Orientation |                |                     |            |     | Ar/O <sup>1</sup>   |                    | Ν       | $O^1 / O^2$           | Ar  |          |          |          |                  |                  |                  |
| Final Orientation   |                |                     |            |     | Ar/O <sup>1</sup> * |                    | Ν       | $O^1/O^2$             | Ar  | -527.21  | -414.04  | -247.33  | -15.84           | -8.05            | -7.02            |

|                                          |            |                                     |                    |        | Amino Ac                                                    | id                             |                         | Etot     | E <sub>ele</sub> | Evdw     | $\Delta E_{tot}$ | $\Delta E_{ele}$ | $\Delta E_{vdw}$ |
|------------------------------------------|------------|-------------------------------------|--------------------|--------|-------------------------------------------------------------|--------------------------------|-------------------------|----------|------------------|----------|------------------|------------------|------------------|
|                                          | G9 Y10 V12 | H13                                 | H14                | Q15    | K16                                                         | L17                            | V18F19F20               | kcal/mol | kcal/mol         | kcal/mol | kcal/mol         | kcal/mol         | kcal/mol         |
| Initial Orientation<br>Final Orientation | Ar         | $O^1$                               |                    | N<br>N | $\frac{N/O^{1}/O^{2}}{O^{1}/O^{2}}$                         |                                | N<br>N                  | -463.78  | -376.21          | -250.41  | -16.99           | -7.88            | -13.01           |
| Initial Orientation<br>Final Orientation | N          | Ar/O <sup>2</sup><br>O <sup>2</sup> | N<br>N             |        |                                                             | $O^{1}/O^{2}$<br>$O^{1}/O^{2}$ |                         | -478.04  | -372.78          | -252.32  | -31.26           | -4.45            | -14.93           |
| Initial Orientation<br>Final Orientation |            | Ar                                  | $O^1/O^2$<br>$O^2$ |        | N<br>N                                                      |                                |                         | -467.86  | -368.81          | -254.28  | -21.07           | -0.48            | -16.88           |
| Initial Orientation<br>Final Orientation |            |                                     |                    |        |                                                             | $Ar/O^1/O$<br>$O^1/O^2$        | <sup>2</sup> N N<br>N N | -470.21  | -372.08          | -245.72  | -23.42           | -3.75            | -8.32            |
| Initial Orientation<br>Final Orientation | N          | N<br>N                              | $O^1/O^2$<br>$O^2$ |        |                                                             |                                |                         | -464.12  | -365.87          | -252.68  | -17.34           | 2.46             | -15.28           |
| Initial Orientation<br>Final Orientation | N          | N/Ar<br>N                           |                    |        | $\frac{\text{Ar/O}^{1}/\text{O}^{2}}{\text{Ar}}$<br>$O^{2}$ | C                              |                         | -459.77  | -370.62          | -244.19  | -12.99           | -2.29            | -6.79            |

Table 3.30: The solution phase results of dopamine interacting with the 1Z0Q conformer of β-amyloid

\*Indicates the functional group involved in the specified interaction that is occurring

Table 3.29 gives the results of the solution phase optimization of the 1IYT conformer of  $\beta$ -amyloid interacting with dopamine. Four of the six systems have measureable binding interactions. Three have binding occurring at both Lys16 and Phe20 and two at His13 and His14. The binding energies are only slightly favourable, and the electrostatic energies are very similar to the van der Waals energies.

The results of the solution phase minimizations of dopamine interacting with the 1Z0Q conformer of A $\beta$  are listed in Table 3.30. Only two of the six systems had measureable binding interactions, and both also had the least favourable binding energies of them. Van der Waals energies are more favourable than electrostatic energies, and two systems had potential interactions at both His13 and His14. There is also one system that presents potential binding at Leu17 and Phe20. The overall binding energies were only moderately favourable relative to the other systems.

#### 3.4.4 Conclusions of Dopamine Interacting with $\beta$ -Amyloid.

Overall the solution phase optimization of dopamine interacting with various conformations of  $\beta$ -amyloid indicates that binding interactions can occur. Some conformations showed less favourable energies of interactions than others, but measureable binding interactions were still formed. Cation- $\pi$  interactions are slightly more prevalent than hydrogen bonding interactions, with very few  $\pi$ - $\pi$  interactions formed. Potential interactions occur most often at both the His13 and His14 side chains in the **HHQK** region, in eleven of the systems in total. Interactions at both Leu17 and Phe20 are most common in the LVFF region with nine of the twenty-four final systems demonstrating potential binding at these sites. Interactions can also occur at Lys16 and Phe20 overlapping both **HHQK** and LVFF regions, as demonstrated in eight of the final systems.

As seen in the phenylalanine results, there does not appear to be a direct correlation between the number of measureable binding interactions and the energetic favourability of the systems. Despite this lack of correlation, these results suggest dopamine is capable of binding to and interacting with the  $\beta$ -amyloid peptide in both regions of interest. This implies that if dopamine levels are prevented from decreasing as part of the disease process, these higher dopamine concentrations could potentially prevent  $\beta$ -amyloid aggregation from occurring.

#### 3.5 Tryptophan and $\beta$ -Amyloid

Another amino acid identified in the virtual library for having the potential to interact with the **BBXB** region of A $\beta$  is tryptophan. Tryptophan (Figure 3.4) is one of the

138

amino acids involved in protein synthesis and is only obtained through diet and not synthesized in the body [86]. Tryptophan can exert an effect on neurotransmitters such as dopamine (increased tryptophan levels result in increased dopamine levels) and its metabolites can also affect the activity of neurotransmitters [86].



Figure 3.4 Tryptophan charged for physiological pH

Both L-tryptophan and D-tryptophan (Figure 3.5) were studied for their potential to interact with the **HHQK** region of  $\beta$ -amyloid. *In silico* studies examined potential binding in both gas phase and solution phase environments using MOE [87].





#### 3.5.1 Preparation of the $\beta$ -Amyloid Conformers for Optimization

The protein structures were reoptimized as the optimizations being performed were taking place in the Molecular Operating Environment instead of QUANTA like the previous calculations, as MOE provided a more complete program environment for the studies [46, 87]. For each of the 1AMB, 1AMC, 1AML, and 1BA4 conformations, the histidine residues were protonated, the charges of the system were corrected, the backbone was constrained and the system was minimized [68, 69, 70, 71]. For the 1IYT conformer, the carboxylate groups needed to be deprotonated, then the system charges were corrected, the protein backbone constrained and minimization was performed [72]. For the 1Z0Q conformer, hydrogen atoms needed to be added to the whole system, and the terminal carboxylate residue needed to be fixed; system charges were fixed for the force field and then the protein backbone was constrained before optimization occurred [75]. The total energy for each conformation with the constrained protein backbone is summarized in Appendix 6 and these optimizations were performed in the gas phase.

#### 3.5.2 Gas Phase Interactions Between D- and L-Tryptophan and $\beta$ -Amyloid

D- and L-tryptophan were examined for their potential to bind to the **HHQK** region of  $A\beta$  in the gas phase using the CHARMM22 force field [44, 47]. Initially optimizations were performed between the tryptophan stereoisomers and an isolated **VHHQKL** segment of  $A\beta$ ; however, these results were inconclusive. It seems likely that the lack of surrounding amino acids left the **HHQK** region too exposed and provided less stability for interactions to occur. It was determined that the whole protein would therefore be best for the calculations.

140
#### 3.5.2.1 PREPARATION OF D- AND L-TRYPTOPHAN FOR OPTIMIZATION

D-Tryptophan and L-tryptophan were first constructed in a neutrally charged form in a gas phase environment. Each structure was then subjected to a systematic conformational search based on torsional rotations. The lowest energy conformer was selected for each stereoisomer and then charged for physiological pH before minimization. The overall energies for these molecules are summarized in Table 3.31. The total energies of these systems were identical, with very slight variations in the electrostatic and van der Waals energies.

Table 3.31: Gas phase energies of D- and L-tryptophan

|              | Total Energy |
|--------------|--------------|
|              | (kcal/mol)   |
| D-tryptophan | 8.05         |
| L-tryptophan | 8.05         |

### 3.5.2.2 Selection of Initial Orientations for Optimization of Tryptophan and $\beta$ -Amyloid

There are three regions on tryptophan capable of interacting with the charged region of **HHQK** on A $\beta$ : The indole group, the positively charged amino group and the negatively charged carboxylate group. Each system was set up such that either the carboxylate group and the indole, or the amino group and the indole were situated approximately 3.0 Å from two of the positively charged amino acids in **HHQK**. Every possible initial orientation was determined, but there are spatial limitations for some of the protein conformations that prevented their usage.

#### 3.5.2.3 Optimization of the Gas Phase Systems

In these gas phase optimizations the protein backbone was constrained for the systems to prevent structural collapse from occurring. Minimization in MOE follows the pattern detailed in Section 1.1.4.3. The final energies for each optimized system were noted as well as any binding interactions that were occurring. The total binding energy for each system was calculated using the following equation:

$$\Delta E_{\text{bind}} = E_{\text{trp}A\beta} - E_{\text{trp}} - E_{A\beta} \tag{3.9}$$

Here the overall binding energy,  $\Delta E_{bind}$ , is the result of subtracting the individual energies of the optimized A $\beta$  protein,  $E_{A\beta}$ , and tryptophan,  $E_{trp}$ , from the energy of the optimized system.

## 3.5.3 Gas Phase Results of the Optimization of D-Tryptophan and L-Tryptophan with $\beta$ -Amyloid

The results of the gas phase optimizations of D- and L-tryptophan with A $\beta$  are summarized in the following tables. For the sake of clarity, the indole group has been abbreviated to In, the amino group to N and the carboxylate group to C. Each table denotes the initial orientation in which the functional groups were located, the final orientation, the overall binding energy, and the number of measurable bonds that formed. The measured bonds have been split into hydrogen bonds, and aromatic type interactions: cation- $\pi$ , and  $\pi$ - $\pi$ . The amino acids are identified by their three letter abbreviation, and any interaction occurring outside of the **HHQK** region is listed as "other".

Table 3.32 summarizes the results of the tryptophan stereoisomers with the 1AMB conformer of Aβ. L-tryptophan was capable of binding to **HHQK** in more

situations than D-tryptophan. Measurable bonds formed in nine of the sixteen systems. The four systems where binding occurred at two or more of the **HHQK** side chains were selected for optimization in the solution phase.

Table 3.33 summarizes the results of D- and L-tryptophan interacting with the 1AMC conformer of  $\beta$ -amyloid. Measurable bonds have formed in seven of the sixteen systems, and both D- and L-tryptophan are capable of binding to/interacting with multiple sites within the **HHQK** region. Therefore, the four systems with the lowest energy and multiple binding interactions were selected for solution phase optimizations.

|              | I     | nitial O | rientatio | on    |       | Fina  | l Orient | tation |       | $\Delta E_{bind}$ | Measureal | ble Bonds |
|--------------|-------|----------|-----------|-------|-------|-------|----------|--------|-------|-------------------|-----------|-----------|
|              | His13 | His14    | Gln15     | Lys16 | His13 | His14 | Gln15    | Lys16  | Other | (kcal/mol)        | H-Bond    | +-π       |
| D-Tryptophan | In    | С        |           |       |       | С     |          |        |       | -36.63            | 0         | 0         |
|              | С     | In       |           |       | С     | In    |          |        | In    | -45.63            | 0         | 1         |
|              | In    | Ν        |           |       |       | Ν     |          |        | In    | -35.54            | 0         | 1         |
|              | Ν     | In       |           |       |       | In    |          |        |       | -21.92            | 0         | 0         |
|              | С     |          |           | In    | In    |       |          |        |       | -31.93            | 0         | 0         |
|              | In    |          |           | С     |       |       |          | С      |       | -31.51            | 1         | 0         |
|              | Ν     |          |           | In    | С     |       |          |        |       | -32.58            | 0         | 0         |
|              | In    |          |           | Ν     |       |       |          | С      |       | -26.35            | 1         | 0         |
| L-Tryptophan | In    | С        |           |       |       | С     |          |        | In    | -25.14            | 0         | 0         |
|              | С     | In       |           |       | С     | In    |          |        |       | -38.13            | 0         | 0         |
|              | In    | Ν        |           |       | Ν     |       |          |        |       | -51.62            | 0         | 1         |
|              | Ν     | In       |           |       |       | In    |          |        |       | -33.78            | 0         | 2         |
|              | С     |          |           | In    | C     |       |          | In     |       | -32.51            | 0         | 1         |
|              | In    |          |           | С     | In    |       |          | С      | С     | -33.67            | 1         | 0         |
|              | Ν     |          |           | In    | -     | -     | -        | -      | -     | -26.12            | 0         | 0         |
|              | In    |          |           | Ν     |       |       |          | С      | In    | -23.85            | 0         | 0         |

 Table 3.32: The gas phase results of D- and L-tryptophan interacting with the 1AMB conformer of β-amyloid

|              | I     | nitial Or | rientatio | n     |       | Fina  | l Orient | ation |       | $\Delta E_{bind}$ | Measurea | ble Bonds |
|--------------|-------|-----------|-----------|-------|-------|-------|----------|-------|-------|-------------------|----------|-----------|
|              | His13 | His14     | Gln15     | Lys16 | His13 | His14 | Gln15    | Lys16 | Other | (kcal/mol)        | H-Bond   | $+-\pi$   |
| D-Tryptophan | N     | In        |           |       |       | In    |          |       | Ν     | -51.86            | 0        | 0         |
|              | In    | Ν         |           |       |       | Ν     |          |       | С     | -41.11            | 1        | 0         |
|              | С     | In        |           |       | С     | In    |          |       | In/C  | -42.66            | 0        | 1         |
|              | In    | С         |           |       |       | С     |          |       | In/C  | -38.22            | 0        | 0         |
|              | Ν     |           |           | In    | -     | -     | -        | -     | -     | -33.98            | 0        | 0         |
|              | In    |           |           | Ν     |       |       |          | С     | In    | -46.20            | 1        | 0         |
|              | С     |           |           | In    | С     |       |          | In    |       | -30.99            | 0        | 1         |
|              | In    |           |           | С     | In    |       |          | С     |       | -32.50            | 2        | 0         |
| L-Tryptophan | N     | In        |           |       |       | In    |          |       | С     | -33.69            | 1        | 0         |
|              | In    | Ν         |           |       |       |       |          | Ν     | In    | -36.84            | 0        | 0         |
|              | С     | In        |           |       | С     | In    |          |       |       | -36.09            | 0        | 0         |
|              | In    | С         |           |       |       | С     |          |       | In    | -28.38            | 0        | 0         |
|              | Ν     |           |           | In    | С     |       |          | In    | In    | -38.33            | 0        | 0         |
|              | In    |           |           | Ν     | -     | -     | -        | -     | -     | -32.19            | 0        | 0         |
|              | C     |           |           | In    | С     |       |          |       |       | -36.01            | 0        | 0         |
|              | In    |           |           | С     | In    |       |          | С     | С     | -34.80            | 1        | 0         |

Table 3.33: The gas phase results of D- and L-tryptophan interacting with the 1AMC conformer of β-amyloid

Table 3.34: The gas phase results of D- and L-tryptophan interacting with the 1AML conformer of β-amyloid

|              | Iı    | nitial Or | rientatio | n     |       | Fina  | l Orient | ation |       | $\Delta E_{bind}$ | Measureat | ole Bonds |
|--------------|-------|-----------|-----------|-------|-------|-------|----------|-------|-------|-------------------|-----------|-----------|
|              | His13 | His14     | Gln15     | Lys16 | His13 | His14 | Gln15    | Lys16 | Other | (kcal/mol)        | H-Bond    | π-π       |
| D-Tryptophan | In    | Ν         |           |       | С     |       |          |       | In    | -42.15            | 0         | 0         |
|              | Ν     | In        |           |       | С     |       |          |       | Ν     | -43.21            | 0         | 0         |
|              | С     | In        |           |       | С     |       |          |       | In/C  | -40.08            | 0         | 0         |
|              | In    | С         |           |       |       | С     |          |       | In/C  | -45.90            | 0         | 0         |
|              | Ν     |           |           | In    | С     |       |          |       |       | -25.35            | 0         | 0         |
|              | In    |           |           | Ν     |       |       |          | С     |       | -21.77            | 1         | 0         |
|              | С     |           |           | In    | С     |       |          |       |       | -29.18            | 1         | 0         |
|              | In    |           |           | С     | In    |       |          | С     |       | -33.84            | 0         | 0         |
| L-Tryptophan | In    | Ν         |           |       | -     | -     | -        | -     | -     | -28.59            | 0         | 0         |
|              | Ν     | In        |           |       | С     |       |          |       | In    | -44.01            | 0         | 2         |
|              | С     | In        |           |       | С     |       |          |       | In    | -44.62            | 0         | 2         |
|              | In    | С         |           |       | In    | С     |          |       | С     | -50.11            | 0         | 0         |
|              | Ν     |           |           | In    | С     |       |          |       |       | -22.99            | 0         | 0         |
|              | In    |           |           | Ν     | In    |       |          |       |       | -12.44            | 0         | 0         |
|              | С     |           |           | In    | C     |       |          | In    |       | -32.24            | 0         | 0         |
|              | In    |           |           | С     |       |       |          | С     |       | -30.62            | 1         | 0         |

|              | I     | nitial O | rientatio | on    |       | Final O | rientatio | on    | $\Delta E_{bind}$ | Measureal | ble Bonds |
|--------------|-------|----------|-----------|-------|-------|---------|-----------|-------|-------------------|-----------|-----------|
|              | His13 | His14    | Gln15     | Lys16 | His13 | His14   | Gln15     | Lys16 | (kcal/mol)        | H-Bond    | $+-\pi$   |
| D-Tryptophan | In    | С        |           |       |       | С       |           |       | -21.32            | 0         | 0         |
|              | C     | In       |           |       | С     | In      |           |       | -29.10            | 0         | 0         |
|              | In    | Ν        |           |       | In    | С       |           |       | -27.24            | 0         | 1         |
|              | Ν     | In       |           |       | Ν     | In      |           |       | -23.94            | 0         | 2         |
| L-Tryptophan | In    | С        |           |       | In    |         |           | С     | -36.06            | 1         | 0         |
|              | C     | In       |           |       | С     | In      |           |       | -30.62            | 0         | 0         |
|              | In    | Ν        |           |       | In    |         |           |       | -24.94            | 0         | 0         |
|              | Ν     | In       |           |       |       | In      |           |       | -24.10            | 0         | 0         |

Table 3.35: The gas phase results of D- and L-tryptophan interacting with the 1BA4 conformer of β-amyloid

## Table 3.36: The gas phase results of D- and L-tryptophan interacting with the 1IYT conformer of β-amyloid

|              | I     | nitial O | rientatio | on    |       | Fina  | l Orient | ation |       | $\Delta E_{bind}$ | Measureab | le Bonds |
|--------------|-------|----------|-----------|-------|-------|-------|----------|-------|-------|-------------------|-----------|----------|
|              | His13 | His14    | Gln15     | Lys16 | His13 | His14 | Gln15    | Lys16 | Other | (kcal/mol)        | H-Bond    | $+-\pi$  |
| D-Tryptophan | N     | In       |           |       | N     | In    |          |       | In    | -23.57            | 0         | 2        |
|              | In    | Ν        |           |       | In    |       |          |       |       | -19.12            | 0         | 0        |
|              | In    | С        |           |       | In    |       |          |       |       | -28.52            | 0         | 0        |
|              | С     | In       |           |       | С     | In    |          |       |       | -31.07            | 0         | 0        |
|              | In    |          |           | Ν     | In    |       |          |       | In    | -25.89            | 0         | 0        |
|              | Ν     |          |           | In    |       |       |          | In    |       | -12.77            | 0         | 0        |
|              | In    |          |           | С     | In    |       |          | С     |       | -30.26            | 1         | 0        |
|              | С     |          |           | In    | С     |       |          |       |       | -30.04            | 0         | 0        |
| L-Tryptophan | N     | In       |           |       | Ν     | In    |          |       | In    | -25.20            | 0         | 1        |
|              | In    | Ν        |           |       | In    |       |          |       |       | -38.01            | 0         | 0        |
|              | С     | In       |           |       | In    |       |          |       | In    | -43.10            | 0         | 0        |
|              | In    | С        |           |       | С     |       |          |       |       | -24.82            | 0         | 0        |
|              | In    |          |           | Ν     | In    |       |          | С     |       | -32.00            | 0         | 0        |
|              | Ν     |          |           | In    | С     |       |          | In    |       | -27.06            | 1         | 1        |
|              | In    |          |           | С     |       |       |          | С     | Ν     | -38.01            | 0         | 0        |
|              | С     |          |           | In    | С     |       |          | In    |       | -29.87            | 0         | 0        |

|              | I     | nitial O | rientatio | on    |       | Fina  | l Orient | ation |       | $\Delta E_{bind}$ | Measureal | ble Bonds |
|--------------|-------|----------|-----------|-------|-------|-------|----------|-------|-------|-------------------|-----------|-----------|
|              | His13 | His14    | Gln15     | Lys16 | His13 | His14 | Gln15    | Lys16 | Other | (kcal/mol)        | H-Bond    | $+-\pi$   |
| D-Tryptophan | In    | Ν        |           |       | In    |       |          |       | In    | -26.71            | 0         | 0         |
|              | Ν     | In       |           |       | -     | -     | -        | -     | -     | -21.14            | 0         | 0         |
|              | In    | С        |           |       |       | С     |          |       |       | -29.97            | 0         | 0         |
|              | С     | In       |           |       | -     | -     | -        | -     | -     | -31.37            | 0         | 0         |
|              | In    |          |           | Ν     | In    |       |          |       |       | -21.36            | 0         | 0         |
|              | Ν     |          |           | In    | -     | -     | -        | -     | -     | -22.68            | 0         | 0         |
|              | In    |          |           | С     | In    |       |          | С     |       | -26.10            | 2         | 0         |
|              | С     |          |           | In    | С     |       |          | In    |       | -27.00            | 0         | 0         |
| L-Tryptophan | In    | Ν        |           |       | In    |       |          | In    |       | -27.66            | 0         | 0         |
|              | Ν     | In       |           |       | С     |       |          | In    |       | -36.78            | 0         | 0         |
|              | In    | С        |           |       |       | С     |          |       |       | -32.04            | 0         | 0         |
|              | С     | In       |           |       | С     | In    |          |       |       | -32.76            | 1         | 0         |
|              | In    |          |           | Ν     | In    |       |          | С     |       | -25.05            | 1         | 0         |
|              | Ν     |          |           | In    | C/In  |       |          |       |       | -23.32            | 0         | 0         |
|              | In    |          |           | С     | In    |       |          | С     |       | -25.53            | 1         | 0         |
|              | С     |          |           | In    | C     |       |          |       |       | -30.36            | 0         | 0         |

Table 3.37: The gas phase results of D- and L-tryptophan interacting with the 1Z0Q conformer of β-amyloid

The results in Table 3.34 summarize the results of tryptophan interacting with the 1AML conformer of A $\beta$ . Measurable interactions only formed in five of the sixteen systems, and binding at two or more sites in **HHQK** only occurred in three systems; these three plus one more system with the lowest overall energy were selected for solution phase optimization.

The interactions of tryptophan with the 1BA4 conformer of  $\beta$ -amyloid are summarized in Table 3.35 and show measured interactions in three of the eight systems. Multiple binding interactions at **HHQK** were noted, particularly for D-tryptophan. The four systems with the most favourable energy as well as binding at two sites within **HHQK** were selected for optimization in a solvated environment. Table 3.36 demonstrates that when D- and L-tryptophan interact with the 1IYT conformer of A $\beta$ , measured interactions only form in four of the sixteen systems. Both D-tryptophan and L-tryptophan demonstrated the capacity to bind to more than one residue in **HHQK**, and from these the four with the lowest energies were selected for solution phase calculations.

The results of the gas phase optimizations of D-tryptophan and L-tryptophan with the 1Z0Q conformer are given in Table 3.37. Only four systems had measured interactions but seven systems demonstrated binding at two sites in **HHQK**. L-tryptophan interacted more favourably with **HHQK** than D-tryptophan, but both were capable of binding to the region. The four systems with multiple binding interactions and the lowest overall energies were selected for optimization. These selected configurations are summarized in Table 3.38

| Interaction | Binding Energy |   | Interaction | Binding Energy |
|-------------|----------------|---|-------------|----------------|
|             | (kcal/mol)     |   |             | (kcal/mol)     |
| 1           | AMB            |   |             | 1BA4           |
| D-HCHIn     | -45.63         |   | L-HInHC     | -36.06         |
| L-HCHIn     | -38.13         |   | L-HCHIn     | -30.62         |
| L-HInHQKC   | -33.67         |   | D-HCHIn     | -29.10         |
| L-HCHQKIn   | -32.51         |   | D-HInHN     | -27.24         |
| 1           | AMC            |   |             | 1IYT           |
| D-HCHIn     | CHIn -42.66    |   | L-HInHQKN   | -32.00         |
| L-HNHQKIn   | -38.33         |   | D-HCHIn     | -31.07         |
| L-HCHIn     | -36.09         |   | D-HInHQKC   | -30.26         |
| L-HInHQKC   | -34.79         |   | L-HCHQKIn   | -29.87         |
| 1           | laml           |   |             | 1Z0Q           |
| L-HInHC     | -50.11         | - | L-HNHIn     | -36.78         |
| D-HInHC     | -45.90         |   | L-HInHN     | -32.76         |
| D-HInHQKC   | -33.84         |   | L-HCHIn     | -27.66         |
| L-HCHQKIn   | -32.24         |   | D-HCHQKIn   | -27.00         |

Table 3.38: Selected systems of D- and L-tryptophan for solution phase optimization

### 3.5.4 Solution Phase Optimization of D-Tryptophan and L-tryptophan with $\beta$ -Amyloid

From the optimized gas phase results of D-tryptophan and L-tryptophan with  $\beta$ amyloid, four systems from each A $\beta$  conformer were selected for solution phase optimization. Solution phase optimizations were performed in MOE using the CHARMM22 force field [48, 87].

#### 3.5.4.1 Solvation and Minimization Set-Up for D- and L-Tryptophan and $\beta$ -Amyloid

Each of the selected gas phase systems was used as the starting configuration for the solution phase optimizations. In MOE, there are several different solvation methods available to the user [87]. For these optimizations, explicit solvation was selected to surround the entire system in a box of water molecules. The size of the box varied for each system and could be adjusted as necessary to ensure that the system was completely surrounded by water, and periodic boundary conditions were placed on the box to prevent expansion of the system. Given the presence of water molecules, the protein backbone did not need to be constrained for these calculations. Before optimization of the solvated system, verification was made that the charges for the system were calculated appropriately for the force field.

The individual  $A\beta$  proteins conformations, D-tryptophan, and L-tryptophan were also optimized in a solvated environment to provide the energies necessary for calculating the binding energies occurring in the optimized systems. The tryptophan energies are summarized in Table 3.39, and the protein energies are given in Appendix 6.

|              | Energies (kcal/mol) |           |           |  |  |  |  |  |  |
|--------------|---------------------|-----------|-----------|--|--|--|--|--|--|
|              | $E_{tot}$           | $E_{ele}$ | $E_{vdw}$ |  |  |  |  |  |  |
| D-Tryptophan | 13.48               | 11.07     | -4.52     |  |  |  |  |  |  |
| L-Tryptophan | 12.95               | 9.29      | -4.78     |  |  |  |  |  |  |

#### Table 3.39: Energies of solvated D-tryptophan and L-tryptophan

### 3.5.5 SOLUTION PHASE RESULTS OF D-TRYPTOPHAN AND L-TRYPTOPHAN INTERACTING WITH β-AMYLOID

The results of the solution phase optimizations of the optimized D-tryptophan-A $\beta$ and L-tryptophan-A $\beta$  systems have been summarized in tables for each conformation of  $\beta$ -amyloid. The tables summarize the results by including which conformation of tryptophan was involved in the interaction as well as giving the initial and final binding orientations. The energies of the optimized systems are listed and following are the three calculated energies: the total binding energy, electrostatic binding energy and van der Waals binding energy.

Any measureable interactions that occurred as a result of the optimization are indicated according to the following colour scheme: hydrogen bonds are coloured orange and cation- $\pi$  interactions are green. Interaction occurring between tryptophan and the – CH<sub>2</sub>- region of the amino acids (as opposed to the charged side chain) are shown in indigo. Interactions occurring outside the **HHQK** region of interest are also indicated according to the amino acid side chain where binding may be occurring. The amino acids are represented in single letter notation with the respective site number on the protein chain and the tryptophan functional groups are represented by N, C, and In for the amino group, the carboxylate group, and the indole ring.

149

The final energies for the binding interactions were calculated using the energies listed in Table 3.39 via the following equations:

$$\Delta E_{tot} = E_{tot} - E_{A\beta} - E_{trp} \tag{3.10}$$

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eletrp}$$
(3.11)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwtrp}$$
(3.12)

where the energies of the solution phase optimized  $\beta$ -amyloid conformers and the tryptophan molecule were subtracted from the total energies of the optimized system for each of the overall total energy, the electrostatic energy and the van der Waals energy of the systems. These energies were calculated for the systems once the solvent had been removed and the protein backbone was constrained to better show the relationship between tryptophan and  $\beta$ -amyloid. Depending on the nature of the system being examined, the energies for D-tryptophan or L-tryptophan were used as required.

Each system was also examined for the bonding interactions that may have occurred between tryptophan and A $\beta$  following optimization in the solution phase.

Tables 3.40 through 3.45 summarize the results of the solution phase optimization of D-tryptophan and L-tryptophan with the different conformers of  $\beta$ -amyloid.

| D- or L-   |                     | Tyr10   | His13    | His14 | Gln15 | Lys16 | Leu17 |
|------------|---------------------|---------|----------|-------|-------|-------|-------|
| Tryptophan |                     |         |          |       |       |       |       |
| D          | Initial Orientation | In      | С        | In    |       |       |       |
| D          | Final Orientation   |         | С        | In    |       |       |       |
|            | Total Energy =      | -24.63  | kcal/mol |       |       |       |       |
|            | van der Waals =     | 56.19   | kcal/mol |       |       |       |       |
|            | electrostatic =     | -236.28 | kcal/mol |       |       |       |       |
|            |                     |         |          |       |       |       |       |
|            | $\Delta E_{tot} =$  | -36.46  | kcal/mol |       |       |       |       |
|            | $\Delta E_{vdw} =$  | -1.65   | kcal/mol |       |       |       |       |
|            | $\Delta E_{ele} =$  | -33.76  | kcal/mol |       |       |       |       |
|            | Initial Orientation |         | С        | In    |       |       |       |
| L          | Final Orientation   | С       | С        | In    |       |       |       |
|            | T ( 1 F             | 26.54   | 1 1/ 1   |       |       |       |       |
|            | I otal Energy =     | -26.54  | kcal/mol |       |       |       |       |
|            | van der Waals =     | 4/.49   | kcal/mol |       |       |       |       |
|            | electrostatic =     | -238.70 | kcal/mol |       |       |       |       |
|            | $\Delta E_{tot} =$  | -37.84  | kcal/mol |       |       |       |       |
|            | $\Delta E_{vdw} =$  | -8.57   | kcal/mol |       |       |       |       |
|            | $\Delta E_{ele} =$  | -35.93  | kcal/mol |       |       |       |       |
|            | Initial Orientation |         | C        |       |       | In    |       |
| L          | Final Orientation   |         | C<br>C   |       |       | In    |       |
|            |                     |         |          |       |       |       |       |
|            | Total Energy =      | -31.64  | kcal/mol |       |       |       |       |
|            | van der Waals =     | 50.74   | kcal/mol |       |       |       |       |
|            | electrostatic =     | -229.32 | kcal/mol |       |       |       |       |
|            | $\Delta E_{tot} =$  | -42.94  | kcal/mol |       |       |       |       |
|            | $\Delta E_{vdw} =$  | -5.32   | kcal/mol |       |       |       |       |
|            | $\Delta E_{ele} =$  | -26.55  | kcal/mol |       |       |       |       |
|            |                     |         |          |       |       |       |       |
| Т          | Initial Orientation |         | In       |       |       | С     | С     |
| Ľ          | Final Orientation   |         | In       |       |       | С     |       |
|            | Total Energy —      | 1.92    | kaal/mol |       |       |       |       |
|            | Von der Weels -     | -1.02   |          |       |       |       |       |
|            | van der waars –     | 37.43   |          |       |       |       |       |
|            | electrostatic =     | -221.64 | kcai/mol |       |       |       |       |
|            | $\Delta E_{tot} =$  | -13.12  | kcal/mol |       |       |       |       |
|            | $\Delta E_{vdw} =$  | 1.39    | kcal/mol |       |       |       |       |
|            | $\Delta E_{ele} =$  | -18.87  | kcal/mol |       |       |       |       |
|            |                     |         |          |       |       |       |       |

# Table 3.40: The solution phase results of D- and L-tryptophan interacting with the 1AMB conformer of β-amyloid

| D- or L-   |                     | Tyr10   | His13    | His14  | Gln15 | Lys16 | Leu17  | Phe20 |
|------------|---------------------|---------|----------|--------|-------|-------|--------|-------|
| Tryptophan |                     |         |          |        |       |       |        |       |
| L          | Initial Orientation |         | С        |        |       | In    | In     | In    |
|            | Final Orientation   |         | С        |        |       | In    | In     | In    |
|            | Total Energy =      | -39.29  | kcal/mol |        |       |       |        |       |
|            | van der Waals =     | 56.91   | kcal/mol |        |       |       |        |       |
|            | electrostatic =     | -263.30 | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{tot} =$  | -25.02  | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{vdw} =$  | 2.34    | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{ele} =$  | -38.03  | kcal/mol |        |       |       |        |       |
|            | Initial Orientation |         | C        | т      |       |       |        |       |
| L          | Final Orientation   | Ν       | C        | I<br>C |       |       |        |       |
|            | I mai Orientation   | 1       | C        | C      |       |       |        |       |
|            | Total Energy =      | -4.90   | kcal/mol |        |       |       |        |       |
|            | van der Waals =     | 58.35   | kcal/mol |        |       |       |        |       |
|            | electrostatic =     | -233.26 | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{tot} =$  | 9.37    | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{vdw} =$  | 3.79    | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{ele} =$  | -7.98   | kcal/mol |        |       |       |        |       |
| _          | Initial Orientation | In/C    | С        | In     |       |       |        |       |
| D          | Final Orientation   | In/C    | -        | In     |       |       |        |       |
|            | Total Energy =      | -63 77  | kcal/mol |        |       |       |        |       |
|            | van der Waals =     | 52 22   | kcal/mol |        |       |       |        |       |
|            | electrostatic =     | -266.21 | kcal/mol |        |       |       |        |       |
|            |                     | 200.21  |          |        |       |       |        |       |
|            | $\Delta E_{tot} =$  | -50.03  | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{vdw} =$  | -4.13   | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{ele} =$  | -41.20  | kcal/mol |        |       |       |        |       |
|            | Initial Orientation |         | In       |        |       | С     | C      |       |
| L          | Final Orientation   |         | In       |        |       | C     | C<br>C |       |
|            | 1 mai Orienation    |         |          |        |       | U     | U      |       |
|            | Total Energy =      | -13.59  | kcal/mol |        |       |       |        |       |
|            | van der Waals =     | 57.59   | kcal/mol |        |       |       |        |       |
|            | electrostatic =     | -247.56 | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{tot} =$  | 0.68    | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{vdw} =$  | 3.02    | kcal/mol |        |       |       |        |       |
|            | $\Delta E_{ele} =$  | -22.29  | kcal/mol |        |       |       |        |       |
|            | ***                 |         |          |        |       |       |        |       |

# Table 3.41: The solution phase results of D- and L-tryptophan interacting with the 1AMC conformer of β-amyloid

| D- or L-   |                                                      | Tyr10                      | Vall2                            | His13    | His14  | Gln15 | Lys16  | Leu17 |
|------------|------------------------------------------------------|----------------------------|----------------------------------|----------|--------|-------|--------|-------|
| Tryptophan |                                                      |                            |                                  |          |        |       |        |       |
| L          | Initial Orientation<br>Final Orientation             | C                          |                                  | In<br>In | C<br>C |       |        | С     |
|            | Total Energy =<br>van der Waals =<br>electrostatic = | 102.01<br>81.00<br>-202.40 | kcal/mol<br>kcal/mol<br>kcal/mol |          |        |       |        |       |
|            | $\Delta E_{tot} =$                                   | -37.24                     | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{vdw} =$                                   | 3.79                       | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{ele} =$                                   | -38.50                     | kcal/mol                         |          |        |       |        |       |
| D          | Initial Orientation<br>Final Orientation             |                            |                                  |          | C<br>C |       |        | С     |
|            | Total Energy =                                       | 93.72                      | kcal/mol                         |          |        |       |        |       |
|            | van der Waals =                                      | 79.61                      | kcal/mol                         |          |        |       |        |       |
|            | electrostatic =                                      | -208.03                    | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{tot} =$                                   | -46.05                     | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{vdw} =$                                   | 0.63                       | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{ele} =$                                   | -44.39                     | kcal/mol                         |          |        |       |        |       |
| D          | Initial Orientation<br>Final Orientation             |                            |                                  | In<br>In |        |       | C<br>C |       |
|            | Total Energy =                                       | 92.08                      | kcal/mol                         |          |        |       |        |       |
|            | van der Waals =                                      | 76.51                      | kcal/mol                         |          |        |       |        |       |
|            | electrostatic =                                      | -198.97                    | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{tot} =$                                   | -47.69                     | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{vdw} =$                                   | -2.47                      | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{ele} =$                                   | -35.32                     | kcal/mol                         |          |        |       |        |       |
|            | Initial Orientation                                  |                            |                                  | C        |        |       | In     |       |
| L          | Final Orientation                                    |                            | In                               | C        |        |       | In     |       |
|            |                                                      |                            |                                  | -        |        |       |        |       |
|            | Total Energy =                                       | 109.42                     | kcal/mol                         |          |        |       |        |       |
|            | van der Waals =                                      | 84.74                      | kcal/mol                         |          |        |       |        |       |
|            | electrostatic =                                      | -190.30                    | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{tot} =$                                   | -29.82                     | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{vdw} =$                                   | 7.53                       | kcal/mol                         |          |        |       |        |       |
|            | $\Delta E_{ele} =$                                   | -26.39                     | kcal/mol                         |          |        |       |        |       |

# Table 3.42: The solution phase results of D- and L-tryptophan interacting with the 1AML conformer of β-amyloid

| D- or L-   | -                   | His13          | His14      | Gln15 | Lys16 |
|------------|---------------------|----------------|------------|-------|-------|
| Tryptophan |                     |                |            |       |       |
| L          | Initial Orientation | In             | G          |       | С     |
|            | Final Orientation   | In             | С          |       |       |
|            | Total Energy =      | 102.66         | kcal/mol   |       |       |
|            | van der Waals =     | 95.50          | kcal/mol   |       |       |
|            | electrostatic =     | -202.78        | kcal/mol   |       |       |
|            | $\Delta E_{tot} =$  | -48.04         | kcal/mol   |       |       |
|            | $\Delta E_{vdw} =$  | 8.46           | kcal/mol   |       |       |
|            | $\Delta E_{ele} =$  | -33.28         | kcal/mol   |       |       |
|            |                     | G              | Ŧ          |       |       |
| L          | Initial Orientation | C              | In         |       |       |
|            | Final Orientation   | C              | In         |       |       |
|            | Total Energy =      | 108.75         | kcal/mol   |       |       |
|            | van der Waals =     | 76.18          | kcal/mol   |       |       |
|            | electrostatic =     | -195.24        | kcal/mol   |       |       |
|            | $\Delta E_{tot} =$  | -41.96         | kcal/mol   |       |       |
|            | $\Delta E_{vdw} =$  | -10.86         | kcal/mol   |       |       |
|            | $\Delta E_{ele} =$  | -25.73         | kcal/mol   |       |       |
|            |                     | C              | Ŧ          |       |       |
| D          | Initial Orientation | C<br>C         | ln<br>La   |       |       |
|            | Final Orientation   | C              | In         |       |       |
|            | Total Energy =      | 100.33         | kcal/mol   |       |       |
|            | van der Waals =     | 87.50          | kcal/mol   |       |       |
|            | electrostatic =     | -200.57        | kcal/mol   |       |       |
|            | $\Delta E_{tot} =$  | -52.15         | kcal/mol   |       |       |
|            | $\Delta E_{vdw} =$  | 0.21           | kcal/mol   |       |       |
|            | $\Delta E_{ele} =$  | -31.06         | kcal/mol   |       |       |
|            |                     |                |            |       |       |
| D          | Initial Orientation | In             | С          |       |       |
| D          | Final Orientation   | In             | С          |       |       |
|            | Total Enormy —      | 01 25          | least/mai  |       |       |
|            | van der Waals –     | 01.23<br>80.64 | kcal/mol   |       |       |
|            | electrostatic =     | -218.37        | kcal/mol   |       |       |
|            | ciccuostatic –      | -210.3/        | KCa1/11101 |       |       |
|            | $\Delta E_{tot} =$  | -71.23         | kcal/mol   |       |       |
|            | $\Delta E_{vdw} =$  | -6.66          | kcal/mol   |       |       |
|            | $\Delta E_{ele} =$  | -48.86         | kcal/mol   |       |       |

## Table 3.43: The solution phase results of D- and L-tryptophan interacting with the 1BA4 conformer of β-amyloid

| D- or L-   |                      | Vall2           | His13       | His14 | Gln15 | Lys16 | Leu17 |
|------------|----------------------|-----------------|-------------|-------|-------|-------|-------|
| Tryptophan |                      |                 |             |       |       |       |       |
| D          | Initial Orientation  |                 | In          |       |       | С     |       |
| D          | Final Orientation    |                 | In          |       |       | С     |       |
|            | Total Engineers —    | 101.26          | 1.001/10001 |       |       |       |       |
|            | Total Energy =       | 101.30          | kcal/mol    |       |       |       |       |
|            | van der waars –      | 83.17<br>212.94 |             |       |       |       |       |
|            | electrostatic –      | -213.84         | KCal/III01  |       |       |       |       |
|            | $\Delta E_{tot} =$   | 11.26           | kcal/mol    |       |       |       |       |
|            | $\Delta E_{vdw} =$   | -14.09          | kcal/mol    |       |       |       |       |
|            | $\Delta E_{ele} =$   | 7.23            | kcal/mol    |       |       |       |       |
| т          | Initial Orientation  |                 | In          |       |       | С     |       |
| L          | Final Orientation    |                 | In          |       |       | С     |       |
|            | Total Energy —       | 05.63           | keal/mol    |       |       |       |       |
|            | van der Waals –      | 95.05           | kcal/mol    |       |       |       |       |
|            | electrostatic =      | _221.83         | kcal/mol    |       |       |       |       |
|            |                      | -221.03         | KCalinoi    |       |       |       |       |
|            | $\Delta E_{tot} =$   | 6.03            | kcal/mol    |       |       |       |       |
|            | $\Delta E_{vdw} =$   | -12.96          | kcal/mol    |       |       |       |       |
|            | $\Delta E_{ele} =$   | -0.51           | kcal/mol    |       |       |       |       |
|            | Initial Orientation  |                 | С           |       |       | In    |       |
| L          | Final Orientation    | In              | C           |       |       | In    |       |
|            |                      |                 | C           |       |       |       |       |
|            | Total Energy =       | 75.74           | kcal/mol    |       |       |       |       |
|            | van der Waals =      | 87.28           | kcal/mol    |       |       |       |       |
|            | electrostatic =      | -234.88         | kcal/mol    |       |       |       |       |
|            | $\Delta E_{tot} =$   | -13.86          | kcal/mol    |       |       |       |       |
|            | $\Delta E_{vdw} =$   | -10.20          | kcal/mol    |       |       |       |       |
|            | $\Delta E_{ele} =$   | -13.56          | kcal/mol    |       |       |       |       |
|            |                      |                 |             |       |       |       |       |
| Ð          | Initial Orientation  |                 | С           | In    |       |       |       |
| D          | Final Orientation    |                 | С           |       |       |       |       |
|            |                      |                 |             |       |       |       |       |
|            | Total Energy =       | 57.96           | kcal/mol    |       |       |       |       |
|            | van der Waals =      | 79.94           | kcal/mol    |       |       |       |       |
|            | electrostatic =      | -248.45         | kcal/mol    |       |       |       |       |
|            | $\Delta E_{tot} =$   | -32.17          | kcal/mol    |       |       |       |       |
|            | $\Delta E_{ydy} =$   | -19.32          | kcal/mol    |       |       |       |       |
|            | $\Delta F_{\perp} =$ | _27.38          | kcal/mol    |       |       |       |       |
|            | ∠⊐⊥-ele              | -21.30          | KCu/1101    |       |       |       |       |

# Table 3.44: The solution phase results of D- and L-tryptophan interacting with the1IYT conformer of β-amyloid

| D- or L-   |                                                            | Gly9                       | His13                            | His14    | Gln15 | Lys16    |
|------------|------------------------------------------------------------|----------------------------|----------------------------------|----------|-------|----------|
| Tryptophan |                                                            |                            |                                  |          |       |          |
| L          | Initial Orientation<br>Final Orientation                   | С                          | C<br>C                           |          |       | In<br>In |
|            | Total Energy =<br>van der Waals =<br>electrostatic =       | 120.09<br>76.61<br>-193.02 | kcal/mol<br>kcal/mol<br>kcal/mol |          |       |          |
|            | $\Delta E_{tot} = \\ \Delta E_{vdw} = \\ \Delta E_{ele} =$ | -14.64<br>-5.16<br>-2.87   | kcal/mol<br>kcal/mol<br>kcal/mol |          |       |          |
| L          | Initial Orientation<br>Final Orientation                   |                            | C<br>C                           | In<br>In |       |          |
|            | Total Energy =<br>van der Waals =<br>electrostatic =       | 119.14<br>78.77<br>-205.75 | kcal/mol<br>kcal/mol<br>kcal/mol |          |       |          |
|            | $\Delta E_{tot} = \Delta E_{vdw} = \Delta E_{ele} = $      | -15.59<br>-3.00<br>-15.61  | kcal/mol<br>kcal/mol<br>kcal/mol |          |       |          |
| L          | Initial Orientation<br>Final Orientation                   | In                         | In<br>In                         | In       |       | In       |
|            | Total Energy =<br>van der Waals =<br>electrostatic =       | 119.57<br>70.81<br>-205.36 | kcal/mol<br>kcal/mol<br>kcal/mol |          |       |          |
|            | $\Delta E_{tot} = \Delta E_{vdw} = \Delta E_{ele} =$       | -15.16<br>-10.96<br>-15.22 | kcal/mol<br>kcal/mol<br>kcal/mol |          |       |          |
| D          | Initial Orientation<br>Final Orientation                   |                            | C<br>C                           |          |       | In<br>In |
|            | Total Energy =<br>van der Waals =<br>electrostatic =       | 150.45<br>82.82<br>-198.13 | kcal/mol<br>kcal/mol<br>kcal/mol |          |       |          |
|            | $\Delta E_{tot} =$                                         | 15.19                      | kcal/mol                         |          |       |          |
|            | $\Delta E_{ele} =$                                         | -0.72                      | kcal/mol                         |          |       |          |

# Table 3.45: The solution phase results of D- and L-tryptophan interacting with the 1Z0Q conformer of β-amyloid

Table 3.40 indicates in the solution phase both D- and L-tryptophan are capable of binding to multiple side chains within **HHQK**. Interactions at His13-His14 and His13-Lys16 are favoured equally.

The results of the solution phase optimization of D-tryptophan and L-tryptophan with the 1AMC conformer of A $\beta$  in Table 3.41 show binding can occur between L-tryptophan and multiple sites of **HHQK**. The interaction with D-tryptophan only resulted in one interaction in **HHQK**.

The results of Table 3.42 show that three of the four systems demonstrate multiple binding interactions with **HHQK**, between both D-tryptophan and L-tryptophan with the 1AML conformer of  $\beta$ -amyloid. Interactions are favoured at His13-Lys16.

Table 3.43 shows that, in the case of D- and L-tryptophan being optimized in the solution phase with the 1BA4 conformer of A $\beta$ , all four systems will bind to **HHQK** at His13-His14.

Three of the four systems shown in Table 3.44 indicated binding at two sites on **HHQK** between D- and L-tryptophan and the 1IYT conformer of  $\beta$ -amyloid. Binding preferentially favours interactions at His13-Lys16.

From the results of the optimization of D- and L-tryptophan with the 1Z0Q conformer of A $\beta$  in a solvated environment in Table 3.45 it can be seen that all four systems show multiple binding interactions at **HHQK**. The binding occurs equally at His13-His14 and His13-Lys16.

157

#### 3.5.6 Conclusions of D- and L-Tryptophan Interacting with $\beta$ -Amyloid

Overall it can be observed in a solution phase environment both D-tryptophan and L-tryptophan are capable of binding to and interacting with the **HHQK** region of  $\beta$ -amyloid in its various conformations, but not nearly as well as observed for phenylalanine and dopamine.

In terms of binding site preference, it appears that interactions at His13-His14 and His13-Lys16 are favoured almost equally. Breaking this down into interactions occurring between each of the stereoisomers, interactions with L-tryptophan were favoured over D-tryptophan, but each interacted almost equally between His13-His14 and His13-Lys16. Hydrogen bond formation slightly exceeded the amount of cation- $\pi$  interactions, but overall not many measureable bonds formed.

There are no discernable trends based on the binding energies of the systems for interactions with 1AMB, 1AMC, 1BA4 and 1IYT. In the case of interactions with the 1AML conformer, the energies of D-tryptophan interactions were more favourable, whereas the opposite was true in the case of the 1Z0Q conformer. The presence of measureable bonds does not impact the binding energies in a noticeable fashion: some systems with measured bonds had extremely favourable energies, whereas others had highly unfavourable energies. The electrostatic energies were more favourable than the van der Waals energies for the optimized systems.

Overall it can be concluded that both D- and L-tryptophan can bind to/interact with the highly charged **HHQK** region of  $\beta$ -amyloid. L-Tryptophan is capable of forming more interactions than D-tryptophan, but both are significantly less efficacious at binding

158

relative to the earlier examined species. The *in vitro* assay of tryptophan also demonstrated its inability to inhibit  $\beta$ -amyloid aggregation.

### 3.6 Tryptamine and $\beta$ -Amyloid

Tryptamine (Figure 3.6) is one of the metabolites produced in the catabolism of tryptophan and plays a role in the brain as both a neuromodulator and neurotransmitter [86]. It was also identified in the endogenous library as being capable of interacting with the **HHQK** region of  $\beta$ -amyloid.



#### Figure 3.6: Tryptamine at physiological pH

The tryptamine molecule contains only two regions with which it can interact with **HHQK**; the indole ring, and the amino group. Given the paucity of potential interactions with the **HHQK** region, and the lack of results in the gas phase, the calculations were expanded to the EV**HHQK** region as there is potential for interactions with the glutamic acid residue as well. Solution phase optimizations were also performed for all of the systems produced from the gas phase optimizations.

A model of tryptamine as charged for physiological pH was constructed and optimized in MOE after the charges were corrected for the CHARMM22 force field [48, 81]. The optimized energies of the six  $A\beta$  conformers are given in Appendix 6 and the energies of tryptamine are summarized in Table 3.46. Energies of the protein conformers were measured with a constrained protein backbone.

 Table 3.46: Gas phase energies of tryptamine

 $\frac{E_{tot}}{E_{ele}} \frac{E_{vdw}}{4.70}$ Tryptamine 13.04 6.04 4.70

#### 3.6.1 Gas Phase Interactions Between Tryptamine and $\beta$ -Amyloid

Gas phase optimizations of tryptamine and  $A\beta$  were performed in MOE using the CHARMM22 force field and examined for potential interactions that could occur with the EV**HHQK** region [48, 81].

#### 3.6.1.1 Selection of Initial Orientations for Gas Phase Optimization

Each system was set up such that the indole ring and the amino group of tryptamine were oriented approximately 3.0 Å away from two of the charged amino acid side chains in the EVHHQK region. Every possible arrangement was attempted; however, some interactions could not be tested as the amino acid side chains were either too far apart, or were on opposite sides of the protein chain.

#### 3.6.1.2 Optimization of the Gas Phase Systems

For each system being optimized, the protein backbone was constrained to prevent self interactions, and the system was then subjected to minimization. These optimized systems were saved for the solution phase optimizations, the energies were calculated, and they were examined for measureable binding interactions that may have occurred between tryptamine and the  $\beta$ -amyloid protein.

160

The relative favourability was determined by calculating the binding energy of each system using the following formulas:

$$\Delta E_{tot} = E_{tot} - E_{A\beta} - E_{tpm} \tag{3.13}$$

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwtpm}$$
(3.14)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eletpm}$$
(3.15)

The total binding energy,  $\Delta E_{tot}$ , the van der Waal energy,  $\Delta E_{vdw}$ , and the electrostatic energy,  $\Delta E_{ele}$ , were each calculated by subtracting the energies of the individually optimized A $\beta$  conformer and tryptamine from the energy of the optimized system.

#### **3.6.2 GAS PHASE RESULTS OF TRYPTAMINE INTERACTING WITH β-AMYLOID**

The results of the gas phase optimizations are summarized in the following table. The indole and amino groups are represented by In and N, respectively, and the initial and final orientations are given, with the amino acids identified by their single letter abbreviations. The calculated binding energies are also summarized for each interaction. The orange coloured squares represent hydrogen bond formation, and light blue indicates a  $\pi$ - $\pi$  interaction.

| Conformer |     | Initial O | rienta | tion |     |       |     | Fina | l Orient | tation |     |       | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ |
|-----------|-----|-----------|--------|------|-----|-------|-----|------|----------|--------|-----|-------|------------------|------------------|------------------|
|           | E11 | V12 H13   | H14    | Q15  | K16 | E11   | V12 | H13  | H14      | Q15    | K16 | Other | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       |
| 1AMB      |     | In        | Ν      |      |     |       |     | In   | N/In*    |        |     | In    | -11.05           | -8.18            | -7.53            |
|           |     | Ν         | In     |      |     |       |     |      | In       |        |     | Ν     | -17.91           | -4.67            | -16.19           |
|           |     | Ν         |        |      | In  | -     | -   | -    | -        | -      | -   | -     | -28.39           | -2.22            | -24.82           |
|           |     | In        |        |      | Ν   |       |     | In   |          |        |     | In    | -17.62           | -4.12            | -16.23           |
|           | Ν   |           | In     |      |     | Ν     |     |      |          |        |     |       | -36.19           | 1.99             | -43.87           |
|           | In  |           | Ν      |      |     | In    |     |      | Ν        |        |     |       | -9.89            | -4.15            | -8.58            |
|           | Ν   | In        |        |      |     | N/In* |     | In   |          |        |     | In    | -43.82           | -13.42           | -29.53           |
|           | In  | Ν         |        |      |     | In    |     | In   |          |        |     | Ν     | -14.02           | -8.79            | -5.67            |
| 1AMC      |     | Ν         | In     |      |     |       |     | In   |          |        |     | Ν     | -2.45            | -3.14            | -1.67            |
|           |     | In        | Ν      |      |     |       |     | In   |          |        |     | In    | -34.29           | -8.55            | -28.06           |
|           |     | Ν         |        |      | In  |       |     | In   |          |        |     | In    | -12.27           | -0.44            | -15.71           |
|           |     | In        |        |      | Ν   |       |     | In   |          |        |     |       | -16.76           | 1.34             | -20.82           |
|           | Ν   |           | In     |      |     | Ν     |     |      | In       |        |     |       | -35.60           | -1.48            | -34.50           |
|           | In  |           | Ν      |      |     | In    |     |      |          |        |     |       | -2.62            | -1.48            | -1.30            |
| 1AML      |     | In        | Ν      |      |     |       |     |      |          |        |     | In    | 4.44             | -2.67            | 3.94             |
|           |     | Ν         | In     |      |     |       |     |      | In       |        |     | In    | -7.95            | -3.37            | -6.34            |
|           |     | Ν         |        |      | In  | -     | -   | -    | -        | -      | -   | -     | -5.25            | -1.18            | -5.41            |
|           |     | In        |        |      | Ν   | -     | -   | -    | -        | -      | -   | -     | -7.96            | 1.75             | -14.15           |
|           | Ν   |           | In     |      |     | Ν     |     |      | In       | In     |     | In/N* | -26.95           | -10.10           | -22.93           |
|           | In  |           | Ν      |      |     | In    |     |      | In       |        |     |       | -9.66            | -7.50            | -4.61            |
| 1BA4      |     | Ν         | In     |      |     | -     | -   | -    | -        | -      | -   | -     | -0.74            | 0.02             | -1.15            |
|           |     | In        | Ν      |      |     |       |     | In   |          |        |     |       | -1.70            | -1.62            | -0.64            |
| 1IYT      |     | Ν         | In     |      |     | -     | -   | -    | -        | -      | -   | -     | -1.54            | 0.71             | -3.47            |
|           |     | In        | Ν      |      |     | -     | -   | -    | -        | -      | -   | -     | -8.64            | -2.36            | -5.73            |
|           |     | In        |        |      | Ν   | -     | -   | -    | -        | -      | -   | -     | -1.71            | -0.62            | -1.19            |
|           |     | Ν         |        |      | In  | -     | -   | -    | -        | -      | -   | -     | -4.35            | -1.59            | -5.07            |
|           | Ν   |           | In     |      |     | Ν     |     |      | In       |        |     |       | -30.87           | -3.79            | -28.01           |
|           | In  |           | Ν      |      |     | In    |     |      | Ν        |        |     | Ν     | -24.91           | -7.96            | -15.83           |
| 1Z0Q      |     | In        | Ν      |      |     |       |     |      |          |        |     | In*   | 6.64             | -4.50            | 8.91             |
|           |     | Ν         | In     |      |     |       |     |      | In       |        |     |       | 12.26            | -1.93            | 12.51            |
|           |     | In        |        |      | Ν   | -     | -   | -    | -        | -      | -   | -     | -5.14            | -3.33            | -5.98            |
|           |     | Ν         |        |      | In  | -     | -   | -    | -        | -      | -   | -     | 0.97             | -0.46            | -0.01            |
|           | Ν   |           | In     |      |     | Ν     |     |      |          |        |     |       | -40.26           | -3.27            | -37.99           |
|           | In  |           | Ν      |      |     | In    |     |      |          |        |     | Ν     | -31.11           | -1.07            | -31.01           |

Table 3.47: The gas phase results of tryptamine interacting with β-amyloid

\* indicates interaction is occurring with the -CH<sub>2</sub>- chain of the amino acid

The gas phase results showed only one interaction occurring within **HHQK**, and eight within **EVHHQK**. As there were few discernable trends that would allow for identification of systems that should be optimized in the solution phase, all systems were selected to see the effect of the presence of solvent on these systems.

### 3.6.3 Solution Phase Results for Tryptamine Interacting with $\beta$ - Amyloid

Upon completion of the gas phase optimizations all of the gas phase systems were selected for solution phase minimizations. Each system was solvated with a box of water molecules large enough to completely surround the system with an 8.0 Å margin.

Results of the solution phase optimizations of the tryptamine-A $\beta$  systems have been summarized in tables for each conformation of  $\beta$ -amyloid. The initial and final binding orientations are given along with three calculated energies: the total binding energy, electrostatic binding energy and van der Waals binding energy. The amino acids are indicated by their three-letter abbreviations and any interactions that occurred between tryptamine and amino acids outside of EVHHQK are also identified. Single letter amino acid abbreviations were used in Table 3.51.

Any measureable binding interactions that occurred are indicated according to the following colour scheme: hydrogen bonds are coloured orange,  $\pi$ - $\pi$  interactions are light blue and  $\pi$ -H interactions are in pink. Interactions occurring between tryptamine and the –CH<sub>2</sub>- region of the amino acid are indicated in indigo, while interactions with C=O of the protein backbone are purple; lime green indicates interactions with the –CH- of the protein backbone and yellow interactions with –NH- of the protein backbone.

The final energies for the binding interactions were calculated using the energies listed in Table 3.48 and Appendix 6 using equations 3.13-3.15. The only difference being that the energies used are those of the solvated systems where the

solvent has been removed and the protein backbone has been constrained for  $\beta$ -amyloid.

Table 3.48: Total energies of tryptamine calculated in a solvated environment

|            | Ener             | gies (kcal/r | nol)             |
|------------|------------------|--------------|------------------|
|            | E <sub>tot</sub> | $E_{ele}$    | E <sub>vdw</sub> |
| Tryptamine | 17.44            | 7.22         | 4.95             |

The results of the solution phase optimizations are summarized in Tables 3.49-3.54. The data shows only one system where binding at two sites (His13-His14) occurs within the **HHQK** region upon solvation. When looking at binding occurring within EV**HHQK**, only six systems showed binding at two sites, Glu11-His14. Binding energies demonstrate no correlation to the number of measurable binding interactions.

|                     | Tyr10   | Glul 1  | Val12  | His13 | His14 | Gln15 | Lys16 | Glu11   | Val12    | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|---------|--------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation | In      |         |        | In    | N     |       |       |         |          | In    |       |       |       | In    |
| F: 10 :             | Ŧ       |         |        | Ŧ     | In    |       |       |         |          |       |       |       |       | Ŧ     |
| Final Orientation   | In      |         |        | In    | In    |       |       |         |          |       |       |       |       | In    |
|                     |         |         |        |       | 111   |       |       |         |          |       |       |       |       |       |
| Total =             | -3.10   | kcal/mo | 1      |       |       |       |       | -9.75   | kcal/mc  | 1     |       |       |       |       |
| van der Waals =     | 41.87   | kcal/mo | 1      |       |       |       |       | 64.52   | kcal/mc  | 1     |       |       |       |       |
| Electrostatic =     | -207.27 | kcal/mo | I      |       |       |       |       | -231.13 | kcal/mc  | d     |       |       |       |       |
| $\Delta E_{tot} =$  | -20.11  | kcal/mo | 1      |       |       |       |       | -26.77  | kcal/mo  | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -12.17  | kcal/mo | 1      |       |       |       |       | 10.48   | kcal/mc  | l     |       |       |       |       |
| $\Delta E_{ele} =$  | -5.26   | kcal/mo | 1      |       |       |       |       | -29.13  | kcal/mo  | 1     |       |       |       |       |
|                     |         |         |        | _     |       |       |       |         |          |       |       |       |       |       |
| Initial Orientation | N       |         |        | In    |       |       |       | -       | -        | -     | -     | -     | -     | -     |
| Final Orientation   | N<br>In |         |        | In    |       |       |       | -       | -        | -     | -     | -     | -     | -     |
| Total =             | 5.04    | kcal/mo | 1      |       |       |       |       | -33.49  | kcal/mc  | 1     |       |       |       |       |
| van der Waals =     | 58.57   | kcal/mo | 1      |       |       |       |       | 50.28   | kcal/mc  | 1     |       |       |       |       |
| Electrostatic =     | -203.96 | kcal/mo | 1      |       |       |       |       | -238.97 | kcal/mc  | 1     |       |       |       |       |
| $\Delta E_{tot} =$  | -11.98  | kcal/mo | 1      |       |       |       |       | -50.51  | kcal/mo  | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | 4.53    | kcal/mo | 1      |       |       |       |       | -3.76   | kcal/mo  | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -1.96   | kcal/mo | 1      |       |       |       |       | -36.97  | ccal/mol |       |       |       |       |       |
|                     |         |         |        |       |       |       |       |         |          |       |       |       |       |       |
| Initial Orientation | Ν       | In      |        |       | In    |       |       | In      |          |       | Ν     |       |       |       |
| Final Orientation   |         | In      |        |       | N     |       |       | In      |          |       | Ν     |       |       |       |
|                     |         |         |        |       | In    |       |       |         |          |       |       |       |       |       |
| Total=              | -1.54   | kcal/mo | 1      |       |       |       |       | -0.45   | kcal/mc  | 1     |       |       |       |       |
| van der Waals =     | 50.48   | kcal/mo | 1      |       |       |       |       | 44.52   | kcal/mc  | 1     |       |       |       |       |
| Electrostatic =     | -206.44 | kcal/mo | 1      |       |       |       |       | -207.31 | kcal/mc  | 1     |       |       |       |       |
|                     |         |         |        |       |       |       |       |         |          |       |       |       |       |       |
| $\Delta E_{tot} =$  | -18.46  | kcal/mo | 1      |       |       |       |       | -17.47  | kcal/mo  | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -3.56   | kcal/mo | 1      |       |       |       |       | -9.52   | kcal/mo  | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -4.44   | kcal/mo | 1      |       |       |       |       | -5.31   | kcal/mo  | 1     |       |       |       |       |
| Initial Orientation | In      | In      |        | In    |       |       |       | N       |          |       |       |       |       |       |
|                     | ш       | N       |        | 111   |       |       |       | IN      |          |       |       |       |       |       |
| Final Orientation   | In      | In      |        |       | In    |       |       | Ν       |          |       |       |       |       |       |
|                     |         | Ν       |        |       |       |       |       | In      |          |       |       |       |       |       |
| m / 1               | 41.10   | 1 1/    |        |       |       |       |       | 20.24   | 1 1/     |       |       |       |       |       |
| 10tal =             | -41.12  | kcal/mo | 1<br>1 |       |       |       |       | -58.54  | kcal/mc  | 1     |       |       |       |       |
| Electrostatic =     | -227.05 | kcal/mo | 1      |       |       |       |       | -250 21 | kcal/m   | 1     |       |       |       |       |
|                     | 05      |         | -      |       |       |       |       | 200.21  |          | -     |       |       |       |       |
| $\Delta E_{tot} =$  | -58.13  | kcal/mo | 1      |       |       |       |       | -55.35  | kcal/mo  | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -13.59  | kcal/mo | 1      |       |       |       |       | -6.05   | kcal/mc  | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -25.05  | kcal/mo | 1      |       |       |       |       | -48.21  | kcal/mc  | 1     |       |       |       |       |

# Table 3.49: The solution phase results of tryptamine interacting with the 1AMB conformer of β-amyloid

|                     | Tyr10   | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 | Tyr10   | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|---------|-------|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | In      | In      |       |       | In    |       |       | Ν       |         |       |       | In    |       |       |       |
| Final Orientation   |         |         |       |       | In    |       |       | Ν       |         |       |       | In    |       |       |       |
|                     |         |         |       |       | In    |       |       |         |         |       |       |       |       |       |       |
| Total =             | -56.16  | kcal/mo | l     |       |       |       |       | -4.34   | kcal/mo | ol    |       |       |       |       |       |
| van der Waals =     | 29.55   | kcal/mo | l     |       |       |       |       | 49.51   | kcal/mo | ol    |       |       |       |       |       |
| Electrostatic =     | -248.38 | kcal/mo | l     |       |       |       |       | -211.76 | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -53.65  | kcal/mo | I     |       |       |       |       | -1.83   | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -30.49  | kcal/mo | l     |       |       |       |       | -10.53  | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -27.18  | kcal/mo | l     |       |       |       |       | 9.43    | kcal/mo | ol    |       |       |       |       |       |
| Initial Orientation | In      |         |       |       |       |       |       |         |         |       |       | In    |       |       | In    |
| Final Orientation   | In      |         |       |       |       |       |       |         |         |       |       | In    |       |       | In    |
| Total =             | -28.07  | kcal/mo | l     |       |       |       |       | -3.74   | kcal/mo | ol    |       |       |       |       |       |
| van der Waals =     | 44.70   | kcal/mo | l     |       |       |       |       | 55.06   | kcal/mo | ol    |       |       |       |       |       |
| Electrostatic =     | -236.89 | kcal/mo | l     |       |       |       |       | -243.20 | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -25.56  | kcal/mo | l     |       |       |       |       | -1.23   | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -15.34  | kcal/mo | l     |       |       |       |       | -4.98   | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -15.69  | kcal/mo | l     |       |       |       |       | -22.01  | kcal/mo | ol    |       |       |       |       |       |
| Initial Orientation | In      |         |       |       |       |       |       |         | N       |       |       | In    |       |       |       |
| Final Orientation   | In      |         |       |       | Ν     |       |       |         | N       |       |       | In    |       |       |       |
| Total =             | -1.11   | kcal/mo | l     |       |       |       |       | -34.49  | kcal/mo | ol    |       |       |       |       |       |
| van der Waals =     | 53.92   | kcal/mo | l     |       |       |       |       | 54.12   | kcal/mo | ol    |       |       |       |       |       |
| Electrostatic =     | -226.74 | kcal/mo | I     |       |       |       |       | -253.09 | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | 1.41    | kcal/mo | l     |       |       |       |       | -31.98  | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -6.12   | kcal/mo | l     |       |       |       |       | -5.92   | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -5.54   | kcal/mo | l     |       |       |       |       | -31.89  | kcal/mo | ol    |       |       |       |       |       |

### Table 3.50: The solution phase results of tryptamine interacting with the 1AMC conformer of β-amyloid

## Table 3.51: The solution phase results of tryptamine interacting with the 1AML conformer of β-amyloid

|                     | R5      | S8     | Y10 | E11 | V12 | H13 | H14 | Q15 | K16 |     | R5     | H6     | D7  | S8 | E11 | V12 | H13 | H14 | Q15 | K16 | L17 | V18 | I31 |
|---------------------|---------|--------|-----|-----|-----|-----|-----|-----|-----|-----|--------|--------|-----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Initial Orientation |         |        | In  |     |     |     |     |     |     |     |        |        |     |    |     |     |     | In  |     |     |     |     | In  |
| Final Orientation   |         |        | In  |     |     |     |     |     |     |     |        |        |     |    |     |     |     | In  |     |     | In  |     | In  |
| Total =             | 153.16  | kcal/m | ol  |     |     |     |     |     |     |     | 142.91 | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| van der Waals =     | 81.80   | kcal/m | ol  |     |     |     |     |     |     |     | 62.71  | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| Electrostatic =     | -163.33 | kcal/n | ol  |     |     |     |     |     |     | - 1 | 158.96 | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{tot} =$  | 3.53    | kcal/n | ol  |     |     |     |     |     |     |     | -6.18  | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{vdw} =$  | 11.49   | kcal/n | ol  |     |     |     |     |     |     |     | -7.60  | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{ele} =$  | -13.28  | kcal/n | ol  |     |     |     |     |     |     |     | -8.91  | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| Initial Orientation | -       | -      | -   | -   | -   | -   | -   | -   | -   |     | _      | -      | -   | _  | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| Final Orientation   | -       | -      | -   | -   | -   | -   | -   | -   | -   |     | -      | -      | -   | -  | -   | -   | -   | -   | -   | -   | -   | -   | -   |
| Total =             | 137.88  | kcal/m | ol  |     |     |     |     |     |     |     | 156.15 | kcal/n | nol |    |     |     |     |     |     |     |     |     |     |
| van der Waals =     | 72.06   | kcal/m | ol  |     |     |     |     |     |     |     | 75.19  | kcal/n | nol |    |     |     |     |     |     |     |     |     |     |
| Electrostatic =     | -169.84 | kcal/n | ol  |     |     |     |     |     |     | - 1 | 153.81 | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{tot} =$  | -11.75  | kcal/n | ol  |     |     |     |     |     |     |     | 6.52   | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{vdw} =$  | 1.75    | kcal/m | ol  |     |     |     |     |     |     |     | 4.87   | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{ele} =$  | -19.79  | kcal/n | ol  |     |     |     |     |     |     |     | -3.76  | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| Initial Orientation |         |        |     | In  |     |     | In  |     |     |     |        | Ν      | Ν   | N  | Ν   |     |     | In  | Ν   |     |     | In  |     |
| Final Orientation   | In      | In     |     | In  |     |     |     |     |     |     | In     | Ν      | Ν   | Ν  | In  |     |     | In  |     |     |     | In  |     |
|                     |         |        |     |     |     |     |     |     |     |     |        |        |     |    | Ν   |     |     |     |     |     |     |     |     |
| Total =             | 142.76  | kcal/m | ol  |     |     |     |     |     |     |     | 115.91 | kcal/n | nol |    |     |     |     |     |     |     |     |     |     |
| van der Waals =     | 70.39   | kcal/m | ol  |     |     |     |     |     |     |     | 58.84  | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| Electrostatic =     | -168.70 | kcal/n | ol  |     |     |     |     |     |     | - 1 | 162.70 | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{tot} =$  | -6.85   | kcal/n | ol  |     |     |     |     |     |     | .   | -33.72 | kcal/n | ol  |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{vdw} =$  | 0.08    | kcal/m | nol |     |     |     |     |     |     | 11  | -11.47 | kcal/n | nol |    |     |     |     |     |     |     |     |     |     |
| $\Delta E_{ele} =$  | -18.65  | kcal/n | ol  |     |     |     |     |     |     | -   | -12.64 | kcal/n | ol  |    |     |     |     |     |     |     |     |     | _   |

| 1BA4                | Glu11   | Val12    | His13 | His14 | Gln15 | Lys16 | Glu11   | Val12    | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|
| Initial Orientation |         |          | In    |       |       |       | -       | -        | -     | -     | -     | -     |
| Final Orientation   |         |          | In    |       |       |       | -       | -        | -     | -     | -     | -     |
| Total =             | 113.32  | kcal/mol | l     |       |       |       | 87.63   | kcal/mol |       |       |       |       |
| van der Waals =     | 69.64   | kcal/mol | l     |       |       |       | 81.15   | kcal/mol |       |       |       |       |
| Electrostatic =     | -184.53 | kcal/mol | l     |       |       |       | -206.10 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -16.18  | kcal/mol | l     |       |       |       | -41.86  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | -3.88   | kcal/mol | l     |       |       |       | 7.62    | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -7.67   | kcal/mol | l     |       |       |       | -29.24  | kcal/mol |       |       |       |       |

Table 3.52: The solution phase results of tryptamine interacting with the 1BA4 conformer of β-amyloid

## Table 3.53: The solution phase results of tryptamine interacting with the 1IYT conformer of β-amyloid

| 1IYT                | Glu11   | Val12    | His13 | His14 | Gln15 | Lys16 | Glu11   | Val12    | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|
| Initial Orientation | -       | -        | -     | -     | -     | -     | -       | -        | -     | -     | -     | -     |
| Final Orientation   | -       | -        | -     | -     | -     | -     |         |          |       | In    |       |       |
| Total =             | 119.92  | kcal/mol |       |       |       |       | 128.90  | kcal/mol |       |       |       |       |
| van der Waals =     | 96.29   | kcal/mol |       |       |       |       | 87.19   | kcal/mol |       |       |       |       |
| Electrostatic =     | -190.09 | kcal/mol |       |       |       |       | -190.57 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | 8.22    | kcal/mol |       |       |       |       | 17.20   | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 23.81   | kcal/mol |       |       |       |       | 14.72   | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | 4.00    | kcal/mol |       |       |       |       | 3.51    | kcal/mol |       |       |       |       |
| Initial Orientation | -       | _        | _     | _     | _     | -     | -       | _        | _     | _     | _     | _     |
| Final Orientation   | -       | -        | -     | -     | -     | -     | -       | -        | -     | -     | -     | -     |
| Total =             | 106.61  | kcal/mol |       |       |       |       | 110.69  | kcal/mol |       |       |       |       |
| van der Waals =     | 74.87   | kcal/mol |       |       |       |       | 84 59   | kcal/mol |       |       |       |       |
| Electrostatic =     | -190.76 | kcal/mol |       |       |       |       | -205.12 | kcal/mol |       |       |       |       |
|                     | -,      |          |       |       |       |       |         |          |       |       |       |       |
| $\Delta E_{tot} =$  | -5.09   | kcal/mol |       |       |       |       | -1.01   | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 2.40    | kcal/mol |       |       |       |       | 12.12   | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | 3.32    | kcal/mol |       |       |       |       | -11.04  | kcal/mol |       |       |       |       |
| Initial Orientation | In      |          |       | N     |       |       | N       |          |       | In    |       |       |
| Final Orientation   | In      |          |       | N     |       |       | N       |          |       | In    |       |       |
|                     | m       |          |       | 14    |       |       | In      |          |       |       |       |       |
| Total =             | 88.80   | kcal/mol |       |       |       |       | 94.11   | kcal/mol |       |       |       |       |
| van der Waals =     | 80.76   | kcal/mol |       |       |       |       | 86.80   | kcal/mol |       |       |       |       |
| Electrostatic =     | -220.01 | kcal/mol |       |       |       |       | -214.03 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -22.90  | kcal/mol |       |       |       |       | -17.59  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 8.29    | kcal/mol |       |       |       |       | 14.33   | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -25.93  | kcal/mol |       |       |       |       | -31.89  | kcal/mol |       |       |       |       |

| 1Z0Q                | Gly9    | Ty10     | Glu11 | Vall2 | His13 | His14 | Gln15 | Lys16 | Glu22 | Glu11   | Vall2    | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|
| Initial Orientation | In      | In       |       |       |       |       |       |       |       |         |          |       | In    |       |       |
| Final Orientation   | In      |          |       |       | In    |       |       |       |       | -       | -        | -     | -     | -     | -     |
| Total =             | 153 47  | kcal/mol |       |       |       |       |       |       |       | 134 09  | kcal/mol |       |       |       |       |
| van der Waals =     | 76.24   | kcal/mol |       |       |       |       |       |       |       | 78.16   | kcal/mol |       |       |       |       |
| Electrostatic =     | -175.42 | kcal/mol |       |       |       |       |       |       |       | -196.36 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -5.48   | kcal/mol |       |       |       |       |       |       |       | -24.86  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | -17.34  | kcal/mol |       |       |       |       |       |       |       | -15.42  | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | 10.62   | kcal/mol |       |       |       |       |       |       |       | -10.32  | kcal/mol |       |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |          |       |       |       |       |
| Initial Orientation | -       | -        | -     | -     | -     | -     | -     | -     | -     | -       | -        | -     | -     | -     | -     |
| Final Orientation   | -       | -        | -     | -     | -     | -     | -     | -     | -     | -       | -        | -     | -     | -     | -     |
| Total =             | 140.80  | kcal/mol |       |       |       |       |       |       |       | 160.64  | kcal/mol |       |       |       |       |
| van der Waals =     | 71.96   | kcal/mol |       |       |       |       |       |       |       | 82.49   | kcal/mol |       |       |       |       |
| Electrostatic =     | -186.10 | kcal/mol |       |       |       |       |       |       |       | -170.43 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -18.15  | kcal/mol |       |       |       |       |       |       |       | 1.69    | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | -21.62  | kcal/mol |       |       |       |       |       |       |       | -11.09  | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -0.06   | kcal/mol |       |       |       |       |       |       |       | 15.61   | kcal/mol |       |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |          |       |       |       |       |
| Initial Orientation |         |          | In    |       |       |       |       |       | N     | N       |          |       |       |       |       |
| Final Orientation   |         |          | In    |       |       |       |       |       | N     | N       |          |       |       |       |       |
| Total =             | 128.35  | kcal/mol |       |       |       |       |       |       |       | 100.24  | kcal/mol |       |       |       |       |
| van der Waals =     | 82.40   | kcal/mol |       |       |       |       |       |       |       | 81.90   | kcal/mol |       |       |       |       |
| Electrostatic =     | -209.27 | kcal/mol |       |       |       |       |       |       |       | -220.08 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -30.61  | kcal/mol |       |       |       |       |       |       |       | -58.71  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | -11.18  | kcal/mol |       |       |       |       |       |       |       | -11.68  | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -23.24  | kcal/mol |       |       |       |       |       |       |       | -34.04  | kcal/mol |       |       |       |       |

# Table 3.54: The solution phase results of tryptamine interacting with the 1IZ0Q conformer of β-amyloid

#### 3.6.4 Conclusions of Tryptamine Interacting with $\beta$ -Amyloid

The results of the optimization of tryptamine and  $\beta$ -amyloid in the gas phase and solution phase indicated very few interactions within the region of A $\beta$  associated with misfolding. Roughly one quarter of the systems demonstrated binding at two sites within EVHHQK, which when compared to the binding seen with the other molecules studied so far, is not a lot. While tryptamine demonstrates a small potential to interact with  $\beta$ -amyloid to prevent misfolding, it is not as desirable a target as the other endogenous molecules examined thus far. As well, the results of *in vitro* assays further suggest that tryptamine has no effect to prevent A $\beta$  aggregation from progressing.

### 3.7 3-Hydroxyanthranilic Acid and $\beta$ -Amyloid

Another tryptophan metabolite identified in the search for an endogenous molecule capable of interacting with **HHQK** is 3-hydroxyanthranilic acid (3HAA).



Figure 3.7: 3-hydroxyanthranilic acid at physiological pH

3-hydroxyanthranilic acid has demonstrated activity in suppressing glial cytokine and chemokine expression, resulting in anti-inflammatory effects as well as reducing the amount of neuronal death caused by these cytokines [89]. It was also discovered that 3HAA can stimulate the production of an anti-oxidant enzyme, hemeoxygenase-1, that also has anti-inflammatory and cytoprotective properties [89]. This molecule therefore presents itself as a molecule of interest in preventing A $\beta$ -aggregation, given it already exhibits other neuroprotective effects on the brain.

### 3.7.1 GAS PHASE INTERACTIONS BETWEEN 3-HYDROXYANTHRANILIC ACID AND β-Amyloid

Gas phase optimizations of 3HAA and  $\beta$ -amyloid covered three regions of  $\beta$ amyloid. First, the potential interactions between the acid and the **HHQK** region of A $\beta$ were examined, which was then expanded to include EV**HHQK**, followed by the LVFF region. The functional groups present on 3-hydroxyanthranilic acid give it the potential to be able to interact with all of these regions of  $\beta$ -amyloid. These optimizations were all performed in MOE using the CHARMM22 force field [48, 87].

#### 3.7.1.1 PREPARATION OF 3-HYDROXYANTHRANILIC ACID FOR OPTIMIZATION

The neutral structure of 3HAA was subjected to a systematic conformational search in MOE, whereupon the lowest energy structure obtained was charged for physiological pH and minimized. The energy of the system is given in Table 3.55 with the A $\beta$  energies for the structures used being the same as those listed in Appendix 6.

Table 3.55: Gas phase energy of 3-hydroxyanthranilic acid

| Total Energy |
|--------------|
| (kcal/mol)   |
|              |

3-hydroxyanthranilic acid -4.71

#### 3.7.1.2 Selection of Initial Orientations for Optimization of 3HAA and $\beta$ -Amyloid

Every possible orientation of 3HAA interacting with two of the amino acid side chains in **HHQK**, LVFF or EV**HHQK** was attempted. Some interactions were not

possible based on the small size of the acid, as well as the fact that some of the side chains were on opposite sides of the protein. The regions of 3HAA available for interaction are the aromatic ring, the positively charged amino group, the negatively charged carboxylate group, and the hydroxyl group.

#### 3.7.1.3 Optimization of the Gas Phase Systems

Each of the functional groups of 3-hydroxyanthranilic acid was situated in every available combination at a distance of 3.0 Å from the amino acid side chains and optimized with the protein backbone constrained to prevent system collapse. The total binding energy for each system was calculated using the following equation:

$$\Delta E_{\text{bind}} = E_{3\text{HAAA\beta}} - E_{3\text{HAA}} - E_{A\beta} \tag{3.16}$$

The overall binding energy of the system,  $\Delta E_{bind}$ , is the result of subtracting the contributions of the individual 3HAA molecule,  $E_{3HAA}$ , and A $\beta$  conformer,  $E_{A\beta}$ , from the overall binding energy of the system,  $E_{3HAAA\beta}$ . For these calculations, the energies used were calculated with a constrained protein backbone to focus solely on contributions from the interactions between 3HAA and A $\beta$ .

## 3.7.2 Gas Phase Results of the Optimization of 3-hydroxyanthranilic acid with $\beta$ -Amyloid

The following tables summarize the gas phase results of 3-hydroxyanthranilic acid interacting with three regions of  $\beta$ -amyloid, first **HHQK**, then EV**HHQK**, and finally LVFF. Each table summarizes the initial orientation of 3HAA and the final binding orientations with Ar representing the aromatic ring, N the positively charged amino group, C the negatively charged carboxylate group, and O the hydroxyl group. The amino acid residues are given in their single letter abbreviations, and interactions outside the area of interest are listed under the column X. The binding energy of the system, as well as any measureable bonds that formed, are also given.

| In  | itial O1 | rientati | on  |      | Final | Orient | $\Delta E_{bind}$ | Measured |            |       |
|-----|----------|----------|-----|------|-------|--------|-------------------|----------|------------|-------|
| H13 | H14      | Q15      | K16 | H13  | H14   | Q15    | K16               | Х        | (kcal/mol) | Bonds |
| С   | Ν        |          |     | С    | Ν     |        |                   | Ν        | -48.41     | 1     |
| Ν   | С        |          |     | С    |       |        |                   | С        | -50.37     | 0     |
| Ν   | Ο        |          |     | С    | Ar    |        |                   | Ν        | -43.29     | 2     |
| Ο   | Ν        |          |     | O/Ar | Ν     |        |                   | Ν        | -26.34     | 1     |
| C   | Ο        |          |     | С    | Ar    |        |                   | Ar       | -49.23     | 2     |
| Ο   | С        |          |     | O/Ar | C/Ar  |        |                   | Ν        | -41.09     | 0     |
| Ar  | С        |          |     |      | С     |        |                   | Ar       | -26.14     | 0     |
| C   | Ar       |          |     | С    | Ar    |        |                   | Ar       | -38.18     | 0     |
| Ar  | Ο        |          |     |      | Ar    |        |                   | Ar       | -43.02     | 0     |
| Ο   | Ar       |          |     |      | Ar    |        |                   | Ο        | -15.62     | 0     |
| Ar  | Ν        |          |     | С    | C/N   |        |                   | Ar       | -47.17     | 0     |
| Ν   | Ar       |          |     | С    | Ar    |        |                   | Ν        | -56.83     | 0     |
| Ν   |          |          | Ο   | -    | -     | -      | -                 | -        | -41.54     | 0     |
| Ο   |          |          | Ν   | -    | -     | -      | -                 | -        | -26.38     | 0     |
| С   |          |          | Ν   | С    |       |        | С                 |          | -29.14     | 1     |
| Ν   |          |          | С   | N/C  |       |        | С                 |          | -24.94     | 1     |
| C   |          |          | Ο   | С    |       |        |                   |          | -22.46     | 0     |
| Ο   |          |          | С   |      |       |        | С                 | C/Ar     | -39.15     | 2     |
| С   |          |          | Ar  | С    |       |        | Ar                |          | -16.96     | 0     |
| Ar  |          |          | С   | Ar   |       |        | С                 | С        | -25.29     | 2     |
| Ar  |          |          | Ο   | C/Ar |       |        |                   |          | -44.39     | 0     |
| Ο   |          |          | Ar  |      |       |        | С                 | Ar       | -44.45     | 0     |
| Ν   |          |          | Ar  | С    |       |        |                   |          | -38.67     | 0     |
| Ar  |          |          | Ν   | C/Ar |       |        | С                 | C/Ar     | -48.68     | 1     |

Table 3.56: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMB conformer of β-amyloid

| In  | itial O1 | rientati | on  |      | Fi  | nal Ori | $\Delta E_{bind}$ | Measured |            |       |
|-----|----------|----------|-----|------|-----|---------|-------------------|----------|------------|-------|
| H13 | H14      | Q15      | K16 | H13  | H14 | Q15     | K16               | Х        | (kcal/mol) | Bonds |
| Ν   | С        |          |     | С    | С   |         |                   | Ν        | -42.19     | 1     |
| C   | Ν        |          |     | С    | Ar  |         |                   | Ν        | -41.70     | 1     |
| Ν   | Ο        |          |     | С    | Ar  |         |                   | N/O      | -30.72     | 0     |
| 0   | Ν        |          |     | Ν    |     |         |                   | 0        | -25.01     | 0     |
| 0   | С        |          |     |      | С   |         |                   |          | -20.40     | 0     |
| С   | Ο        |          |     | С    | Ar  |         |                   | Ar       | -39.28     | 1     |
| Ar  | С        |          |     | С    |     |         |                   | Ar       | -52.68     | 0     |
| С   | Ar       |          |     |      | C/N |         |                   | C/O/Ar   | -42.59     | 0     |
| 0   | Ar       |          |     |      | Ar  |         |                   | O/Ar     | -16.91     | 0     |
| Ar  | Ο        |          |     |      |     |         |                   | 0        | -22.23     | 0     |
| Ν   | Ar       |          |     |      | Ar  |         |                   | C/O/N/Ar | -34.50     | 0     |
| Ar  | Ν        |          |     |      | Ar  |         |                   | C/Ar     | -39.14     | 1     |
| C   |          |          | Ν   | С    |     |         | С                 |          | -28.94     | 1     |
| Ν   |          |          | С   | С    |     |         | С                 | С        | -26.73     | 1     |
| Ν   |          |          | Ο   | -    | -   | -       | -                 | -        | -27.58     | 0     |
| 0   |          |          | Ν   | -    | -   | -       | -                 | -        | 9.52       | 0     |
| C   |          |          | Ο   | С    |     |         |                   |          | -36.34     | 0     |
| 0   |          |          | С   | O/Ar |     |         | С                 | С        | -31.99     | 2     |
| C   |          |          | Ar  | С    |     |         |                   |          | -36.51     | 0     |
| Ar  |          |          | С   | Ar   |     |         | С                 |          | -24.55     | 1     |
| Ar  |          |          | Ο   | С    |     |         | С                 |          | -33.14     | 1     |
| 0   |          |          | Ar  |      |     |         | С                 |          | -30.19     | 1     |
| Ν   |          |          | Ar  |      |     |         | C/Ar              |          | -27.52     | 1     |
| Ar  |          |          | Ν   | C/Ar |     |         | С                 | C/Ar     | -31.15     | 1     |

Table 3.57: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMC conformer of β-amyloid

| In  | itial O1 | rientati | on  |     | Final | Orient | $\Delta E_{bind}$ | Measured |            |       |
|-----|----------|----------|-----|-----|-------|--------|-------------------|----------|------------|-------|
| H13 | H14      | Q15      | K16 | H13 | H14   | Q15    | K16               | Х        | (kcal/mol) | Bonds |
| 0   | Ν        |          |     | -   | -     | -      | -                 | -        | -3.63      | 0     |
| Ν   | Ο        |          |     |     |       |        |                   | C/Ar     | -10.10     | 0     |
| Ν   | С        |          |     | Ar  |       |        |                   |          | -45.58     | 0     |
| C   | Ν        |          |     | С   |       |        |                   | Ar       | -37.42     | 0     |
| C   | Ο        |          |     | С   | Ar    |        |                   | C/Ar     | -39.23     | 0     |
| 0   | С        |          |     | Ο   | C/Ar  |        |                   | C/Ar     | -20.31     | 0     |
| C   | Ar       |          |     | С   |       |        |                   |          | -41.98     | 0     |
| Ar  | С        |          |     | -   | -     | -      | -                 | -        | -32.83     | 0     |
| Ar  | Ο        |          |     |     | Ar    |        |                   | Ar       | -17.02     | 0     |
| 0   | Ar       |          |     | -   | -     | -      | -                 | -        | -7.82      | 0     |
| Ν   | Ar       |          |     |     | Ar    |        |                   | C/Ar     | -13.08     | 0     |
| Ar  | Ν        |          |     |     |       |        |                   | O/Ar     | -0.59      | 0     |
| 0   |          |          | Ν   |     |       |        | С                 | O/Ar     | -26.16     | 0     |
| Ν   |          |          | Ο   | С   |       |        |                   | C/N      | -35.39     | 2     |
| Ν   |          |          | С   | O/N |       |        | С                 |          | -8.90      | 0     |
| C   |          |          | Ν   | С   |       |        |                   | C/Ar     | -36.25     | 0     |
| 0   |          |          | С   |     |       |        | С                 |          | -17.15     | 0     |
| C   |          |          | Ο   | С   |       |        | Ar                | Ar       | -27.26     | 2     |
| Ar  |          |          | Ο   |     |       |        |                   | Ar       | -16.73     | 0     |
| 0   |          |          | Ar  | Ο   |       |        | С                 |          | -16.38     | 0     |
| Ar  |          |          | Ν   |     |       |        | С                 |          | -36.08     | 0     |
| Ν   |          |          | Ar  | С   |       |        |                   |          | -30.67     | 0     |
| Ar  |          |          | С   |     |       |        | С                 |          | -20.41     | 1     |
| С   |          |          | Ar  | С   |       |        |                   |          | -30.85     | 0     |

Table 3.58: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AML conformer of β-amyloid

| In  | itial O | rientati | on  | Fi   | inal Ori | ientatic | $\Delta E_{bind}$ | Measured   |       |
|-----|---------|----------|-----|------|----------|----------|-------------------|------------|-------|
| H13 | H14     | Q15      | K16 | H13  | H14      | Q15      | K16               | (kcal/mol) | Bonds |
| 0   | С       |          |     | Ar   | С        |          |                   | -30.56     | 0     |
| С   | Ο       |          |     | С    | Ar       |          |                   | -20.70     | 0     |
| Ν   | С       |          |     | C/Ar |          |          |                   | -30.48     | 0     |
| С   | Ν       |          |     | С    |          |          |                   | -28.75     | 0     |
| Ο   | Ν       |          |     |      | С        |          |                   | -30.32     | 0     |
| Ν   | Ο       |          |     | -    | -        | -        | -                 | -21.17     | 0     |
| Ar  | Ο       |          |     | -    | -        | -        | -                 | -27.32     | 0     |
| Ο   | Ar      |          |     |      | С        |          |                   | -23.72     | 0     |
| Ar  | С       |          |     | C/Ar |          |          |                   | -29.97     | 0     |
| C   | Ar      |          |     | С    | Ar       |          |                   | -34.46     | 0     |
| Ar  | Ν       |          |     |      | С        |          |                   | -29.30     | 0     |
| Ν   | Ar      |          |     | С    | C/Ar     |          |                   | -42.30     | 0     |

Table 3.59: The gas phase results of 3-hydroxyanthranilic acid interacting with the<br/>HHQK region of the 1BA4 conformer of β-amyloid

| In  | itial O1 | rientati | on  |      | Final | Orient | $\Delta E_{bind}$ | Measured |            |       |
|-----|----------|----------|-----|------|-------|--------|-------------------|----------|------------|-------|
| H13 | H14      | Q15      | K16 | H13  | H14   | Q15    | K16               | Х        | (kcal/mol) | Bonds |
| 0   | Ν        |          |     |      |       |        |                   | 0        | -22.98     | 0     |
| Ν   | Ο        |          |     | C/Ar |       |        |                   |          | -28.42     | 0     |
| Ν   | С        |          |     | Ν    |       |        |                   |          | -15.33     | 1     |
| С   | Ν        |          |     | С    |       |        |                   |          | -40.76     | 0     |
| Ο   | С        |          |     | Ar   | С     |        |                   | Ar       | -26.76     | 2     |
| С   | Ο        |          |     | C/Ar | O/Ar  |        |                   | Ar       | -33.26     | 0     |
| Ο   | Ar       |          |     | -    | -     | -      | -                 | -        | -21.46     | 0     |
| Ar  | Ο        |          |     | Ar   |       |        |                   |          | -30.41     | 0     |
| Ar  | С        |          |     | Ar   |       |        |                   |          | -22.06     | 0     |
| С   | Ar       |          |     | С    |       |        |                   |          | -30.41     | 0     |
| Ar  | Ν        |          |     | Ar   |       |        |                   | C/O      | -33.55     | 2     |
| Ν   | Ar       |          |     | Ar   | Ar    |        |                   | Ar       | -32.51     | 1     |
| С   |          |          | Ν   | С    |       |        |                   |          | -22.39     | 0     |
| Ν   |          |          | С   |      |       |        | С                 |          | -26.38     | 0     |
| Ν   |          |          | Ο   | C/Ar |       |        | Ο                 |          | -26.83     | 0     |
| Ο   |          |          | Ν   |      |       |        | Ν                 | Ν        | -17.11     | 1     |
| С   |          |          | Ο   | С    |       |        |                   |          | -32.56     | 0     |
| Ο   |          |          | С   | Ar   |       |        | С                 |          | -27.42     | 0     |
| Ν   |          |          | Ar  | С    |       |        |                   |          | -24.64     | 0     |
| Ar  |          |          | Ν   | -    | -     | -      | -                 | -        | -29.02     | 0     |
| Ar  |          |          | С   | Ar   |       |        | С                 |          | -25.89     | 0     |
| С   |          |          | Ar  | С    |       |        | Ar                |          | -27.29     | 0     |
| Ar  |          |          | Ο   | С    |       |        |                   |          | -28.50     | 0     |
| 0   |          |          | Ar  | Ar   |       |        | С                 |          | -24.93     | 1     |

 Table 3.60: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1IYT conformer of β-amyloid
| Initial Orientation |     |     | on  |      | Final | Orient | $\Delta E_{bind}$ | Measured |            |       |
|---------------------|-----|-----|-----|------|-------|--------|-------------------|----------|------------|-------|
| H13                 | H14 | Q15 | K16 | H13  | H14   | Q15    | K16               | Х        | (kcal/mol) | Bonds |
| Ο                   | Ν   |     |     | 0    | Ν     |        |                   | 0        | -9.38      | 0     |
| Ν                   | Ο   |     |     | C/N  | Ar    |        |                   | N/O      | -31.74     | 0     |
| С                   | Ν   |     |     | С    |       |        |                   |          | -29.86     | 0     |
| Ν                   | С   |     |     | Ν    | С     |        |                   | С        | -12.32     | 0     |
| С                   | Ο   |     |     | С    | O/Ar  |        |                   | Ar       | -25.91     | 0     |
| Ο                   | С   |     |     |      | С     |        |                   | Ar       | -29.38     | 0     |
| Ar                  | Ο   |     |     | Ar   |       |        |                   |          | -18.23     | 0     |
| Ο                   | Ar  |     |     | -    | -     | -      | -                 | -        | -10.60     | 0     |
| Ar                  | С   |     |     | Ar   | С     |        |                   | С        | -27.26     | 0     |
| С                   | Ar  |     |     | С    | Ar    |        |                   | Ar       | -25.93     | 0     |
| Ar                  | Ν   |     |     | Ar   | N/C   |        |                   | 0        | -25.84     | 0     |
| Ν                   | Ar  |     |     | C/N  | Ar    |        |                   | 0        | -31.66     | 0     |
| Ο                   |     |     | Ν   |      |       |        | С                 |          | -15.44     | 0     |
| Ν                   |     |     | Ο   | С    |       |        |                   |          | -24.48     | 0     |
| Ν                   |     |     | С   |      |       |        | С                 |          | -18.69     | 2     |
| С                   |     |     | Ν   | С    |       |        |                   |          | -15.17     | 1     |
| Ο                   |     |     | С   |      |       |        | С                 |          | -15.15     | 1     |
| С                   |     |     | Ο   | С    |       |        | Ar                |          | -17.09     | 1     |
| Ο                   |     |     | Ar  | Ar   |       |        | С                 |          | -14.40     | 2     |
| Ar                  |     |     | Ο   | C/Ar |       |        | Ar                |          | -14.07     | 2     |
| Ν                   |     |     | Ar  | -    | -     | -      | -                 | -        | -21.74     | 0     |
| Ar                  |     |     | Ν   |      |       |        | С                 |          | -28.56     | 1     |
| Ar                  |     |     | С   |      |       |        | С                 |          | -25.26     | 1     |
| С                   |     |     | Ar  | С    |       |        |                   |          | -25.54     | 0     |

Table 3.61: The gas phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1Z0Q conformer of β-amyloid

Six conformations were selected for solution phase optimization from the results of the gas phase interactions of 3-hydroxyanthranilic acid with the **HHQK** region of A $\beta$ , summarized in Tables 3.56-3.61. These selections were based on the requirement of having the lowest overall binding energy, as well as binding at two or more sites on the  $\beta$ amyloid protein. In the case of the 1BA4 conformer of A $\beta$ , only four systems met these criteria, so only four solution phase optimizations were performed. Overall 3HAA was capable of binding at His13-His14, and His13-Lys16, with the former being slightly more favoured. The selected systems are summarized in Table 3.62

| Interaction   | Binding Energy | Interaction | Binding Energy |
|---------------|----------------|-------------|----------------|
|               | (kcal/mol)     |             | (kcal/mol)     |
| 1             | AMB            |             | 1BA4           |
| HNHAr         | -56.83         | HNHAr       | -42.30         |
| HNHC          | -50.37         | HCHAr       | -34.46         |
| HCHO          | -49.23         | HOHC        | -30.56         |
| HCHN          | -48.41         | HCHO        | -20.70         |
| HArHN         | -47.17         |             | 1IYT           |
| HOHQKAr       | -44.45         | HArHN       | -33.55         |
| 1             | AMC            | HCHO        | -33.26         |
| HArHC         | -52.68         | HNHAr       | -32.51         |
| HCHAr         | -42.59         | HOHQKC      | -27.42         |
| HNHC          | -42.20         | HCHQKAr     | -27.29         |
| HCHN          | -41.70         | HNHQKO      | -26.83         |
| HCHO          | -39.28         |             | 1Z0Q           |
| HArHN         | -39.14         | HNHO        | -31.74         |
| 1             | AML            | HNHAr       | -31.66         |
| HCHO          | -39.23         | HArHC       | -27.26         |
| HCHN          | -37.42         | HCHAr       | -25.93         |
| <b>HCHQKN</b> | -36.25         | HCHO        | -25.91         |
| <b>HNHQKO</b> | -35.39         | HArHN       | -25.84         |
| <b>HCHQKO</b> | -27.26         |             |                |
| HOHQKN        | -26.16         |             |                |

Table 3.62: Selected systems of 3-hydroxyanthranilic acid and the HHQK region of Aβ for solvation

The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of A $\beta$  are summarized in Tables 3.63-68.

|     | Initi | ial Orienta | tion |     |        | Fin | al Orie |      | $\Delta E_{bind}$ | Measured |            |       |
|-----|-------|-------------|------|-----|--------|-----|---------|------|-------------------|----------|------------|-------|
| E11 | V12 H | H13 H14     | Q15  | K16 | E11    | V12 | H13     | H14  | Q15               | K16      | (kcal/mol) | Bonds |
| Ν   |       | С           |      |     | N/C    |     |         |      |                   |          | -31.73     | 0     |
| С   |       | Ν           |      |     | -      | -   | -       | -    | -                 | -        | -17.96     | 0     |
| Ν   |       | Ο           |      |     | N/O    |     |         | Ο    |                   |          | -8.82      | 0     |
| Ο   |       | Ν           |      |     | -      | -   | -       | -    | -                 | -        | -15.43     | 0     |
| С   |       | Ο           |      |     | O/N/Ar |     |         | C/Ar |                   |          | -37.93     | 2     |
| Ο   |       | С           |      |     | O/Ar   |     |         | C/Ar |                   |          | -28.17     | 1     |
| С   |       | Ar          |      |     | -      | -   | -       | -    | -                 | -        | -12.69     | 0     |
| Ar  |       | С           |      |     | Ar     |     |         | С    |                   |          | -23.33     | 0     |
| Ν   |       | Ar          |      |     | N/Ar   |     |         | C/Ar | Ο                 |          | -26.03     | 1     |
| Ar  |       | Ν           |      |     | Ar     |     |         | С    |                   |          | -30.65     | 0     |
| Ο   |       | Ar          |      |     | -      | -   | -       | -    | -                 | -        | -14.67     | 0     |
| Ar  |       | 0           |      |     | -      | -   | -       | -    | -                 | -        | -22.20     | 0     |

Table 3.63: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMB conformer of β-amyloid

Table 3.64: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMC conformer of β-amyloid

|     | Initial Orientation |     |     |     |     |        | Fin | al Orie | entation | n    |     | $\Delta E_{bind}$ | Measured |
|-----|---------------------|-----|-----|-----|-----|--------|-----|---------|----------|------|-----|-------------------|----------|
| E11 | V12                 | H13 | H14 | Q15 | K16 | E11    | V12 | H13     | H14      | Q15  | K16 | (kcal/mol)        | Bonds    |
| Ν   |                     |     | 0   |     |     | N      |     |         |          |      |     | -17.29            | 0        |
| 0   |                     |     | Ν   |     |     | Ν      |     |         |          |      |     | -29.87            | 0        |
| С   |                     |     | Ν   |     |     | C/N    |     |         |          |      |     | -29.60            | 1        |
| Ν   |                     |     | С   |     |     | Ν      |     |         | С        |      |     | -33.82            | 1        |
| С   |                     |     | Ο   |     |     | N/C/Ar |     |         |          |      |     | -20.72            | 0        |
| 0   |                     |     | С   |     |     | N/O/Ar |     |         | С        |      |     | -37.14            | 0        |
| Ν   |                     |     | Ar  |     |     | N/Ar   |     |         | Ar       |      |     | -34.55            | 0        |
| Ar  |                     |     | Ν   |     |     | N/Ar   |     |         |          |      |     | -28.82            | 0        |
| 0   |                     |     | Ar  |     |     | N/O/Ar |     |         | Ar       |      |     | -34.89            | 1        |
| Ar  |                     |     | Ο   |     |     | O/Ar   |     |         |          |      |     | -21.77            | 1        |
| C   |                     |     | Ar  |     |     | С      |     |         | C/Ar     | O/Ar |     | -21.37            | 1        |
| Ar  |                     |     | С   |     |     | Ar     |     |         | С        |      |     | -23.42            | 1        |

|     | In  | Initial Orientation Final Orientation |     |     |     |        |     |     | $\Delta E_{bind}$ | Measured |     |          |            |       |
|-----|-----|---------------------------------------|-----|-----|-----|--------|-----|-----|-------------------|----------|-----|----------|------------|-------|
| E11 | V12 | H13                                   | H14 | Q15 | K16 | E11    | V12 | H13 | H14               | Q15      | K16 | Х        | (kcal/mol) | Bonds |
| С   |     |                                       | Ν   |     |     | С      |     |     | Ν                 |          |     | Ar       | -22.54     | 0     |
| Ν   |     |                                       | С   |     |     | Ν      |     |     | С                 |          |     | N/O/Ar   | -40.71     | 0     |
| 0   |     |                                       | Ν   |     |     | 0      |     |     | Ν                 |          |     |          | -12.63     | 1     |
| Ν   |     |                                       | Ο   |     |     | Ν      |     |     | N/O               |          |     | C/N/Ar   | -16.19     | 1     |
| Ν   |     |                                       | Ar  |     |     | N/O/Ar |     |     | C/Ar              |          |     | N/O/Ar   | -42.99     | 3     |
| Ar  |     |                                       | Ν   |     |     |        |     |     | Ar                |          |     | Ar       | -23.43     | 2     |
| С   |     |                                       | Ar  |     |     |        |     |     |                   |          |     | C/N/Ar   | -40.33     | 1     |
| Ar  |     |                                       | С   |     |     | Ar     |     |     | С                 |          |     | Ar       | -31.95     | 0     |
| Ar  |     |                                       | Ο   |     |     | Ar     |     |     |                   |          |     | C/N/Ar   | -18.97     | 0     |
| 0   |     |                                       | Ar  |     |     |        |     |     |                   |          |     | C/O/N/Ar | -40.26     | 0     |
| 0   |     |                                       | С   |     |     | O/Ar   |     |     | C/Ar              |          |     | 0        | -21.89     | 2     |
| С   |     |                                       | 0   |     |     | C/Ar   |     |     | O/Ar              | С        |     | C/Ar     | -20.06     | 2     |

Table 3.65: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AML conformer of β-amyloid

Table 3.66: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of β-amyloid

|     | Initial Orienta |     |     |      | Fi  | nal Or | $\Delta E_{bind}$ | Measured |     |          |            |       |
|-----|-----------------|-----|-----|------|-----|--------|-------------------|----------|-----|----------|------------|-------|
| E11 | V12 H13 H14     | Q15 | K16 | E11  | V12 | H13    | H14               | Q15      | K16 | Х        | (kcal/mol) | Bonds |
| C   |                 |     | Ν   | С    |     |        |                   |          |     | C/O/N    | -33.24     | 1     |
| Ν   |                 |     | С   | C/N  |     |        |                   |          | С   | C/N      | -17.53     | 1     |
| 0   |                 |     | Ν   |      |     |        |                   |          |     | N/O/Ar   | -39.63     | 0     |
| Ν   |                 |     | Ο   | Ν    |     |        |                   |          |     | N/O      | -47.19     | 1     |
| 0   |                 |     | Ar  |      |     |        |                   |          |     | N/O/Ar   | -29.15     | 1     |
| Ar  |                 |     | Ο   | -    | -   | -      | -                 | -        | -   | -        | -47.04     | 0     |
| Ar  |                 |     | С   | C/Ar |     |        |                   |          | С   | C/O/N/Ar | -26.92     | 1     |
| C   |                 |     | Ar  | C/Ar |     |        |                   |          | Ar  | C/Ar     | -35.59     | 0     |

Table 3.67: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1IYT conformer of β-amyloid

|     | Initial Or | n     |        | Fin    | alOr |     | $\Delta E_{bind}$ | Measured |     |              |            |       |
|-----|------------|-------|--------|--------|------|-----|-------------------|----------|-----|--------------|------------|-------|
| E11 | V12 H13    | H14 Q | 15 K16 | E11    | V12  | H13 | H14               | Q15      | K16 | Х            | (kcal/mol) | Bonds |
| Ν   |            | 0     |        | N/O/Ar |      |     | 0                 |          |     |              | -30.23     | 2     |
| 0   |            | Ν     |        | Ν      |      |     |                   |          |     |              | -24.50     | 0     |
| C   |            | Ν     |        | С      |      |     | N/C               |          |     |              | -4.41      | 1     |
| Ν   |            | С     |        | Ν      |      |     |                   |          |     |              | -24.22     | 0     |
| 0   |            | Ar    |        |        |      |     | Ar                |          |     |              | -19.22     | 0     |
| Ar  |            | Ο     |        | -      | -    | -   | -                 | -        | -   | -            | -16.91     | 0     |
| Ν   |            | Ar    |        | N/Ar   |      |     | C/Ar              |          |     |              | -37.68     | 1     |
| Ar  |            | Ν     |        | O/Ar   |      |     |                   |          |     | $\mathbf{C}$ | -23.32     | 0     |
| Ar  |            | С     |        | Ar     |      |     |                   |          |     |              | -29.18     | 0     |
| C   |            | Ar    |        |        |      |     | С                 |          |     |              | -27.03     | 0     |

|     | Initial Orientation |       |        |     |        | Fi  | inal O |      | $\Delta E_{bind}$ | Measured |    |            |       |
|-----|---------------------|-------|--------|-----|--------|-----|--------|------|-------------------|----------|----|------------|-------|
| E11 | V12 I               | H13 H | 14 Q15 | K16 | E11    | V12 | H13    | H14  | Q15               | K16      | Х  | (kcal/mol) | Bonds |
| Ν   |                     | (     | )      |     | N      |     |        |      |                   |          |    | -15.82     | 0     |
| 0   |                     | ١     | V      |     |        |     |        | C/Ar |                   |          | Ar | -56.65     | 1     |
| C   |                     | N     | V      |     | С      |     |        |      |                   |          |    | -1.29      | 0     |
| Ν   |                     | (     | C      |     | C/N/Ar |     |        | С    |                   |          |    | -57.78     | 0     |
| 0   |                     | (     | C      |     | Ο      |     |        | С    |                   |          | Ar | -42.01     | 0     |
| C   |                     | (     | )      |     | Ar     |     |        |      |                   |          |    | -33.36     | 0     |
| C   |                     | A     | r      |     | С      |     |        |      |                   |          |    | -11.39     | 0     |
| Ar  |                     | (     | C      |     | Ar     |     |        | С    |                   |          |    | -43.92     | 0     |
| 0   |                     | A     | r      |     | O/Ar   |     |        |      |                   |          |    | -25.30     | 0     |
| Ar  |                     | (     | )      |     | -      | -   | -      | -    | -                 | -        | -  | -18.67     | 0     |
| Ν   |                     | A     | r      |     | N/O    |     |        |      |                   |          |    | -30.09     | 1     |
| Ar  |                     | ١     | V      |     | Ar     |     |        | Ar   |                   |          |    | -53.38     | 0     |

Table 3.68: The gas phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1Z0Q conformer of β-amyloid

The results of the gas phase interactions occurring between 3-hydroxyanthranilic acid and the EVHHQK region of  $\beta$ -amyloid indicate binding can occur in this region of interest. From each conformer of A $\beta$  four systems were selected for optimization in the solution phase; these had to have the lowest energy and binding interactions at two or more of the amino acid side chains. The systems targeted for solution phase optimizations are summarized in Table 3.69.

| Interaction | Binding Energy | Interaction | Binding Energy |
|-------------|----------------|-------------|----------------|
|             | (kcal/mol)     |             | (kcal/mol)     |
|             | 1AMB           | 1           | LBA4           |
| ECVHHO      | -37.93         | ENVHHQKO    | -47.19         |
| EArVHHN     | -30.65         | ECVHHQKAr   | -35.59         |
| EOVHHC      | -28.17         | ECVHHQKN    | -33.24         |
| EArVHHN     | -26.03         | EArVHHQKC   | -26.92         |
|             | 1AMC           |             | 1IYT           |
| EOVHHC      | -37.14         | ENVHHAr     | -37.68         |
| EOVHHAr     | -34.89         | ENVHHO      | -30.23         |
| ENVHHAr     | -34.55         | EArVHHN     | -23.32         |
| ENVHHC      | -33.82         | ECVHHN      | -4.41          |
|             | 1AML           | 1           | IZOQ           |
| ENVHHAr     | -42.99         | ENVHHC      | -57.78         |
| ENVHHC      | -40.71         | EOVHHN      | -56.65         |
| EArVHHC     | -31.95         | EArVHHN     | -53.38         |
| EArVHHN     | -23.43         | EArVHHC     | -43.92         |

#### Table 3.69: Selected systems of 3-hydroxyanthranilic acid and the EVHHQK region of Aβ for solvation

The results of the gas phase interactions between 3HAA and the LVFF region of  $\beta$ -amyloid are summarized in Table 3.70. As there are very few interactions occurring in this region, it was determined that half of the systems for each conformer of A $\beta$  would undergo solution phase optimization. These systems had to have low energies and binding interactions at two or more sites with A $\beta$ ; in the case of the 1BA4 conformer there were no viable systems for solution phase optimization.

The systems selected for optimization in the solution phase are summarized in Table 3.71.

| Conformer | Ini | tial Or | rientati | ion |      |     | Final Or | $\Delta E_{bind}$ | Measured |            |       |
|-----------|-----|---------|----------|-----|------|-----|----------|-------------------|----------|------------|-------|
|           | L17 | V18     | F19      | F20 | L17  | V18 | F19      | F20               | Х        | (kcal/mol) | Bonds |
| 1AMB      | Ar  |         |          | Ν   | Ar   |     |          | С                 |          | -13.24     | 0     |
|           | Ar  |         |          | Ο   | Ar   |     |          |                   |          | -6.42      | 0     |
|           |     |         | Ar       | Ν   |      |     | Ar       |                   | С        | -9.73      | 0     |
|           |     |         | Ν        | Ar  |      |     | N/C/Ar   | Ar                | C/O/Ar   | -73.45     | 0     |
|           |     |         | Ο        | Ar  |      |     | Ο        |                   | Ar       | -37.48     | 0     |
|           |     |         | Ar       | Ο   |      |     | Ar       | Ar                | C/O      | -55.42     | 1     |
|           |     | Ar      | Ν        |     |      |     | С        |                   | Ar       | -23.66     | 0     |
|           |     | Ar      | Ο        |     |      | Ar  |          |                   |          | -27.43     | 1     |
| 1AMC      | Ar  |         |          | Ν   | Ar   |     |          |                   |          | -16.51     | 0     |
|           | Ar  |         |          | Ο   | C/Ar |     |          |                   | С        | -24.23     | 0     |
|           |     |         | Ar       | Ν   |      |     | Ar       |                   | O/Ar     | -41.55     | 0     |
|           |     |         | Ν        | Ar  |      |     | Ν        |                   |          | -18.80     | 1     |
|           |     |         | Ar       | Ο   | -    | -   | -        | -                 | -        | -13.19     | 0     |
|           |     |         | Ο        | Ar  |      |     | Ο        |                   | Ar       | -28.81     | 0     |
|           |     | Ar      | Ν        |     |      | Ar  | Ν        |                   | C/O/Ar   | -28.59     | 1     |
|           |     | Ar      | Ο        |     | -    | -   | -        | -                 | -        | -15.06     | 0     |
| 1AML      | Ar  |         |          | Ο   |      |     |          | 0                 | Ar       | -18.92     | 0     |
|           | Ar  |         |          | Ν   |      |     |          | C/Ar              | O/Ar     | -31.34     | 0     |
|           |     |         | Ar       | Ο   | -    | -   | -        | -                 | -        | -20.49     | 0     |
|           |     |         | Ο        | Ar  |      |     |          | Ar                | Ο        | -30.51     | 0     |
|           |     |         | Ar       | Ν   | -    | -   | -        | -                 | -        | -21.30     | 0     |
|           |     |         | Ν        | Ar  |      |     |          | Ο                 | Ν        | -28.17     | 0     |
| 1BA4      | Ar  |         |          | Ν   | Ar   |     |          |                   |          | -21.27     | 0     |
|           | Ar  |         |          | Ο   |      |     |          | Ar                |          | -16.97     | 0     |
|           |     | Ar      | Ο        |     |      |     |          |                   | Ο        | -22.68     | 1     |
| 1IYT      | Ar  |         |          | Ν   | Ar   |     |          |                   |          | -11.93     | 0     |
|           | Ar  |         |          | Ο   |      |     |          |                   | Ar       | -18.01     | 0     |
|           |     |         | Ο        | Ar  |      |     |          |                   | Ν        | -27.72     | 1     |
|           |     |         | Ar       | Ο   |      |     | Ar       |                   | C/O/Ar   | -29.08     | 3     |
|           |     | Ar      | Ο        |     |      |     | Ο        |                   | Ar       | -16.27     | 0     |
| 1Z0Q      | Ar  |         |          | Ν   | Ar   |     |          | Ν                 |          | -8.03      | 0     |
|           | Ar  |         |          | Ο   |      |     | Ar       |                   |          | -8.76      | 0     |
|           | Ar  |         | Ν        |     |      |     | Ar       | O/Ar              |          | -27.37     | 1     |
|           | Ar  |         | Ο        |     | -    | -   | -        | -                 | -        | -9.31      | 0     |
|           |     |         | Ar       | Ν   |      |     | Ar       | O/Ar              |          | -22.80     | 1     |
|           |     |         | Ν        | Ar  |      |     | Ο        | Ar                |          | -27.48     | 0     |
|           |     |         | Ar       | Ο   |      |     | Ar       | C/O/N/Ar          |          | -18.01     | 2     |
|           |     |         | 0        | Ar  | -    | -   | -        | -                 | -        | -10.22     | 0     |

 Table 3.70: The gas phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of β-amyloid

| Interaction | Binding Energy | Interaction | Binding Energy |
|-------------|----------------|-------------|----------------|
|             |                |             |                |
|             |                |             | TI I I         |
| FNFAr       | -73.45         | FArFO       | -29.08         |
| FArFO       | -55.42         | VArFO       | -16.27         |
| FOFAr       | -37.48         |             | 1Z0Q           |
| VArFO       | -27.43         | FNFAr       | -27.48         |
| 1           | LAMC           | FArFN       | -22.80         |
| FArFN       | -41.55         | FArFO       | -18.01         |
| FOFAr       | -28.81         | LArVFFN     | -8.03          |
| VArFN       | -28.59         |             |                |
| LArVFFO     | -24.23         |             |                |
|             | 1AML           |             |                |
| LArVFFN     | -31.34         |             |                |
| FOFAr       | -30.51         |             |                |
| FNFAr       | -28.17         |             |                |
| LArVFFO     | -18.92         |             |                |

#### Table 3.71: Selected systems of 3-hydroxyanthranilic acid and the LVFF region of Aβ for solvation

#### 3.7.3 Solution Phase Results for 3-hydroxyanthranilic acid Interacting with $\beta$ -Amyloid

Solution phase optimizations were performed for each of the regions of  $\beta$ -amyloid interacting with 3HAA. These optimizations were performed in MOE following the procedure outlined in Section 3.5.4.1. The results of these calculations are summarized according to conformer and each region of A $\beta$  that was the focus for binding. The initial and final binding orientations are given, with 3 letter abbreviations for the amino acid residues. Identification of the functional groups of 3HAA follows the same pattern as outlined in the gas phase optimizations. The binding energies of each system were calculated via the following equations:

$$\Delta E_{tot} = E_{tot} - E_{A\beta} - E_{HAA} \tag{3.17}$$

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdw3HAA}$$
(3.18)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{ele3HAA}$$
(3.19)

These equations are identical to those used for previous solution phase optimizations, where the measured energies are calculated with a constrained protein backbone and the solvent removed from the system. The energies of the solvated A $\beta$  conformers are the same as those in Appendix 6 and the energy of the solution phase optimized 3-hydroxyanthranilic acid is given in Table 3.72.

Table 3.72: The solution phase energy of 3-hydroxyanthranilic acid

|                           | Energies (kcal/mol) |           |           |  |  |  |  |
|---------------------------|---------------------|-----------|-----------|--|--|--|--|
|                           | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |  |  |  |  |
|                           |                     |           |           |  |  |  |  |
| 3-hydroxyanthranilic acid | -3.16               | 17.45     | -26.72    |  |  |  |  |

Binding interactions that occurred in the solution phase are denoted by coloured squares: orange indicates a hydrogen bond, the darker the orange, the more hydrogen bonds have formed; green indicates cation- $\pi$  interactions, the darker the green, the more cation- $\pi$  interactions that are occurring at that site; light blue signifies  $\pi$ - $\pi$  interactions, as the shade becomes more intense, more interactions are occurring. There are also interactions occurring with regions other than the R group of the amino acids: indigo indicates interactions with the –CH<sub>2</sub>- chain, whereas lime green is used for the –CH- of the protein backbone; light purple is used for interactions with the C=O of the protein backbone; and finally yellow represents the –NH- of the protein backbone.

Tables 3.73-3.78 detail the results of the solution phase optimization of 3HAA and the HHQK region of  $\beta$ -amyloid.

|                     | Tyr10   | His13    | His14 | Gln15 | Lys16 | Leu17 | Val18 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation |         | С        | Ar    |       |       | Ν     |       |
| Final Orientation   |         | С        | Ar    |       |       | С     | Ο     |
|                     |         |          |       |       |       | Ν     | Ar    |
| Total =             | 52 85   | kcal/mol |       |       |       |       |       |
| van der Waals =     | -52.85  | kcal/mol |       |       |       |       |       |
| Flectrostatic =     | -281.84 | kcal/mol |       |       |       |       |       |
| Licenostatic        | -201.04 | Kedriiki |       |       |       |       |       |
| $\Delta E_{tot} =$  | -48.04  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -3.87   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -57.13  | kcal/mol |       |       |       |       |       |
| Initial Orientation | С       | С        |       |       |       |       |       |
| Final Orientation   | Ν       | С        | Ar    |       |       | Ar    |       |
| Total =             | -49.20  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 73.21   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -272.24 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -44.39  | kcal/mol |       |       |       |       |       |
| $\Delta E_{ydy} =$  | 9.00    | kcal/mol |       |       |       |       |       |
| $\Delta E_{1} =$    | -47 52  | kcal/mol |       |       |       |       |       |
|                     | 17.52   | Realinoi |       |       |       |       |       |
| Initial Orientation | Ν       | С        | Ν     |       |       |       |       |
| Final Orientation   | Ν       | С        | Ar    |       |       |       |       |
| Total =             | -55.40  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 50.55   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -261.01 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -50.59  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -13.66  | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -39.29  | kcal/mol |       |       |       |       |       |

# Table 3.73: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMB conformer of β-amyloid

|                     | Tyr10   | His13    | His14 | Gln15 | Lys16 | Leu17 | Phe20 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation |         | С        | Ν     |       |       | Ar    |       |
|                     |         |          | С     |       |       |       |       |
| Final Orientation   | С       | С        | Ν     |       |       | Ar    |       |
| Total =             | -70.93  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 59.05   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -280.02 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -66.12  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -5.17   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -55.31  | kcal/mol |       |       |       |       |       |
| Initial Orientation |         |          |       |       | С     |       | Ar    |
| Final Orientation   |         |          |       |       | C     |       | Ar    |
| Total =             | -42 55  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 70.54   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -270.35 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -37 74  | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | 633     | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw}$    | 45 (2   |          |       |       |       |       |       |
| $\Delta E_{ele} =$  | -45.65  | kcal/mol |       |       |       |       |       |
| Initial Orientation | Ar      | С        | Ar    |       |       |       |       |
|                     |         |          | Ar    |       |       |       |       |
| Final Orientation   | Ar      | С        | Ar    |       |       |       |       |
|                     |         | Ar       |       |       |       |       |       |
| Total =             | -15.02  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 57.04   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -244.67 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -10.21  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -7.18   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -19.95  | kcal/mol |       |       |       |       |       |

# Table 3.73: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMB conformer of β-amyloid

|                     | Tyr10   | His13    | His14 | Gln15 | Lys16 | Leu17 | Val18 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation | Ar      |          | Ar    |       |       | С     |       |
| Final Orientation   | Ar      |          | Ar    |       |       | С     |       |
| Total =             | -68.29  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 64.52   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -294.30 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -37.91  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 1.80    | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -47.08  | kcal/mol |       |       |       |       |       |
| Initial Orientation | С       |          | С     |       |       | Ο     | Ν     |
|                     |         |          | Ν     |       |       | Ar    |       |
| Final Orientation   | С       |          |       |       |       | Ar    |       |
| Total =             | -70.38  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 68.06   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -296.80 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -40.01  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 5.33    | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -49.58  | kcal/mol |       |       |       |       |       |
| Initial Orientation | Ar      | С        |       |       |       |       |       |
| Final Orientation   | Ar      |          | Ar    |       |       |       |       |
| Total =             | -69.43  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 64.03   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -298.80 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -39.06  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 1.31    | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -51.58  | kcal/mol |       |       |       |       |       |

Table 3.74: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMC conformer of β-amyloid

|                     | Tyr10   | His13      | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|------------|-------|-------|-------|-------|
| Initial Orientation | Ν       | С          | С     |       |       |       |
| Final Orientation   | Ν       |            | С     |       |       |       |
| Total =             | -79.18  | kcal/mol   |       |       |       |       |
| van der Waals =     | 63.01   | kcal/mol   |       |       |       |       |
| Electrostatic =     | -298.72 | kcal/mol   |       |       |       |       |
| $\Delta E_{tot} =$  | -48.81  | kcal/mol   |       |       |       |       |
| $\Delta E_{vdw} =$  | 0.28    | kcal/mol   |       |       |       |       |
| $\Delta E_{ele} =$  | -51.50  | kcal/mol   |       |       |       |       |
| Initial Orientation | Ν       | С          | Ar    |       |       |       |
| Final Orientation   | Ν       | С          | Ar    |       |       |       |
| Total —             | 59 12   | leas1/mal  |       |       |       |       |
| Iotal –             | -36.45  |            |       |       |       |       |
| Van der waars –     | 70.00   |            |       |       |       |       |
| Electrostatic –     | -277.01 | KCal/III01 |       |       |       |       |
| $\Delta E_{tot} =$  | -28.05  | kcal/mol   |       |       |       |       |
| $\Delta E_{vdw} =$  | 7.33    | kcal/mol   |       |       |       |       |
| $\Delta E_{ele} =$  | -30.39  | kcal/mol   |       |       |       |       |
| Initial Orientation | Ar      | С          | Ar    |       |       |       |
| Final Orientation   | Ar      | С          | Ar    |       |       | С     |
|                     |         |            |       |       |       | Ν     |
| Total =             | -52.98  | kcal/mol   |       |       |       |       |
| van der Waals =     | 60.60   | kcal/mol   |       |       |       |       |
| Electrostatic =     | -267.49 | kcal/mol   |       |       |       |       |
| $\Delta E_{tot} =$  | -22.60  | kcal/mol   |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.12   | kcal/mol   |       |       |       |       |
| $\Delta E_{ele} =$  | -20.27  | kcal/mol   |       |       |       |       |

# Table 3.74: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AMC conformer of β-amyloid

|                     | Tyr10   | Vall2    | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|-------|
| Initial Orientation | С       |          | С     | Ar    |       |       |
|                     | Ar      |          |       |       |       |       |
| Final Orientation   | С       |          | С     | Ar    |       |       |
| Total =             | 67.90   | kcal/mol |       |       |       |       |
| van der Waals =     | 76.99   | kcal/mol |       |       |       |       |
| Electrostatic =     | -230.00 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -55.24  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | -8.37   | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -44.15  | kcal/mol |       |       |       |       |
| Initial Orientation | Ar      |          | С     |       |       |       |
| Final Orientation   | С       |          | С     |       |       |       |
|                     | Ar      |          |       |       |       |       |
| Total =             | 97.87   | kcal/mol |       |       |       |       |
| van der Waals =     | 95.00   | kcal/mol |       |       |       |       |
| Electrostatic =     | -222.07 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -25.26  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 9.63    | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -36.22  | kcal/mol |       |       |       |       |
| Initial Orientation |         | С        | С     |       |       |       |
|                     |         | Ar       |       |       |       |       |
| Final Orientation   |         | С        | С     |       |       |       |
|                     |         |          |       |       |       |       |
| Total =             | 104.27  | kcal/mol |       |       |       |       |
| van der Waals =     | 86.64   | kcal/mol |       |       |       |       |
| Electrostatic =     | -212.92 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -18.86  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 1.28    | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -27.07  | kcal/mol |       |       |       |       |

Table 3.75: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AML conformer of β-amyloid

|                     | Val12   | His13    | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|
| Initial Orientation | С       | С        |       |       |       |
|                     | Ν       |          |       |       |       |
| Final Orientation   | С       | С        |       |       | Ar    |
|                     | Ν       |          |       |       |       |
| Total =             | 104.65  | kcal/mol |       |       |       |
| van der Waals =     | 99.75   | kcal/mol |       |       |       |
| Electrostatic =     | -221.24 | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -18.48  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | 14.38   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -35.40  | kcal/mol |       |       |       |
| Initial Orientation | Ar      | С        |       |       | Ar    |
| Final Orientation   |         | С        | •     |       | Ar    |
| Total =             | 102.82  | kcal/mol |       |       |       |
| van der Waals =     | 84.92   | kcal/mol |       |       |       |
| Electrostatic =     | -214.85 | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -20.31  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -0.45   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -29.00  | kcal/mol |       |       |       |
| Initial Orientation | О       |          |       |       | С     |
|                     | Ar      |          |       |       |       |
| Final Orientation   | О       |          |       |       |       |
|                     | Ar      |          |       |       |       |
| Total =             | 117.88  | kcal/mol |       |       |       |
| van der Waals =     | 98.02   | kcal/mol |       |       |       |
| Electrostatic =     | -202.45 | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -5.25   | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | 12.66   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -16.60  | kcal/mol |       |       |       |

Table 3.75: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1AML conformer of β-amyloid

|                     | His13   | His14    | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|
| Initial Orientation | С       | С        |       |       |
|                     |         | Ar       |       |       |
| Final Orientation   | С       | С        |       |       |
|                     |         | Ar       |       |       |
| Total =             | 55.81   | kcal/mol |       |       |
| van der Waals =     | 79.47   | kcal/mol |       |       |
| Electrostatic =     | -242.03 | kcal/mol |       |       |
| $\Delta E_{tot} =$  | -82.45  | kcal/mol |       |       |
| $\Delta E_{vdw} =$  | -29.80  | kcal/mol |       |       |
| $\Delta E_{ele} =$  | -45.80  | kcal/mol |       |       |
| Initial Orientation | С       | Ar       |       |       |
| Final Orientation   | С       | С        |       |       |
|                     |         | Ar       |       |       |
| Total =             | 88.52   | kcal/mol |       |       |
| van der Waals =     | 95.75   | kcal/mol |       |       |
| Electrostatic =     | -225.32 | kcal/mol |       |       |
| $\Delta E_{tot} =$  | -49.73  | kcal/mol |       |       |
| $\Delta E_{vdw} =$  | -13.52  | kcal/mol |       |       |
| $\Delta E_{ele} =$  | -29.10  | kcal/mol |       |       |
| Initial Orientation | Ar      | С        |       |       |
| Final Orientation   | Ar      | С        |       |       |
| Total =             | 80.28   | kcal/mol |       |       |
| van der Waals =     | 94.59   | kcal/mol |       |       |
| Electrostatic =     | -229.72 | kcal/mol |       |       |
| $\Delta E_{tot} =$  | -57.98  | kcal/mol |       |       |
| $\Delta E_{vdw} =$  | -14.68  | kcal/mol |       |       |
| $\Delta E_{ele} =$  | -33.49  | kcal/mol |       |       |
| Initial Orientation | С       | Ar       |       |       |
| Final Orientation   | N       | Ar       |       |       |
|                     | С       |          |       |       |
| Total =             | 97.49   | kcal/mol |       |       |
| van der Waals =     | 89.20   | kcal/mol |       |       |
| Electrostatic =     | -202.59 | kcal/mol |       |       |
| $\Delta E_{tot} =$  | -40.76  | kcal/mol |       |       |
| $\Delta E_{vdw} =$  | -20.06  | kcal/mol |       |       |
| $\Delta E_{ele} =$  | -6.36   | kcal/mol |       |       |

Table 3.76:The solution phase results of 3-hydroxyanthranilic acid interacting<br/>with the HHQK region of the 1BA4 conformer of β-amyloid

|                     | Gly9    | Tyr10    | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation | 0       |          | Ar    |       |       |       | С     |
|                     |         |          | Ar    |       |       |       |       |
| Final Orientation   | 0       |          | Ar    |       |       |       |       |
|                     |         |          | Ar    |       |       |       |       |
| Total =             | 32.35   | kcal/mol |       |       |       |       |       |
| van der Waals =     | 88.71   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | 269.53  | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -41.13  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -16.93  | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -26.26  | kcal/mol |       |       |       |       |       |
| Initial Orientation | Ar      | Ar       | С     | Ο     |       |       |       |
|                     |         |          | Ar    | Ar    |       |       |       |
| Final Orientation   | Ar      | Ar       | С     |       |       |       |       |
| Total =             | 106.57  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 97.50   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -273.12 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | 33.09   | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -8.14   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -29.85  | kcal/mol |       |       |       |       |       |
| Initial Orientation |         |          | Ar    | Ar    |       |       | Ar    |
| Final Orientation   |         |          | Ν     | Ar    |       |       | Ar    |
|                     |         |          | С     |       |       |       |       |
| Total =             | 39.60   | kcal/mol |       |       |       |       |       |
| van der Waals =     | 90.27   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -271.68 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -33.89  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -15.37  | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -28.41  | kcal/mol |       |       |       |       |       |

# Table 3.77: The solution phase results of 3-hydroxyanthranilic acid interacting with<br/>the HHQK region of the 1IYT conformer of β-amyloid

|                           | His13   | His14    | Gln15 | Lys16 |
|---------------------------|---------|----------|-------|-------|
| Initial Orientation       | Ar      |          |       | С     |
| Final Orientation         | Ar      |          |       | Ar    |
|                           |         |          |       | С     |
| Total =                   | 71.16   | kcal/mol |       |       |
| van der Waals =           | 98.15   | kcal/mol |       |       |
| Electrostatic =           | -250.12 | kcal/mol |       |       |
| $\Delta E_{tot} =$        | -2.32   | kcal/mol |       |       |
| $\Delta F_{\text{tot}} =$ | -7 49   | kcal/mol |       |       |
| $\Delta E_{Vdw}$          | -6.85   | kcal/mol |       |       |
| $\Delta L_{ele}$ –        | -0.85   | KCalinoi |       |       |
| Initial Orientation       | С       |          |       | Ar    |
| Final Orientation         | С       |          |       | Ar    |
| Total =                   | 49.04   | kcal/mol |       |       |
| van der Waals =           | 82.66   | kcal/mol |       |       |
| Electrostatic =           | -258.21 | kcal/mol |       |       |
| $\Delta E_{tot} =$        | -24.44  | kcal/mol |       |       |
| $\Delta E_{vdw} =$        | -22.97  | kcal/mol |       |       |
| $\Delta E_{ele} =$        | -14.94  | kcal/mol |       |       |
| Initial Orientation       | С       |          |       | Ο     |
|                           | Ar      | _        |       |       |
| Final Orientation         | С       |          |       | Ar    |
| Total =                   | 78.99   | kcal/mol |       |       |
| van der Waals =           | 86.14   | kcal/mol |       |       |
| Electrostatic =           | -273.59 | kcal/mol |       |       |
| $\Delta E_{tot} =$        | 5.51    | kcal/mol |       |       |
| $\Delta E_{vdw} =$        | -19.50  | kcal/mol |       |       |
| $\Delta E_{ele} =$        | -30.32  | kcal/mol |       |       |

Table 3.77: The solution phase results of 3-hydroxyanthranilic acid interacting with<br/>the HHQK region of the 1IYT conformer of β-amyloid

|                      | Tyr10   | His13    | His14 | Gln15 | Lys16 |
|----------------------|---------|----------|-------|-------|-------|
| Initial Orientation  | N       | С        | Ar    |       |       |
|                      | Ο       | Ν        |       |       |       |
| Final Orientation    | Ο       | С        | Ar    |       |       |
| Total =              | 91.01   | kcal/mol |       |       |       |
| van der Waals =      | 87.14   | kcal/mol |       |       |       |
| Electrostatic =      | -249.02 | kcal/mol |       |       |       |
| $\Delta E_{tot} =$   | -27.62  | kcal/mol |       |       |       |
| $\Delta E_{udw} =$   | -2.79   | kcal/mol |       |       |       |
| $\Delta E_{\rm vdw}$ | -36.93  | kcal/mol |       |       |       |
| $\Delta L_{ele}$ –   | -30.95  | KCalinoi |       |       |       |
| Initial Orientation  | Ο       | Ν        | Ar    |       |       |
|                      |         | С        |       |       |       |
| Final Orientation    | Ο       | С        |       |       |       |
| Total =              | 101.32  | kcal/mol |       |       |       |
| van der Waals =      | 93.77   | kcal/mol |       |       |       |
| Electrostatic =      | -244.89 | kcal/mol |       |       |       |
|                      | 15 01   | 1 1/ 1   |       |       |       |
| $\Delta E_{tot} =$   | -17.31  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$   | 3.84    | kcal/mol |       |       |       |
| $\Delta E_{ele} =$   | -32.80  | kcal/mol |       |       |       |
| Initial Orientation  | С       | Ar       | C     |       |       |
| Final Orientation    | C       | Ar       | C     |       |       |
|                      | U       | 7 11     | C     |       |       |
| Total =              | 81.04   | kcal/mol |       |       |       |
| van der Waals =      | 81.59   | kcal/mol |       |       |       |
| Electrostatic =      | -244.54 | kcal/mol |       |       |       |
| $\Delta E_{tot} =$   | -37.58  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$   | -8.32   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$   | -32.45  | kcal/mol |       |       |       |

Table 3.78: The solution phase results of 3-hydroxyanthranilic acid interacting with<br/>the HHQK region of the 1Z0Q conformer of β-amyloid

|                     | Gly9    | Tyr10    | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|-------|
| Initial Orientation |         | Ar       | С     | Ar    |       |       |
| Final Orientation   | Ar      | Ar       | С     |       |       |       |
| Total =             | 112.90  | kcal/mol |       |       |       |       |
| van der Waals =     | 106.44  | kcal/mol |       |       |       |       |
| Electrostatic =     | -243.42 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -5.72   | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 16.52   | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -31.33  | kcal/mol |       |       |       |       |
| Initial Orientation |         | Ar       | С     | Ο     |       |       |
|                     |         |          |       | Ar    |       |       |
| Final Orientation   |         | Ar       | С     |       |       |       |
| Total =             | 118.85  | kcal/mol |       |       |       |       |
| van der Waals =     | 94.13   | kcal/mol |       |       |       |       |
| Electrostatic =     | -236.32 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | 0.23    | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 4.20    | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -24.23  | kcal/mol |       |       |       |       |
| Initial Orientation |         | 0        | Ar    | Ν     |       |       |
|                     |         |          |       | С     |       |       |
| Final Orientation   |         | Ο        | Ar    |       |       |       |
| Total =             | 92.74   | kcal/mol |       |       |       |       |
| van der Waals =     | 88.03   | kcal/mol |       |       |       |       |
| Electrostatic =     | -239.57 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -25.89  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | -1.89   | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -27.47  | kcal/mol |       |       |       |       |

 Table 3.78: The solution phase results of 3-hydroxyanthranilic acid interacting with the HHQK region of the 1Z0Q conformer of β-amyloid

These results indicate that 3HAA is capable of binding to and interacting with the **HHQK** region of  $\beta$ -amyloid. Interactions occurring at His13-His14 are favoured 3:1 over those at His13-Lys16. There is a large variability in the energies of the systems, and the presence of measurable bonds does not always indicate favourable energetics. In general the electrostatic energies make more of a contribution to the overall binding than the van

der Waals energies. Cation- $\pi$  interactions were more prevalent than hydrogen bonds in these systems.

The results of the solution phase optimizations of 3-hydroxyanthranilic acid and the EVHHQK region of  $\beta$ -amyloid are summarized in Tables 3.79-3.84. In general, the results of these calculations show binding at Glu11-His14 to be preferred, with interactions occurring at these two amino acids in over half of the systems; all systems demonstrated at least one interaction occurring at multiple sites within EVHHQK. Both cation- $\pi$  and hydrogen bonds were present, and for most of the systems the electrostatic energies contribute more to the overall energy of the system than the van der Waals energy.

|                     | Glu11         | Val12    | His13 | His14   | Gln15 | Lys16 |
|---------------------|---------------|----------|-------|---------|-------|-------|
| Initial Orientation | N             |          |       | Ar      |       |       |
|                     | Ar            |          |       | С       |       |       |
|                     | 0             |          |       |         |       |       |
| Final Orientation   | N             |          |       | Ar      | Ο     |       |
|                     | Ar            |          |       | С       | Ar    |       |
| Total =             | -50.56        | kcal/mol |       |         |       |       |
| van der Waals =     | 57.09         | kcal/mol |       |         |       |       |
| Electrostatic =     | -258.62       | kcal/mol |       |         |       |       |
|                     | 4.5.04        | / .      |       |         |       |       |
| $\Delta E_{tot} =$  | -45.84        | kcal/mol |       |         |       |       |
| $\Delta E_{vdw} =$  | -7.12         | kcal/mol |       |         |       |       |
| $\Delta E_{ele} =$  | -33.90        | kcal/mol |       |         |       |       |
| Initial Orientation | Δr            |          |       | C       |       |       |
| Final Orientation   | Ar            |          |       | C<br>C  |       |       |
| i indi Orientation  | 7 11          |          |       | N       |       |       |
|                     |               |          |       | Ar      |       |       |
|                     |               |          |       |         |       |       |
| Total =             | -7.57         | kcal/mol |       |         |       |       |
| van der Waals =     | 63.07         | kcal/mol |       |         |       |       |
| Electrostatic =     | -239.80       | kcal/mol |       |         |       |       |
| $\Delta E_{tot} =$  | -2.76         | kcal/mol |       |         |       |       |
| $\Delta E_{vdw} =$  | -1.15         | kcal/mol |       |         |       |       |
| $\Delta E_{ele} =$  | -15.08        | kcal/mol |       |         |       |       |
| Initial Orientation | 0             |          |       | ٨٣      |       |       |
| Initial Orientation | ٥<br>۸r       |          |       | AI<br>C |       |       |
| Final Orientation   |               |          |       | C       |       |       |
|                     | Ar            |          |       | Ar      |       |       |
| Total =             | -33 13        | kcal/mol |       |         |       |       |
| van der Waals =     | 60.32         | kcal/mol |       |         |       |       |
| Electrostatic $=$   | -249.80       | kcal/mol |       |         |       |       |
| Lieuosaite          | 219.00        | Rearing  |       |         |       |       |
| $\Delta E_{tot} =$  | -28.32        | kcal/mol |       |         |       |       |
| $\Delta E_{vdw} =$  | -3.89         | kcal/mol |       |         |       |       |
| $\Delta E_{ele} =$  | -25.08        | kcal/mol |       |         |       |       |
| Initial Orientation | Ν             |          |       | Ar      | 0     |       |
|                     | Ar            |          |       | С       |       |       |
| Final Orientation   | Ν             |          |       | Ar      |       |       |
|                     | Ar            |          |       |         |       |       |
| Total =             | -38.01        | kcal/mol |       |         |       |       |
| van der Waals =     | 64.95         | kcal/mol |       |         |       |       |
| Electrostatic =     | -266.20       | kcal/mol |       |         |       |       |
| $\Delta E_{tot} =$  | -33 20        | kcal/mol |       |         |       |       |
| $\Delta E_{1} =$    | 0.73          | kcal/mol |       |         |       |       |
|                     | 0.75<br>A1 A0 | kool/mol |       |         |       |       |
| $\Delta E_{ele} =$  | -41.48        | kcai/mol |       |         |       |       |

 Table 3.79:
 The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMB conformer of β-amyloid

|                     | Glu11   | Val12    | His13 | His14 | Gln15   | Lys16 |
|---------------------|---------|----------|-------|-------|---------|-------|
| Initial Orientation | Ν       |          |       | Ar    |         |       |
| Final Orientation   | Ar      |          |       | ۸     |         |       |
| Final Orientation   | O<br>Ar |          |       | Aſ    |         |       |
| -                   | 1       | , .      |       |       |         |       |
| Total =             | -42.20  | kcal/mol |       |       |         |       |
| Van der Waals       | 57.80   | kcal/mol |       |       |         |       |
| Electrostatic =     | -266.94 | kcal/mol |       |       |         |       |
| $\Delta E_{tot} =$  | -11.82  | kcal/mol |       |       |         |       |
| $\Delta E_{vdw} =$  | -4.92   | kcal/mol |       |       |         |       |
| $\Delta E_{ele} =$  | -19.72  | kcal/mol |       |       |         |       |
| Initial Orientation | N       |          |       | С     |         |       |
| Final Orientation   | N       |          |       |       |         |       |
| Total =             | -36.80  | kcal/mol |       |       |         |       |
| van der Waals       | 70.15   | kcal/mol |       |       |         |       |
| Electrostatic =     | -273.57 | kcal/mol |       |       |         |       |
| ΔE —                | 6 42    | kool/mol |       |       |         |       |
| $\Delta E_{tot} -$  | -0.42   | kcal/mol |       |       |         |       |
| $\Delta E_{vdw} -$  | 7.42    |          |       |       |         |       |
| $\Delta E_{ele} =$  | -26.35  | kcal/mol |       |       |         |       |
| Initial Orientation | Ν       |          |       | С     |         |       |
|                     | 0       |          |       |       |         |       |
| F: 10 : 4 /         | Ar      |          |       | C     | G       |       |
| Final Orientation   |         |          |       | C     | C<br>Ar |       |
| -                   |         | , .      |       |       | 7 11    |       |
| Total =             | -22.79  | kcal/mol |       |       |         |       |
| Van der Waals       | /5.98   | kcal/mol |       |       |         |       |
| Electrostatic –     | -239.81 | KCal/mol |       |       |         |       |
| $\Delta E_{tot} =$  | 7.59    | kcal/mol |       |       |         |       |
| $\Delta E_{vdw} =$  | 13.25   | kcal/mol |       |       |         |       |
| $\Delta E_{ele} =$  | -12.59  | kcal/mol |       |       |         |       |
| Initial Orientation | Ν       |          |       | Ar    |         |       |
|                     | Ar      |          |       | С     |         |       |
|                     | 0       |          |       |       |         |       |
| Final Orientation   | Ο       |          |       | Ar    |         |       |
|                     | Ν       |          |       | С     |         |       |
| Total =             | -51.09  | kcal/mol |       |       |         |       |
| van der Waals       | 58.50   | kcal/mol |       |       |         |       |
| Electrostatic =     | -279.31 | kcal/mol |       |       |         |       |
| $\Delta E_{tot} =$  | -20.72  | kcal/mol |       |       |         |       |
| $\Delta E_{vdw} =$  | -4.23   | kcal/mol |       |       |         |       |
| $\Delta E_{ele} =$  | -32.09  | kcal/mol |       |       |         |       |

# Table 3.80: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AMC conformer of β-amyloid

|                     | Asp7    | Set8     | Tyr10 | Glu11 | Val12 | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         | Ν        | 0     | Ν     |       |       | Ar    |       |       |
|                     |         | Ar       |       | Ο     |       |       | Ar    |       |       |
|                     |         |          |       | Ar    |       |       | С     |       |       |
| Final Orientation   |         | Ο        | Ο     | Ν     |       |       | Ar    |       |       |
|                     |         | Ar       |       | Ο     |       |       | С     |       |       |
|                     |         |          |       | Ar    |       |       | Ν     |       |       |
| Total =             | 99 59   | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 86.97   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic $=$   | -219.22 | kcal/mol |       |       |       |       |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -23.55  | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 1.63    | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -33.37  | kcal/mol |       |       |       |       |       |       |       |
| Initial Oniontation | 0       | 0        |       | N     |       |       | C     |       |       |
| Initial Orientation | 0       | U<br>N   |       | IN    |       |       | C     |       |       |
|                     |         | IN<br>Ar |       |       |       |       |       |       |       |
| Final Orientation   | 0       | AI<br>O  |       | N     |       |       | C     |       |       |
| i indi Orichiditori | 0       | N        |       | 1     |       |       | C     |       |       |
|                     |         | Ar       |       |       |       |       |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |
| Total =             | 91.32   | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 79.89   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic =     | -214.49 | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -31.81  | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -5.47   | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -28.65  | kcal/mol |       |       |       |       |       |       |       |
|                     |         |          |       |       |       |       | _     |       |       |
| Initial Orientation |         | Ar       |       | Ar    |       |       | C     |       |       |
| Final Orientation   |         |          |       | Ar    |       |       | С     |       |       |
| Total =             | 107.00  | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 95.34   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic =     | -205.89 | kcal/mol |       |       |       |       |       |       |       |
|                     | 16.12   | 1 1/ 1   |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -16.13  |          |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 9.98    | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -20.04  | kcal/mol |       |       |       |       |       |       |       |
| Initial Orientation |         | Ar       |       |       |       |       | Ar    |       |       |
| initial Orientation |         | 7 11     |       |       |       |       | Ar    |       |       |
| Final Orientation   |         |          |       |       |       |       | Ar    |       |       |
|                     |         |          |       |       |       |       |       |       |       |
| I otal =            | 113.39  | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 81.06   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic =     | -191.61 | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -9.74   | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -4.30   | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ala} =$  | -5 76   | kcal/mol |       |       |       |       |       |       |       |
| eie                 | 5.70    |          |       |       |       |       |       |       |       |

# Table 3.81: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1AML conformer of β-amyloid

|                     | Asp1      | Glu3      | Glul 1             | Vall2 | His13 | His14 | Gln15 | Lys16 | Phe19       |
|---------------------|-----------|-----------|--------------------|-------|-------|-------|-------|-------|-------------|
| Initial Orientation | О         | Ν         | С                  |       |       |       |       |       | С           |
| Final Orientation   |           | N         | С                  |       |       |       |       |       | С           |
|                     |           | Ar        |                    |       |       |       |       |       |             |
| Total =             | 59.91 1   | kcal/mol  |                    |       |       |       |       |       |             |
| van der Waals       | 84.22 1   | kcal/mol  |                    |       |       |       |       |       |             |
| Electrostatic =     | -245.63 1 | kcal/mol  |                    |       |       |       |       |       |             |
|                     | 70.241    | 1/ 1      |                    |       |       |       |       |       |             |
| $\Delta E_{tot} =$  | - /8.34 1 | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{vdw} =$  | -25.05 1  | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{ele} =$  | -49.40 l  | kcal/mol  |                    |       |       |       |       |       |             |
| Initial Orientation |           |           | С                  |       |       |       |       | С     | Ar          |
|                     |           |           | Ār                 |       |       |       |       | e     | 0           |
|                     |           |           |                    |       |       |       |       |       | Č           |
|                     |           |           |                    |       |       |       |       |       | Ν           |
| Final Orientation   |           | С         | Ar                 |       |       |       |       | С     | Ar          |
|                     |           |           |                    |       |       |       |       |       | С           |
|                     |           |           |                    |       |       |       |       |       | Ο           |
|                     |           |           |                    |       |       |       |       |       | Ν           |
| Total =             | 107.57 1  | kcal/mol  |                    |       |       |       |       |       |             |
| van der Waals       | 88.81 1   | kcal/mol  |                    |       |       |       |       |       |             |
| Electrostatic =     | -215.61 1 | kcal/mol  |                    |       |       |       |       |       |             |
| 1.5                 | 20 (0.1   |           |                    |       |       |       |       |       |             |
| $\Delta E_{tot} =$  | -30.69 1  | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{vdw} =$  | -20.45 1  | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{ele} =$  | -19.39 l  | kcal/mol  |                    |       |       |       |       |       |             |
| Initial Orientation |           |           | N                  |       |       |       |       |       | Ν           |
| initial Orientation |           |           | 1                  |       |       |       |       |       | 0           |
| Final Orientation   |           |           | Ν                  |       |       |       |       |       | N           |
|                     |           |           |                    |       |       |       |       |       | Ο           |
| Total -             | 77 40 1   | raal/maal |                    |       |       |       |       |       |             |
| Iotal –             | 02.281    | kcal/mol  |                    |       |       |       |       |       |             |
| Flectrostatic =     | -236.07.1 | kcal/mol  |                    |       |       |       |       |       |             |
| Lieuostate          | 250.071   | Red III01 |                    |       |       |       |       |       |             |
| $\Delta E_{tot} =$  | -60.85 l  | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{vdw} =$  | -16.99 l  | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{ele} =$  | -39.85 1  | kcal/mol  |                    |       |       |       |       |       |             |
|                     |           |           | C                  |       |       |       |       |       | C           |
| Initial Orientation |           | Ar        | 0                  |       |       |       |       | Ar    | 0           |
| Final Orientation   |           | ۸         | AI                 |       |       |       |       |       | AI          |
| r mai Orientation   |           | Al        |                    |       |       |       |       |       | ۲<br>۵r     |
|                     |           |           | <i>1</i> <b>11</b> |       |       |       |       |       | <i>i</i> 11 |
| Total =             | 80.43 1   | kcal/mol  |                    |       |       |       |       |       |             |
| van der Waals       | 83.34 1   | kcal/mol  |                    |       |       |       |       |       |             |
| Electrostatic =     | -216.04 1 | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{tot} =$  | -57.82    | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta E_{vdw} =$  | -25 93 1  | kcal/mol  |                    |       |       |       |       |       |             |
| $\Delta F_{1} =$    | _10.911   | kcal/mol  |                    |       |       |       |       |       |             |
| eie                 | 17.011    |           |                    |       |       |       |       |       |             |

# Table 3.82: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1BA4 conformer of β-amyloid

|                      | Tyr10   | Glu11    | Val12 | His13 | His14 | Gln15 | Lys16 |
|----------------------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation  |         | Ν        |       |       | Ar    |       |       |
|                      |         | Ar       |       |       | С     |       |       |
| Final Orientation    |         | N        |       |       | Ar    |       |       |
|                      |         | Ar       |       |       | C     |       |       |
| Total =              | 28.25   | kcal/mol |       |       |       |       |       |
| van der Waals =      | 97.88   | kcal/mol |       |       |       |       |       |
| Electrostatic =      | -289.44 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$   | -45.24  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$   | -7.76   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$   | -46.17  | kcal/mol |       |       |       |       |       |
|                      |         | NI       |       |       | 0     |       |       |
| Initial Orientation  |         | N        |       |       | 0     |       |       |
|                      |         | ٥<br>٨r  |       |       |       |       |       |
| Final Orientation    |         | N        |       |       |       |       |       |
|                      |         | 0        |       |       |       |       |       |
|                      |         | Ar       |       |       |       |       |       |
| Total =              | 71.14   | kcal/mol |       |       |       |       |       |
| van der Waals =      | 102.88  | kcal/mol |       |       |       |       |       |
| Electrostatic =      | -247.90 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$   | -2.35   | kcal/mol |       |       |       |       |       |
| $\Delta F_{matur} =$ | -2.76   | kcal/mol |       |       |       |       |       |
| $\Delta F_{\perp} =$ | -4.63   | kcal/mol |       |       |       |       |       |
|                      | 1.05    | Rearmon  |       |       |       |       |       |
| Initial Orientation  | С       | О        |       |       |       |       |       |
|                      | G       | Ar       |       |       | N     |       |       |
| Final Orientation    | C       | Ar       |       |       | Ν     |       |       |
|                      |         | N<br>N   |       |       |       |       |       |
|                      |         |          |       |       |       |       |       |
| Total =              | 43.34   | kcal/mol |       |       |       |       |       |
| van der Waals $=$    | 92.80   | kcal/mol |       |       |       |       |       |
| Electrostatic =      | -207.75 | kcal/moi |       |       |       |       |       |
| $\Delta E_{tot} =$   | -30.15  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$   | -12.83  | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$   | -24.48  | kcal/mol |       |       |       |       |       |
| Initial Orientation  |         | С        |       |       | Ν     |       |       |
|                      |         | -        |       |       | C     |       |       |
| Final Orientation    |         | С        |       |       | Ν     |       |       |
|                      |         |          |       |       | С     |       |       |
| Total =              | 77.46   | kcal/mol |       |       |       |       |       |
| van der Waals =      | 88.71   | kcal/mol |       |       |       |       |       |
| Electrostatic =      | -233.62 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$   | 3.97    | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$   | -16.93  | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$   | 9.65    | kcal/mol |       |       |       |       |       |
| eie                  | 2.05    |          |       |       |       |       |       |

# Table 3.83: The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1IYT conformer of β-amyloid

|                     | Glu11   | Vall2    | His13 | His14 | Gln15 | Lys16 | Val18 | Glu22 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | N       |          |       | С     |       |       |       |       |
|                     | Ar      |          |       |       |       |       |       |       |
|                     | С       |          |       |       |       |       |       |       |
| Final Orientation   | N       |          |       | C     | C     |       |       |       |
|                     | Ar      |          |       |       |       |       |       |       |
|                     | C       |          |       |       |       |       |       |       |
| Total =             | 79.15   | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 87.60   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -250.13 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -39.48  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.32   | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -38.04  | kcal/mol |       |       |       |       |       |       |
| Initial Orientation |         |          |       | Ar    |       |       |       | Ar    |
|                     |         |          |       | С     |       |       |       |       |
| Final Orientation   | Ο       |          |       | Ar    |       |       | Ar    | Ar    |
| Total =             | 83.56   | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 85.90   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -239.63 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -35.06  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -4.02   | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -27.54  | kcal/mol |       |       |       |       |       |       |
| Initial Orientation | Ar      |          |       | Ar    |       |       |       |       |
| Final Orientation   |         | I        |       | Ar    |       |       |       |       |
| Total =             | 90.16   | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 88.74   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -249.46 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -28.46  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -1.18   | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -37.37  | kcal/mol |       |       |       |       |       |       |
| Initial Orientation | Ar      |          |       | С     |       |       |       |       |
| Final Orientation   | Ar      |          |       | С     |       |       |       |       |
| Total =             | 108.20  | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 90.81   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -234.07 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -10.43  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 0.89    | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -21.98  | kcal/mol |       |       |       |       |       |       |

 Table 3.84:
 The solution phase results of 3-hydroxyanthranilic acid interacting with the EVHHQK region of the 1Z0Q conformer of β-amyloid

The results of 3-hydroxyanthranilic acid interacting with the LVFF region of A $\beta$  in a solvated environment are summarized in Tables 3.85-3.89. There are no systems that were optimized in the solution phase for the 1BA4 conformer of A $\beta$ . Very few binding interactions occurred within the LVFF region of  $\beta$ -amyloid, and those that did only occurred with the 1AMB and 1Z0Q conformations, and Phe19-Phe20 was preferred.

|                     | His14   | Gln15    | Lys16 | Leu17 | Val18 | Phe19   | Phe20 | Asp23 |
|---------------------|---------|----------|-------|-------|-------|---------|-------|-------|
| Initial Orientation |         |          | С     |       |       | Ν       | Ar    | 0     |
|                     |         |          |       |       |       | C       |       | Ar    |
| Final Orientation   |         |          | C     |       |       | Ar<br>N | ٨r    | 0     |
|                     |         |          | C     |       |       | C       | AI    | 0     |
|                     |         |          |       |       |       | Ar      |       |       |
| Total =             | -74.43  | kcal/mol |       |       |       |         | -     |       |
| van der Waals =     | 58.48   | kcal/mol |       |       |       |         |       |       |
| Electrostatic =     | -298.69 | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{tot} =$  | -69.62  | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{vdw} =$  | -5.74   | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{ele} =$  | -73.97  | kcal/mol |       |       |       |         |       |       |
| Initial Orientation |         |          | С     |       |       | Ar      | Ar    | 0     |
| Final Orientation   |         |          | C     |       |       | Ar      | Ar    | 0     |
| Total =             | -69.27  | kcal/mol |       |       |       |         |       |       |
| van der Waals =     | 58.40   | kcal/mol |       |       |       |         |       |       |
| Electrostatic =     | -288.29 | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{tot} =$  | -64.46  | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{vdw} =$  | -5.82   | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{ele} =$  | -63.57  | kcal/mol |       |       |       |         |       |       |
| Initial Orientation |         |          | Ar    |       |       | 0       |       |       |
| Final Orientation   |         |          | Ar    |       |       | 0       |       |       |
| Total =             | -34.65  | kcal/mol |       |       |       |         |       |       |
| van der Waals =     | 70.18   | kcal/mol |       |       |       |         |       |       |
| Electrostatic =     | -278.71 | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{tot} =$  | -29.84  | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{vdw} =$  | 5.97    | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{ele} =$  | -54.00  | kcal/mol |       |       |       |         |       |       |
| Initial Orientation | Ar      |          |       |       | Ar    |         |       |       |
| Final Orientation   | Ar      | Ar       |       |       | Ar    | Ο       |       |       |
| Total =             | -14.67  | kcal/mol |       |       |       |         |       |       |
| van der Waals =     | 63.03   | kcal/mol |       |       |       |         |       |       |
| Electrostatic =     | -236.93 | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{tot} =$  | -9.87   | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{vdw} =$  | -1.19   | kcal/mol |       |       |       |         |       |       |
| $\Delta E_{ele} =$  | -12.22  | kcal/mol |       |       |       |         |       |       |

# Table 3.85: The solution phase results of 3-hydroxyanthranilic acid interacting with<br/>the LVFF region of the 1AMB conformer of β-amyloid

|                     | His13   | Gln15    | Lys16 | Leu17 | Val18 | Phe19 | Phe20 | Glu22 | Asp23 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |          |       |       |       | Ar    |       |       | 0     |
|                     |         |          |       |       |       |       |       |       | Ar    |
| Final Orientation   |         |          |       |       |       | Ar    |       |       | O     |
|                     |         |          |       |       |       |       |       |       | Ar    |
| Total =             | -69.53  | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 46.53   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic =     | -281.81 | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -39.15  | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -16.20  | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -34.59  | kcal/mol |       |       |       |       |       |       |       |
| Initial Orientation |         |          | Ar    |       |       | Ο     |       |       |       |
| Final Orientation   |         |          | Ar    |       |       |       |       |       |       |
| Total =             | -46.49  | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 57.64   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic =     | -270.62 | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -16.12  | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -5.09   | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -23.40  | kcal/mol |       |       |       |       |       |       |       |
| Initial Orientation | С       |          | С     |       |       |       |       |       |       |
|                     |         |          | Ar    |       |       |       |       |       |       |
| Final Orientation   |         |          | Ar    |       |       |       |       |       |       |
| Total =             | -71.59  | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 53.40   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic =     | -283.59 | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -41.21  | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -9.33   | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -36.37  | kcal/mol |       |       |       |       |       |       |       |
| Initial Orientation |         | Ο        |       |       | Ar    | Ν     |       | 0     |       |
|                     |         | Ar       |       |       |       |       |       | Ar    |       |
| Final Orientation   |         | Ο        |       |       | Ar    |       |       | Ο     |       |
|                     |         | Ar       |       |       |       |       |       | Ar    |       |
| Total =             | -57.76  | kcal/mol |       |       |       |       |       |       |       |
| van der Waals =     | 66.08   | kcal/mol |       |       |       |       |       |       |       |
| Electrostatic =     | -272.73 | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -27.38  | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 3.36    | kcal/mol |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -25.51  | kcal/mol |       |       |       |       |       |       |       |

# Table 3.86: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AMC conformer of β-amyloid

|                     | Leu17   | Val18    | Phe19 | Phe20 | Asp23 | Gly29 | Ala30 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation |         |          | Ο     |       | Ν     |       |       |
| Final Orientation   |         |          |       |       | Ν     |       |       |
| Total =             | 123.73  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 103.26  | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -200.65 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | 0.60    | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 17.89   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -14.80  | kcal/mol |       |       |       |       |       |
| Initial Orientation |         |          |       | Ar    |       | Ο     | Ar    |
|                     |         |          |       | С     |       |       |       |
| Final Orientation   |         |          |       | Ν     |       |       |       |
|                     |         |          |       | С     |       |       |       |
|                     |         |          |       | Ar    |       |       |       |
| Total =             | 102.99  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 79.96   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -204.35 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -20.15  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -5.41   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -18.51  | kcal/mol |       |       |       |       |       |
| Initial Orientation |         |          |       | Ar    | Ο     |       |       |
| Final Orientation   |         |          |       | Ar    | Ο     |       |       |
| Total =             | 156.39  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 99.94   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -219.35 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | 33.26   | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 14.57   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -33.50  | kcal/mol |       |       |       |       |       |

# Table 3.87: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1AML conformer of β-amyloid

|                     | Gln15   | Lys16    | Leu17 | Val18 | Phe19 | Phe20 | Asp23 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation |         | Ar       |       |       | Ar    |       | Ο     |
|                     |         | С        |       |       |       |       |       |
| Final Orientation   |         | Ar       |       |       | Ar    |       | Ο     |
|                     |         | С        |       |       |       |       | Ar    |
| Total =             | 35.19   | kcal/mol |       |       |       |       |       |
| van der Waals =     | 90.13   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -278.29 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -38.30  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -15.51  | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -35.03  | kcal/mol |       |       |       |       |       |
| Initial Orientation | Ar      |          |       |       | Ο     |       |       |
| Final Orientation   | -       | -        | -     | -     | -     | -     | -     |
| Total =             | 139.14  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 98.58   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -242.23 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | 65.65   | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -7.05   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | 1.04    | kcal/mol |       |       |       |       |       |

# Table 3.88: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1IYT conformer of β-amyloid

| r                        |         |          |          |          |       |
|--------------------------|---------|----------|----------|----------|-------|
|                          | Leu17   | Val18    | Phe19    | Phe20    | Asp23 |
| Initial Orientation      |         |          | 0        | Ar       |       |
| Final Orientation        |         |          | 0        | Ar       |       |
| Total =                  | 77.87   | kcal/mol |          |          |       |
| van der Waals =          | 84.92   | kcal/mol |          |          |       |
| Electrostatic =          | -247.19 | kcal/mol |          |          |       |
|                          | 10 -    |          |          |          |       |
| $\Delta E_{tot} =$       | -40.76  | kcal/mol |          |          |       |
| $\Delta E_{vdw} =$       | -5.00   | kcal/mol |          |          |       |
| $\Delta E_{ele} =$       | -35.10  | kcal/mol |          |          |       |
| Initial Orientation      |         |          | Δr       | Ar       |       |
| Initial Of Chattan       |         |          | Ai       | 0        |       |
| Final Orientation        |         |          | Ar       | N        | 0     |
|                          |         |          |          | Ar       | U     |
|                          |         |          |          | 0        |       |
| <b>T</b> ( 1             | 0.6.50  | 1 1/ 1   |          |          |       |
| Total =                  | 86.52   | kcal/mol |          |          |       |
| van der Waals =          | 82.26   |          |          |          |       |
| Electrostatic =          | -242.68 | kcal/mol |          |          |       |
| $\Delta E_{tot} =$       | -32.11  | kcal/mol |          |          |       |
| $\Delta E_{vdw} =$       | -7.66   | kcal/mol |          |          |       |
| $\Delta E_{ele} =$       | -30.59  | kcal/mol |          |          |       |
|                          |         |          | <b>A</b> | <b>A</b> |       |
| Initial Orientation      |         |          | Ar       | Ar       |       |
|                          |         |          |          |          |       |
|                          |         |          |          | C        |       |
| Final Orientation        |         |          | Ar       | Ar       |       |
|                          |         |          |          |          |       |
| Total =                  | 112.51  | kcal/mol |          |          |       |
| van der Waals =          | 92.53   | kcal/mol |          |          |       |
| Electrostatic =          | -221.60 | kcal/mol |          |          |       |
| $\Delta E_{tot} =$       | -6.11   | kcal/mol |          |          |       |
| $\Delta F_{\rm reduc} =$ | 2.60    | kcal/mol |          |          |       |
|                          | 0.51    | koal/mol |          |          |       |
| $\Delta L_{ele}$ –       | -9.31   | KCalinoi |          |          |       |
| Initial Orientation      | Ar      |          |          | Ν        |       |
| Final Orientation        | Ar      |          |          | Ο        |       |
| Total =                  | 108 56  | kcal/mol |          |          |       |
| van der Waals =          | 84 58   | kcal/mol |          |          |       |
| Electrostatic =          | -219.34 | kcal/mol |          |          |       |
|                          |         |          |          |          |       |
| $\Delta E_{tot} =$       | -10.07  | kcal/mol |          |          |       |
| $\Delta E_{vdw} =$       | -5.35   | kcal/mol |          |          |       |
| $\Delta E_{ele} =$       | -7.25   | kcal/mol |          |          |       |

 Table 3.89: The solution phase results of 3-hydroxyanthranilic acid interacting with the LVFF region of the 1Z0Q conformer of β-amyloid

# 3.7.4 Conclusions of 3-hydroxyanthranilic acid Interacting with $\beta$ -Amyloid In Silico

3-Hydroxyanthranilic acid demonstrates a capacity to bind to  $\beta$ -amyloid in both gas and solution phase environments. For the most part, the orientation of 3HAA tended to remain the same upon optimization in a solvated environment. An example of a binding interaction can be seen in Figure 3.8.



#### Figure 3.8: Binding interaction between 3HAA and β-amyloid. Dashed green lines indicate cation-π interactions and aromatic-aromatic stacking interactions. The dashed purple line indicates formation of a hydrogen bond.

The LVFF region demonstrated the least potential for binding to the acid. This is

likely due in part to the small size of the target molecule. Given that the amino group is so close to the aromatic ring of 3HAA, there was likely not enough distance between the two to interact with two side chains at the same time in this region. The same could be said for the hydroxyl group and the aromatic ring.

EVHHQK and HHQK combined to form the most favourable target region of A $\beta$  for binding to 3-hydroxyanthranilic acid. The His13-His14 and Glu11-His14 side chains

were the most favoured orientations where binding occurred between the acid and Aβ at multiple sites. Interactions at His13 favoured the carboxylate group, while His14 interacted more so with the aromatic ring; in the case of interactions occurring at His14 and Glu11, His14 bound almost equally to the carboxylate group and the aromatic ring. The Glu11 site was favoured for interactions with both the aromatic ring and the amino group of 3-hydroxyanthranilic acid. 3HAA therefore presents itself as a viable molecule for acting as an anti-aggregant.

#### **3.8 BIOLOGICAL SUPPORT OF 3-HYDROXYANTHRANILIC ACID AS A LEAD MOLECULE**

Given the results of screening the library of endogenous compounds, several compounds were selected for *in vitro* testing to determine whether they could indeed act as anti-aggregants. 3-hydroxyanthranilic acid was subjected to *in vitro* assays, and demonstrated a capacity to inhibit A $\beta$  aggregation. The results of TEM scans of A $\beta$  in presence and absence of 3HAA are shown in Figure 3.9 and were performed by Rose Chen. It can be seen that only diffuse aggregates of A $\beta$  form in the presence of the acid when compared to the control.



Figure 3.9: Transmission electron microscopy (TEM) of Aβ<sub>40</sub> (20 μM) in the absence (left) and presence (right) of 3-HAA (100 μM). A mixture of fibrillar and diffuse Aβ aggregates can be seen on the left, while the incubation containing 3-HA contains only diffuse aggregates on the right. For both micrographs, scale bar represents 0.5 μm.



Figure 3.10: Thioflavin-T assay of 3-hydroxyanthranilic acid at various concentrations interacting with Aβ

Figure 3.10 shows the results of a thioflavin T (ThT) assay of 3HAA at various

concentrations, and its effect on the amount of aggregated  $\beta$ -amyloid. This method is also
used to calculate the  $IC_{50}$ , which is the half maximal inhibitory concentration (the amount of compound needed to inhibit a biological process by half).

The thioflavin T assay measures fluorescence in regards to  $\beta$ -amyloid aggregation. ThT is a dye that fluoresces when it binds to aggregated A $\beta$ , if there is less aggregation occurring, there will be less fluorescence observed. As the concentration of 3HAA increases, the amount of fluorescence occurring decreases; this indicates that binding is occurring to prevent aggregation. Dimethyl sulfoxide (DMSO) is used as a control as it does not affect the aggregation of A $\beta$ . The methodology for this assay is given in Appendix 5. The thioflavin T assays were performed by Gordon Simms.

Thioflavin S is used in a similar fashion to thioflavin T but for examining tau aggregation. As tau is also an important factor in AD, a molecule that can inhibit aggregation in both  $\beta$ -amyloid and tau is desirable. The results of the thioflavin S assay (performed by Rose Chen) of 3-hydroxyanthranilic acid are shown in Figure 3.11.



Figure 3.11: Thioflavin S assay of 3-hydroxyanthranilic acid interacting with tau

3HAA also exhibits an inhibitory effect on tau aggregation. The positive results of the *in silico* and *in vitro* binding of 3-hydroxyanthranilic acid with  $\beta$ -amyloid lead to the selection of the compound as a lead molecule for further developing analogues in an attempt to improve its binding efficiency.

# **3.9 A QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP STUDY OF 3-HYDROXYANTHRANILIC ACID AND ITS ANALOGUES**

In collaboration with Gordon Simms, research was performed to develop a series of analogues based on 3-hydroxyanthranilic acid using a quantitative structure-activity relationship (QSAR) study. This QSAR was used to predict the activity of molecules to determine which would be best to synthesize and test for anti-aggregant activity. A QSAR uses a variety of descriptors covering geometry, electronic features, physicochemical properties and topological indices to correlate biological activity [39].

### 3.9.1 DEVELOPMENT OF A SERIES OF ANALOGUES BASED ON 3-HYDROXYANTHRANILIC ACID

The first step in the QSAR process was to develop a series of analogues of 3HAA to be synthesized for *in vitro* testing to determine their  $IC_{50}$ , which is the half maximal inhibitory concentration (the amount of compound needed to inhibit a biological process by half), and therefore the activity of the compounds. In collaboration, a series of fifty compounds was designed based on the use of bioisosteric substitution.

Bioisosteric substitution involves replacing functional groups on the molecule of interest with other groups having either similar charge distributions or size, for example. The purpose is to attempt to improve the biological activity of the compound by replacing certain functional groups with others that mimic the electronegativity, spatial arrangement or lipophilicity of that area [90]. If, for example, the spatial arrangement is maintained by replacing a hydrogen atom with fluorine, the effect of a greater electronegativity on the activity of the molecule can be seen [90, 91]. Some bioisosteric substitutions can be made to improve stability and lipophilicity; replacing a carboxylate group with tetrazole matches the acidity, while allowing for more stability and lipophilicity that would allow penetration of the blood-brain barrier [91].

For these analogues, substitution could occur at any point on the ring, with the carboxylate, amino and hydroxyl groups having the most possibilities for substitution.

The list of analogues developed though these are detailed with their name, structure, and series identifier in Figures 3.12 and 3.13.

The activities measured for these compounds are given in Table 3.90.



Figure 3.12: 3HAA analogues 1-25



Figure 3.13: 3HAA analogues 26-50

| Company Idantifiar  | Calculated            |
|---------------------|-----------------------|
| Compound identifier | IC <sub>50</sub> (µM) |
| GS-1001             | 5.05                  |
| GS-1002             | 4.545                 |
| GS-1003             | > 300                 |
| GS-1004             | > 300                 |
| GS-1005             | > 300                 |
| GS-1006             | > 300                 |
| GS-1007             | 297.95                |
| GS-1007             | > 300                 |
| GS-1000             | > 300                 |
| GS 1010             | > 300                 |
| GS 1011             | > 300                 |
| GS-1011<br>CS 1012  | > 300                 |
| GS-1012<br>CS 1012  | > 300                 |
| GS-1013             | 9.999                 |
| GS-1014             | > 300                 |
| GS-1015             | > 300                 |
| GS-1016             | > 300                 |
| GS-1017             | > 300                 |
| GS-1018             | > 300                 |
| GS-1019             | > 300                 |
| GS-1020             | > 300                 |
| GS-1021             | 2.323                 |
| GS-1022             | 8.2315                |
| GS-1023             | > 300                 |
| GS-1024             | 12.8775               |
| GS-1025             | > 300                 |
| GS-1026             | > 300                 |
| GS-1027             | 1.818                 |
| GS-1028             | 2.424                 |
| GS-1029             | 21.816                |
| GS-1030             | 14.3925               |
| GS-1031             | > 300                 |
| GS-1032             | > 300                 |
| GS-1033             | > 300                 |
| GS-1034             | > 300                 |
| GS-1035             | > 300                 |
| GS-1036             | > 300                 |
| GS-1037             | > 300                 |
| GS-1038             | > 300                 |
| GS-1039             | > 300                 |
| GS-1040             | > 300                 |
| GS-1041             | > 300                 |
| GS-1042             | > 300                 |
| GS-1043             | > 300                 |
| GS-1044             | 262.6                 |
| GS-1045             | 2.727                 |
| GS-1046             | > 300                 |
| GS-1047             | 6.9185                |
| GS-1048             | 8.888                 |
| GS-1049             | 2.5755                |
| GS-1050             | 2.02                  |
|                     |                       |

# Table 3.90: 3HAA analogues and their calculated $IC_{50}s$

#### **3.9.2 DEVELOPMENT OF A QSAR FOR ACTIVITY PREDICTION**

Using the structural data and biological activities, the 3HAA analogues were divided into two sets: a training set, and a validation set. The training set is used to develop the QSAR equation for predicting activity, and the validation set is used to determine how accurate that equation truly is.

Initial attempts divided the fifty analogues into a training set of 33 compounds and a validation set of 17 compounds. The structures were optimized in MOE, and the  $pIC_{50}$  was calculated from each  $IC_{50}$  [87]. All descriptors available in MOE were calculated for the training set, and those with zero contribution were eliminated. The partial least squares (PLS) method was first used; however despite changes to the size and components of the training set, as well as the number of descriptors calculated, this method proved to be ineffective at predicting compound activity. It appears that the biological data does not provide enough range for the PLS method, as the compounds were all either highly active or very inactive.

# **3.9.3 DEVELOPMENT** OF A BINARY QSAR TO PREDICT 3HAA ANALOGUE ACTIVITY

A successful QSAR was developed in MOE using a binary method of relating descriptors to activity. For this method, compounds are considered to be either active or inactive, and each descriptor is tested to see if it is valid for both the active and inactive species. This proved to be a more suitable approach to the QSAR as the synthesized compounds exhibited either high activity or complete inactivity. The QSAR used a training set of 34 molecules, containing a mixture of active and inactive species, with attempts to include representations of the different molecular substitutions. The threshold

for activity was set for a pIC<sub>50</sub> (the negative log of the IC<sub>50</sub>) of -2.0, and all of the available descriptors in MOE were calculated. These descriptors were narrowed down by first eliminating those with values of zero, or identical values for all species. Once these descriptors were removed, the relative importance of the remaining descriptors as well as their effect on the predictive capacity was used to narrow the field. Descriptors were removed one at time, and their effect on the predictivity of the QSAR was examined, those whose removal resulted in increased predictivity were eliminated, while those whose removal resulted in a decreased predictivity were retained. Furthermore, descriptors having similar functions were also weeded down by seeing which had a more positive impact on the prediction; the MOE system contains a large variety of descriptors, some of which have identical functions but that are calculated by different means (e.g. the heat of formation can be calculated by AM1, PM3 or MNDO). Thus descriptors were gradually eliminated until a reasonable prediction of activity versus inactivity could be obtained using a small amount of descriptors (as the more descriptors present, the greater the risk of overfitting the data, which would result in a QSAR with poor predictivity for molecules outside the training set).

The final system is composed of 9 descriptors and a short summary of their function is summarized in Table 3.91.

| Descriptor | Function                                      |
|------------|-----------------------------------------------|
| PM3-HF     | The heat of formation calculated using the    |
|            | PM3 Hamiltonian                               |
| SlogP_VSA5 | Log of the octanol/water coefficient based on |
|            | the accessible van der Waals surface area     |
| SMR_VSA0   | Contributions to the molar refractivity based |
| SMR_VSA1   | on the accessible van der Waak surface area   |
| SMR_VSA4   | falling within a specific range               |
| SMR_VSA5   | taming within a specific range                |
| vdw_vol    | Calculates the van der Waals volume           |
| vsa_don    | Approximate sum of the van der Waals          |
|            | surface areas of pure hydrogen bond donors    |
| vsurf_W2   | Hydrophilic volume                            |

Table 3.91: Descriptors used in the QSAR for 3HAA

Using these nine descriptors, a total accuracy of 0.97 was obtained for the training set that can be broken down to 0.92 for the active molecules and 1.00 for the inactive analogues. The total accuracy on the actives is considered the sensitivity of the model, that is the measure of the number of actives that were correctly predicted, while the total accuracy on the inactives is considered the specificity, that is the measure of the number of inactives that were correctly predicted. Cross-validation statistics indicate a total accuracy of 0.91 for the model, which can be broken down to 0.83 for the active molecules and 0.95 for the inactive molecules. Cohen's kappa (a statistical measure of agreement for binary systems) was calculated to be 0.93 for the training set, which is an excellent value indicating good agreement between the observed and predicted values. The kappa value also takes into consideration the possibility of this agreement occurring by chance.

When the QSAR model was applied to the validation set, four false positives and one false negative were identified. The predicted activities were given as a scale from 0

(inactive) to 1 (active). Compounds were therefore judged to be active if the predicted value was above 0.5. It should be noted that one of the molecules in the validation set that was incorrectly predicted as active had a prediction value of 0.5012. The Cohen's kappa value for the validation set was 0.23, which is a fair value, but not as good as seen in the training set; this number would increase to 0.35 if the compound with a prediction value of 0.5012 was assigned as inactive. The measured sensitivity and selectivity of the applied model are 0.67 and 0.77, respectively. The results of this QSAR are summarized in Table 3.92.

| Tra         | ining Set        |           | Validation Set |           |           |  |  |  |  |
|-------------|------------------|-----------|----------------|-----------|-----------|--|--|--|--|
|             | IC <sub>50</sub> | Predicted |                | $IC_{50}$ | Predicted |  |  |  |  |
| Compound ID | (µM)             | Activity  | Compound ID    | (µM)      | Activity  |  |  |  |  |
| GS-1001     | 5.05             | Active    | GS-1007        | 297.95    | Inactive  |  |  |  |  |
| GS-1002     | 4.545            | Active    | GS-1008        | 300       | Inactive  |  |  |  |  |
| GS-1003     | 300              | Inactive  | GS-1013        | 9.999     | Active    |  |  |  |  |
| GS-1004     | 300              | Inactive  | GS-1016        | 300       | Active    |  |  |  |  |
| GS-1005     | 300              | Inactive  | GS-1017        | 300       | Inactive  |  |  |  |  |
| GS-1006     | 300              | Inactive  | GS-1019        | 300       | Active    |  |  |  |  |
| GS-1009     | 300              | Inactive  | GS-1021        | 2.323     | Active    |  |  |  |  |
| GS-1010     | 300              | Inactive  | GS-1023        | 300       | Active    |  |  |  |  |
| GS-1011     | 300              | Inactive  | GS-1032        | 300       | Inactive  |  |  |  |  |
| GS-1012     | 300              | Inactive  | GS-1034        | 300       | Inactive  |  |  |  |  |
| GS-1014     | 300              | Inactive  | GS-1037        | 300       | Inactive  |  |  |  |  |
| GS-1015     | 300              | Inactive  | GS-1038        | 300       | Inactive  |  |  |  |  |
| GS-1018     | 300              | Inactive  | GS-1040        | 300       | Inactive  |  |  |  |  |
| GS-1020     | 300              | Inactive  | GS-1042        | 300       | Active    |  |  |  |  |
| GS-1022     | 8.2315           | Active    | GS-1046        | 300       | Inactive  |  |  |  |  |
| GS-1024     | 12.8775          | Active    | GS-1048        | 8.888     | Inactive  |  |  |  |  |
| GS-1025     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1026     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1027     | 1.818            | Inactive  |                |           |           |  |  |  |  |
| GS-1028     | 2.424            | Active    |                |           |           |  |  |  |  |
| GS-1029     | 21.816           | Active    |                |           |           |  |  |  |  |
| GS-1030     | 14.3925          | Active    |                |           |           |  |  |  |  |
| GS-1031     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1033     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1035     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1036     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1039     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1041     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1043     | 300              | Inactive  |                |           |           |  |  |  |  |
| GS-1044     | 262.6            | Inactive  |                |           |           |  |  |  |  |
| GS-1045     | 2.727            | Active    |                |           |           |  |  |  |  |
| GS-1047     | 6.9185           | Active    |                |           |           |  |  |  |  |
| GS-1049     | 1.616            | Active    |                |           |           |  |  |  |  |
| GS-1050     | 2.02             | Active    |                |           |           |  |  |  |  |

Table 3.92: Predicted activities for the training and validations sets of 3HAAanalogues 1-50

## **3.9.4 PREDICTION OF ACTIVITY OF A SERIES OF ANALOGUES BASED ON 3-HYDROXYANTHRANILIC ACID**

The binary QSAR demonstrated its potential to correctly predict the activity of the first series of 3-hydroxyanthranilic acid analogues to a moderate level; therefore, this combination of descriptors was deemed useful and was used to predict the activity of a second set of analogues composed of 86 new molecules. The full list of structures is given in Appendix 7, along with their predicted activity.

From the 86 analogues, 39 were predicted to be active. To date twenty-six analogues have been synthesized from this new series, containing a mixture of active and inactive compounds. Some inactive compounds were included to verify that the prediction was accurate enough for further use. The synthesized analogues are shown in Figure 3.14, and are currently undergoing biological testing to determine the  $IC_{50}$  values. Initial data has been provided to determine if the compounds are active or inactive, and the results are compared to the predicted values in Table 3.93.

.



Figure 3.14: 3HAA analogues 51-76

| Compound ID | Predicted Activity | Biological Activity |
|-------------|--------------------|---------------------|
| GS-1051     | Inactive           | Active              |
| GS-1052     | Inactive           | Inactive            |
| GS-1053     | Active             | Active              |
| GS-1054     | Active             | Active              |
| GS-1055     | Active             | Active              |
| GS-1056     | Active             | Active              |
| GS-1057     | Active             | Active              |
| GS-1058     | Active             | Active              |
| GS-1059     | Active             | Active              |
| GS-1060     | Active             | Active              |
| GS-1061     | Active             | Active              |
| GS-1062     | Active             | Active              |
| GS-1063     | Active             | Active              |
| GS-1064     | Active             | Inactive            |
| GS-1065     | Inactive           | Active              |
| GS-1066     | Active             | Inactive            |
| GS-1067     | Active             | Inactive            |
| GS-1068     | Inactive           | Inactive            |
| GS-1069     | Inactive           | Inactive            |
| GS-1070     | Inactive           | Inactive            |
| GS-1071     | Inactive           | Inactive            |
| GS-1072     | Active             | Active              |
| GS-1073     | Inactive           | Inactive            |
| GS-1074     | Active             | Active              |
| GS-1075     | Active             | Active              |
| GS-1076     | Active             | Active              |

Table 3.93: Predicted and observed activities of analogues 51-76 of 3HAA

The results of the QSAR predictions are quite accurate. Of the twenty-six compounds synthesized to date, the biological activity was correctly predicted for twenty-one of the system for an 81 percent accurate prediction. In total, three compounds were incorrectly predicted to be active, and two predicted to be inactive. The specificity is therefore calculated to be 0.75, with a selectivity of 0.83. Cohen's kappa indicates a correlation between the predicted and observed values of 0.56, which can be considered a

moderately good result. Therefore the data can be used to determine if any more of the compounds in the series should be synthesized as well.

Once the IC<sub>50</sub>s of these newly synthesized analogues are calculated, the data will be incorporated to make a new training set of compounds for the QSAR to better improve its predictive ability. The technique has so far proved useful and quite accurate in selecting novel compounds for synthesis. This is an iterative process, and will be repeated as many times as necessary in order to design the best lead molecule capable of binding to  $\beta$ -amyloid to prevent aggregation

# 3.10 NOVEL BI-AROMATIC COMPOUNDS TARGETING THE BBXB REGION OF PROTEINS INVOLVED IN ALZHEIMER'S DISEASE

As mentioned previously, there exists a common motif among several proteins involved in AD. The motif follows the pattern of **BB**X**B** where B is any basic amino acid, and X represents any other amino acid (and can include basic amino acids as well). Previous research by the Weaver group has identified twenty-seven proteins implicated in the Alzheimer's disease process that contain this **BB**X**B** motif [41].

We postulate that a single molecule can act as a promiscuous drug to target this common motif [41]. A single drug capable of acting on multiple targets involved in AD would allow for better treatment, not only inhibiting  $\beta$ -amyloid aggregation, but diffusing some of the negative effects caused by inflammatory responses in the region of A $\beta$ aggregation.

Four bi-aromatic molecules developed by the Weaver group were selected to test their capacity to act as promiscuous drug molecules targeting the **BBXB** region of these proteins. The four compounds are NCE-0103, NCE-0112, NCE-0216 and NCE-0325 (Figure 3.15), where NCE stands for novel chemical entity.



#### Figure 3.15: NCE-0103, NCE-0112, NCE-0216, and NCE-0325

Of the twenty-seven identified proteins, several were not viable options for this study. Although tau plays a major role in AD, there are currently no structures available of the protein in the RCSB protein data bank and thus it could not be examined for potential interactions with these four compounds. Interleukin-1 receptor 1 and interleukin-10 were not studied, and interleukin-6, hemochromatosis protein and the class II major histocompatibility complex had **BBXB** regions that were inaccessible upon optimization in QUANTA [46]. The only structure of interleukin 3 available in the RCSB PDB contained mutations in the **BBXB** region and was not a viable option for study. Gas phase optimizations were performed to determine if these lead compounds could interact with the **BBXB** region on each of the remaining proteins: S100 $\beta$ , complement component 1, q subcomponent, A chain, (C1qA), interferon-gamma (IFN- $\gamma$ ), acetylcholinesterase (AChE), apolipoprotein  $\epsilon$ 4 (Apo $\epsilon$ 4), interleukin-1  $\beta$  converting enzyme (IL-1 $\beta$ CE), interleukin 4 (IL-4), interleukin 12 (IL-12), interleukin 13 (IL-13), alpha-1-antichymotrypsin ( $\alpha$ <sub>1</sub>-ACT), betaine-homocysteine methyl transferase (BHMT), T lymphocyte activation antigen (B7-1), intercellular adhesion molecule 1 (ICAM-1), macrophage inflammatory protein-1 $\alpha$  (MIP-1 $\alpha$ ), macrophage inflammatory protein-1 $\beta$ (MIP-1 $\beta$ ), stromal cell-derived factor-1 (SDF-1), neprilysin (NEP), transferrin, and regulated upon activation, normal T-cell expressed, and secreted (RANTES).

The **BB**X**B** motif for each protein is detailed in Table 3.94, and some have more than one **BB**X**B** region available.

| Drotain         |           | BBXB ar   | mino acids    |           |
|-----------------|-----------|-----------|---------------|-----------|
| Protein         | В         | В         | Х             | В         |
| $\alpha_1$ -ACT | Lysine    | Arginine  | Tryptophan    | Arginine  |
| Αβ              | Histidine | Histidine | Glutamine     | Lysine    |
| AChE            | Arginine  | Arginine  | Phenylalanine | Arginine  |
| Ароє4           | Lysine    | Arginine  | Leucine       | Histidine |
|                 | Lysine    | Arginine  | Leucine       | Lysine    |
|                 | Arginine  | Lysine    | Leucine       | Arginine  |
| B7-1            | Lysine    | Arginine  | Glutamic Acid | Histidine |
| BHMT            | Lysine    | Arginine  | Alanine       | Arginine  |
| C1qA            | Lysine    | Lysine    | Glycine       | Histidine |
| ICAM-1          | Arginine  | Arginine  | Aspartic Acid | Histidine |
|                 | Histidine | Histidine | Aspartic Acid | Arginine  |
| IFN-γ           | Lysine    | Lysine    | Lysine        | Arginine  |
| IL-1βCE         | Lysine    | Lysine    | Alanine       | Histidine |
| IL-4            | Histidine | Histidine | Glutamic Acid | Lysine    |
|                 | Histidine | Arginine  | Histidine     | Lysine    |
| IL-12           | Histidine | Lysine    | Leucine       | Lysine    |
| IL-13           | Lysine    | Lysine    | Leucine       | Histidine |
| MIP-1α          | Lysine    | Arginine  | Serine        | Arginine  |
| ΜΙΡ-1β          | Lysine    | Arginine  | Serine        | Lysine    |
| Neprilysin      | Lysine    | Arginine  | Cysteine      | Histidine |
|                 | Lysine    | Lysine    | Leucine       | Arginine  |
| RANTES          | Arginine  | Lysine    | Asparagine    | Arginine  |
| <b>S100</b> β   | Histidine | Lysine    | Leucine       | Lysine    |
|                 | Lysine    | Lysine    | Leucine       | Lysine    |
| SDF-1           | Lysine    | Histidine | Leucine       | Lysine    |
| Transferrin     | Lysine    | Lysine    | Glycine       | Arginine  |

Table 3.94: Identification of the amino acids composing the BBXB motif

## **3.10.1 PREPARATION OF THE LEAD MOLECULES AND PROTEINS**

Gas phase minimizations were performed to find the lowest energy systems for each of the four lead molecules and the proteins. For the four lead compounds, the molecules were constructed in QUANTA and subjected to systematic conformational searches; each torsional angle was rotated from 0-330° in 30° increments, and the lowest energy structure resulting from this scan was selected [46]. The energies of these systems are given in Table 3.95.

|          | Ene              | rgy (kcal/n      | nol)      |
|----------|------------------|------------------|-----------|
| Compound | E <sub>tot</sub> | E <sub>vdw</sub> | $E_{ele}$ |
| NCE-0103 | 45.51            | 5.65             | -5.10     |
| NCE-0112 | 56.04            | 4.96             | 23.45     |
| NCE-0216 | 42.70            | 12.64            | -0.90     |
| NCE-0325 | -22.50           | 3.06             | -36.34    |

 Table 3.95: Energies of the four NCE molecules

The proteins underwent different processing as necessary to prepare them for optimization in the QUANTA environment [46]. The details for interleukins 4, 12 and 13, ICAM-1, S100β and RANTES are given in Chapter 2, Sections 2.7.1.1-2.7.1.6. The remaining proteins were prepared as follows.

#### **3.10.1.1 β-***Amyloid*

The  $\beta$ -amyloid protein is believed to be the causative factor in Alzheimer's disease, initiating a cascade of neurotoxic events when it undergoes misfolding [8, 9]. The optimized structure of the 1IYT conformer of  $\beta$ -amyloid used in previous optimization with dopamine and phenylalanine was used for this project.

#### 3.10.1.2 *α*<sub>1</sub>-ACT

Although the precise function of  $\alpha_1$ -ACT is unknown, it is believed to play an anti-inflammatory role [92]. This protein is found localized in the amyloid plaques in the brain [81]. The PDB structure, 1QMN, was downloaded into MOE, where hydrogen

atoms were added, the histidine residues protonated, and then the file was formatted for QUANTA [46, 47]. Upon importation, there was a carboxylate group incorrectly constructed as an aldehyde group that was retyped before the protein backbone was constrained and the system was minimized via steepest descents.

#### 3.10.1.3 АСнЕ

Acetylcholinesterase is the enzyme involved in the metabolism of acetylcholine, and levels of the acetylcholine neurotransmitter decline with the progression of AD [6, 7]. The structure of AChE was downloaded from the PDB (as 2J3D) into MOE [47, 93]. Hydrogen atoms were added, solvent and other substances removed, and the histidine residues were protonated before being imported into QUANTA [46]. The structure was minimized using steepest descents with a constrained protein backbone.

#### 3.10.1.4 Apoe4

The apolipoprotein ɛ4 is an isoform of the protein, which normally plays a role in maintaining and repairing neurons; the ɛ4 isoform is linked to AD, and its mode of action remains to be determined [94]. The 1G39 entry of the PDB was downloaded, and in MOE actions were taken to remove solvent, add hydrogen atoms and protonate histidine [47, 95]. The structure was imported into QUANTA and underwent gas phase optimization using the steepest descents algorithm with a constrained protein backbone [46].

### 3.10.1.5 B7-1

The B7-1 protein is located on the surface of antigen-presenting cells, and plays a role in signalling immune response when binding to white blood cells [96]. The PDB structure, 1DR9, was protonated for physiological pH after extraneous molecules were

deleted and hydrogen atoms added to the structure [96]. The protein required some asparagine residues and carboxylate groups to be corrected as well; the system was then optimized with a constrained protein backbone via steepest descents.

#### 3.10.1.6 BHMT

The betaine-homocysteine methyl transferase enzyme exerts a role in cellular and plasma levels of homocysteine [97]. It has been suggested that elevated levels of homocysteine may play a role in AD [97]. For this structure, identified by 1LT8, preparation involved adding hydrogen atoms, removing solvent, zinc, and an identical chain, and finally protonating the His residues before importation in QUANTA, and following the same optimization scheme as the other proteins [46, 97].

#### 3.10.1.7 C1QA

The C1q protein (PDB entry 2JG9) plays a role in clearing apoptotic cells by binding to the surface of these cells to signal phagocytes to engulf them, and plays a role in controlling the inflammatory process [98]. As in the case of the previous proteins, before minimization (with a constrained protein backbone) in QUANTA, the protein first needed hydrogen atoms added to the structure, solvent and extraneous molecules removed and the histidine residues protonated [46].

#### 3.10.1.8. IFN-γ

Interferon- $\gamma$  is a cytokine that exerts immunomodulatory effects, and exists in a dimeric form [99]. IL-12 can increase the production of this inflammatory protein, which activates natural killer cells that lead to cell death [22, 69]. Solvent molecules were deleted, hydrogen atoms added and histidine residues protonated, with the C terminal

carboxylate corrected for the 1EKU structure of IFN-γ before optimization in QUANTA [46, 99].

#### 3.10.1.9 IL-1βCE

This enzyme plays a role in producing the inflammatory cytokine, interleukin-1 $\beta$  and may play a role in regulating the programmed cell death of neuronal cells [100]. The same process of preparing the protein was followed as in Section 3.2.8.1.3.

## 3.10.1.10 MIP-1α AND MIP-1β

These macrophage inflammatory proteins play a role as chemoattractants, initiating inflammatory responses [101]. They can play a role in activating white blood cells to bind to other cells for their removal [101]. Both 2X69 and 2X6L (MIP-1 $\alpha$  and MIP-1 $\beta$ , respectively) were imported directly into QUANTA, where the protein backbone was constrained and minimization occurred via steepest descents.

#### 3.10.1.11 NEP

Neutral endopeptidase, or neprilysin, is involved in the degradation of a peptide exhibiting vasodilatory and diuretic activities [102]. The structure, 2YB9, was prepared by adding hydrogen atoms, removing solvent and other molecules, and protonating the histidine residues [102]. Optimization in QUANTA followed the same method as the other proteins.

#### 3.10.1.12 SDF-1

SDF-1 is another pro-inflammatory protein that acts as a chemoattractant for various types of white blood cells [103]. Its PDB structure, 2SDF, required only

protonation for physiological pH before it was imported into QUANTA and optimized [5, 103].

#### 3.10.1.13 TRANSFERRIN

Transferrin, as its name implies, binds to iron and transports it throughout the body [104]. The release of iron is in part triggered by lower pH and iron is one of the metal ions found located in A $\beta$  plaques, which tends towards lower pH [81, 104]. The transferrin protein, 3S9N, was prepared by deleting extraneous chains, adding hydrogen atoms, and then correcting numerous side chains that were lacking the R group before ensuring the system was charged for physiological pH and imported into QUANTA [46].

#### **3.10.2 GAS PHASE OPTIMIZATION OF THE NCE COMPOUNDS WITH BBXB**

Optimizations of these compounds with the **BBXB** region of the various proteins was set up such that the functional groups/aromatic rings of the NCE compounds were approximately 3.0 Å away from two of the basic amino acids in the **BBXB** region of the protein being examined. Each system was minimized with a constrained protein backbone via steepest descents.

The binding energies were calculated using the following equations:

$$\Delta E_{tot} = E_{tot} - E_{BBXB} - E_{NCE}$$
(3.20)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwBBXB} - E_{vdwNCE}$$
(3.21)

$$\Delta E_{ele} = E_{ele} - E_{eleBBXB} - E_{eleNCE}$$
(3.23)

The total, van der Waals and electrostatic interactions were calculated for each gas phase system, where the energy of the protein was calculated with a constrained protein backbone. The energies of the proteins are summarized in Appendix 8.

Each of the optimized systems was imported into MOE to better determine what interactions were occurring between the ligand and the protein [47].

#### 3.10.3 RESULTS OF THE OPTIMIZATION OF THE NCE COMPOUNDS WITH BBXB

The results of the optimizations are summarized in Tables 3.96-3.119. Amino acid side chains are represented by their single letter abbreviation followed by their number on the chain. The NCE compounds are represented by the abbreviations shown in Figure 3.16. The initial and final binding orientations are given, and the calculated energies. Different types of binding interactions are represented by different colours, and the darker the shade of the colour, the more that type of interaction is occurring at that site. Cation- $\pi$  and  $\pi$ - $\pi$  interactions are represented by blue and green, while hydrogen bonds are orange. Interactions with the –CH<sub>2</sub>- chain on the amino acids (particularly common with lysine) are coloured indigo, while light purple indicates potential interactions with the C=O of the protein backbone; lime green represents those occurring with the –CH- of the backbone.

For IFN- $\gamma$ , MIP-1 $\alpha$ , MIP-1 $\beta$  and RANTES, there exist two identical **BBXB** motifs, either on the same chain, or on an identical chain. For these systems there are also tables summarizing systems optimized with two molecules of the NCE compounds, one at each site; the interactions are broken down in to (A) and (B) to show to which of the two identical motifs the molecule was binding.



Figure 3.16: Regions of NCE compounds identified for interactions with BBXB

|         |      | 1.2.10    |            |      |      |        |      |      | 10.1       |      |      |      |      |         | <b>n</b> d   |         |
|---------|------|-----------|------------|------|------|--------|------|------|------------|------|------|------|------|---------|--------------|---------|
| al-ACT  |      | Initial O | rientation |      |      |        |      | Fina | al Orienta | tion |      |      |      | Binding | g Energy (ko | al/mol) |
| un ne n | K273 | R274      | W275       | R276 | E234 | K273   | R274 | W275 | R276       | D277 | S278 | T381 | Q384 | Total   | VdW          | Ele     |
| NCE     | CIn  | BIn       |            |      | BIn  | CIn    | BIn  |      |            |      |      |      |      | -33.00  | -11.13       | -27.38  |
| 0103    | BIn  | CIn       |            |      | CIn  | BIn    | CIn  |      |            |      |      |      |      | -29.35  | -14.34       | -23.08  |
|         | BIn  |           |            | CIn  |      |        |      |      | CIn        |      |      | CIn  |      | -7.71   | -9.15        | -3.60   |
|         | CIn  |           |            | BIn  |      | CIn    |      |      | BIn        | CIn  |      |      |      | -19.00  | -13.03       | -12.72  |
| NCE     | CIn  | In        |            |      | -    | -      | -    | -    | -          | -    | -    | -    | -    | -22.98  | -5.13        | -22.02  |
| 0112    | In   | CIn       |            |      |      | In     | CIn  |      |            |      |      |      |      | -40.43  | -10.97       | -34.30  |
|         | In   |           |            | CIn  |      | In     |      |      | CIn        | In   |      |      |      | -25.65  | -15.56       | -17.15  |
|         | CIn  |           |            | In   |      | CIn    |      |      | In         | CIn  |      |      | In   | -21.74  | -14.08       | -11.03  |
| NCE     | NAr  | CIn       |            |      | CIn  |        | CIn  |      |            |      |      |      |      | -19.44  | -5.56        | -20.42  |
| 0216    | CIn  | NAr       |            |      |      | CIn    | NAr  |      |            |      |      |      |      | -28.52  | -6.81        | -26.18  |
|         | CIn  |           |            | NAr  |      | CIn/NA | r    |      | NAr        | NAr  |      |      | NAr  | -29.37  | -13.73       | -21.38  |
|         | NAr  |           |            | CIn  |      |        |      |      | CIn        | NAr  |      |      |      | -17.17  | -14.61       | -6.66   |
| NCE     | LAr  | RAr       |            |      |      | LAr    | RAr  |      |            |      | RAr  |      |      | -21.64  | -7.33        | -17.36  |
| 0325    | RAr  | LAr       |            |      | LAr  | RAr    | LAr  |      |            |      |      |      |      | -15.89  | -6.50        | -11.66  |
|         | LAr  |           |            | RAr  |      |        |      |      | RAr        | RAr  |      |      |      | -24.80  | -7.70        | -19.76  |
|         | RAr  |           |            | LAr  |      | RAr    |      |      | LAr        | RAr  |      |      |      | -34.76  | -13.41       | -26.15  |

# Table 3.96: Results of the optimization of the lead molecules and $\alpha_1$ -ACT

# Table 3.97: Results of the optimization of the lead molecules and $A\beta$

| 4.0  |      | Initial O | rientation |      |     |     | Fin | al Orienta | tion |     |     | Binding | g Energy (ko | al/mol) |
|------|------|-----------|------------|------|-----|-----|-----|------------|------|-----|-----|---------|--------------|---------|
| Ар   | H13  | H14       | Q15        | K16  | Y10 | H13 | H14 | Q15        | K16  | L17 | F20 | Total   | VdW          | Ele     |
| NCE  | CIn  | BIn       |            |      |     | CIn | BIn |            |      | CIn |     | -19.48  | -11.54       | -10.60  |
| 0103 | DI.  | CIn       |            |      |     | BIn | CIn |            |      | BIn |     | 10.60   | 10.72        | 11.05   |
|      | BIN  | Cin       |            |      |     | BIn | CIn |            |      |     |     | -19.60  | -10.73       | -11.95  |
|      | BIn  |           |            | CIn  |     | BIn |     |            | CIn  |     | CIn | -24.40  | -8.03        | -17.50  |
|      | CIn  |           |            | BIn  |     | CIn |     |            | BIn  |     | BIn | -24.68  | -9.00        | -17.71  |
| NCE  | CIn  | In        |            |      |     | CIn | In  |            |      | CIn |     | -7.75   | -7.36        | -5.02   |
| 0112 | In   | CIn       |            |      |     | In  | CIn |            |      | CIn |     | -5.03   | -6.23        | -3.65   |
|      | In   |           |            | CIn  |     | In  |     |            | CIn  |     | CIn | -12.76  | -4.63        | -13.21  |
|      | CIn  |           |            | In   |     | CIn |     |            |      |     |     | -3.36   | -4.03        | -3.53   |
| NCE  | NAr  | CIn       |            |      | CIn | NAr | CIn |            |      | CIn |     | -18.55  | -11.32       | -9.77   |
| 0216 | CIn  | NAr       |            |      | NAr | CIn | NAr |            |      | NAr |     | 25.61   | 11.07        | 16.85   |
|      | CIII | 1974      |            |      |     | CIn |     |            |      |     |     | -23.01  | -11.97       | -10.85  |
|      | CIn  |           |            | NAr  |     | CIn |     |            | NAr  |     |     | -19.66  | -9.60        | -12.56  |
|      | NAr  |           |            | CIn  |     | NAr |     |            | CIn  |     | CIn | 25 57   | 0.60         | 15 70   |
|      | INAI |           |            | CIII |     |     |     |            | CIn  |     |     | -23.37  | -9.09        | -13.79  |
| NCE  | LAr  | DAr       |            |      |     | LAr | RAr |            |      | CAr |     | 14.76   | 8.06         | 8 60    |
| 0325 | LAI  | K/AI      |            |      |     |     |     |            |      | RAr |     | -14.70  | -0.90        | -0.09   |
|      | RAr  | LAr       |            |      | LAr | RAr | LAr |            |      |     |     | -14.86  | -6.33        | -10.90  |
|      | LAr  |           |            | RAr  |     | LAr |     |            | RAr  |     | RAr | -14.38  | -6.27        | -9.39   |
|      | RAr  |           |            | LAr  |     | RAr | -   |            | LAr  |     |     | -6.25   | -2.65        | -4.64   |

| AChE |     | Initial Or | rientation |     |     |     | Fin | al Orienta | tion |      |      | Binding Energy (kcal/mol) |        |        |  |
|------|-----|------------|------------|-----|-----|-----|-----|------------|------|------|------|---------------------------|--------|--------|--|
| ACHE | R44 | F45        | R46        | R47 | R44 | F45 | R46 | R47        | E49  | Q162 | E163 | Total                     | VdW    | Ele    |  |
| NCE  |     |            | BIn        | CIn |     |     |     | _          |      | CIn  |      | -68.80                    | -7.81  | 59.10  |  |
| 0103 |     |            | CIn        | BIn |     |     | CIn |            |      |      |      | -9.39                     | -10.85 | -6.75  |  |
| NCE  |     |            | CIn        | In  | -   | -   | -   | -          | -    | -    | -    | -36.31                    | -2.05  | -38.94 |  |
| 0112 |     |            | T.,        | CL  |     |     | In  | CIn        | In   | CIn  |      | (2.22                     | 0.16   | 01.00  |  |
|      |     |            | In         | Cin |     |     | CIn |            |      |      |      | 03.33                     | -8.10  | 81.98  |  |
| NCE  |     |            | NAr        | CIn |     |     | NAr |            |      |      | NAr  | -63.19                    | -3.57  | -68.11 |  |
| 0216 |     |            | CIn        | NAr |     |     |     |            | Cin  |      |      | -10.06                    | -6.99  | -5.15  |  |
| NCE  |     |            | LAr        | RAr |     |     | LAr | RAr        |      | RAr  | LAr  | -81.74                    | 1.42   | -93.58 |  |
| 0325 |     |            | RAr        | LAr |     |     | RAr |            |      |      | RAr  | -69.48                    | 1.16   | -79.18 |  |

Table 3.98: Results of the optimization of the lead molecules and AChE

# Table 3.99: Results of the optimization of the lead molecules and Apoɛ4

|       |      | Initial Or | rientation |      |             |      |      | Final O | rientation | L           |      | Binding Energy (kcal/mol) |        |         |
|-------|------|------------|------------|------|-------------|------|------|---------|------------|-------------|------|---------------------------|--------|---------|
| Арое4 | H140 | L141       | R142       | K143 | S139        | H140 | L141 | R142    | K143       |             |      | Total                     | VdW    | Ele     |
| NCE   | BIn  |            |            | CIn  |             | BIn  |      |         | CIn        |             |      | -39.00                    | -13.59 | -23.04  |
| 0103  | CIn  |            |            | BIn  |             | CIn  |      |         | BIn        |             |      | -175.00                   | -24.64 | -138.57 |
| NCE   | In   |            |            | CIn  | -           | -    | -    | -       | -          | -           | -    | -128.35                   | -16.34 | -103.07 |
| 0112  | CIn  |            |            | In   | -           | -    | -    | -       | -          | -           | -    | -148.72                   | -16.67 | -126.88 |
| NCE   | CIn  |            |            | NAr  | NAr         |      |      |         | NAr        |             |      | -149.12                   | -19.83 | -124.52 |
| 0216  | NAr  |            |            | CIn  |             | CIn  |      |         | CIn        |             |      | -45 61                    | -16.18 | -30.39  |
|       |      |            |            | 0    |             | NAr  |      |         |            |             |      | 10.01                     | 10.10  | 50.57   |
| NCE   | LAr  |            |            | RAr  | -           | -    | -    | -       | -          | -           | -    | -26.73                    | -5.51  | -21.42  |
| 0325  | RAr  |            |            | LAr  | LAr         | LAr  |      |         | LAr        |             |      | -171.95                   | -16.46 | -150.56 |
|       |      |            |            |      |             | CAr  | ~    |         |            |             |      |                           |        |         |
|       | R142 | K143       | L144       | R145 | R38         | A138 | S139 | R142    | K143       | L144        | R145 |                           |        |         |
| NCE   | BIn  |            |            | CIn  |             | CIn  |      | BIn     |            |             | CIn  | 83.40                     | -14.06 | -70.35  |
| 0103  | CIn  |            |            | BIn  | ~~~         |      |      | CIn     |            |             |      | -17.35                    | -12.36 | 2.33    |
| NCE   | In   |            |            | Cln  | Cln         |      |      |         |            |             | Cln  | -38.05                    | -14.49 | -16.55  |
| 0112  | CIn  |            |            | In   | -           | -    | -    | -       | -          | -           | -    | -253.86                   | -17.12 | -219.42 |
| NCE   | NAr  | CIn        |            |      |             | NAr  | NAr  |         |            |             | CIn  | -43.02                    | -16.92 | -26.85  |
| 0216  | CIn  | NAr        |            |      | -           | -    | -    | -       | -          | -           | -    | -7.55                     | -7.70  | 3.31    |
|       | CIn  |            |            | NAr  |             |      |      | CIn     |            |             |      | -132.40                   | -14.83 | -105.05 |
|       | NAr  |            |            | CIn  | -           | -    | -    | -       | -          | -           | -    | -59.81                    | -9.04  | -43.21  |
| NCE   | LAr  | RAr        |            |      |             |      | LAr  | LAr     | RAr        |             |      | -36.21                    | -12 52 | -21.66  |
|       |      | 10.11      |            |      |             |      |      | LAr     |            |             |      | 50.21                     | 12.52  | 21.00   |
| 0325  | RAr  | LAr        |            |      |             | LAr  | LAr  | RAr     | LAr        |             |      | -45.57                    | -12.99 | -23.76  |
|       | LAr  |            |            | RAr  | RAr         |      |      | LAr     |            |             | RAr  | -50.07                    | -12.95 | -36.17  |
|       | RAr  |            |            | ΙΔr  | KAr<br>I Ar |      |      |         |            |             | ΙΔr  | -36.40                    | -12.28 | -21.48  |
|       | K143 | L144       | R145       | K146 | R38         | K143 | L144 | R145    | K146       | L149        | D153 | -50.40                    | -12.20 | -21.40  |
| NCE   |      | LIII       | CIn        | BIn  | -           | -    | -    | -       | -          | -           | -    | -276 27                   | -17.07 | -246 19 |
| 0103  |      |            | BIn        | CIn  |             |      |      |         | CIn        | CIn         |      | -93.20                    | -12.75 | -80.20  |
| NCE   |      |            | CIn        | In   |             |      |      |         | In         |             |      | -88.01                    | -11.47 | -69.08  |
| 0112  |      |            | In         | CIn  |             |      |      | In      |            | In/CIn      |      | -37.23                    | -10.94 | -3.40   |
| NCE   |      |            | NAr        | CIn  | NAr         |      |      |         | CIn        | CIn         |      | -24.38                    | -13.61 | -12.18  |
| 0216  |      |            | CIn        | NAr  |             |      |      | CIn     |            | NAr         | NAr  | -62.78                    | -13.92 | -44.27  |
| NCE   |      |            | LAr        | RAr  | LAr         |      |      |         | RAr        | CAr         |      | -166.51                   | -19.01 | -146.65 |
| 0325  |      |            | RAr        | LAr  | RAr         |      |      |         | LAr        | RAr/CAr/LAr |      | -48.53                    | -16.26 | -33.86  |

| D7 1 |     | Initial O | rientation |     |     | Final O | rientation | ı   | Binding | g Energy (k | cal/mol) |
|------|-----|-----------|------------|-----|-----|---------|------------|-----|---------|-------------|----------|
| B/-1 | K93 | R94       | E95        | H96 | K93 | R94     | E95        | H96 | Total   | VdW         | Ele      |
| NCE  | CIn | BIn       |            |     | CIn |         |            |     | -11.08  | -3.64       | -9.02    |
| 0103 | BIn | CIn       |            |     |     | CIn     |            |     | -8.75   | -4.35       | -6.74    |
|      |     | BIn       |            | CIn |     | BIn     | CIn        | CIn | -14.46  | -4.02       | -12.71   |
|      |     | CIn       |            | BIn | -   | -       | -          | -   | -16.07  | -0.53       | -17.12   |
|      | BIn |           |            | CIn |     |         |            | CIn | -18.74  | -5.08       | -15.19   |
|      | CIn |           |            | BIn | -   | -       | -          | -   | -16.89  | -0.17       | -18.76   |
| NCE  | CIn | In        |            |     | -   | -       | -          | -   | -5.39   | -1.70       | -4.95    |
| 0112 | In  | CIn       |            |     | -   | -       | -          | -   | -1.01   | -1.74       | -0.77    |
|      |     | In        |            | CIn | -   | -       | -          | -   | -8.32   | -2.54       | -7.43    |
|      |     | CIn       |            | In  |     | CIn     |            |     | -12.32  | -2.24       | -14.31   |
|      | In  |           |            | CIn | -   | -       | -          | -   | -8.90   | -2.20       | -7.76    |
|      | CIn |           |            | In  | -   | -       | -          | -   | -3.32   | -2.26       | -1.68    |
| NCE  | NAr | CIn       |            |     |     | CIn     |            |     | -9.02   | -2.98       | -8.31    |
| 0216 | CIn | NAr       |            |     | CIn |         |            |     | -16.26  | -3.75       | -15.21   |
|      |     | CIn       |            | NAr |     | CIn     |            |     | -10.99  | -1.29       | -13.94   |
|      |     | NAr       |            | CIn |     |         |            |     | -6.58   | -4.29       | -4.93    |
|      | CIn |           |            | NAr | CIn |         |            | CIn | -10.80  | -4.01       | -9.23    |
|      | NAr |           |            | CIn |     |         |            | CIn | -14.10  | -4.34       | -12.87   |
| NCE  | LAr | RAr       |            |     |     | RAr     |            |     | -9.72   | -2.29       | -7.37    |
| 0325 | RAr | LAr       |            |     | RAr | LAr     |            |     | -3.71   | -1.54       | -2.59    |
|      |     | D 4       |            | τ   |     | RAr     |            | LAr | 16.00   | 2.02        | 15 10    |
|      |     | ĸAr       |            | LAr |     | LAr     | •          |     | -10.99  | -3.03       | -13.12   |
|      |     | LAr       |            | RAr |     | LAr     |            | RAr | -17.84  | -3.32       | -15.92   |
|      | LAr |           |            | RAr |     |         | -          | RAr | -8.05   | -3.20       | -7.45    |
|      | RAr |           |            | LAr |     |         |            | LAr | -11.27  | -4.13       | -9.09    |

Table 3.100: Results of the optimization of the lead molecules and B7-1

# Table 3.101: Results of the optimization of the lead molecules and BHMT

| DIMT    |      | Initial Or | rientation | l    |      |      | Fin  | al Orienta | ation |      |      | Binding Energy (kcal/mol) |        |        |
|---------|------|------------|------------|------|------|------|------|------------|-------|------|------|---------------------------|--------|--------|
| DILIVIT | R346 | A347       | R348       | K349 | W331 | S333 | R346 | A347       | R348  | K349 | E350 | Total                     | VdW    | Ele    |
| NCE     |      |            | BIn        | CIn  |      |      | CIn  |            |       | CIn  | BIn  | -70.80                    | -3.19  | -77.20 |
| 0103    |      |            | CL         | DI.  |      |      |      |            | CIn   | BIn  |      | 45.04                     | 11.26  | 44.27  |
|         |      |            | Cin        | BIN  | CIn  |      |      |            | CIn   | BIn  |      | -45.04                    | -11.20 | -44.37 |
| NCE     |      |            | NAr        | CIn  |      |      |      |            | NAr   | CIn  | NAr  | -23.22                    | -11.46 | -27.24 |
| 0216    |      |            | CIn        | NAr  |      |      |      |            | CIn   | NAr  |      | -38.81                    | -3.79  | -41.87 |
| NCE     |      |            | LAr        | RAr  |      |      |      |            | LAr   | RAr  | LAr  | -40.74                    | -8.48  | -35.52 |
| 0325    |      |            |            |      |      | RAr  |      | RAr        | RAr   | LAr  | RAr  |                           |        |        |
|         |      |            | RAr        | LAr  |      |      |      |            | RAr   | RAr  | CAr  | -71.31                    | -11.24 | -65.42 |
|         |      |            |            |      |      |      |      |            |       | LAr  |      |                           |        |        |

| C1 - A |      | Initial O | rientation |         |      |      | Final O | rientation | ı    |      | Binding | g Energy (k | cal/mol) |
|--------|------|-----------|------------|---------|------|------|---------|------------|------|------|---------|-------------|----------|
| CIqA   | K200 | K201      | G202       | H203    | W147 | E148 | K200    | K201       | G202 | H203 | Total   | VdW         | Ele      |
| NCE    | CIn  | BIn       |            |         |      |      | CIn     |            |      |      | -129.94 | -3.18       | -134.99  |
| 0103   | BIn  | CIn       |            |         |      |      | BIn     | CIn        |      |      | -129.77 | -9.46       | -127.56  |
|        |      | BIn       |            | CIn     |      | BIn  |         |            |      | CIn  | -100.84 | -6.47       | -99.64   |
|        |      | CIn       |            | BIn     |      | CIn  | CIn     | CIn        |      |      | -114.44 | -8.07       | -114.67  |
|        | BIn  |           |            | CIn     |      | CIn  | BIn     |            |      | CIn  | -112.57 | -10.51      | -109.83  |
|        | CIn  |           |            | BIn     |      | BIn  | CIn     |            |      |      | -118.77 | -8.78       | -116.97  |
| NCE    | CIn  | In        |            |         |      |      | CIn     |            | _    |      | -109.91 | -4.56       | -113.10  |
| 0112   | In   | CIn       |            |         |      |      |         | CIn        |      |      | -142.02 | -9.83       | -140.07  |
|        |      | In        |            | CIn     |      | In   |         |            |      | CIn  | -92.21  | -10.38      | -84.04   |
|        |      | CIn       |            | In      |      | CIn  | CIn     | CIn        |      | In   | 115.23  | 10.80       | 110.52   |
|        |      | CIII      |            | 111     |      |      | CIn     |            |      |      | -115.25 | -10.89      | -119.52  |
|        | In   |           |            | CIn     | CIn  |      | In      |            |      | CIn  | -76.44  | -5.69       | -78.29   |
|        | CIn  |           |            | In      |      |      | CIn     |            |      |      | -114.94 | -4.09       | -117.65  |
| NCE    | NAr  | CIn       |            |         |      |      |         | CIn        |      |      | -103.83 | -4.55       | -106.84  |
| 0216   | CIn  | NAr       |            |         |      | NAr  | CIn     |            | _    |      | -109.82 | -0.62       | -117.60  |
|        |      | CIn       |            | NAr     |      |      | CIn     | CIn        |      |      | -115.25 | -6.30       | -119.69  |
|        |      | NAr       |            | CIn     | CIn  |      |         |            |      | CIn  | -76.88  | -6.45       | -74.52   |
|        | CIn  |           |            | NAr     |      |      | CIn     |            |      |      | -108.66 | -3.83       | -112.23  |
|        | NAr  |           |            | CIn     |      |      | NAr     |            |      | CIn  | -72.24  | -2.94       | -75.86   |
| NCE    | LAr  | RAr       |            |         |      | RAr  | LAr     | RAr        |      |      | -54.53  | -3.35       | -53.48   |
| 0325   | RAr  | LAr       |            |         |      | LAr  | RAr     | LAr        |      |      | -54.09  | -3.65       | -55.02   |
|        |      | DA.       |            | τ. Α.,. | LAr  | RAr  | RAr     |            |      |      | 52.20   | 8.04        | 45 10    |
|        |      | NAI       |            | LAI     |      |      | RAr     | -          |      |      | -32.28  | -0.04       | -43.19   |
|        |      | LAr       |            | RAr     |      | LAr  | LAr     |            |      | RAr  | -38.92  | -5.26       | -35.69   |
|        | LAr  |           |            | RAr     |      |      | LAr     |            |      |      | -52.06  | -8.76       | -50.83   |
|        | RAr  |           |            | LAr     |      |      | RAr     |            |      |      | -45.23  | -1.60       | -46.56   |

Table 3.102: Results of the optimization of the lead molecules and C1qA

 Table 3.103: Results of the optimization of the lead molecules and ICAM-1

| ICAM 1  |      | Initial O | rientation |      |      |      |      |      | Fina | al Orienta | ation     |      |      |      |      | Bindin | g Energy (ko | :al/mol) |
|---------|------|-----------|------------|------|------|------|------|------|------|------------|-----------|------|------|------|------|--------|--------------|----------|
| ICANI-1 | R149 | R150      | D151       | H152 | R125 | L130 | T144 | T145 | V146 | L147       | R149      | R150 | D151 | H152 | H153 | Total  | VdW          | Ele      |
| NCE     | CIn  | BIn       |            |      |      |      |      |      |      |            | CIn       | BIn  | CIn  |      |      | -20.13 | -7.59        | -13.37   |
| 0103    | BIn  | CIn       |            |      |      |      |      |      |      |            | BIn       | CIn  |      |      |      | -18.76 | -5.42        | -13.64   |
|         | BIn  |           |            | CIn  | CIn  |      |      |      |      |            | BIn       |      |      | CIn  |      | -18.85 | -6.43        | -13.80   |
|         | CIn  |           |            | BIn  |      |      | BIn  |      | BIn  | CIn        | CIn       |      |      |      |      | -35.16 | -16.94       | -18.39   |
| NCE     | CIn  | In        |            |      | -    | -    | -    | -    | -    | -          | -         | -    | -    | -    | -    | -15.53 | -3.27        | -12.14   |
| 0112    | In   | CIn       |            |      |      |      |      |      |      |            | In        |      |      |      |      | -16.18 | -2.81        | -12.54   |
|         | In   |           |            | CIn  | CIn  |      |      |      | CIn  | CIn        | CIn<br>In |      |      | CIn  |      | -20.45 | -11.83       | -15.25   |
|         | CIn  |           |            | In   |      |      |      |      |      | CIn        | CIn       |      |      |      |      | -24.08 | -10.32       | -20.55   |
| NCE     | NAr  | CIn       |            |      |      |      |      |      |      |            |           | CIn  |      |      |      | -14.10 | -4.15        | -13.03   |
| 0216    | CIn  | NAr       |            |      |      |      |      |      |      |            | CIn       |      |      |      |      | -11.43 | -4.82        | -8.24    |
|         | CIn  |           |            | NAr  | NAr  | NAr  |      |      | NAr  | CIn        | CIn       |      |      |      |      | -33.62 | -13.66       | -21.66   |
|         | NAr  |           |            | CIn  |      |      |      |      | CIn  | CIn        | NAr       |      |      |      |      | -27.44 | -13.14       | -18.72   |
| NCE     | LAr  | RAr       |            |      |      |      |      |      |      |            | LAr       | RAr  |      |      |      | -10.87 | -3.97        | -7.73    |
| 0325    | RAr  | LAr       |            |      |      |      |      |      |      |            | RAr       |      | RAr  |      | LAr  | -15.90 | -8.17        | -11.13   |
|         | LAr  |           |            | RAr  |      |      |      | RAr  | RAr  | LAr        |           |      |      |      |      | -23.70 | -13.20       | -13.23   |
|         | RAr  |           |            | LAr  | LAr  | LAr  |      |      | LAr  |            | RAr       |      |      |      |      | -21.48 | -14.62       | -11.68   |
|         | R150 | D151      | H152       | H153 | R125 | R149 | R150 | D151 | H152 | H153       |           |      |      |      |      |        |              |          |
| NCE     | CIn  | BIn       |            |      | CIn  |      | CIn  |      | CIn  |            |           |      |      |      |      | -41.09 | -14.69       | -29.19   |
| 0103    | BIn  | CIn       |            |      |      |      | BIn  |      |      |            |           |      |      |      |      | -31.91 | -7.97        | -26.14   |
|         | BIn  |           |            | CIn  |      |      | BIn  |      |      | CIn        |           |      |      |      |      | -28.32 | -7.30        | -22.23   |
|         | CIn  |           |            | BIn  |      |      | CIn  |      |      | BIn        |           |      |      |      |      | -17.03 | -6.90        | -11.56   |
| NCE     | CIn  | In        |            |      | CIn  | CIn  |      | In   |      |            |           |      |      |      |      | -23.48 | -12.04       | -17.47   |
| 0112    | In   | CIn       |            |      | In   | In   |      | CIn  |      |            |           |      |      |      |      | -25.45 | -10.37       | -21.97   |
|         | In   |           |            | CIn  |      |      | In   |      |      | CIn        |           |      |      |      |      | -8.42  | -4.59        | -9.41    |
|         | CIn  |           |            | In   |      |      |      | CIn  |      |            |           |      |      |      |      | -9.60  | -5.26        | -9.23    |
| NCE     | NAr  | CIn       |            |      |      |      |      | NAr  | NAr  | CIn        |           |      |      |      |      | -37.19 | -11.15       | -28.12   |
| 0216    | CIn  | NAr       |            |      | CIn  |      |      |      | CIn  |            |           |      |      |      |      | -28.84 | -9.69        | -21.21   |
|         | CIn  |           |            | NAr  |      |      | CIn  | NAr  |      | NAr        |           |      |      |      |      | -21.75 | -10.10       | -12.76   |
|         | NAr  |           |            | CIn  |      |      | NAr  |      |      |            |           |      |      |      |      | -16.56 | -4.13        | -14.32   |
| NCE     | LAr  | RAr       |            |      | LAr  | LAr  |      | CAr  | LAr  | RAr        |           |      |      |      |      | -21.94 | -10.60       | -12.98   |
| 0325    | RAr  | LAr       |            |      | RAr  | CAr  |      | LAr  | RAr  | LAr        |           |      |      |      |      | -19.65 | -11.89       | -8.10    |
|         | LAr  |           |            | RAr  | -    | -    | -    | -    | -    | -          |           |      |      |      |      | -8.20  | -3.43        | -6.86    |
|         | RAr  |           |            | LAr  |      |      | RAr  |      |      |            |           |      |      |      |      | -7.80  | -3.62        | -5.15    |

| IFNL   |      | Initial O | rientation |     |     |     |     |     | Final O | rientation |     |     |         |     | Binding | g Energy (k | cal/mol) |
|--------|------|-----------|------------|-----|-----|-----|-----|-----|---------|------------|-----|-----|---------|-----|---------|-------------|----------|
| ΠΕΙΝ-γ | K86  | K87       | K88        | R89 | K74 | E75 | N78 | N85 | K86     | K87        | K88 | R89 | D90     | E93 | Total   | VdW         | Ele      |
| NCE    | CIn  | BIn       |            |     |     |     |     |     |         |            | CIn |     |         |     | -17.21  | -4.41       | -12.17   |
| 0103   | BIn  | CIn       |            |     |     |     |     |     |         |            | BIn |     |         |     | -21.39  | -4.60       | -15.48   |
|        |      | BIn       |            | CIn |     |     |     |     |         |            |     |     | BIn     |     | -19.31  | -3.81       | -13.48   |
|        |      | CIn       |            | BIn |     |     |     |     |         | CIn        |     | BIn | CIn/BIn |     | -18.09  | -8.86       | -7.30    |
|        | BIn  |           |            | CIn |     | CIn |     | CIn | BIn     |            |     | CIn |         |     | -44.57  | -15.33      | -27.84   |
|        | CIn  |           |            | BIn | BIn |     | BIn |     | CIn     |            |     | BIn | BIn     |     | -26.80  | -12.78      | -13.00   |
| NCE    | CIn  | In        |            |     |     |     |     |     | CIn     |            |     |     |         |     | -18.99  | -8.48       | -9.15    |
| 0112   | In   | CIn       |            |     |     |     |     |     | In      | CIn        |     |     |         |     | -20.53  | -8.03       | -10.19   |
|        |      | In        |            | CIn |     |     |     |     |         |            |     |     | CIn     |     | -13.99  | -8.41       | -3.86    |
|        |      | CIn       |            | In  |     |     |     |     | In      |            |     | In  | In      |     | -24.29  | -7.25       | -14.61   |
|        | In   |           |            | CIn |     |     |     |     | In      |            |     | CIn |         | CIn | -16.41  | -6.52       | -9.04    |
|        | CIn  |           |            | In  |     |     |     |     | CIn     |            |     | CIn |         |     | -20.12  | -6.44       | -11.93   |
| NCE    | NAr  | CIn       |            |     |     |     |     |     |         | CIn        |     |     |         |     | -11.69  | -4.06       | -6.22    |
| 0216   | CIn  | NAr       |            |     |     |     |     |     | CIn     |            |     |     |         |     | -22.62  | -7.34       | -13.44   |
|        |      | CIn       |            | NAr | -   | -   | -   | -   | -       | -          | -   | -   | -       | -   | -11.27  | -4.77       | -6.50    |
|        |      | NAr       |            | CIn |     |     |     |     | CIn     | NAr        |     | CIn |         |     | -22.41  | -7.31       | -13.91   |
|        | CIn  |           |            | NAr |     |     |     |     | CIn     |            |     |     |         |     | -26.02  | -9.75       | -14.31   |
|        | NAr  |           |            | CIn |     |     |     |     | NAr     |            |     | CIn |         |     | -21.62  | -0.38       | -11 33   |
|        | INAI |           |            | Cm  |     |     |     |     |         |            |     | CIn |         |     | -21.02  | -7.50       | -11.55   |
| NCE    | LAr  | RAr       |            |     |     |     |     |     |         | RAr        |     |     |         |     | -17.40  | -4.78       | -11.11   |
| 0325   | RAr  | LAr       |            |     |     |     |     |     | RAr     |            |     |     |         |     | -13.68  | -4.23       | -9.27    |
| 1      |      | RAr       |            | LAr |     |     |     |     |         |            |     | LAr |         |     | -17.44  | -4.05       | -12.18   |
| 1      |      | LAr       |            | RAr |     |     |     |     | RAr     |            |     | RAr | LAr     |     | -15.12  | -6.56       | -7.23    |
| 1      | LAr  |           |            | RAr |     |     |     |     | LAr     |            |     | RAr |         | RAr | -17.38  | -7.46       | -8.85    |
| 1      | RAr  |           |            | LAr |     |     |     |     | RAr     |            |     |     |         |     | -17.39  | -7.27       | -8.62    |

Table 3.104: Results of the optimization of the lead molecules and IFN- $\gamma$ 

| IFN-γ       |                |      | Initial O | rientation | Final Orientation |      |      |         |       |      |      |         | Binding Energy (kcal/mol) |      |        |        |        |
|-------------|----------------|------|-----------|------------|-------------------|------|------|---------|-------|------|------|---------|---------------------------|------|--------|--------|--------|
|             | (A)            | K86  | K87       | K88        | R89               | K74  | N78  | K86     | K87   | K88  | R89  | D90     | E93                       | K94  |        |        |        |
|             | (B)            | K206 | K207      | K208       | R209              | K194 | N198 | K206    | K207  | K208 | R209 | D210    | E213                      |      | Total  | VdW    | Ele    |
| NCE         | (A)            | CIn  | BIn       |            |                   |      |      | CIn     |       |      |      |         |                           |      | -42.06 | -8.24  | -28.82 |
| 0103        | (B)            | -    |           |            |                   |      |      | CIn     |       |      |      |         |                           |      |        |        |        |
|             | (A)            | BIn  | CIn       |            |                   |      |      | Bln     |       |      |      |         |                           |      | -33.61 | -10.54 | -23.48 |
|             | (B)            |      |           |            |                   |      |      | Bln     |       |      | CIm  | DIa     |                           | DI.  | -      |        |        |
|             | (A)<br>(B)     |      | BIn       |            | CIn               |      |      | Cm      | BIn   |      | CIn  | Bln/Cln |                           | ып   | -39.35 | -12.34 | -24.97 |
|             | $(\mathbf{D})$ |      |           |            |                   |      |      | BIn     | CIn   |      | BIn  | Bln     |                           | CIn  | •      |        |        |
|             | (B)            |      | CIn       |            | BIn               |      |      | Dill    | CIII  |      | BIn  | Din     |                           | CIII | -30.11 | -16.16 | -12.32 |
|             | (A)            |      |           |            |                   |      |      | BIn     |       |      | CIn  |         |                           |      |        |        |        |
|             | (B)            | BIn  |           |            | CIn               |      |      | BIn     |       |      | CIn  |         |                           |      | -28.77 | -7.88  | -17.40 |
|             | (A)            | CIn  |           |            | DIn               |      |      | CIn     |       |      |      |         |                           |      | 27.10  | 7 5 5  | 14.67  |
|             | (B)            | Cm   |           |            | ып                |      |      | CIn     |       |      |      |         |                           |      | -27.10 | -7.55  | -14.07 |
| NCE         | (A)            | CIn  | In        |            |                   |      |      | CIn     |       |      |      |         |                           |      | -26 67 | -910   | -12.72 |
| 0112        | (B)            |      |           |            |                   |      |      | CIn     |       |      |      |         |                           |      |        |        |        |
|             | (A)            | In   | CIn       |            |                   |      |      | In      | CL.   |      |      |         |                           |      | -33.70 | -8.13  | -23.51 |
|             | (D)<br>(A)     |      |           |            |                   |      |      | CIn     | CIII  |      | CIn  | In/CIn  |                           |      | -      |        |        |
|             | (A)<br>(B)     |      | In        |            | CIn               |      |      | CIn     |       |      | CIn  | In/CIn  |                           |      | -47.91 | -19.26 | -25.09 |
|             | (A)            |      |           |            | _                 |      |      | In      |       |      | CIn  | In/CIn  |                           |      |        |        |        |
|             | (B)            |      | CIn       |            | In                |      |      | In      |       |      | In   | In      |                           |      | -40.86 | -16.40 | -23.06 |
|             | (A)            | T.a. |           |            | CIm               | CIn  | CIn  | In      |       |      | CIn  | CIn     | CIn                       |      | 66 75  | 20.41  | 24.70  |
|             | (B)            | m    |           |            | Cm                | CIn  | CIn  | In      |       |      | CIn  |         | CIn                       |      | -00.75 | -29.41 | -34.70 |
|             | (A)            |      |           |            |                   |      |      | In      |       |      | In   |         |                           |      |        |        |        |
|             |                | CIn  |           |            | In                |      |      | CIn     |       |      | _    |         |                           |      | -35.00 | -10.90 | -20.33 |
|             | (B)            |      |           |            |                   |      |      | In      |       |      | In   |         |                           |      |        |        |        |
| NOF         | (1)            |      |           |            |                   |      |      | Cln     |       |      |      |         |                           |      |        |        |        |
| NCE<br>0216 | (A)<br>(P)     | NAr  | CIn       |            |                   | -    | -    | -       | -     | -    | -    | -       | -                         | -    | -38.02 | -9.60  | -26.02 |
| 0210        | (b)<br>(A)     |      |           |            |                   | -    | -    | CIn     | -     | -    | -    | -       | -                         | -    | -      |        |        |
|             | (B)            | CIn  | NAr       |            |                   |      |      | CIn     |       |      |      |         |                           |      | -21.32 | -3.79  | -17.63 |
|             | (A)            |      |           |            |                   |      |      | CIn     | Nar   |      | CIn  |         |                           |      |        |        |        |
|             | (B)            |      | NAr       |            | CIn               |      |      | CIn     | Nar   |      | CIn  |         |                           |      | -22.64 | -11.17 | -11.74 |
|             | (A)            |      | CIm       |            | NIA.              |      |      | NAr     |       |      |      | NAr     |                           |      | 20.01  | 10.16  | 10.69  |
|             | (B)            |      | Cm        |            | INAI              | -    | -    | -       | -     | -    | -    | -       | -                         | -    | -30.91 | -10.10 | -19.00 |
|             | (A)            | NAr  |           |            | CIn               |      |      | NAr     |       |      | CIn  |         |                           |      | -31.26 | -10.91 | -19.29 |
|             | (B)            |      |           |            | em                |      |      | NAr     |       |      | CIn  |         |                           |      | 51.20  | 10.91  | 17.27  |
|             | (A)            | CIn  |           |            | NAr               |      |      | CIn     |       |      |      |         |                           |      | -43.37 | -9.43  | -34.08 |
| NOF         | (B)            |      |           |            |                   |      |      | Cln     | DA    |      |      |         |                           |      |        |        |        |
| 0325        | (A)<br>(B)     | LAr  | RAr       |            |                   |      |      |         | RAI   |      |      |         |                           |      | -26.70 | -4.92  | -20.56 |
| 0525        | (D)<br>(A)     |      |           |            |                   | -    | -    | -       | IV/AI | -    | -    |         | -                         | -    | •      |        |        |
|             | (B)            | RAr  | LAr       |            |                   | -    | -    | -       | -     | -    | -    | -       | -                         | -    | -21.75 | -5.01  | -16.78 |
|             | (A)            |      | τ         |            | D 4               | 1    |      |         |       |      | RAr  |         |                           |      | 41.77  | 0.21   | 22.62  |
|             | (B)            |      | LAF       |            | KAr               |      |      | RAr     |       |      | RAr  | RAr     |                           |      | -41.// | -9.51  | -32.62 |
|             | (A)            |      | RAr       |            | LAr               |      |      |         |       |      | LAr  | LAr/RAr |                           |      | -25.10 | -11 73 | -14.01 |
|             | (B)            |      | 10.1      |            | 1.4 11            |      |      |         |       |      | LAr  |         |                           |      | -23.10 | -11.75 | 14.01  |
|             | (A)            |      |           |            |                   |      |      | LAr/CAr |       |      | CAr  |         | RAr                       |      |        |        |        |
|             | m              | LAr  |           |            | RAr               |      |      |         |       |      | RAr  |         |                           |      | -37.85 | -8.62  | -27.07 |
|             | (B)            |      |           |            |                   | -    | -    | -       | -     | -    | -    | -       | -                         | -    | -      |        |        |
|             | (A)            | D A. |           |            | T A.              |      |      | RAr     |       |      | LAr  |         | LAr                       |      | 20.21  | 14.04  | 12.04  |
|             | (JD)           | KAI  |           |            | LAr               |      |      | DAr     |       |      | KAr  |         | T Ar                      |      | -29.21 | -14.94 | -13.94 |
| L           | (D)            |      |           |            |                   | 1    |      | KAI     |       |      | LAF  |         | LAI                       |      |        |        |        |

# Table 3.105: Results of the optimization of the lead molecules and IFN-γ at two binding sites

| IL 10CE |      | Initial O | rientation |      |      | Fin  | al Orienta | ation |        | Binding Energy (kcal/mol)<br>Total VdW Ele |        |         |
|---------|------|-----------|------------|------|------|------|------------|-------|--------|--------------------------------------------|--------|---------|
| IL-IPCE | K319 | K320      | A321       | H322 | D275 | K319 | K320       | A321  | H322   | Total                                      | VdW    | Ele     |
| NCE     | CIn  | BIn       |            |      |      | CIn  |            |       | BIn    | -125.34                                    | -5.25  | -122.97 |
| 0103    | BIn  | CIn       |            |      |      |      | CIn        |       |        | -98.30                                     | -4.77  | -92.99  |
|         |      | BIn       |            | CIn  | -    | -    | -          | -     | -      | -88.37                                     | -2.12  | -88.96  |
|         |      | CIn       |            | BIn  | -    | -    | -          | -     | -      | -78.95                                     | 2.95   | -89.43  |
|         | BIn  |           |            | CIn  |      | BIn  |            |       |        | -98.37                                     | -4.66  | -94.85  |
|         | CIn  |           |            | BIn  |      | CIn  |            |       | BIn    | -131.80                                    | -11.06 | -123.32 |
| NCE     | CIn  | In        |            |      |      | CIn  | In         |       | In     | -95.20                                     | -5.39  | -92.20  |
| 0112    | In   | CIn       |            |      |      | In   |            |       |        | -93.69                                     | -4.78  | -87.96  |
|         |      | In        |            | CIn  |      |      |            |       | CIn    | -104.10                                    | -2.49  | -101.43 |
|         |      | CIn       |            | In   |      |      | CIn        |       | In     | -56.05                                     | -5.09  | -52.59  |
|         | In   |           |            | CIn  |      | In   |            |       |        | -102.62                                    | -6.63  | -95.22  |
|         | CIn  |           |            | In   |      | CIn  | CIn        |       | In/CIn | -112.06                                    | -4.31  | -108.72 |
| NCE     | NAr  | CIn       |            |      |      |      | CIn        |       |        | -73.30                                     | -1.95  | -75.13  |
| 0216    | CIn  | NAr       |            |      |      | CIn  |            |       | CIn    | -124.98                                    | -4.46  | -120.05 |
|         |      | CIn       |            | NAr  |      |      | CIn        |       | NAr    | -77.23                                     | -5.84  | -79.41  |
|         |      | NAr       |            | CIn  | -    | -    | -          | -     | -      | -86.93                                     | -0.99  | -87.70  |
| NCE     | LAr  | RAr       |            |      |      | LAr  | RAr        |       |        | -41.01                                     | -5.45  | -40.45  |
| 0325    | DAr  | T Ar      |            |      | RAr  |      | LAr        |       | LAr    | 05 52                                      | 7 47   | 04 71   |
|         | IAA  | LAI       |            |      |      |      |            |       | RAr    | -95.52                                     | -/.4/  | -24./1  |
|         |      | RAr       |            | LAr  |      |      | RAr        |       |        | -70.66                                     | -2.09  | -79.70  |
|         |      | LAr       |            | RAr  |      |      | LAr        |       |        | -41.59                                     | -0.70  | -36.51  |
|         | LAr  |           |            | RAr  |      | LAr  |            |       | RAr    | -32.53                                     | -4.10  | -40.61  |
|         | RAr  |           |            | LAr  | RAr  | RAr  |            |       |        | -47.34                                     | -7.34  | -41.27  |
|         | R371 | K372      | V373       | R374 | R371 | K372 | V373       | R374  | M386   |                                            |        |         |
| NCE     | BIn  |           |            | CIn  | BIn  |      |            |       |        | 137.21                                     | -7.00  | 145.52  |
| 0103    | CIn  |           |            | BIn  | CIn  |      |            |       |        | 80.68                                      | -3.34  | 83.36   |
| NCE     | In   |           |            | CIn  | -    | -    | -          | -     | -      | -64.88                                     | -1.52  | -70.77  |
| 0112    | CIn  |           |            | In   | -    | -    | -          | -     | -      | 44.03                                      | -8.37  | 52.51   |
| NCE     | CIn  |           |            | NAr  | -    | -    | -          | -     | -      | -66.52                                     | -1.16  | -73.25  |
| 0216    | NAr  |           |            | Cin  | -    | -    | -          | -     | -      | -35.97                                     | -2.99  | -40.69  |
| NCE     | LAr  |           |            | RAr  | LAr  |      |            |       |        | -49.79                                     | -3.68  | -50.17  |
| 0325    | RAr  |           |            | LAr  |      |      |            |       | LAr    | -40.22                                     | -6.30  | -36.55  |

Table 3.106: Results of the optimization of the lead molecules and IL-1 $\beta$ CE

|             |     | Initial Or | rientation |      | Final Orientation |     |     |            |     |     |      |     | Binding Energy (kcal/mol) |      |        |        |        |
|-------------|-----|------------|------------|------|-------------------|-----|-----|------------|-----|-----|------|-----|---------------------------|------|--------|--------|--------|
| IL-4        | K86 | K87        | K88        | R89  | L27               | T28 | S57 | H58        | H59 | E60 | K61  | D62 | R64                       | Q106 | Total  | VdW    | Ele    |
| NCE         | CIn | BIn        |            |      |                   | BIn |     | CIn        | BIn |     |      |     |                           | BIn  | -17.45 | -13.54 | -6.26  |
| 0103        | BIn | CIn        |            |      |                   |     |     |            |     |     |      |     | CIn                       |      | -24.72 | -4.92  | -22.80 |
|             |     | BIn        |            | CIn  |                   |     |     | BIn        | BIn |     | CIn  | BIn | BIn                       |      | -22.24 | -11.28 | -13.38 |
|             |     | CIn        |            | BIn  |                   |     |     | CIn        | CIn |     | BIn  | CIn | CIn                       |      | -29.99 | -11.26 | -23.38 |
|             | BIn |            |            | CIn  |                   |     |     | CIII       |     |     | CIn  |     |                           |      | -26.18 | -3.48  | -26.46 |
|             | CIn |            |            | BIn  |                   |     |     | CIn        |     |     | BIn  |     |                           |      | -20.13 | -6.89  | -16.76 |
| NCE         | CIn | In         |            | Biii |                   | In  |     | CIn        | In  |     | Diii |     |                           |      | -14 70 | -10.50 | -5.38  |
| 0112        | In  | CIn        |            |      | CIn               | CIn |     | In         | CIn |     |      |     | CIn                       |      | -33.24 | -6.38  | -32.07 |
|             |     | In         |            | CIn  |                   |     |     | In         |     |     | CIn  | In  |                           |      | -30.13 | -13.11 | -23.05 |
|             |     | CIn        |            | In   |                   |     | In  | CIn        | CIn |     | CIn  | CIn |                           |      | -31.55 | -13.23 | -22.12 |
|             | In  |            |            | CIn  |                   |     |     |            |     |     | CIn  |     | •                         |      | -23.65 | -5.01  | -20.89 |
|             | CIn |            |            | In   | -                 | -   | -   | -          | -   | -   | -    | -   | -                         | -    | -18.45 | -0.05  | -20.91 |
| NCE<br>0216 |     | CIn        |            | NAr  |                   |     |     | CIn<br>CIn | CIn |     |      | CIn | CIn                       |      | -20.06 | -10.56 | -14.88 |
|             |     | NAr        |            | CIn  |                   |     |     | NAr        |     |     | CIn  |     | NAr                       |      | -25.87 | -9.34  | -19.97 |
|             | CIn |            |            | NAr  |                   |     |     | CIn        |     |     | NAr  |     |                           |      | -22.60 | -8.61  | -20.86 |
|             | NAr |            |            | CIn  |                   |     |     |            |     |     | CIn  |     |                           |      | -12.85 | -5.37  | -11.85 |
| NCE         | LAr | RAr        |            |      |                   |     |     |            | RAr |     |      |     |                           |      | -16.89 | -5.15  | -13.78 |
| 0325        | RAr | LAr        |            |      |                   | LAr |     |            | LAr |     |      |     |                           |      | -19.00 | -7.52  | -13.24 |
|             |     | RAr        |            | LAr  |                   |     |     | RAr        | RAr |     | LAr  | RAr |                           |      | -18.87 | -7.78  | -12.53 |
|             |     | LAr        |            | RAr  |                   |     | RAr | LAr        | LAr |     | RAr  | LAr | LAr                       |      | -23.81 | -12.48 | -15.09 |
|             | LAr |            |            | RAr  |                   |     |     |            |     |     | RAr  |     |                           |      | -15.34 | -3.09  | -15.75 |
|             | RAr |            |            | LAr  |                   |     |     |            |     |     | LAr  |     |                           |      | -14.78 | -1.73  | -15.82 |
|             | H74 | R75        | H76        | K77  | Q71               | H74 | R75 | H76        | K77 | Q78 |      |     |                           |      |        |        |        |
| NCE         | CIn | BIn        |            |      |                   | CIn | BIn |            |     |     |      |     |                           |      | -29.28 | -2.97  | -29.22 |
| 0103        | BIn | CIn        |            |      |                   | BIn |     |            |     | BIn |      |     |                           |      | -13.66 | -5.78  | -11.10 |
|             | BIn |            |            | CIn  |                   | BIn |     |            | CIn |     |      |     |                           |      | -21.98 | -6.51  | -18.46 |
|             | CIn |            |            | BIn  | -                 | -   | -   | -          | -   | -   |      |     |                           |      | -15.07 | -1.08  | -15.71 |
| NCE         | CIn | In         |            |      | In                | CIn |     |            |     | CIn |      |     |                           |      | -23.39 | -5.49  | -21.73 |
| 0112        | In  | CIn        |            |      | -                 | -   | -   | -          | -   | -   |      |     |                           |      | -19.03 | -1.12  | -19.83 |
|             | In  |            |            | CIn  |                   | In  |     |            |     |     |      |     |                           |      | -22.90 | -4.04  | -19.89 |
|             | CIn |            |            | In   |                   | CIn |     |            |     |     |      |     |                           |      | -18.68 | -2.92  | -17.30 |
| NCE         | CIn | NAr        |            |      | NAr               | CIn | NAr |            |     | CIn |      |     |                           |      | -25.91 | -5.86  | -22.33 |
| 0216        | NAr | CIn        |            |      | CIn               | NAr | CIn |            |     |     |      |     |                           |      | -28.18 | -5.97  | -25.26 |
|             | CIn |            |            | NAr  |                   | CIn |     |            | NAr |     |      |     |                           |      | -26.59 | -3.82  | -27.15 |
|             | NAr |            |            | CIn  |                   | NAr |     |            | CIn |     |      |     |                           |      | -21.67 | -7.55  | -17.17 |
| NCE         | LAr | RAr        |            |      |                   |     | RAr |            |     |     |      |     |                           |      | -5.30  | -1.96  | -4.57  |
| 0325        | RAr | LAr        |            |      |                   | RAr | LAr |            |     | RAr |      |     |                           |      | -15.07 | -3.44  | -14.22 |
|             | LAr |            |            | RAr  |                   | LAr |     |            | RAr |     |      |     |                           |      | -7.79  | -2.09  | -8.21  |
| 1           | RAr |            |            | LAr  |                   |     |     |            | LAr |     |      |     |                           |      | -13.02 | -3.52  | -11.68 |

# Table 3.107: Results of the optimization of the lead molecules and IL-4

| п 12        |      | Initial O | rientation |      |     |     | Fin  | al Orienta | ation      |      |      | Binding | g Energy (ko | al/mol) |
|-------------|------|-----------|------------|------|-----|-----|------|------------|------------|------|------|---------|--------------|---------|
| IL-12       | H194 | K195      | L196       | K197 | K84 | D93 | I126 | H194       | K195       | L196 | K197 | Total   | VdW          | Ele     |
| NCE<br>0103 | CIn  | BIn       |            |      |     |     |      | CIn<br>BIn | BIn<br>BIn |      |      | -36.47  | -6.28        | -31.43  |
|             | BIn  | CIn       |            |      |     |     | BIn  | BIn        | CIn        |      |      | -44.14  | -8.41        | -40.94  |
|             |      | BIn       |            | CIn  |     |     |      | BIn        |            |      |      | -35.02  | -2.89        | -35.23  |
|             |      | CIn       |            | BIn  |     |     |      |            |            |      | BIn  | -42.04  | -0.89        | -39.65  |
|             | BIn  |           |            | CIn  |     | CIn |      | BIn        |            |      | CIn  | -33.39  | -7.73        | -25.77  |
|             | CIn  |           |            | BIn  | BIn | BIn | CIn  | CIn        |            |      | BIn  | -52.16  | -13.06       | -39.30  |
| NCE         | CIn  | In        |            |      |     |     |      |            | In         |      |      | -23.57  | -3.42        | -26.69  |
| 0112        | In   | CIn       |            |      |     |     |      | In         | CIn        |      |      | -31.54  | -3.13        | -36.45  |
|             |      | In        |            | CIn  |     |     |      | CIn        |            |      | CIn  | -41.33  | -4.98        | -40.20  |
|             |      | CIn       |            | In   | -   | -   | -    | -          | -          | -    | -    | -33.15  | -3.27        | -35.79  |
|             | In   |           |            | CIn  |     |     |      | In         |            |      |      | -18.68  | -2.23        | -21.41  |
|             | CIn  |           |            | In   |     |     |      | CIn        |            |      |      | -33.23  | -2.34        | -34.67  |
| NCE         | NAr  | CIn       |            |      |     |     |      |            | CIn        |      |      | -33.82  | -3.10        | -33.07  |
| 0216        | CIn  | NAr       |            |      |     |     |      | CIn        |            |      |      | -30.16  | -3.05        | -29.52  |
|             |      | CIn       |            | NAr  |     |     |      |            | CIn        |      |      | -29.00  | -2.78        | -28.52  |
|             |      | NAr       |            | CIn  |     |     |      |            |            |      | CIn  | -26.67  | -6.18        | -26.23  |
|             | CIn  |           |            | NAr  | -   | -   | -    | -          | -          | -    | -    | -18.29  | -3.25        | -17.68  |
|             | NAr  |           |            | CIn  |     |     |      | NAr        |            |      | CIn  | -16.05  | -5.23        | -13.60  |
| NCE         | LAr  | RAr       |            |      |     |     |      |            | RAr        |      |      | -10.60  | -2.14        | -8.85   |
| 0325        | RAr  | LAr       |            |      |     |     | RAr  | RAr        | LAr        |      |      | -13.56  | -5.38        | -10.39  |
|             |      | RAr       |            | LAr  | -   | -   | -    | -          | -          | -    | -    | -10.90  | -0.23        | -11.17  |
|             |      | LAr       |            | RAr  |     |     |      |            |            |      | RAr  | -13.11  | -2.24        | -12.93  |

 Table 3.108: Results of the optimization of the lead molecules and IL-12

## Table 3.109: Results of the optimization of the lead molecules and IL-13

| П 12  |      | Initial O | rientation |      |     | Fin  | al Orienta | ation |      | Binding | g Energy (ko | cal/mol) |
|-------|------|-----------|------------|------|-----|------|------------|-------|------|---------|--------------|----------|
| 1L-15 | H102 | L103      | K104       | K105 | A41 | H102 | L103       | K104  | K105 | Total   | VdW          | Ele      |
| NCE   | BIn  |           |            | CIn  | -   | -    | -          | -     | -    | -9.28   | -2.32        | -7.82    |
| 0103  | CIn  |           |            | BIn  |     |      |            |       | BIn  | -9.75   | -4.35        | -6.48    |
| NCE   | CIn  |           |            | In   | -   | -    | -          | -     | -    | -6.14   | -1.96        | -4.23    |
| 0112  | In   |           |            | CIn  | -   | -    | -          | -     | -    | -8.83   | -2.37        | -7.36    |
| NCE   | NAr  |           |            | CIn  |     |      |            |       | CIn  | 7 1 1   | 4.02         | 3 78     |
| 0216  | INAI |           |            | Cm   |     |      |            |       | CIn  | -/.11   | -4.02        | -3.78    |
|       | CIn  |           |            | NAr  |     | CIn  |            |       |      | 11.92   | -3.81        | -10.60   |
| NCE   | LAr  |           |            | RAr  | LAr | LAr  |            |       | RAr  | -7.54   | -5.54        | -3.30    |
| 0325  | RAr  |           |            | LAr  |     | RAr  |            |       | LAr  | -10.15  | -5.22        | -6.43    |

| MID 1 a |     | Initial O | rientation |     |     |     | Final   | Orientati | on  |     |     | Binding | g Energy (ko | cal/mol) |
|---------|-----|-----------|------------|-----|-----|-----|---------|-----------|-----|-----|-----|---------|--------------|----------|
| MIP-10  | K45 | R46       | S47        | R48 | R18 | N23 | F24     | K45       | R46 | S47 | R48 | Total   | VdW          | Ele      |
| NCE     | CIn | BIn       |            |     |     | CIn |         |           | BIn |     |     | -30.44  | -6.10        | -22.63   |
| 0103    | BIn | CIn       |            |     |     | BIn |         | BIn       | CIn |     |     | -26.17  | -6.24        | -19.64   |
|         |     | BIn       |            | CIn | CIn |     |         |           | BIn |     | CIn | -28.40  | -7.70        | -21.10   |
|         |     | CIn       |            | BIn |     |     |         |           | CIn |     | BIn | -20.65  | -6.95        | -12.53   |
|         | BIn |           |            | CIn |     | BIn |         | BIn       | CIn |     | CIn | -38.51  | -15.72       | -21.66   |
|         | CIn |           |            | BIn |     |     | BIn     | CIn       |     |     |     | -21.73  | -10.10       | -11.17   |
| NCE     | CIn | In        |            |     | -   | -   | -       | -         | -   | -   | -   | -15.61  | -2.23        | -11.95   |
| 0112    | In  | CIn       |            |     | -   | -   | -       | -         | -   | -   | -   | -16.16  | -2.82        | -11.69   |
|         |     | In        |            | CIn | CIn |     |         |           | In  |     | CIn | -29.19  | -7.39        | -20.95   |
|         |     | CIn       |            | In  |     |     |         |           | CIn |     | In  | -27.67  | -6.93        | -18.96   |
|         | In  |           |            | CIn |     |     | CIn     | In        |     |     | CIn | -27.29  | -12.07       | -14.06   |
|         | CIn |           |            | In  |     | CIn | CIn     | CIn       | In  |     |     | -27.55  | -13.53       | -13.19   |
| NCE     | NAr | CIn       |            |     |     |     |         |           | CIn |     |     | -16.50  | -3.04        | -14.02   |
| 0216    | CIn | NAr       |            |     | -   | -   | -       | -         | -   | -   | -   | -20.61  | 2.56         | -18.88   |
|         |     | CIn       |            | NAr |     |     |         |           | CIn |     | NAr | -17.11  | -5.93        | -11.18   |
|         |     | NAr       |            | CIn | CIn |     |         |           | NAr |     | CIn | -33.55  | -8.23        | -25.36   |
|         | CIn |           |            | NAr |     |     |         |           | NAr |     | NAr | -32.29  | -10.56       | -21.20   |
|         | NAr |           |            | CIn |     | NAr | NAr/CIn | NAr       |     |     | CIn | -27.45  | -12.82       | -15.74   |
| NCE     | LAr | RAr       |            |     |     |     |         |           | RAr |     |     | -12.47  | -2.45        | -9.90    |
| 0325    | RAr | LAr       |            |     |     |     |         |           | LAr |     |     | -10.80  | -3.65        | -7.21    |
|         |     | RAr       |            | LAr |     |     |         |           |     |     | LAr | 13.87   | -5.36        | -9.31    |
|         |     | LAr       |            | RAr |     |     |         |           | LAr |     | RAr | -12.16  | -4.43        | -7.92    |
|         | RAr |           |            | LAr |     |     |         | RAr       |     |     | LAr | -11.81  | -7.50        | -5.18    |
|         | LAr |           |            | RAr |     |     |         | LAr       | RAr |     | RAr | -20.85  | -10.64       | -9.04    |

Table 3.110: Results of the optimization of the lead molecules and MIP-1 $\alpha$
| MIP-1α |     |             | Initial Or | rientation |            |     |       |         | Final Orier | ntation |     |      | Binding | g Energy (ko | cal/mol) |
|--------|-----|-------------|------------|------------|------------|-----|-------|---------|-------------|---------|-----|------|---------|--------------|----------|
|        | (A) | K45         | R46        | S47        | R48        | R18 | N23   | F24     | K45         | R46     | S47 | R48  |         |              | -        |
|        | (B) | K45         | R46        | S47        | R48        | R18 | N23   | F24     | K45         | R46     | S47 | R48  | Total   | VdW          | Ele      |
| NCE    | (A) | CI          | DI         |            |            |     |       |         | CIn         |         |     |      | 21.60   | 0.00         | 21.00    |
| 0103   | (B) | Cin         | BIn        |            |            |     |       |         | CIn         | BIn     |     |      | -31.60  | -9.29        | -21.08   |
|        | (A) | DI          | CI         |            |            |     | BIn   |         |             | CIn     |     |      | 45.00   | 11.05        | 22.55    |
|        | (B) | BIn         | Cin        |            |            |     |       |         |             | CIn     |     |      | -45.98  | -11.05       | -33.55   |
|        | (A) |             | DI         |            | CI         |     |       |         |             |         |     | CIn  | 46.14   | 0.40         | 24.62    |
|        | (B) |             | BIn        |            | Cin        |     |       |         |             | BIn     |     | CIn  | -40.14  | -9.49        | -34.03   |
|        | (A) |             | CI         |            | DI         |     |       |         |             | CIn     |     | BIn  | 20.64   | 10.40        | 24.75    |
|        | (B) |             | Cin        |            | BIN        |     |       |         |             |         |     | BIn  | -39.04  | -10.40       | -24.75   |
|        | (A) | DI          |            |            | CT.        |     |       | BIn/CIn | BIn         |         |     | CIn  | (0.02   | 07.77        | 20.21    |
|        | (B) | BIn         |            |            | CIn        |     | BIn   | BIn/CIn | BIn         | CIn     |     | CIn  | -68.83  | -27.67       | -39.21   |
|        | (A) | ar          |            |            | BI         |     |       | BIn/CIn | CIn         |         |     | BIn  | (1.00   | 20.25        | 20.44    |
|        | (B) | CIn         |            |            | BIn        |     | CIn   | BIn/CIn | CIn         | BIn     |     |      | -61.09  | -28.25       | -30.64   |
| NCE    | (A) | CI          | т          |            |            | -   | -     | -       | -           | -       | -   | -    | 42.55   | 6.07         | 24.70    |
| 0112   | (B) | Cin         | In         |            |            |     |       |         | CIn         |         |     |      | -43.55  | -6.8/        | -34.70   |
|        | (A) | Ĭ.,         | CI         |            |            | -   | -     |         | -           | -       | -   | -    | 26.61   | 4.07         | 20.00    |
|        | (B) | In          | Cin        |            |            | -   | -     | -       | -           | -       | -   | -    | -20.01  | -4.8/        | -20.90   |
|        | (A) |             | т          |            | <i>c</i> : |     |       |         |             |         |     | Cin  | 61.46   | 0.22         | 20.15    |
|        | (B) |             | In         |            | Cin        |     |       |         |             | In      |     |      | -51.45  | -9.32        | -39.15   |
|        | (A) |             | CI         |            | т          |     |       |         |             | Cin     |     | In   | 24.00   | 0.72         | 12.04    |
|        | (B) |             | Cin        |            | In         |     |       |         |             |         |     | In   | -24.88  | -9.73        | -13.04   |
| NCE    | (A) | <b>NT 4</b> | CI         |            |            |     |       |         | NAr         | CIn     |     |      | 27.10   | 6.00         | 21.04    |
| 0216   | (B) | NAr         | Cin        |            |            |     |       |         |             | CIn     |     |      | -27.10  | -6.82        | -21.96   |
|        | (A) | CI          | NT 4       |            |            | -   | -     | -       | -           | -       | -   | -    | 20.41   | 5.00         | 22.01    |
|        | (B) | Cin         | NAr        |            |            |     | CIn   |         |             |         |     |      | -38.41  | -5.89        | -33.91   |
|        | (A) |             | NIA.       |            | CI         | CIn |       |         |             | NAr     |     | CIn  | £4.01   | 12.00        | 42.51    |
|        | (B) |             | INAF       |            | Cin        |     |       |         |             | NAr     |     | CIn  | -54.81  | -12.06       | -42.51   |
|        | (A) |             | CI         |            | NIA.       |     |       |         |             | CIn     |     | NAr  | 10.22   | 10.72        | 0.05     |
|        | (B) |             | Cin        |            | NAI        |     |       |         |             | CIn     |     | NAr  | -18.55  | -10.03       | -9.05    |
|        | (A) | NTA         |            |            | CI         |     | NAr   | NAr/CIn | NAr         |         |     |      | 51.04   | 20.07        | 22.26    |
|        | (B) | NAr         |            |            | Cin        |     |       | NAr     |             | CIn     |     | CIn  | -51.94  | -20.97       | -33.30   |
|        | (A) | CT.         |            |            |            |     |       |         | CIn         | NAr     |     | NAr  | (2.07   | 04.55        | 27.16    |
|        | (B) | CIn         |            |            | NAr        |     | CIn   | NAr/CIn | CIn         | NAr     |     | NAr  | -62.86  | -26.55       | -37.16   |
| NCE    | (A) | × .         | <b>D</b> 1 |            |            |     |       |         |             | RAr     |     |      | 15.00   | 5.00         | 10.00    |
| 0325   | (B) | LAr         | RAr        |            |            |     |       |         | LAr         | RAr     |     |      | -15.88  | -5.20        | -10.83   |
|        | (A) |             | × .        |            |            |     |       |         |             | LAr     |     |      |         |              |          |
|        | (B) | RAr         | LAr        |            |            |     |       |         | RAr         | LAr     |     |      | -19.05  | -6.54        | -13.78   |
|        | (A) |             |            |            |            |     |       |         |             | LAr     |     | RAr  |         |              |          |
| 1      | (B) |             | LAr        |            | RAr        |     |       |         |             | LAr     |     | RAr  | -24.99  | -9.23        | -15.65   |
| 1      | ì   |             |            |            |            |     |       |         |             | LAr     |     |      |         |              |          |
|        | (A) |             |            |            |            |     |       |         |             | RAr     |     | LAr  | 1       |              |          |
|        | (B) |             | RAr        |            | LAr        |     |       |         |             | RAr     |     | LAr  | -40.62  | -12.53       | -28.22   |
|        | (A) |             |            |            |            |     |       | RAr     | LAr         | RAr     |     | RAr  |         |              |          |
| 1      | (B) | LAr         |            |            | RAr        |     | LAr   | LAr     | LAr         | RAr     |     |      | -38.08  | -23.05       | -14.59   |
| 1      | (A) |             |            |            |            |     | RAr   | RAr     | RAr         | I Ar    |     | I Ar |         |              |          |
| 1      |     | RAr         |            |            | LAr        |     | RAr   | RAr     | RAr         | LAI     |     | LAI  | -41.50  | -23.78       | -19.36   |
| L      |     |             |            |            |            |     | IN/AI | INAI    | IVAI        |         |     |      |         |              |          |

 Table 3.111:
 Results of the optimization of the lead molecules and MIP-1α at two binding sites

| MID 10 |      | Initial O | rientation |      |     | Final Or | rientation | l   | Binding | g Energy (ko | :al/mol) |
|--------|------|-----------|------------|------|-----|----------|------------|-----|---------|--------------|----------|
| MIP-1p | K45  | R46       | S47        | K58  | K45 | R46      | S47        | K58 | Total   | VdW          | Ele      |
| NCE    | CIn  | BIn       |            |      | CIn | BIn      |            |     | -8.95   | -5.77        | -4.46    |
| 0103   | BIn  | CIn       |            |      | -   | -        | -          | -   | -1.35   | -2.32        | 1.16     |
|        |      | BIn       |            | CIn  |     |          |            | CIn | -10.20  | -6.31        | -5.28    |
|        |      | CIn       |            | BIn  |     | CIn      |            | BIn | -10.30  | -5.01        | -5.82    |
|        |      |           |            |      |     | CIn      |            | CIn |         |              |          |
|        | BIn  |           |            | CIn  |     | CIn      |            |     | -8.96   | -8.06        | -0.97    |
|        |      |           |            |      |     | BIn      |            |     |         |              |          |
|        | CIn  |           |            | DIn  |     | BIn      |            | BIn | 18.87   | 11 12        | 7.80     |
|        | CIII |           |            | DIII |     | BIn      |            |     | -10.07  | -11.12       | -7.80    |
| NCE    | CIn  | In        |            |      | -   | -        | -          | -   | -0.64   | -3.04        | 3.52     |
| 0112   | In   | CIn       |            |      | -   | -        | -          | -   | -1.94   | -2.05        | 0.33     |
|        |      | In        |            | CIn  | -   | -        | -          | -   | -7.28   | -2.74        | -4.05    |
|        |      | CIn       |            | In   |     | CIn      |            |     | -5.54   | -3.69        | -1.79    |
|        | In   |           |            | CIn  |     | CIn      |            | CIn | -10.51  | -10.80       | 0.40     |
|        | m    |           |            | CIII |     | In       |            |     | -10.51  | -10.00       | 0.40     |
|        | CIn  |           |            | In   | CIn | In       |            |     | -15.35  | -10.16       | -5.25    |
| NCE    | NAr  | CIn       |            |      |     | CIn      |            |     | -1.36   | -2.32        | 0.15     |
| 0216   | CIn  | NAr       |            |      | -   | -        | -          | -   | -3.45   | -3.00        | -1.04    |
|        |      | CIn       |            | NAr  | -   | -        | -          | -   | -3.37   | -2.94        | -1.58    |
|        |      | NAr       |            | CIn  |     | NAr      |            | CIn | -7.63   | -4.92        | -3.88    |
|        | CIn  |           |            | NAr  | CIn | NAr      |            |     | -6.77   | -9.20        | 1.02     |
|        | NAr  |           |            | CIn  | NAr | CIn      |            | CIn | -21 51  | -11 21       | -13 54   |
|        | 1171 |           |            | CIII |     | NAr      |            |     | 21.51   | 11.21        | 15.51    |
| NCE    | LAr  | RAr       |            |      |     | RAr      |            |     | -5.16   | -2.35        | -3.13    |
| 0325   | RAr  | LAr       |            |      | -   | -        | -          | -   | -4.43   | -2.36        | -3.72    |
|        |      | RAr       |            | LAr  |     | RAr      |            | LAr | -5.89   | -3.76        | -2.54    |
|        |      | LAr       |            | RAr  |     |          |            | RAr | -5.95   | -4.08        | -3.12    |
|        | LAr  |           |            | RAr  | LAr | RAr      |            | RAr | -9.04   | -6.02        | -3.57    |
|        | RAr  |           |            | LAr  | RAr | RAr      |            |     | -13.81  | -6.51        | -7.16    |

Table 3.112: Results of the optimization of the lead molecules and MIP-1 $\beta$ 

| MIP-1β |                   |      | Initial O | rientation |       |          | Final  | Orientation | n   | Binding | g Energy (ko | cal/mol) |
|--------|-------------------|------|-----------|------------|-------|----------|--------|-------------|-----|---------|--------------|----------|
|        | (A)               | K45  | R46       | S47        | K48   | K45      | R46    | S47         | K48 |         |              |          |
|        | (B)               | K45  | R46       | S47        | K48   | K45      | R46    | S47         | K48 | Total   | VdW          | Ele      |
| NCE    | (A)               | CIn  | BIn       |            |       | CIn      |        |             |     | 30.05   | 10.70        | 20.37    |
| 0103   | (B)               | CIII | DIII      |            |       | CIn      | BIn    |             |     | -30.03  | -10.70       | -20.37   |
|        | (A)               |      |           |            |       |          | CIn    |             |     |         |              |          |
|        | (B)               | BIn  | CIn       |            |       | BIn      | CIn    |             |     | -21.85  | -11.82       | -8.23    |
|        |                   |      |           |            |       |          | CIn    |             |     |         |              |          |
|        | (A)               |      | BIn       |            | CIn   |          | BIn    |             | CIn | -36 75  | -10.38       | -28 32   |
|        | (B)               |      |           |            |       |          | BIn    |             |     |         |              |          |
|        | (A)               |      | CIn       |            | BIn   |          | BIn    |             | BIn | -21.90  | -9.87        | -14.48   |
|        | (B)               |      | -         |            |       |          | CIn    |             |     |         |              |          |
| NCE    | (A)               | CIn  | In        |            |       | -        | -      | -           | -   | -14.17  | -5.74        | -10.14   |
| 0112   | (B)               |      |           |            |       | Cln      | ln     |             |     |         |              |          |
|        | (A)               | In   | CIn       |            |       | -        | -      | -           | -   | -7.83   | -3.40        | -4.24    |
|        | (B)               |      |           |            |       | -        | -      | -           | -   |         |              |          |
|        | (A)               |      | In        |            | Cin   | -        | -<br>I | -           | -   | -17.88  | -5.27        | -12.51   |
|        | (B)               |      |           |            |       |          | CIm    |             |     |         |              |          |
|        | (A)<br>(P)        |      | CIn       |            | In    |          | CIII   |             |     | -7.30   | -6.12        | -2.18    |
| NCE    | $(\mathbf{D})$    |      |           |            |       | -<br>NAr | CIn    | -           | -   |         |              |          |
| 0216   | (A)<br>(B)        | NAr  | CIn       |            |       | NAr      | CIn    |             |     | -19.51  | -11.98       | -11.37   |
| 0210   | $(\mathbf{D})$    |      |           |            |       |          | CIII   |             |     |         |              |          |
|        | (B)               | CIn  | NAr       |            |       | _        | _      | _           | _   | -11.41  | -4.10        | -12.24   |
|        | $(\mathbf{A})$    |      |           |            |       | _        | -      | _           | -   |         |              |          |
|        | (B)               |      | NAr       |            | CIn   |          | NAr    |             | CIn | -21.99  | -7.62        | -16.96   |
|        | $(\underline{-})$ |      |           |            |       |          | CIn    |             | NAr |         |              |          |
|        | (B)               |      | CIn       |            | NAr   |          | CIn    |             | NAr | -17.65  | -12.61       | -8.48    |
|        |                   |      |           |            |       |          | NAr    |             |     |         |              |          |
| NCE    | (A)               | та   | DA        |            |       | LAr      |        |             |     | 12.04   | 7.04         | 0.00     |
| 0325   | (B)               | LAr  | KAr       |            |       | LAr      | RAr    |             |     | -12.94  | - /.04       | -8.69    |
|        | (A)               | D A  | T A       |            |       | RAr      |        |             |     | 12.40   | 5 1 2        | 10.24    |
|        | (B)               | KAI  | LAI       |            |       |          | LAr    |             |     | -13.49  | -5.15        | -10.24   |
|        | (A)               |      |           |            |       |          | RAr    |             | RAr |         |              |          |
|        |                   |      | LAr       |            | RAr   |          |        |             | LAr | -16.69  | -8.33        | -11.02   |
|        | (B)               |      |           |            |       |          |        |             | RAr |         |              |          |
|        | (A)               |      | DAr       |            | IAr   | -        | -      | -           | -   | 13 39   | 1 11         | 8 70     |
|        | (B)               |      | IV/4I     |            | LAI   |          | RAr    |             |     | -13.30  | -4.44        | -0./9    |
|        | (A)               | IAr  |           |            | RAr   |          | RAr    | RAr         | RAr | -38.80  | -23 30       | -17.98   |
|        | (B)               |      |           |            | IV-1I | LAr      | RAr    | RAr         | RAr | - 30.09 | -23.50       | -17.70   |
|        | (A)               |      |           |            |       | RAr      | LAr    |             | LAr |         |              |          |
|        | (B)               | RAr  |           |            | LAr   | RAr      | LAr    | LAr         | LAr | -28.25  | -18.20       | -11.70   |
|        |                   |      |           |            |       |          | LAr    |             |     |         | -            |          |

 Table 3.113:
 Results of the optimization of the lead molecules and MIP-1β at two binding sites

| NIED |      | Initial O | rientation |      |      |      |      | Fin  | al Orient | ation |      |      |      | Binding | g Energy (ke | cal/mol) |
|------|------|-----------|------------|------|------|------|------|------|-----------|-------|------|------|------|---------|--------------|----------|
| NEP  | K523 | K524      | L525       | R526 | E498 | K520 | K523 | K524 | L525      | R526  | E527 | D530 | R533 | Total   | VdW          | Ele      |
| NCE  | BIn  | CIn       |            |      | BIn  | CIn  |      | CIn  |           |       |      |      |      | 106.68  | -16.61       | 117.04   |
| 0103 | CIn  | BIn       |            |      | -    | -    | -    | -    | -         | -     | -    | -    | -    | 72.18   | -15.05       | 79.05    |
| NCE  | In   | CIn       |            |      |      |      |      | CIn  |           |       |      |      |      | 103.12  | -17.33       | 112.21   |
| 0112 | CIn  | In        |            |      | -    | -    | -    | -    | -         | -     | -    | -    | -    | 2.75    | -14.27       | 17.09    |
| NCE  | LAr  | RAr       |            |      |      |      |      | RAr  |           |       |      |      | RAr  | -92.54  | -9.94        | -89.90   |
| 0325 | RAr  | LAr       |            |      | RAr  |      |      | LAr  |           |       | LAr  | LAr  | LAr  | -90.52  | -14.87       | -86.12   |
|      | H733 | C734      | R735       | K736 | E77  | E730 | H733 | C734 | R735      | K736  |      |      |      |         |              |          |
| NCE  | BIn  |           |            | CIn  | -    | -    | -    | -    | -         | -     |      |      |      | -7.22   | -12.78       | 5.48     |
| 0103 | CIn  |           |            | BIn  |      |      |      | BIn  |           |       |      |      |      | -36.47  | -17.65       | -20.91   |
|      | BIn  |           | CIn        |      |      |      |      |      | CIn       |       |      |      |      | -35.28  | -5.28        | -30.82   |
|      | CIn  |           | BIn        |      |      |      |      |      | BIn       |       |      |      |      | -42.47  | -11.58       | -32.35   |
| NCE  | In   |           |            | CIn  |      |      |      | CIn  |           | CIn   |      |      |      | 73.12   | -11.12       | 88.03    |
| 0112 | CIn  |           |            | In   |      |      |      |      |           | In    |      |      |      | -56.46  | -10.96       | -47.10   |
|      | In   |           | CIn        |      | -    | -    | -    | -    | -         | -     |      |      |      | -29.35  | -2.41        | -29.06   |
|      | CIn  |           | In         |      | -    | -    | -    | -    | -         | -     |      |      |      | -121.30 | 2.00         | -119.85  |
| NCE  | NAr  |           | CIn        |      | -    | -    | -    | -    | -         | -     |      |      |      | -39.80  | -6.95        | -29.63   |
| 0216 | CIn  |           | NAr        |      | NAr  |      |      |      |           |       |      |      |      | -67.06  | -8.24        | -64.23   |
|      | CIn  |           |            | NAr  |      |      |      | NAr  |           | NAr   |      |      |      | 44.20   | -20.46       | -25.46   |
|      | NAr  |           |            | CIn  | -    | -    | -    | -    | -         | -     |      |      |      | -53.06  | 11.14        | -47.19   |
| NCE  | LAr  |           | RAr        |      | RAr  |      |      |      | RAr       |       |      |      |      | -75.97  | -4.33        | -73.00   |
| 0325 | RAr  |           | LAr        |      | LAr  |      |      |      | LAr       |       |      |      |      | -79.12  | -3.00        | -79.88   |
|      | LAr  |           |            | RAr  |      |      |      | RAr  |           | RAr   |      |      |      | -88.52  | -18.18       | -76.83   |
|      | RAr  |           |            | LAr  |      | LAr  |      |      |           | LAr   |      |      |      | -79.34  | -9.00        | -69.21   |

## Table 3.114: Results of the optimization of the lead molecules and NEP

## Table 3.115: Results of the optimization of the lead molecules and RANTES

| DANTEG |     | Initial O | rientation |      |     |     |     | Final Ori | entation |     |     |     | Binding | g Energy (k | cal/mol) |
|--------|-----|-----------|------------|------|-----|-----|-----|-----------|----------|-----|-----|-----|---------|-------------|----------|
| KANTES | R44 | K45       | N46        | R47  | S1  | P2  | Y3  | H23       | R44      | K45 | N46 | R47 | Total   | VdW         | Ele      |
| NCE    | CIn | BIn       |            |      |     |     |     |           | CIn      | BIn |     |     | -151.85 | -6.26       | -150.58  |
| 0103   | BIn | CIn       |            |      |     |     |     |           | BIn      | CIn |     |     | -151.78 | -6.22       | -145.06  |
|        |     | BIn       |            | CIn  | CIn |     |     |           |          | BIn |     | CIn | -154.14 | -7.53       | -144.88  |
|        |     | CIn       |            | BIn  |     |     | BIn |           |          | CIn |     |     | -122.72 | 1.49        | -129.42  |
|        | BIn |           |            | CIn  |     |     |     |           | BIn      |     |     | CIn | -175.22 | -1.80       | -177.97  |
|        | CIn |           |            | BIn  |     |     |     |           | CIn      |     |     |     | -168.01 | 0.09        | -173.84  |
| NCE    | CIn | In        |            |      |     |     |     |           | CIn      | In  |     |     | -157.66 | -4.73       | -165.31  |
| 0112   | In  | CIn       |            |      |     |     |     |           | In       | CIn |     |     | -150.46 | -4.92       | -147.12  |
|        |     | In        |            | CIn  | CIn |     |     |           |          | CIn |     | CIn | -143 15 | -15 20      | -123.84  |
|        |     |           |            | CIII |     |     |     |           |          | In  |     |     | 115.15  | 15.20       | 125.01   |
|        |     | CIn       |            | In   |     |     |     |           |          | CIn |     | In  | -104.07 | -7.34       | -98.31   |
|        |     | CIII      |            |      |     |     |     |           |          | In  |     |     | 101.07  | 7.51        | 20.51    |
|        | In  |           |            | CIn  |     |     |     |           | In       |     |     | CIn | -148.61 | -6.36       | -154.50  |
|        | CIn |           |            | In   |     |     |     | CIn       | CIn      |     |     | In  | -156.26 | -2.37       | -157.16  |
| NCE    | NAr | CIn       |            |      |     |     |     |           | NAr      | CIn |     |     | -132.63 | -5.24       | -125.29  |
| 0216   | CIn | NAr       |            |      |     |     |     |           | CIn      | NAr |     |     | -128.56 | 0.83        | -130.67  |
|        |     | CIn       |            | NAr  |     | NAr |     |           |          | CIn |     |     | -160.60 | -4.45       | -150.77  |
|        |     | NAr       |            | CIn  |     |     |     |           |          | NAr |     | CIn | -151.20 | -7.22       | -151.39  |
|        | CIn |           |            | NAr  |     | NAr |     |           | CIn      |     |     | NAr | -158.21 | -4.13       | -155.61  |
|        | NAr |           |            | CIn  |     |     |     |           | NAr      |     |     | CIn | -143.27 | -2.09       | -143.24  |
| NCE    | LAr | RAr       |            |      |     |     |     |           | LAr      | RAr |     |     | -45.63  | -2.11       | -44.28   |
| 0325   | RAr | LAr       |            |      |     |     |     |           | RAr      | LAr |     |     | -63.84  | -3.47       | -62.85   |
|        |     | RAr       |            | LAr  |     |     |     |           |          | RAr |     | LAr | -50.35  | -8.84       | -42.35   |
|        |     | LAr       |            | RAr  |     | RAr |     |           |          | LAr |     | RAr | -56.64  | -2.23       | -62.88   |
|        | RAr |           |            | LAr  |     |     |     |           | RAr      |     |     | LAr | -55.33  | -2.60       | -55.50   |
|        | LAr |           |            | RAr  |     |     |     |           | LAr      |     |     |     | -51.69  | -0.94       | -54.48   |

| RANTES      |            |             | Initial O | rientation |     |            |     | Final      | Orientation | 1   |         | Binding | g Energy (ke | cal/mol) |
|-------------|------------|-------------|-----------|------------|-----|------------|-----|------------|-------------|-----|---------|---------|--------------|----------|
|             | (A)        | R44         | K45       | N46        | R47 | S1         | P2  | R44        | K45         | N46 | R47     |         |              |          |
|             | (B)        | R44         | K45       | N46        | R47 | S1         | P2  | R44        | K45         | N46 | R47     | Total   | VdW          | Ele      |
| NCE<br>0103 | (A)<br>(B) | CIn         | BIn       |            |     |            |     | CIn<br>CIn | BIn<br>BIn  |     |         | -329.10 | -4.69        | -334.91  |
|             | (A)        | BIn         | CIn       |            |     |            |     | BIn        | CIn         |     |         | -298.41 | -14.21       | -277.38  |
|             | (B)<br>(A) |             |           |            |     |            |     | Bin        | Bln         |     | CIn     |         |              |          |
|             | (A)<br>(B) |             | BIn       |            | CIn | CIn        |     |            | BIn         |     | CIn     | -316.70 | -14.75       | -296.00  |
|             | (A)        |             |           |            |     | CIn        |     |            | CIn         |     | CIn     |         |              |          |
|             |            |             | CIn       |            | DIn |            |     |            |             |     | BIn     | 202 75  | 22.20        | 280.22   |
|             | (B)        |             | Cin       |            | ып  | CIn        |     |            | CIn         |     | BIn     | -303.73 | -22.29       | -280.25  |
|             |            |             |           |            |     |            |     |            |             |     | CIn     |         |              |          |
|             | (A)        | BIn         |           |            | CIn |            |     | BIn        |             |     | CIn     | -359.65 | -0.95        | -358.53  |
|             | (B)        |             |           |            |     |            |     | Bln        |             |     | Cln     |         |              |          |
|             | (A)<br>(B) | CIn         |           |            | BIn |            |     | CIn        |             |     | BIn     | -324.31 | -12.87       | -314.95  |
| NCE         | (B)<br>(A) |             | _         |            |     |            |     | CIn        | In          |     | Dill    |         |              |          |
| 0112        | (B)        | Cln         | In        |            |     |            |     | CIn        | In          |     |         | -355.27 | -1.02        | -353.24  |
|             | (A)        | In          | CIn       |            |     |            |     | In         | CIn         |     |         | -326.63 | -9.23        | -311.42  |
|             | (B)        | m           | em        |            |     |            |     | In         | CIn         |     |         | 520.05  | 9.25         | 511.12   |
|             | (A)        |             | In        |            | Cin | -          | -   | -          | -           | -   | -       | -205.54 | -7.72        | -184.73  |
|             | (B)        |             |           |            |     | -<br>In    | -   | -          | CIn         | -   | -<br>In |         |              |          |
|             | (A)        |             | CIn       |            | In  | - 111      |     |            | CIn         |     | 111     | -297 56 | -20.38       | -263 53  |
|             | (B)        |             |           |            |     | CIn        | In  |            | CIn         |     | CIn     |         |              |          |
|             | (A)        |             |           |            |     |            |     | In         |             |     | CIn     |         |              |          |
|             | (B)        | In          |           |            | Cin |            |     | In         |             |     | CIn     | -329.66 | -15.09       | -325.87  |
|             |            |             |           |            |     |            |     | CIn        |             |     |         |         |              |          |
|             | (A)        | CIn         |           |            | In  |            | In  | CIn        |             |     | In      | -353.06 | -8.58        | -358.07  |
| NCE         | (B)        |             |           |            |     |            | ln  | Cln        | CI.         |     | ln      |         |              |          |
| NCE<br>0216 | (A)        | NΔr         | CIn       |            |     |            |     | NAr        | CIn         |     |         | -279 57 | -3.67        | -268.49  |
| 0210        | (B)        | 117.11      | CIII      |            |     |            |     | NAr        | CIII        |     |         | 219.31  | 5.07         | 200.17   |
|             | (A)        | CT.         | 27.4      |            |     |            |     | CIn        | NAr         |     |         | 275.04  | c 7.4        | 202.12   |
|             | (B)        | Cln         | NAr       |            |     |            |     | CIn        | NAr         |     |         | -275.04 | 5.74         | -293.12  |
|             | (A)        |             | NAr       |            | CIn | CIn<br>CIn |     |            |             |     | CIn     | -252.52 | -6.03        | -238.46  |
|             | (A)        |             |           |            |     | Cin        | NAr |            | CIn         |     | CIII    |         |              |          |
|             | (B)        |             | CIn       |            | NAr |            | NAr |            | CIn         |     | NAr     | -290.61 | -9.00        | -288.70  |
|             | (A)        | <b>N7.4</b> |           |            | CT. |            |     | NAr        |             |     | CIn     | 277.26  | 10.56        | 262.06   |
|             | (B)        | NAr         |           |            | Cin |            |     | NAr        |             |     | CIn     | -2//.20 | -19.56       | -262.96  |
|             | (A)        | CIn         |           |            | NAr |            | NAr | CIn        |             |     |         | -310 57 | -7 30        | -308 55  |
|             | (B)        | em          |           |            |     |            |     | CIn        |             |     | NAr     | 510.57  | 7.50         | 500.00   |
| NCE<br>0225 | (A)        | LAr         | RAr       |            |     |            |     | LAr        | RAr         |     |         | -122.86 | 0.63         | -129.96  |
| 0323        | (b)<br>(A) |             |           |            |     |            |     | RAr        | I Ar        |     |         |         |              |          |
|             | (B)        | RAr         | LAr       |            |     |            |     | RAr        | LAr         |     |         | -126.14 | -7.66        | -123.80  |
|             | (A)        |             |           |            |     | RAr        |     |            | LAr         |     | RAr     |         |              |          |
|             | (B)        |             | LAr       |            | RAr | RAr        |     |            | CAr         |     | RAr     | -84.66  | -11.73       | -81.10   |
|             |            |             |           |            |     |            |     |            | LAr         |     |         |         |              |          |
|             | (A)        |             | RAr       |            | LAr | LAr        |     |            | RAr         |     | LAr     | -79.09  | -12.13       | -69.88   |
|             | (B)        |             |           |            |     | LAr        |     | T A        | RAr         |     | LAr     |         |              |          |
|             | (A)<br>(P) | LAr         |           |            | RAr |            |     | LAr        |             |     | KAr     | -102.74 | -4.21        | -106.45  |
|             | (A)        |             |           |            |     |            |     | RAr        |             |     | LAr     |         |              |          |
|             | (B)        | RAr         |           |            | LAr |            |     | RAr        |             |     | LAr     | -101.85 | -3.05        | -103.54  |
|             | /          |             |           |            |     |            |     |            |             |     |         | •       |              |          |

 Table 3.116:
 Results of the optimization of the lead molecules and RANTES at two binding sites

| S1008 |     | Initial O | rientation |      |     |     |     |     | Fin | al Orienta | ation |     |     |     |     | Binding | g Energy (ko | al/mol) |
|-------|-----|-----------|------------|------|-----|-----|-----|-----|-----|------------|-------|-----|-----|-----|-----|---------|--------------|---------|
| S100p | H25 | K26       | L27        | K28  | E21 | G22 | D23 | K24 | H25 | K26        | L27   | K28 | E67 | E86 | E89 | Total   | VdW          | Ele     |
| NCE   | CIn | BIn       |            |      |     |     |     | CIn | CIn | BIn        |       |     |     |     |     | -21.86  | -8.88        | -13.09  |
| 0103  | BIn | CIn       |            |      |     |     |     | BIn | BIn | CIn        |       |     |     |     | BIn | -27.77  | -13.38       | -17.52  |
|       |     | BIn       |            | CIn  | BIn |     |     |     |     | BIn        |       | CIn | BIn |     |     | -39.35  | -14.08       | -25.72  |
|       |     | CIn       |            | BIn  | CIn |     | CIn |     |     | CIn        |       | BIn | CIn |     |     | -48.80  | -17.36       | -30.51  |
| NCE   | CIn | In        |            |      |     |     |     |     | CIn | In         |       |     |     | CIn | CIn | -18.34  | -7.64        | -13.93  |
| 0112  | In  | CIn       |            |      |     |     |     |     | In  | CIn        |       |     |     |     | In  | -9.37   | -4.55        | -7.69   |
|       |     | In        |            | CIn  | In  |     | In  |     |     | In         |       | CIn |     |     |     | -41.04  | -14.37       | -27.78  |
|       |     | CIn       |            | In   | CIn | CIn | CIn |     |     |            |       | In  |     |     |     | -34.66  | -12.42       | -25.58  |
| NCE   | NAr | CIn       |            |      | -   | -   | -   | -   | -   | -          | -     | -   | -   | -   | -   | -14.54  | -3.81        | -8.35   |
| 0216  | CIn | NAr       |            |      |     |     |     |     | CIn | NAr        |       |     |     |     |     | -14.54  | -5.80        | -9.81   |
|       |     | CIn       |            | NAr  | -   | -   | -   | -   | -   | -          | -     | -   | -   | -   | -   | -15.75  | -6.09        | -8.34   |
|       |     | NAr       |            | CIn  |     |     |     |     |     |            |       | CIn | NAr |     |     | -36.79  | -6.13        | -27.76  |
| NCE   | LAr | RAr       |            |      | -   | -   | -   | -   | -   | -          | -     | -   | -   | -   | -   | -23.08  | -7.27        | -15.36  |
| 0325  | RAr | LAr       |            |      |     |     | CAr | RAr | RAr | LAr        |       |     |     |     |     | -26.30  | -9.48        | -17.01  |
|       |     | RAr       |            | LAr  | -   | -   | -   | -   | -   | -          | -     | -   | -   | -   | -   | -25.86  | -5.85        | -18.41  |
|       |     | LAr       |            | RAr  | -   | -   | -   | -   | -   | -          | -     | -   | -   | -   | -   | -20.77  | -5.64        | -13.51  |
|       | K26 | L27       | K28        | K29  | K26 | L27 | K28 | K29 |     |            |       |     |     |     |     |         |              |         |
| NCE   |     |           | BIn        | CIn  |     |     | BIn | CIn |     |            |       |     |     |     |     | -48.81  | -12.67       | -33.21  |
| 0103  |     |           | CIn        | BIn  |     |     | CIn | BIn |     |            |       |     |     |     |     | -28.80  | -6.32        | -21.39  |
| NCE   |     |           | In         | CIn  |     |     | In  | CIn |     |            |       |     |     |     |     | -24.86  | -7.11        | -16.85  |
| 0112  |     |           | CIn        | In   |     |     | CIn | In  |     |            |       |     |     |     |     | -23.70  | -5.32        | -18.35  |
| NCE   |     |           | CIn        | NAr  |     |     | CIn | NAr |     |            |       |     |     |     |     | -31.50  | -6.23        | -23.61  |
|       |     |           | NAr        | Cin  |     |     | NAr | CIn |     |            |       |     |     |     |     | -28.21  | -7.80        | -16.36  |
| 0216  |     |           | INAI       | CIII |     |     |     | CIn |     |            |       |     |     |     |     | -20.21  | -7.80        | -10.50  |
| NCE   |     |           | LAr        | RAr  | -   | -   | -   | -   |     |            |       |     |     |     |     | -16.58  | -3.16        | -10.96  |
| 0325  |     |           | RAr        | LAr  | -   | -   | -   | -   |     |            |       |     |     |     |     | -34.22  | -7.84        | -22.25  |

Table 3.117: Results of the optimization of the lead molecules and S100β

| Table 3.118: Results of the optimization of the lead molecules and SDF- | -1 |
|-------------------------------------------------------------------------|----|
|-------------------------------------------------------------------------|----|

| SDE 1 |      | Initial O | rientation |     |     | Final Or | rientation |     | Binding | g Energy (k | cal/mol) |
|-------|------|-----------|------------|-----|-----|----------|------------|-----|---------|-------------|----------|
| SDF-1 | K24  | H25       | L26        | K27 | K24 | H25      | L26        | K27 | Total   | VdW         | Ele      |
| NCE   | BIn  | CIn       |            |     | BIn | CIn      |            |     | -70.30  | -8.73       | -59.62   |
| 0103  | CIn  | BIn       |            |     | CIn | BIn      |            |     | -77.06  | -9.90       | -66.64   |
| NCE   | CIn  | In        |            |     | In  | In       |            |     | 96.07   | 7.80        | 86.53    |
| 0112  | CIII | 111       |            |     | CIn |          |            |     | -90.07  | -7.80       | -80.55   |
|       | In   | CIn       |            |     |     | CIn      |            |     | -57.05  | -7.43       | -45.14   |
| NCE   | NAr  | CIn       |            |     | NAr | CIn      |            |     | -57.15  | -7.89       | -46.67   |
| 0216  | CIn  | NI A r    |            |     | CIn | NAr      |            |     | 75.92   | 0 22        | 65 56    |
|       | Cm   | INAI      |            |     | NAr |          |            |     | -73.83  | -8.33       | -05.50   |
| NCE   | LAr  | RAr       |            |     | LAr | RAr      |            |     | -39.42  | -7.31       | -33.49   |
| 0325  | D A  | T A       |            |     | RAr | RAr      |            |     | 12 62   | 7 82        | 27 50    |
|       | KAI  | LAI       |            |     |     | LAr      |            |     | -42.03  | -7.82       | -37.38   |

| Trans- |      | Initial O | rientation |      |      | Fin  | al Orienta | ation |      | Binding | g Energy (k | cal/mol) |
|--------|------|-----------|------------|------|------|------|------------|-------|------|---------|-------------|----------|
| ferrin | R113 | G114      | K115       | K116 | F107 | R113 | G114       | K115  | K116 | Total   | VdW         | Ele      |
| NCE    | BIn  |           | CIn        |      | -    | -    | -          | -     | -    | -22.77  | -6.01       | -23.41   |
| 0103   | CIn  |           | DIn        |      |      | CIn  |            | BIn   |      | 10.42   | 0.00        | 17.25    |
|        | Cin  |           | DIII       |      |      | BIn  |            |       |      | -19.45  | -9.09       | -17.23   |
|        |      |           | BIn        | CIn  |      |      |            |       | CIn  | -13.49  | -6.04       | -13.90   |
|        |      |           | CIn        | BIn  |      |      | CIn        |       | BIn  | -9.48   | -6.69       | -5.14    |
| NCE    | CIn  |           | In         |      |      | CIn  |            |       |      | -25.53  | -7.54       | -22.81   |
| 0112   | In   |           | CIn        |      |      | In   |            | CIn   |      | -26.29  | -9.13       | -22.89   |
|        |      |           | CIn        | In   | -    | -    | -          | -     | -    | -20.33  | -5.52       | -24.57   |
|        |      |           | In         | CIn  | -    | -    | -          | -     | -    | -9.95   | -7.62       | -12.09   |
| NCE    | NAr  |           | CIn        |      |      | NAr  |            | CIn   |      | -13.54  | -7.50       | -12.12   |
| 0216   | CIn  |           | NAr        |      |      | CIn  |            |       |      | -25.79  | -7.52       | -24.85   |
|        |      |           | NAr        | CIn  |      |      |            | NAr   | CIn  | -22.98  | -9.32       | -20.89   |
|        |      |           | CIn        | NAr  | CIn  |      |            | CIn   | NAr  | -9.45   | -7.56       | -9.45    |
| NCE    |      |           | LAr        | RAr  |      |      |            | LAr   |      | -27.12  | -5.56       | -27.46   |
| 0325   |      |           | RAr        | LAr  |      |      |            |       | LAr  | -28.25  | -4.91       | -28.12   |
|        | LAr  |           | RAr        |      |      | LAr  |            | RAr   |      | -22.30  | -7.75       | -20.10   |
|        | RAr  |           | LAr        |      |      | RAr  |            | LAr   |      | -24.76  | -8.87       | -22.65   |

Table 3.119: Results of the optimization of the lead molecules and Transferrin

Assigning the basic amino acids numbers from left to right as  $B^1-B^2-X-B^3$ , the number of interactions occurring at  $B^1B^2$ ,  $B^1B^3$ , and  $B^2B^3$  were examined for each of the above systems.

The NCEs were capable of interacting with multiple configurations of  $B^1B^2$ ,  $B^1B^3$ , and  $B^2B^3$  equally for some of the proteins: These included A $\beta$ , C1qA, ICAM-1, IL-1 $\beta$ CE, IL-4, IL-12, MIP-1 $\alpha$  (when binding at two sites), MIP-1 $\beta$  and RANTES. Figure 3.17 shows an example of binding between NCE-0325 and IL-1 $\beta$ CE.

The remaining proteins, AChE, BHMT, S100 $\beta$  and SDF-1 favoured interactions with the NCE molecules at B<sup>1</sup>B<sup>2</sup>, while B<sup>1</sup>B<sup>3</sup>was the favoured orientation for Apo $\epsilon$ 4, IFN- $\gamma$ , and IL-13 with B7-1 and transferrin preferring B<sup>2</sup>B<sup>3</sup>. None of the NCEs formed interactions at two sites within the **BB**X**B** region of neprilysin. The preferential binding at these sites was due to the spatial orientation of the amino acid side chains within the **BBXB** motif for each protein.



Figure 3.17: Example of NCE-0325 binding to IL-1βCE. Interactions between the compound and the BBXB region are highlighted.

## 3.10.4 CONCLUSIONS ON THE NCE MOLECULES INTERACTING WITH PROTEINS CONTAINING BBXB

The results of the gas phase optimizations of NCE-0103, NCE-0112, NCE-0216 and NCE-0325 indicate that all four compounds are capable of binding to and interacting with the **BBXB** region of multiple proteins involved in AD. Hydrogen bonds and cation- $\pi$ interactions were the most commonly observed measureable interactions.

All four NCEs are capable of binding to the **BBXB** region of A $\beta$ , C1qA, IFN- $\gamma$ , IL-12, MIP-1 $\alpha$ , MIP-1 $\beta$ , RANTES, SDF-1 and transferrin. For all of these systems, each NCE is capable of forming at least one binding interaction with two of the basic amino acids in the **BBXB** motif of that protein.

For a few of the proteins where multiple **BBXB** regions were accessible, some of the NCEs were capable of binding to one or two of those receptors but not all of them; this occurred for Apoɛ4, ICAM-1, IL-4 and S100 $\beta$ . Similar situations arose when binding was occurring at two **BBXB** regions simultaneously on MIP-1 $\alpha$  and MIP-1 $\beta$ .

In some optimized systems, not all of the NCE molecules were capable of binding at two sites; these included AChE, B7-1 and IL-13, with which only the longer NCE-0325 was capable of forming multiple interactions.

In the case of the BHMT protein, NCE-0112 was not capable of interacting with the side chains given their spatial orientation. In general NCE-0112 appeared to be the least successful at forming binding interactions with the **BBXB** region of multiple proteins. NCE-0216 was also slightly less favoured on occasion.

Overall, it appears that NCE-0325 and NCE-0103 are the most capable of binding to the **BBXB** region on multiple proteins affiliated with AD. The results of these optimizations are quite favourable for promoting the concept of a promiscuous drug. These synthetic entities are capable of interacting with multiple proteins, at a motif specific to those involved in AD pathology, as was also seen with phosphoserine. Given these positive results, a more promising NCE was also examined.

### **3.11 NCE-217** AS A DRUG MOLECULE CAPABLE OF TARGETING BBXB

One of the most promising compounds developed by the Weaver group is NCE-217 (Figure 3.18). This compound is currently being further advanced by the Weaver group to improve its efficacy. Given its promise, and knowing that it is capable of inhibiting  $\beta$ -amyloid aggregation *in vitro*, the compound was selected for gas phase optimizations with some of the proteins examined in section 3.2.8.



Figure 3.18: NCE-0217

Gas phase optimizations were performed in QUANTA using the CHARMM22 force field [46, 48].

## 3.11.1 GAS PHASE OPTIMIZATION OF NCE-0217 AND PROTEINS BEARING BBXB

The NCE-0217 molecule was constructed in QUANTA and a systematic grid search was performed to find the lowest energy conformation to be used for the gas phase minimizations. The energy of the selected structure is given in Table 3.120.

|          | Ene              | ergy (kcal/m | nol)      |
|----------|------------------|--------------|-----------|
|          | E <sub>tot</sub> | $E_{vdw}$    | $E_{ele}$ |
| NCE-0217 | 34.64            | 11.84        | -6.94     |

Table 3.120: Gas phase energy of NCE-0217

The proteins selected for study are A $\beta$ , C1qA, ICAM-1, IFN- $\gamma$ , IL-4, IL-12-, IL-13, MIP-1 $\alpha$ , MIP-1 $\beta$ , and RANTES. The energies of these proteins can be found in Appendix 8.

Each system was set up such that one of the aromatic rings (or its attached functional groups) was located roughly 3.0 Å away from two of the basic amino acids in the **BBXB** motif for each protein. The same set up was used for proteins with two identical **BBXB** motifs. Before minimization, the protein backbone was constrained, and the steepest descents algorithm was used. The final systems were imported into MOE to determine what type of binding interactions may have occurred [47].

## 3.11.2 GAS PHASE RESULTS OF THE OPTIMIZATION OF NCE-0217 WITH PROTEINS BEARING BBXB

The results of the gas phase minimizations are summarized in the following tables. Binding interactions are coloured green for cation- $\pi$ , light blue for  $\pi$ - $\pi$  and orange for hydrogen bonds: the darker the colour, the more interactions occurring. Binding with the –CH<sub>2</sub>- chain is indicated in indigo, and with the C=O of the protein backbone in light purple.

| Protein   |            |             | Initial O | rientation | 1            |      |              | Fin   | al Orienta | tion     |         |       | Binding | g Energy (ko | cal/mol) |
|-----------|------------|-------------|-----------|------------|--------------|------|--------------|-------|------------|----------|---------|-------|---------|--------------|----------|
| FIOLEIII  |            | H13         | H14       | Q15        | K16          | Y10  | V12          | H13   | H14        | Q15      | K16     |       | Total   | VdW          | Ele      |
| Αβ        |            | NAr         | CIn       |            |              | CIn  |              | NAr   | CIn        |          |         |       | 14 79   | 0.20         | 6.44     |
|           |            | INPAI       | Cm        |            |              |      |              | NAr   |            |          |         |       | -14.70  | -9.29        | -0.44    |
|           |            | CIn         | NAr       |            |              |      |              | CIn   | NAr        |          |         |       | -15.51  | -7.15        | -9.46    |
|           |            | CIn         |           |            | NAr          |      | CIn          | CIn   |            |          | NAr     |       | -20.85  | -7.39        | -15.09   |
|           |            | NAr         |           |            | CIn          |      | NAr          | NAr   |            |          | CIn     |       | -22.28  | -9.32        | -14.24   |
|           |            | K200        | K201      | G202       | H203         | E148 | K200         | K201  | G202       | H203     |         |       |         |              |          |
| C1qA      |            | NAr         | CIn       |            |              |      | NAr          | CIn   |            |          |         |       | -111.63 | -5.60        | -113.67  |
|           |            | CIn         | NAr       |            |              |      | CIn          |       |            |          |         |       | -109.31 | -4.75        | -108.90  |
|           |            |             | CIn       |            | NAr          | CIn  | CIn          | CIn   |            | NAr      |         |       | -111.48 | -7.46        | -111.13  |
|           |            |             | NAr       |            | Cln          | NAr  |              | NAr   |            | Cln      |         |       | -94.97  | -8.79        | -92.83   |
|           |            | Cln         |           |            | NAr          |      | CIn          |       |            | CI.      |         |       | -115.01 | -0.94        | -122.01  |
|           |            | NAr<br>D140 | D150      | D161       | CIn<br>11152 | D125 | NAr<br>L 120 | 1147  | D140       | Dis      | D171    | 11120 | -124.18 | -10.4/       | -120.39  |
| ICAM 1    |            | RI49        | CIn       | DISI       | H152         | K125 | L130         | L14/  | R149       | CIn      | D151    | H152  | 14.41   | 6.04         | 0.54     |
| ICANI-1   |            | CIn         | NAr       |            |              |      |              |       | CIn        | NAr      |         |       | -14.41  | -0.04        | -9.54    |
|           |            | Cm          | 1174      |            |              | NAr  |              | NAr   | NAr        | INAL     |         | NAr   | -10.04  | -5.85        | -14.05   |
|           |            | CIn         |           |            | NAr          | INPA |              | INAI  | CIn        |          |         | INAI  | -30.00  | -12.64       | -19.85   |
|           |            | NΔr         |           |            | CIn          | CIn  | CIn          |       | NΔr        |          |         | CIn   | -37.17  | -13 11       | -28.88   |
|           |            | R150        | D151      | H152       | H153         | R125 | R149         | R150  | D151       | H152     | H153    | CIII  | 57.17   | 15.11        | 20.00    |
|           |            | 11100       | 5101      | NAr        | CIn          | NAr  | NAr          | 11100 | NAr        | NAr      |         |       | -27 26  | -13 80       | -19 41   |
|           |            |             |           | CIn        | NAr          | CIn  | CIn          |       | NAr        | CIn      |         |       | -37.16  | -13 19       | -28.04   |
|           |            | CIn         |           |            | NAr          |      |              | CIn   |            |          |         |       | -10.75  | -5.48        | -7.67    |
|           |            | NAr         |           |            | CIn          |      |              | NAr   |            |          | CIn     |       | -21.50  | -5.41        | -18.63   |
|           |            | K86         | K87       | K88        | R89          | K86  | K87          | K88   | R89        | D90      |         |       |         |              |          |
| IFN-γ     |            | NAr         | CIn       |            |              | NAr  |              |       |            |          |         |       | -19.75  | -3.50        | -14.17   |
|           |            | CIn         | NAr       |            |              | CIn  |              |       |            |          |         |       | -20.88  | -3.55        | -14.39   |
|           |            |             | CIn       |            | NAr          |      | CIn          |       |            |          |         |       | 3.43    | -7.08        | 9.09     |
|           |            |             | NAr       |            | CIn          |      |              |       | CIn        | CIn      |         |       | -16.03  | -6.98        | -8.55    |
|           |            | CIn         |           |            | NAr          | -    | -            | -     | -          | -        |         |       | -14.79  | -4.96        | -9.84    |
|           |            | NAr         |           |            | CIn          | NAr  |              |       |            |          |         |       | -18.79  | -5.62        | -12.50   |
|           | (A)        | K86         | K87       | K88        | R89          | K74  | K86          | K87   | K88        | R89      | D90     |       |         |              |          |
|           | (B)        | K206        | K207      | K208       | R209         | K194 | K206         | K207  | K208       | R209     | E213    |       |         |              |          |
|           | (A)        | NAr         | CIn       |            |              |      | NAr          |       |            |          |         |       | -41 45  | -7.82        | -32.99   |
|           | (B)        |             | 0.111     |            |              |      | NAr          |       |            |          |         |       |         |              |          |
|           | (A)        | CIn         | NAr       |            |              |      | CIn          |       |            |          |         |       | -29.81  | -4.08        | -24.80   |
|           | (B)        | _           |           |            |              |      | CIn          |       |            |          |         |       |         |              |          |
|           | (A)        |             | NAr       |            | CIn          |      | CIn          |       |            | CIn      | NAr     |       | -42.43  | -9.99        | -32.42   |
|           | (B)        |             |           |            |              |      | CIn          | CI    |            | CIn      | 27.4    |       |         |              |          |
|           | (A)        |             | CIn       |            | NAr          |      |              | CIn   |            | NAr      | NAr     |       | -18.23  | -12.17       | -5.32    |
|           | (B)        |             |           |            |              | -    | -            | -     | -          | -        | -       |       |         |              |          |
|           | (A)        | NAr         |           |            | CIn          | -    | -            | -     | -          | -<br>CL: |         |       | -34.76  | -7.01        | -28.61   |
|           | (D)        |             |           |            |              | NAr  | CII/NAI      |       |            | NAr      |         |       |         |              |          |
|           | (A)<br>(B) | CIn         |           |            | NAr          | NAr  | CIn          |       |            | NAr      | NAr     |       | -41.04  | -14.42       | -24.79   |
|           | (B)        | H58         | H59       | F60        | K61          | \$57 | H58          | H59   | F60        | K61      | D62     | R64   |         |              |          |
| II -4     |            | NAr         | CIn       | 100        | 1101         | 001  | NAr/CIn      | CIn   | 1.00       | 1101     | 102     | 104   | -20.62  | -6 56        | -16 46   |
| l · · · í |            | CIn         | NAr       |            |              |      |              | NAr   |            |          |         | NAr   | -17 26  | -5.19        | -15 21   |
| 1         |            |             | CIn       |            | NAr          | NAr  | CIn          | CIn   |            | NAr      | CIn     | CIn   | -25.40  | -11.69       | -19.61   |
|           |            |             | NAr       |            | CIn          |      | NAr          | NAr   |            | CIn      | NAr     |       | -28.90  | -11.64       | -21.78   |
|           |            | CIn         |           |            | NAr          |      |              |       |            | CIn      |         |       | -19.10  | -4.18        | -17.57   |
|           |            | NAr         |           |            | CIn          | CIn  | CIn          |       |            | NAr      |         |       | -24.77  | -10.23       | -20.21   |
|           |            | H74         | R75       | H76        | K77          | Q71  | H74          | R75   | H76        | K77      |         |       |         |              |          |
|           | ſ          | NAr         | CIn       |            |              | NAr  | NAr          |       |            |          |         |       | -24.83  | -3.94        | -23.72   |
|           |            | CIn         | NAr       |            |              | NAr  | CIn          | NAr   |            |          |         |       | -25.36  | -4.05        | -23.87   |
|           |            | CIn         |           |            | NAr          |      | CIn          |       |            |          |         |       | -17.51  | -0.84        | -18.26   |
|           |            | NAr         |           |            | CIn          |      |              |       |            | CIn      |         |       | -17.54  | -3.36        | -18.25   |
|           |            | H194        | K195      | L196       | K197         | H194 | K195         | L196  | K197       |          |         |       |         |              |          |
| II-12     |            | NAr         | CIn       |            |              | NAr  | CIn          |       |            |          |         |       | -36.00  | -6.38        | -31.00   |
|           |            | CIn         | NAr       |            |              | CIn  | NAr          |       |            |          |         |       | -32.85  | -5.82        | -31.47   |
|           |            |             | CIn       |            | NAr          |      | CIn          |       | NAr        |          |         |       | -38.28  | -5.63        | -35.59   |
|           |            |             | NAr       |            | CIn          | _    |              |       | CIn        |          |         |       | -46.15  | -1.69        | -43.78   |
|           |            | CIn         |           |            | NAr          | CIn  |              |       |            |          |         |       | -26.56  | -6.13        | -24.52   |
|           |            | NAr         | T 102     | 17.1.0.4   | CIn          | -    | -            | -     | -          | 17101    | 1// 0 7 |       | -20.72  | -3.47        | -20.04   |
| П 12      |            | H102        | L103      | K104       | K105         | 137  | L101         | H102  | L103       | K104     | K105    |       | 10.25   | 4.27         | 6.80     |
| IL-13     |            | CIn         |           |            | NAr          | 314. | Cln          | CIn   |            |          | CL      |       | -10.35  | -4.27        | -6.89    |
|           |            | INAf        |           |            | Cin          | INAĽ |              | INAľ  |            |          | Cin     |       | -8.27   | -9.33        | -0.85    |

Table 3.121: The gas phase results of the optimization of NCE-0217 with Aβ,<br/>C1qA, ICAM-1, IFN-γ, IL-4, II-12 and IL-13

| Dustain |          | I    | nitial O | rientatio | on   |     |         | Final   | Orientation | l   |     |     | Binding | g Energy (ko | cal/mol) |
|---------|----------|------|----------|-----------|------|-----|---------|---------|-------------|-----|-----|-----|---------|--------------|----------|
| Protein |          | K45  | R46      | S47       | R48  | R18 | N23     | F24     | K45         | R46 | S47 | R48 | Total   | VdW          | Ele      |
| MIP-1a  |          | NAr  | CIn      |           |      |     |         |         |             | CIn |     |     | -13.73  | -4.00        | -10.30   |
|         |          | CIn  | NAr      |           |      |     |         |         | CIn         |     |     |     | -15.82  | -2.87        | -12.86   |
|         |          |      | CIn      |           | NAr  |     |         |         |             | CIn |     | NAr | -11.85  | -4.86        | -7.56    |
|         |          |      | NAr      |           | CIn  | CIn |         |         |             |     |     | CIn | -24.54  | -3.78        | -19.61   |
|         |          | CIn  |          |           | NAr  |     | CIn     | NAr     | CIn         |     |     | NAr | -30.99  | -14.49       | -16.60   |
|         |          | NAr  |          |           | CIn  |     |         | NAr     | NAr         |     |     | CIn | -18.34  | -11.28       | -8.98    |
|         | (A)      | K45  | R46      | S47       | R48  | R18 | N23     | F24     | K45         | R46 | S47 | R48 |         |              |          |
|         | (B)      | K45  | R46      | S47       | R48  | R18 | N23     | F24     | K45         | R46 | S47 | R48 |         |              |          |
|         | (A)      | NTA. | CL.      |           |      |     |         |         |             | CIn |     |     | 22.75   | 6.1.4        | 20.21    |
|         | (B)      | NAF  | Cin      |           |      |     |         |         |             | CIn |     |     | -32.75  | -0.14        | -28.31   |
|         | (A)      | CI.  | NIA.     |           |      | -   | -       | -       | -           | -   | -   | -   | 40.95   | 4.16         | 26.96    |
|         | (B)      | Cm   | INAI     |           |      |     |         |         | CIn         |     |     |     | -40.85  | -4.10        | -30.80   |
|         | (A)      |      | NAr      |           | CIn  | CIn |         |         |             | NAr |     | CIn | 11 61   | 10.45        | 24.20    |
|         | (B)      |      | INAI     |           | Cm   |     |         |         |             | NAr |     | CIn | -44.04  | -10.45       | -34.30   |
|         | (A)      |      | CIn      |           | NAr  | NAr |         |         |             | CIn |     | NAr | 31.13   | 11.38        | 20.00    |
|         | (B)      |      | CIII     |           | 1174 |     |         |         |             | CIn |     | NAr | -51.15  | -11.50       | -20.00   |
|         | (A)      | NAr  |          |           | CIn  |     |         | NAr/CIn | NAr         |     |     | CIn | 18 73   | 21.04        | 30.50    |
|         | (B)      | INAI |          |           | Cill |     |         | NAr     |             | CIn |     | CIn | -40.75  | -21.04       | -50.50   |
|         | (A)      |      |          |           |      |     | CIn     |         |             |     |     | NAr |         |              |          |
|         | (B)      | CIn  |          |           | NAr  |     | CIn     | NAr     | CIn         |     |     |     | -55.98  | -23.74       | -32.57   |
|         |          |      |          |           |      |     |         | CIn     |             |     |     |     |         |              |          |
|         |          | K45  | R46      | S47       | K58  | K45 | R46     | S47     | K58         |     |     |     |         |              |          |
| MIP-1β  |          | NAr  | CIn      |           |      | -   | -       | -       | -           |     |     |     | -3.43   | -1.65        | -3.40    |
|         |          | CIn  | NAr      |           |      | CIn |         |         |             |     |     |     | -4.47   | -3.65        | -2.68    |
|         |          |      | CIn      |           | NAr  | -   | -       | -       | -           |     |     |     | -10.37  | -3.73        | -8.15    |
|         |          |      | NAr      |           | CIn  |     | NAr     |         | CIn         |     |     |     | -10.62  | -4.82        | -7.54    |
|         |          | CIn  |          |           | NAr  | CIn | NAr     |         |             |     |     |     | -9.70   | -6.87        | -2.86    |
|         |          | NAr  |          |           | CIn  |     | CIn/NAr |         | CIn         |     |     |     | -16.97  | -10.34       | -8.77    |
|         | (A)      | K45  | R46      | S47       | K48  | K45 | R46     | S47     | K48         |     |     |     |         |              |          |
|         | (B)      | K45  | R46      | S47       | K48  | K45 | R46     | S47     | K48         |     |     |     |         |              |          |
|         | (A)      | NAr  | CIn      |           |      | NAr | CIn     |         |             |     |     |     | -20.09  | -5.90        | -15.83   |
|         | (B)      |      | 0        |           |      |     | CIn     |         |             |     |     |     | 20.07   | 0.90         | 10.00    |
|         | (A)      | CIn  | NAr      |           |      |     | CIn     |         |             |     |     |     | -14.52  | -5.85        | -11.96   |
|         | (B)      |      |          |           |      |     | CIn     |         |             |     |     |     |         |              |          |
|         | (A)      |      | NAr      |           | CIn  | -   | -       | -       | -           |     |     |     | -28.65  | -5.35        | -24.47   |
|         | (B)      |      |          |           |      |     |         |         | CIn         |     |     |     |         |              |          |
|         | (A)      |      |          |           |      |     | CIn     |         | NAr         |     |     |     |         |              |          |
|         | (B)      |      | CIn      |           | NAr  |     | CIn     |         |             |     |     |     | -11.17  | -9.75        | -3.51    |
|         |          |      |          |           |      |     | NAr     |         | NAr         |     |     |     |         |              |          |
|         | <u> </u> | R44  | K45      | N46       | R47  | S1  | P2      | R44     | K45         | N46 | R47 |     |         |              |          |
| RANTES  |          | NAr  | CIn      |           |      |     |         | NAr     | CIn         |     |     |     | -151.47 | -4.65        | -147.29  |
|         | 1        | CIn  | NAr      |           |      |     |         | CIn     | NAr         |     |     |     | -149.21 | 1.43         | -158.31  |
|         | 1        |      | CIn      |           | NAr  | NAr | NAr     |         | CIn         |     | NAr |     | -143.92 | -5.80        | -140.14  |
|         | 1        |      | NAr      |           | CIn  | CIn |         |         |             |     | CIn |     | -113.82 | -5.77        | -103.87  |
|         | 1        | CIn  |          |           | NAr  |     |         | CIn     |             |     | NAr |     | -190.70 | 2.02         | -196.39  |
|         |          | NAr  |          |           | CIn  |     |         | NAr     |             |     | CIn |     | -145.33 | -6.24        | -139.53  |
|         | (A)      | R44  | K45      | N46       | R47  | S1  | P2      | R44     | K45         | N46 | R47 |     |         |              |          |
|         | (B)      | R44  | K45      | N46       | R47  | S1  | P2      | R44     | K45         | N46 | R47 |     |         |              |          |
|         | (A)      | NAr  | CIn      |           |      |     |         | NAr     | CIn         |     |     |     | -313.90 | -11.43       | -296.37  |
|         | (B)      |      |          |           |      |     |         | NAr     | CIn         |     |     |     |         |              |          |
|         | (A)      | CIn  | NAr      |           |      |     |         | CIn     | NAr         |     |     |     | -306.47 | 6.38         | -334.10  |
|         | (B)      |      |          |           |      |     |         | CIn     | NAr         |     |     |     | 2.00.17 | 0.00         |          |
|         | (A)      |      | NAr      |           | CIn  |     |         |         | CIn         |     | CIn |     | -264 20 | -10.20       | -241 44  |
|         | (B)      |      | 1        |           | Cm   |     |         |         | NAr/CIn     |     | CIn |     | 201.20  | 10.20        |          |
|         | (A)      |      | CIn      |           | NAr  | NAr | NAr     |         | CIn         |     | NAr |     | -241.09 | -14.73       | -234 91  |
|         | (B)      | L    |          |           |      |     |         |         | CIn         |     | NAr |     |         |              | 1        |
|         | (A)      | NAr  |          |           | CIn  |     |         | NAr     |             |     | CIn |     | -314.20 | -10 40       | -316 84  |
|         | (B)      |      |          |           |      |     |         | NAr     |             |     | CIn |     | 221.20  |              | 2.0.01   |
|         | (A)      | CIn  |          |           | NAr  |     | NAr     | CIn     |             |     | NAr |     | -345.17 | -3.81        | -341.04  |
|         | (B)      |      |          |           |      |     | NAr     | CIn     |             |     | NAr |     | 2.2.17  | 2.01         | 2        |

Table 3.122: The gas phase results of the optimization of NCE-0217 with MIP-1α,<br/>MIP-1β, and RANTES

The results of the optimization of NCE-0217 with the **BBXB** region are quite favourable. For all of the proteins, with the exception of IFN- $\gamma$ , the compound was

capable of binding to **BB**X**B** at multiple sites. Overall, hydrogen bonds were the preferred type of interaction, followed by cation- $\pi$  interactions; very few  $\pi$ - $\pi$  systems were observed.

For the interactions with  $\beta$ -amyloid, NCE-0217 bound equally at B<sup>1</sup>B<sup>2</sup> and B<sup>1</sup>B<sup>3</sup>, with numerous cation- $\pi$  interactions occurring. The electrostatic energy contributions are slightly more favourable than the van der Waals contributions.

In the optimizations with C1qA, only hydrogen bonds formed, with all possible combinations of **BBXB** interactions forming equally. The electrostatic energies are significantly lower than the van der Waals energies.

NCE-0217 was capable of binding to ICAM-1 at  $B^1B^2$  and  $B^1B^3$ ; however multiple binding orientations occurred at one of the **BBXB** regions preferentially. In general the electrostatic energies contributed more so to the overall binding energies. Both hydrogen bonds and cation- $\pi$  interactions were observed in almost equal numbers for these systems.

The results of the gas phase minimization of NCE-0217 with IFN- $\gamma$  demonstrated a lack of binding to multiple sites of **BBXB** when only one region was targeted. When two sites were interacting with the compound, binding favoured B<sup>1</sup>B<sup>3</sup>, and there were more hydrogen bonds present in these systems. The overall energies were quite variable.

Binding interactions at  $B^1B^2$  were slightly more favoured than the other two arrangements for the optimization of IL-4 and NCE-0217. One **BBXB** target was capable of forming more bonds than the other, although there were no significant differences

between the energies observed at these different sites; both cation- $\pi$  and hydrogen bonds formed.

Interactions at multiple sites within the **BBXB** region of IL-12 were observed. The electrostatic energies were lower, and only hydrogen bonds formed in these systems.

In the case of the IL-13 protein, the energies were the least favourable of all the minimizations, although binding still occurred at two sites within the **BBXB** region.

When both the single site and multiple site results of NCE-0217 optimized with MIP-1 $\alpha$  are examined, it can be observed that mostly hydrogen bonds have formed, B<sup>1</sup>B<sup>3</sup> and B<sup>2</sup>B<sup>3</sup> are the favoured binding orientations at multiple sites, and the electrostatic energies tend to be more favourable.

The  $B^2B^3$  orientation is slightly more preferred for NCE-0217 binding to MIP-1 $\beta$ . Measured bonds consist of both hydrogen bonds and cation- $\pi$  interactions, and energies are variable.

The gas phase minimizations of NCE-0217 with RANTES are quite favourable; interactions occurred at multiple sites within **BBXB**, almost all of the systems had formed hydrogen bonds, and the energies are very low, with the electrostatic contributions outweighing the van der Waals energies. An example of one of these favourable interactions can be seen in Figure 3.19.



Figure 3.19: Interaction between NCE-0217 and RANTES. Binding sites between the molecule and the BBXB region are highlighted.

### 3.11.3 CONCLUSIONS OF NCE-0217 OPTIMIZED WITH PROTEINS BEARING BBXB

The results of the minimizations of NCE-0217 and multiple proteins indicated in Alzheimer's disease suggest this is a potential lead molecule. The compound was capable of binding to multiple sites within the **BBXB** region for all of the proteins examined and the energies are favourable.

Overall the energy contributions were more strongly affected by the electrostatic contributions, with hydrogen bonds and cation- $\pi$  interactions being the most prevalent of the measured interactions.

This molecule has also been tested *in vitro* and has shown itself capable of preventing A $\beta$  aggregation. A series of analogues of NCE-0217 was thus developed by

the Weaver group for furthering the advancement of the active properties of this molecule.

### 3.11.4 DEVELOPMENT OF A QSAR FOR ANALOGUES OF NCE-0217

Recognizing the potential of NCE-0217 as an anti-aggregant for AD and as a potential "promiscuous" drug has led to the design of a series of analogues of this compound. These analogues were used to develop a QSAR to determine which compounds would be suitable for synthesis. A series of 77 analogues was used to develop a suitable model.

### 3.11.4.1 Development of the QSAR model of NCE-0217

There were 77 analogues of NCE-0217 that were suitable for use in developing a QSAR. Only a few of the compounds had measured  $IC_{50}$  values, so the rest of the compounds were assigned values based on their relative activity. Several attempts were made before a suitable model could be developed.

Initial attempts to use the PLS method for the QSAR were unsuccessful despite manipulation of the training and validation set sizes and compositions. Given the presence of boron in some of the analogues it was determined that the MMFF94x force field would best be able to model all of the series. Finally the binary method was used to determine whether compounds were active or inactive.

The training set was composed of 56 molecules, and attempts were made to ensure every type of molecule was included and that a range of activities was covered. The remaining 21 molecules formed the validation set. The  $pIC_{50}$  value was calculated

from the  $IC_{50}$ s and used as the activity for determining which descriptors would be relevant. The threshold for activity was set at -2.65.

All of the available descriptors in MOE were calculated for this QSAR, and were eliminated one by one based on their relative importance to the prediction [88]. This followed the same procedure as in Section 3.9. Thirteen descriptors were selected as the final amount necessary to predict activity or inactivity to a reasonable level and they are defined in Table 3.123.

The overall accuracy of the model for the training set was 0.95 (with a sensitivity of 0.95 and a selectivity of 0.95) with a cross-validated accuracy of 0.89 (0.86 for the sensitivity and 0.95 for the selectivity). This model predicted one false positive and three false negatives in the training set. The Cohen's kappa value for the model was calculated to be 0.84, which indicates excellent agreement between the observed and predicted activities. Two false positives and four false negatives were predicted in the validation set, resulting in a sensitivity of 0.78 and a selectivity of 0.57. The calculated Cohen's kappa is 0.36, which is a fair value but could be improved upon. The predictions are summarized in Table 3.124, and full structures of the analogues are listed in Appendix 9.

| Descriptor   | Function                                            |
|--------------|-----------------------------------------------------|
|              | The water accessible surface area for atoms with    |
| ASAT         | a positive partial charge                           |
| b_triple     | Number of triple bonds                              |
| CASA-        | Negative charge weighted surface area               |
| Е            | The potential energy                                |
| E nh         | The value of the potential energy with all bonded   |
|              | terms disabled                                      |
| PEOE VSA-3   | Partial equilization of orbital electronegativities |
|              | used to calculate atomic partial charges over the   |
| PEOE_VSA+1   | van der Waals surface area and the hydrophobic      |
| PEOE_VSA_HYD | van der Waals surface area                          |
| SlogP_VSA3   | Log of the octanol/water coefficient based on the   |
| SlogP_VSA9   | accessible van der Waals surface area               |
|              | Contributions to the molar refractivity based on    |
| SMR_VSA0     | the accessible van der Waals surface area falling   |
|              | within a specific range                             |
| vsurf_HB7    | Hydrogen bond donor capacity                        |
| vsurf_W6     | Hydrophilic volume                                  |

 Table 3.123: Descriptors used for the QSAR of NCE-0217 analogues

| Compound |           | Predicted | Compound |           | Predicted |
|----------|-----------|-----------|----------|-----------|-----------|
| ID       | $IC_{50}$ | Activity  | ID       | $IC_{50}$ | Activity  |
| Tra      | ining se  | t         | Tra      | ining se  | et        |
| 103      | 15.6      | Active    | 238      | 20.9      | Active    |
| 104      | 500       | Active    | 239      | 1000      | Inactive  |
| 105      | 50.4      | Active    | 240      | 12        | Active    |
| 108      | 60        | Active    | 241      | 1000      | Inactive  |
| 109      | 6.5       | Active    | 252      | 100       | Active    |
| 110      | 10        | Active    | 253      | 11.8      | Active    |
| 111      | 60        | Active    | 254      | 60        | Active    |
| 112      | 34.4      | Active    | 289      | 500       | Inactive  |
| 116      | 1000      | Inactive  | 295      | 10        | Active    |
| 117      | 10        | Active    | 309      | 60        | Inactive  |
| 120      | 60        | Active    | 332      | 60        | Active    |
| 122      | 60        | Active    | 335      | 18.7      | Active    |
| 123      | 500       | Inactive  | 336      | 2.9       | Active    |
| 125      | 1000      | Inactive  | 342      | 6.7       | Active    |
| 133      | 60        | Active    | 343      | 6.9       | Active    |
| 135      | 60        | Inactive  | 353      | 6.2       | Active    |
| 137      | 500       | Inactive  | 354      | 20        | Active    |
| 155      | 60        | Inactive  | Valio    | lation s  | set       |
| 156      | 500       | Inactive  | 106      | 24.7      | Active    |
| 157      | 500       | Inactive  | 107      | 500       | Inactive  |
| 161      | 60        | Active    | 115      | 500       | Inactive  |
| 169      | 500       | Inactive  | 121      | 60        | Active    |
| 170      | 500       | Inactive  | 124      | 500       | Active    |
| 172      | 10        | Active    | 132      | 60        | Active    |
| 173      | 1000      | Inactive  | 134      | 60        | Active    |
| 175      | 100       | Active    | 136      | 500       | Inactive  |
| 176      | 1.99      | Active    | 163      | 500       | Active    |
| 177      | 1000      | Inactive  | 168      | 500       | Active    |
| 179      | 60        | Active    | 171      | 5.8       | Active    |
| 182      | 1000      | Inactive  | 174      | 1000      | Inactive  |
| 185      | 12.5      | Active    | 181      | 100       | Active    |
| 190      | 60        | Active    | 236      | 60        | Inactive  |
| 191      | 500       | Inactive  | 251      | 10        | Active    |
| 200      | 500       | Inactive  | 276      | 16.5      | Inactive  |
| 201      | 500       | Inactive  | 300      | 1.7       | Active    |
| 213      | 100       | Active    | 303      | 21        | Active    |
| 218      | 100       | Active    | 327      | 10.3      | Active    |
| 230      | 60        | Active    | 329      | 13        | Active    |
| 235      | 1000      | Inactive  | 334      | 8.3       | Inactive  |

Table 3.124:Predicted activities for the training and validation sets of the NCE-<br/>0217 analogues

### 3.11.4.2 RESULTS OF THE NCE-0217 QSAR

The model QSAR that was developed was used to predict the activity of a series of 63 new analogues of NCE-0217 with unknown activities. These predictions were used to determine which molecules would be best suited for synthesis and *in vitro* testing. The results of the predictions are detailed in Appendix 9.

From the series, forty-one of the molecules were predicted to be active, with one more compound that was borderline inactive. The downside to the binary QSAR is that it only predicts active or inactive; it is difficult to tell which of these compounds would be most active. It is hoped that once more analogues are synthesized and  $IC_{50}$  values are obtained that the QSAR model can be improved to better predict activity.

## **3.12 CONCLUSIONS**

The results of the optimizations of various small molecules endogenous to the brain with the **HHQK** region of  $\beta$ -amyloid with Alzheimer's disease indicate their potential as amyloid-antiaggregants. Both active and inactive molecules are found within the endogenous species examined, allowing for identification of the more viable routes to pursue.

Synthetic bi-aromatic molecules have also exhibited potential to act as promiscuous drug molecules by binding to the **BBXB** motif present on many proteins implicated in AD. Furthermore, the use of QSAR studies can help develop these molecules into even better targets.

Examination of the data has revealed that "physinformatics" may be a useful tool in the drug design process. While cheminformatics deals with large scale data mining such as screening virtual libraries, and docking simulations, there are details at the submolecular level that are also relevant. The atomic features that allow for bond formation and various types of interactions to occur are useful in designing drugs when the target region is known. In the case of this study, ideally the drug molecule should be capable of forming aromatic-aromatic interactions, aromatic-cationic interactions or hydrogen bonds. Physinformatics deals with searching libraries of data for specific functional groups and specific electronic arrangements of these functional groups such that molecules could be identified that bear these desired features. If the relative spatial arrangement and chemical features of the target are known (such as the **BBXB** region), the use of physinformatics allows for identification of lead molecules that will interact with more specificity. The positive results of the use of physinformatics can be seen in this chapter, as the screening of endogenous molecules looked at specific charged and aromatic regions at certain distances; most of the identified species were very capable of binding to the charged region of interest and lend themselves to further development.

## **3.13** INTERPRETATION

The results of the *in silico* optimizations of phenylalanine, dopamine, D- and Ltryptophan, tryptamine and 3-hydroxyanthranilic acid demonstrate that not all endogenous small molecules are capable of binding to  $\beta$ -amyloid to prevent its aggregation.

Of the molecules systematically examined from the indoleamine metabolic pathway, only one demonstrated noticeable activity towards  $\beta$ -amyloid. Both tryptophan and tryptamine demonstrated only a few interactions with the **HHQK** region of A $\beta$ . When the measured binding energies of these systems were compared to the other species presented in this chapter, they were much less favourable. Combining both the number of interactions with the measured binding energies, it can be concluded that both D- and Ltryptophan and tryptamine are inactive molecules; this is further supported by *in vitro* results indicating a lack of effect in A $\beta$  aggregation inhibition. Relative to these two species, 3HAA demonstrates considerably more activity, both *in silico* and *in vitro*. The *in silico* studies on 3HAA demonstrate a capacity to bind to both the **HHQK** and EVHHQK regions of A $\beta$ .

Phenylalanine and dopamine bind to  $\beta$ -amyloid in the **HHQK** and LVFF regions of the protein. The binding energies of these two molecules are more favourable than those of 3-hydroxyanthranilic acid, but the numbers of measureable binding interactions are more similar. These three molecules all represent viable targets for further development, and indeed the QSAR on 3HAA has shown that further active molecules can be designed through bioisosteric substitution and their binding sensitivity and selectivity can be improved accordingly.

The results of comparing the binding capacity of the novel chemical entities with a common **BBXB** receptor show the usefulness of designing molecules for a specific target located on multiple proteins. Given the implication of multiples factors in the progression of AD, there are a significant number of druggable targets; however, the more drugs an individual takes, the greater the risk of adverse drug-drug interactions.

The results of the NCEs demonstrate the viability of a single molecule, such as NCE-0103 or NCE-0325, binding to a specific **BBXB** receptor motif which is located only on proteins involved in AD. This presents the opportunity to design a single drug molecule to target a disease from multiple angles. For almost all of the proteins studies, the molecules bound within the **BBXB** region, with only a few interactions occurring with the amino acids of the surrounding side chains. This demonstrates a specificity of the compounds for the targeted region, which would further minimize adverse reactions.

The NCE compounds also demonstrate how analogues can be designed to increase the specificity and efficacy of potential therapeutic molecules. Of the NCEs examined, NCE-0112 demonstrates the lease amount of binding and when compared to the other analogues, is the smallest and least substituted species. This information indicates that the size of the molecule plays a role in its capacity to interact with the **BBXB** target, and the substitution may play a role in how well those interactions occur.

The QSAR of NCE-0217 demonstrates that *in silico* methods can be used to reduce synthetic cost by identifying which species would be the most ideal options to synthesize in order to maximize activity, and to avoid wasting time and resources developing inactive analogues.

# CHAPTER 4: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING EVHHQK

The **HHQK** region of  $\beta$ -amyloid is of interest in the development of antiaggregants due to the role it plays in the protein misfolding. This highly positively charged region can interact with negatively charged macromolecules on cell membranes, such as with glycosaminoglycans; allowing for the misfolding process to occur and a seeding process to begin [16, 17]. If a molecule could bind to that region, it could prevent these interactions from occurring.

The focus on **HHQK** can be expanded to EV**HHQK**. The presence of a negatively charged glutamic acid residue located immediately next to **HHQK** allows for different species of molecules to be examined as potential targets. A molecule binding across this expanded region could likewise prevent unwanted binding with membrane surfaces. Some of the species examined in the previous chapter looked at their capacity to bind to EV**HHQK** as well as the other regions of interest, **HHQK** and LVFF.

This chapter will study the potential interactions of two endogenous molecules and two synthetic compounds, to determine how they could bind to the EVHHQK region of A $\beta$ , and if the negatively charged functional group present plays a role in their binding strength.

## 4.1 $\gamma$ -Aminobutyric Acid

 $\gamma$ -Aminobutyric acid (GABA) is an endogenous molecule of the brain that plays a role as an inhibitory neurotransmitter [39]. GABA is a  $\gamma$  amino acid, and exists as a zwitterion at physiological pH (Figure 4.1). The presence of both a negatively charged carboxylate group and a positively charged amino group should allow the molecule to interact with the EVHHQK region of  $\beta$ -amyloid.



## Figure 4.1: GABA at physiological pH 4.1.1 GAS PHASE OPTIMIZATIONS OF GABA AND β-AMYLOID

Gas phase optimizations were performed to examine the potential for GABA to bind to the EVHHQK region of A $\beta$ . These studies were performed in MOE using the CHARMM22 force field [48, 88].

## 4.1.1.1 PREPARATION OF SYSTEMS FOR OPTIMIZATIONS

For the gas phase energy minimizations, the six conformers of  $\beta$ -amyloid (1AMB, 1AMC, 1AMI, 1BA4, 1IYT, 1Z0Q) were modified for physiological pH conditions [68-72, 83, 88]. As necessary, hydrogen atoms were added, and side chains were charged appropriately before optimization with a constrained protein backbone. The energies of these geometry optimized structures are listed in Appendix 6.

A model of GABA was constructed in an extended conformation and subjected to energy minimization (the results of a conformational search generated structures that were too collapsed for use). The optimized energies of GABA are given in Table 4.1.

Table 4.1: Gas phase energies of GABA

|      | Ener             | gies (kcal, | /mol)     |
|------|------------------|-------------|-----------|
|      | E <sub>tot</sub> | $E_{vdw}$   | $E_{ele}$ |
| GABA | -10.51           | 1.11        | -12.18    |

### 4.1.1.2 Selection of Systems for Optimization

For the gas phase minimizations, each system was set up such that either the carboxylate group or the amino group of GABA was oriented approximately 3.0 Å away from two of the charged amino acids in the EVHHQK region of  $\beta$ -amyloid. This was performed for each of the six different conformations of A $\beta$ . Although interactions were expected to be unfavourable when the amino group was oriented towards the lysine side chain, they were still included to see what kind of binding interactions could occur in these situations.

### 4.1.1.3 Optimization of the Gas Phase Systems

For each of the minimizations the charges of the system were optimized for the CHARMM22 force field, and the protein backbone was constrained [48]. Each system was examined for potential binding interactions, and the energies of the geometry optimized systems were calculated via the following equations:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{GABA} \tag{4.1}$$

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwGABA}$$
(4.2)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eleGABA}$$
(4.3)

The energies of the individually optimized protein conformation and GABA molecule were subtracted from the energy of the optimized system.

## 4.1.2 Results of the Gas Phase Optimizations of GABA and $\beta$ -Amyloid

The results of the gas phase minimized systems of  $A\beta$  and GABA are summarized in the following table, and divided by conformer. The initial orientation of the system, and the resulting orientation upon optimization are summarized with the amino acid side chains represented by single letter abbreviations; X indicates an amino acid outside of the EVHHQK region of interest. The amino group of GABA is represented by N, while the carboxylate group is represented by C.

The calculated binding energies are also given, along with the number of measurable bonds that formed in each system.

| Conformer |     | Ini | tial O | rienta | tion |     |     |     | Final | Orie | ntation | ı   |     | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ | Measured |
|-----------|-----|-----|--------|--------|------|-----|-----|-----|-------|------|---------|-----|-----|------------------|------------------|------------------|----------|
|           | E11 | V12 | H13    | H14    | Q15  | K16 | E11 | V12 | H13   | H14  | Q15     | K16 | Х   | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       | Bonds    |
| 1AMB      | С   |     |        | Ν      |      |     |     |     |       | С    |         |     |     | -36.35           | -0.29            | -37.83           | 0        |
|           | Ν   |     |        | С      |      |     | Ν   |     |       | С    |         |     |     | -29.96           | -1.59            | -28.56           | 1        |
|           |     |     | Ν      | С      |      |     |     |     |       | С    |         |     | Ν   | -21.77           | -2.83            | -19.83           | 1        |
|           |     |     | С      | Ν      |      |     |     |     | С     | С    |         |     |     | -31.09           | -4.44            | -29.98           | 0        |
|           |     |     | С      |        |      | Ν   |     |     | С     |      |         | С   |     | -35.92           | -1.91            | -35.33           | 1        |
|           |     |     | Ν      |        |      | С   |     |     |       |      |         | С   |     | -36.12           | -1.86            | -34.77           | 1        |
| 1AMC      | С   |     |        | Ν      |      |     | -   | -   | -     | -    | -       | -   | -   | -4.40            | 0.28             | -4.77            | 0        |
|           | Ν   |     |        | С      |      |     | Ν   |     |       | С    |         |     |     | -48.19           | -0.75            | -47.91           | 0        |
|           |     |     | С      | Ν      |      |     |     |     | С     | Ν    |         |     | С   | -31.53           | -4.94            | -29.38           | 0        |
|           |     |     | Ν      | С      |      |     |     |     |       | С    |         |     | Ν   | -42.19           | -0.37            | -43.76           | 0        |
|           |     |     | С      |        |      | Ν   |     |     | С     |      |         | С   |     | -37.58           | -2.22            | -36.33           | 1        |
|           |     |     | Ν      |        |      | С   |     |     |       |      |         |     | С   | -39.43           | -1.39            | -39.02           | 0        |
| 1AML      | Ν   |     |        | С      |      |     | Ν   |     |       | С    | Ν       |     | С   | -29.57           | -3.50            | -27.29           | 0        |
|           | С   |     |        | Ν      |      |     |     |     |       | С    |         |     |     | -18.14           | -3.45            | -15.89           | 0        |
|           |     |     | Ν      | С      |      |     |     |     |       |      |         |     | С   | -41.01           | 0.84             | -49.17           | 0        |
|           |     |     | С      | Ν      |      |     |     |     | С     |      |         |     | С   | -56.26           | -8.47            | -51.11           | 0        |
|           |     |     | С      |        |      | Ν   |     | С   | С     |      |         |     |     | -43.94           | -2.99            | -41.56           | 1        |
|           |     |     | Ν      |        |      | С   |     |     |       |      |         | С   |     | -29.67           | -1.13            | -29.98           | 0        |
| 1BA4      | Ν   |     |        |        |      | С   | С   |     |       |      |         | С   | N/C | -18.91           | -8.15            | -19.59           | 0        |
|           | С   |     |        |        |      | Ν   | Ν   |     |       |      |         | Ν   | N/C | -48.97           | -3.57            | -46.26           | 0        |
|           |     |     | Ν      | С      |      |     |     |     | С     | С    |         |     |     | -48.09           | -3.55            | -44.32           | 0        |
|           |     |     | С      | Ν      |      |     |     |     | С     |      |         |     |     | -36.09           | -1.41            | -34.03           | 0        |
| 1IYT      | Ν   |     |        | С      |      |     | Ν   |     |       | С    |         |     |     | -41.41           | -5.56            | -35.33           | 0        |
|           | С   |     |        | Ν      |      |     |     |     |       | Ν    |         |     | Ν   | -16.64           | -5.12            | -10.53           | 0        |
|           |     |     | С      | Ν      |      |     |     |     | С     | С    |         |     | С   | -41.27           | -5.13            | -34.72           | 0        |
|           |     |     | Ν      | С      |      |     |     |     | N/C   | С    |         |     |     | -20.66           | -2.05            | -17.05           | 1        |
|           |     |     | Ν      |        |      | С   |     |     |       |      |         | С   |     | -36.80           | -0.43            | -34.44           | 0        |
|           |     |     | С      |        |      | Ν   |     |     |       |      |         | С   | Ν   | -38.91           | -3.58            | -36.07           | 0        |
| 1Z0Q      | Ν   |     |        | С      |      |     | Ν   |     |       | С    |         |     |     | -46.87           | -2.60            | -44.77           | 1        |
|           | С   |     |        | Ν      |      |     | С   |     |       |      | С       |     |     | -10.73           | -2.40            | -11.50           | 0        |
|           |     |     | Ν      | С      |      |     |     |     |       | С    |         |     |     | -24.11           | -3.05            | -23.24           | 0        |
|           |     |     | С      | Ν      |      |     |     |     | С     |      |         |     | С   | -37.26           | -3.64            | -35.23           | 0        |
|           |     |     | С      |        |      | Ν   |     |     |       |      |         | С   |     | -31.49           | -0.50            | -31.40           | 1        |
|           |     |     | Ν      |        |      | С   |     |     |       |      |         | С   |     | -27.38           | -0.41            | -27.37           | 1        |

Table 4.2: The gas phase results of GABA interacting with β-amyloid

The gas phase results indicate that GABA is capable of binding to the EVHHQK region of A $\beta$ . Interactions at Glu11-His14 and His13-His14 are the favoured orientations in the minimized systems.

## 4.1.3 The Solution Phase Optimization of GABA and $\beta$ -Amyloid

Solution phase geometry optimizations were performed for each of the gas phase optimized systems of GABA and  $\beta$ -amyloid. Systems were solvated with a box of water molecules large enough to surround the system with an 8.0 Å margin. Energy

minimization was performed with unconstrained protein backbones and periodic boundary conditions, and the optimized systems were examined for potential binding interactions. The energies of the systems were measured in the absence of solvent with constrained protein backbones to better determine the strength of interactions.

The binding energies were calculated using the following equations:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{GABA} \tag{4.4}$$

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eleGABA}$$
(4.5)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwGABA}$$
(4.6)

The energies of  $A\beta$  and GABA optimized individually in solvated environments were subtracted from the energies of the optimized systems to calculate the binding energies. The energies of the  $\beta$ -amyloid conformers are given in Appendix 6 and the energies of the optimized GABA molecule are given in Table 4.3.

### Table 4.3: Solution phase energies of GABA

|      | Ener             | gies (kcal,      | /mol)     |
|------|------------------|------------------|-----------|
|      | E <sub>tot</sub> | E <sub>vdw</sub> | $E_{ele}$ |
| GABA | -4.73            | 0.85             | -11.72    |

## 4.1.4 The Results of the Solution Phase Optimization of GABA and $\beta$ - Amyloid

The results of the energy minimization of solvated systems of GABA and six different conformers of  $\beta$ -amyloid are summarized in the following tables. The initial and final orientations of the system are given with the three letter abbreviations of the amino acids. The measured energies and the binding energies are given, and binding interactions are noted according to colour. Hydrogen bonds are coloured orange, and interactions with

the  $-CH_2$ - chain are indigo, the -CH- of the backbone are lime green, and the C=O of the backbone are purple.

|                     | Glu11   | Val12   | His13 | His14 | Gln15 | Lys16 | Tyr10   | Glul 1   | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|---------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |         |       | С     |       |       | N       |          |       |       | С     |       |       |       |
| Final Orientation   |         |         |       | С     |       |       | Ν       |          |       |       | С     |       |       |       |
| Total =             | -54.71  | kcal/mo | 01    |       |       |       | -57.67  | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 38.81   | kcal/mo | ol    |       |       |       | 44.48   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -261.81 | kcal/mo | ol    |       |       |       | -253.80 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -64.37  | kcal/mo | ol    |       |       |       | -67.32  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -10.19  | kcal/mo | ol    |       |       |       | -4.51   | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -55.86  | kcal/mo | ol    |       |       |       | -47.85  | kcal/mol |       |       |       |       |       |       |
| Initial Orientation | Ν       |         |       | С     |       |       |         |          |       | С     |       |       | С     |       |
| Final Orientation   | Ν       |         |       |       |       |       |         |          |       | С     |       |       |       |       |
| Total =             | -49.81  | kcal/mo | ol    |       |       |       | -45.92  | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 42.06   | kcal/mo | ol    |       |       |       | 51.70   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -256.77 | kcal/mo | ol    |       |       |       | -254.23 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -59.47  | kcal/mo | 01    |       |       |       | -55.58  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -6.94   | kcal/mo | ol    |       |       |       | 2.70    | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -50.83  | kcal/mo | ol    |       |       |       | -48.28  | kcal/mol |       |       |       |       |       |       |
| Initial Orientation |         |         | C     | С     |       |       |         |          |       |       |       |       | C     |       |
| Final Orientation   |         |         | C     | C     |       |       |         |          |       | С     |       |       | C     | С     |
| Total =             | -61.02  | kcal/mo | 01    |       |       |       | -53.28  | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 43.62   | kcal/mo | ol    |       |       |       | 42.83   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -252.97 | kcal/mo | ol    |       |       |       | -244.36 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -70.68  | kcal/mo | ol    |       |       |       | -62.94  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -5.38   | kcal/mo | ol    |       |       |       | -6.17   | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -47.02  | kcal/mo | ol    |       |       |       | -38.41  | kcal/mol |       |       |       |       |       |       |

Table 4.4: The solution phase results of GABA interacting with the 1AMB conformer of β-amyloid

|                     | Glu11   | Val12  | His13 | His14 | Gln15 | Lys16 | Π | Tyr10   | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|--------|-------|-------|-------|-------|---|---------|---------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | -       | -      | -     | -     | -     | -     |   |         |         |       |       | С     |       |       | Ν     |
| Final Orientation   |         |        |       | Ν     |       |       |   |         |         |       |       | С     |       |       | Ν     |
| Total =             | -18.48  | kcal/m | ol    |       |       |       |   | -78.66  | kcal/mo | 1     |       |       |       |       |       |
| van der Waals =     | 52.93   | kcal/m | ol    |       |       |       |   | 45.81   | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic =     | -244.22 | kcal/m | ol    |       |       |       |   | -275.78 | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{tot} =$  | 16.68   | kcal/m | ol    |       |       |       |   | -43.49  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 16.11   | kcal/m | ol    |       |       |       |   | 8.99    | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{ele} =$  | -2.86   | kcal/m | ol    |       |       |       |   | -34.42  | kcal/mo | 1     |       |       |       |       |       |
| Initial Orientation | Ν       |        |       | С     |       |       |   |         |         |       | С     | N     |       |       | С     |
| Final Orientation   | N       |        |       | Č     |       |       |   | С       |         |       | Č     | N     |       |       | Č     |
|                     |         |        |       |       |       |       |   |         |         |       |       | С     |       |       |       |
| Total =             | -99.65  | kcal/m | ol    |       |       |       |   | -81.76  | kcal/mo | 1     |       |       |       |       |       |
| van der Waals =     | 33.15   | kcal/m | ol    |       |       |       |   | 38.61   | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic =     | -282.68 | kcal/m | ol    |       |       |       |   | -276.81 | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{tot} =$  | -64.48  | kcal/m | ol    |       |       |       |   | -46.59  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -3.67   | kcal/m | ol    |       |       |       |   | 1.79    | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{ele} =$  | -41.32  | kcal/m | ol    |       |       |       |   | -35.45  | kcal/mo | 1     |       |       |       |       |       |
|                     |         |        | _     |       |       | -     |   |         |         |       |       |       |       |       | _     |
| Initial Orientation |         |        | С     |       |       | C     |   |         |         |       |       |       |       |       | С     |
| Final Orientation   |         |        | С     |       |       | С     |   | -       | -       | -     | -     | -     | -     | -     | -     |
| Total =             | -70.99  | kcal/m | ol    |       |       |       |   | -79.45  | kcal/mo | 1     |       |       |       |       |       |
| van der Waals =     | 46.49   | kcal/m | ol    |       |       |       |   | 50.17   | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic =     | -278.28 | kcal/m | ol    |       |       |       |   | -285.23 | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{tot} =$  | -35.83  | kcal/m | ol    |       |       |       |   | -44.28  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 9.67    | kcal/m | ol    |       |       |       |   | 13.35   | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{ele} =$  | -36.92  | kcal/m | ol    |       |       |       |   | -43.87  | kcal/mo | 1     |       |       |       |       |       |

# Table 4.5: The solution phase results of GABA interacting with the 1AMC conformer of β-amyloid

|                     | Arg5    | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 | Val18 | Tyr10   | Glu11     | Val12 | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|---------|-------|-------|-------|-------|-------|-------|---------|-----------|-------|-------|-------|-------|-------|
| Initial Orientation |         | _       |       |       | С     |       |       |       | С       |           |       | С     |       |       |       |
| Final Orientation   | С       |         |       |       |       |       |       |       | С       |           |       | С     |       |       |       |
| Total =             | 91.90   | kcal/mo | 1     |       |       |       |       |       | 47.94   | kcal/mo   | 1     |       |       |       |       |
| van der Waals =     | 60.19   | kcal/mo | 1     |       |       |       |       |       | 63.23   | kcal/mo   | 1     |       |       |       |       |
| Electrostatic =     | -192.81 | kcal/mo | 1     |       |       |       |       |       | -228.06 | kcal/mo   | 1     |       |       |       |       |
|                     |         |         |       |       |       |       |       |       |         |           |       |       |       |       |       |
| $\Delta E_{tot} =$  | -22.68  | kcal/mo | 1     |       |       |       |       |       | -66.64  | kcal/mo   | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -10.11  | kcal/mo | 1     |       |       |       |       |       | -7.07   | kcal/mo   | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -9.99   | kcal/mo | 1     |       |       |       |       |       | -45.24  | kcal/mo   | 1     |       |       |       |       |
|                     |         |         |       |       |       |       |       |       |         |           |       |       |       |       |       |
| Initial Orientation | С       | Ν       |       |       | С     | Ν     |       |       | С       |           |       |       |       |       |       |
| Final Orientation   | С       | Ν       |       |       |       | Ν     |       | Ν     |         |           |       |       | С     |       |       |
| Total =             | 77 48   | kcal/mo | 1     |       |       |       |       |       | 42.43   | kcal/mo   | 1     |       |       |       |       |
| van der Waals =     | 66.61   | kcal/mo | 1     |       |       |       |       |       | 72.37   | kcal/mo   | 1     |       |       |       |       |
| Electrostatic =     | -196.75 | kcal/mo | 1     |       |       |       |       |       | -238.93 | kcal/mo   | 1     |       |       |       |       |
|                     |         |         |       |       |       |       |       |       |         |           |       |       |       |       |       |
| $\Delta E_{tot} =$  | -37.10  | kcal/mo | 1     |       |       |       |       |       | -72.15  | kcal/mo   | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -3.69   | kcal/mo | 1     |       |       |       |       |       | 2.07    | kcal/mo   | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -13.93  | kcal/mo | 1     |       |       |       |       |       | -56.11  | kcal/mo   | 1     |       |       |       |       |
|                     |         |         |       |       |       |       |       |       |         |           |       |       |       |       |       |
| Initial Orientation |         |         | С     | С     |       |       |       |       |         |           |       |       |       |       | С     |
| Final Orientation   |         |         | С     | С     |       |       | С     |       |         |           |       |       |       |       | С     |
| Total =             | 63.09   | kcal/mo | 1     |       |       |       |       |       | 93.41   | kcal/mo   | 1     |       |       |       |       |
| van der Waals =     | 68.02   | kcal/mo | 1     |       |       |       |       |       | 70.90   | kcal/mo   | 1     |       |       |       |       |
| Electrostatic =     | -226.49 | kcal/mo | 1     |       |       |       |       |       | -214.71 | kcal/mo   | 1     |       |       |       |       |
|                     | 51.40   | 11/     | 1     |       |       |       |       |       | 21.17   | 11/       | 1     |       |       |       |       |
| $\Delta E_{tot} =$  | -51.49  | kcal/mo | 1     |       |       |       |       |       | -21.17  | kcal/mo   | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.28   | kcal/mo | 1     |       |       |       |       |       | 0.60    | ) kcal/mo | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -43.67  | kcal/mo | 1     |       |       |       |       |       | -31.89  | kcal/mo   | 1     |       |       |       |       |

# Table 4.6: The solution phase results of GABA interacting with the 1AML conformer of β-amyloid

|                      | Glu3           | Glul 1     | Vall2 | His13 | His14 | Gln15 | Lys16 | Phe19 |
|----------------------|----------------|------------|-------|-------|-------|-------|-------|-------|
| Initial Orientation  | N              | Ν          |       |       |       |       | Ν     | С     |
| Final Orientation    | N              |            |       |       |       |       | Ν     | Ν     |
|                      |                |            |       |       |       |       |       | С     |
| Total =              | 75 27          | kcal/mol   |       |       |       |       |       |       |
| van der Waak =       | 73.11          | kcal/mol   |       |       |       |       |       |       |
| Electrostatic =      | -217.83        | kcal/mol   |       |       |       |       |       |       |
| Lieedosade           | 217.00         |            |       |       |       |       |       |       |
| $\Delta E_{tot} =$   | -46.84         | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{vdw} =$   | 1.14           | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{ele} =$   | -42.89         | kcal/mol   |       |       |       |       |       |       |
|                      |                |            |       |       |       |       |       |       |
| Initial Orientation  | N              | С          |       |       |       |       | С     | С     |
|                      | С              |            |       |       |       |       |       |       |
| Final Orientation    | Ν              | Ν          |       |       |       |       | С     | С     |
| Total =              | 72 94          | kcal/mol   |       |       |       |       |       |       |
| van der Waals =      | 80.46          | kcal/mol   |       |       |       |       |       |       |
| Electrostatic =      | -217.83        | kcal/mol   |       |       |       |       |       |       |
| Electostate          | 217.05         | Rearmon    |       |       |       |       |       |       |
| $\Delta E_{tot} =$   | -49.17         | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{vdw} =$   | 8.49           | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{ele} =$   | -42.79         | kcal/mol   |       |       |       |       |       |       |
|                      |                |            |       |       |       |       |       |       |
| Initial Orientation  |                |            |       | С     |       |       |       |       |
| Final Orientation    |                |            |       | С     |       |       |       |       |
| Total -              | 66.05          | 1          |       |       |       |       |       |       |
| Total –              | 00.93<br>72.17 | kcal/mol   |       |       |       |       |       |       |
| Flootrostatio -      | 216.22         | kcal/mol   |       |       |       |       |       |       |
| Electrostatic –      | -210.55        | KCal/IIIOI |       |       |       |       |       |       |
| $\Delta E_{tot} =$   | -55.16         | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{vdw} =$   | 0.19           | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{ele} =$   | -41.29         | kcal/mol   |       |       |       |       |       |       |
| ele                  |                |            |       |       |       |       |       |       |
| Initial Orientation  |                |            |       | С     | С     |       |       |       |
| Final Orientation    |                |            |       | С     | С     |       |       |       |
| T-(-1-               | 20.50          | 1          |       |       |       |       |       |       |
| iotal=               | 28.59          | кса/mol    |       |       |       |       |       |       |
| van der waals $=$    | 69.93          | kcal/mol   |       |       |       |       |       |       |
| Electrostatic =      | -250.16        | Kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{tot} =$   | -93.52         | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{ydy} =$   | -2.05          | kcal/mol   |       |       |       |       |       |       |
| $\Delta E_{\perp} =$ | -75 12         | kcal/mol   |       |       |       |       |       |       |
| ele                  | -15.12         | Neur mor   |       |       |       |       |       |       |

# Table 4.7: The solution phase results of GABA interacting with the 1BA4 conformer of β-amyloid

|                     | Glul 1  | Val12      | His13 | His14 | Gln15 | Lys16 | Phe20 | П | Tyr10   | Glu11    | Vall2 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|------------|-------|-------|-------|-------|-------|---|---------|----------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |            | Ν     | С     |       |       |       | Π | N       |          |       |       | Ν     |       |       |       |
|                     |         |            | C     |       |       |       |       |   |         |          |       |       |       |       |       |       |
| Final Orientation   |         |            | N     | С     |       |       |       |   | Ν       | Ν        |       |       | Ν     |       |       |       |
|                     |         |            | C     |       |       |       |       |   |         |          |       |       |       |       |       |       |
| Total =             | 78.59   | kcal/m     | ol    |       |       |       |       |   | 68.99   | kcal/m   | ol    |       |       |       |       |       |
| van der Waals =     | 59.40   | kcal/m     | 01    |       |       |       |       |   | 64.70   | kcal/m   | ol    |       |       |       |       |       |
| Electrostatic =     | -214.32 | kcal/m     | ol    |       |       |       |       |   | -214.83 | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -66.51  | kcal/mo    | 01    |       |       |       |       |   | -76.11  | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -17.56  | kcal/mo    | ol    |       |       |       |       |   | -12.26  | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | 4.45    | kcal/m     | 01    |       |       |       |       |   | 3.93    | kcal/m   | ol    |       |       |       |       |       |
| Initial Orientation |         |            |       |       |       | C     | N     |   |         | N        |       |       | C     |       |       |       |
| Final Orientation   |         |            |       |       |       | C     | N     |   |         | N        |       |       | C     |       |       |       |
| Total =             | 38 36   | kcal/m     | 1     |       |       |       |       |   | 47.02   | kcal/m   | ol    |       |       |       |       |       |
| van der Waals =     | 70.07   | kcal/m     | 1     |       |       |       |       |   | 71.76   | kcal/m   | ol    |       |       |       |       |       |
| Electrostatic =     | -257.00 | kcal/m     | ol    |       |       |       |       |   | -247.41 | kcal/m   | ol    |       |       |       |       |       |
| ΔE =                | -106 74 | kcal/m     | 1     |       |       |       |       |   | -98.08  | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{101} =$  | -6.90   | kcal/mc    | 1     |       |       |       |       |   | -5.20   | kcal/m   | ol    |       |       |       |       |       |
| AE -                | 20.20   | leas 1/mar | .1    |       |       |       |       |   | -9.20   | leggl/m  | o1    |       |       |       |       |       |
| $\Delta E_{ele} -$  | -38.24  | KCal/III   | 01    |       |       |       |       |   | -28.03  | Kcal/III | 01    |       |       |       |       |       |
| Initial Orientation |         |            |       |       |       | С     |       |   |         |          |       | С     | С     |       |       | С     |
| Final Orientation   |         |            | С     |       |       |       |       |   |         |          |       | C     | C     |       |       | С     |
| Total =             | 62.09   | kcal/m     | 01    |       |       |       |       |   | 49.40   | kcal/m   | ol    |       |       |       |       |       |
| van der Waals =     | 64.66   | kcal/m     | 51    |       |       |       |       |   | 74.62   | kcal/m   | ol    |       |       |       |       |       |
| Electrostatic =     | -233.50 | kcal/m     | ol    |       |       |       |       |   | -263.68 | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -83.01  | kcal/mo    | 01    |       |       |       |       |   | -95.70  | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -12.30  | kcal/m     | 01    |       |       |       |       |   | -2.34   | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -14.74  | kcal/m     | 01    |       |       |       |       |   | -44.92  | kcal/m   | ol    |       |       |       |       |       |

# Table 4.8: The solution phase results of GABA interacting with the 1IYT conformer of β-amyloid

|                     | Glu11   | Val12   | His13 | His14 | Gln15 | Lys16 |   | Tyr10   | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|---------|-------|-------|-------|-------|---|---------|---------|-------|-------|-------|-------|-------|
| Initial Orientation | С       |         |       |       | С     |       |   | С       |         |       | С     |       |       |       |
| Final Orientation   | С       |         |       |       | С     |       |   | С       |         |       | С     |       |       |       |
| Total =             | 86.70   | kcal/mo | 1     |       |       |       |   | 66.11   | kcal/mc | 51    |       |       |       |       |
| van der Waals =     | 62.28   | kcal/mo | 1     |       |       |       |   | 70.70   | kcal/mc | ol    |       |       |       |       |
| Electrostatic =     | -215.62 | kcal/mo | 1     |       |       |       |   | -238.28 | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{tot} =$  | -45.30  | kcal/mo | 1     |       |       |       |   | -65.98  | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -19.78  | kcal/mo | 1     |       |       |       |   | -11.36  | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{ele} =$  | -22.27  | kcal/mo | 1     |       |       |       |   | -44.93  | kcal/mc | ol    |       |       |       |       |
| Initial Orientation | N       |         |       | C     |       |       |   |         |         |       |       | C     |       |       |
| Final Orientation   | N       |         |       | C     |       |       |   | С       |         |       | С     | C     |       |       |
| i inti orientation  | 11      |         |       | e     |       |       |   | U       |         |       | U     | e     |       |       |
| Total =             | 68.29   | kcal/mo | 1     |       |       |       |   | 116.70  | kcal/mc | ol    |       |       |       |       |
| van der Waals =     | 83.65   | kcal/mo | 1     |       |       |       |   | 77.94   | keal/mc | ol    |       |       |       |       |
| Electrostatic =     | -251.24 | kcal/mo | 1     |       |       |       |   | -208.98 | kcal/m  | ol    |       |       |       |       |
| $\Delta E_{tot} =$  | -63.71  | kcal/mo | 1     |       |       |       |   | -15.29  | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{vdw} =$  | 1.60    | kcal/mo | 1     |       |       |       |   | -4.11   | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{ele} =$  | -57.89  | kcal/mo | 1     |       |       |       |   | -15.63  | kcal/mc | ol    |       |       |       |       |
| Liki-1 Onivertation |         |         |       |       |       | C     |   |         |         |       |       |       |       | C     |
| Final Orientation   |         |         |       |       |       | C     |   |         |         |       |       |       |       | c     |
| Total =             | 112.94  | kcal/mo | 1     |       |       |       |   | 61.90   | kcal/mc | ol    |       |       |       |       |
| van der Waals =     | 80.70   | kcal/mo | 1     |       |       |       |   | 71.70   | kcal/mc | ol    |       |       |       |       |
| Electrostatic =     | -217.54 | kcal/mo | 1     |       |       |       |   | -249.29 | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{tot} =$  | -19.06  | kcal/mo | 1     |       |       |       |   | -70.10  | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -1.35   | kcal/mo | 1     |       |       |       | 1 | -10.36  | kcal/mc | ol    |       |       |       |       |
| $\Delta E_{ele} =$  | -24.19  | kcal/mo | 1     |       |       |       |   | -55.94  | kcal/mc | ol    |       |       |       |       |

## Table 4.9: The solution phase results of GABA interacting with the 1Z0Q conformer of β-amyloid

The results of the solution phase optimization of GABA with  $\beta$ -amyloid indicate the neurotransmitter is capable of binding to the protein at two or more sites simultaneously within the EVHHQK region of interest. Interactions at His13-His14 are favoured, followed by Glu11-His14, then His13-Lys16. Only hydrogen bond interactions were formed in the optimized systems.

The electrostatic energies are much more favourable than the van der Waals energies of the systems, and there is no correlation between the favourability of the energies and the amount of binding occurring in the system. There are likely repulsive factors at play that cannot be visualized.
### 4.2 $\beta$ -Alanine

 $\beta$ -Alanine (Figure 4.2) is another small molecule endogenous to the brain that exhibits neuromodulatory effects [39]. It can exhibit effects on both GABAergic and glutamatergic processes in the brain [39]. It is similar in structure to GABA, being only one carbon unit shorter.



Figure 4.2: β-alanine at physiological pH

While the molecule exhibits the same functional groups as GABA, the shorter length will help to determine if the size of the amino acid is factor in its potential to form interactions within the EVHHQK region of  $\beta$ -amyloid.

#### 4.2.1 The Gas Phase Optimization of $\beta$ -Alanine and $\beta$ -Amyloid

An extended conformation of  $\beta$ -alanine was constructed and geometry optimized in the gas phase using the CHARMM22 force field [48, 88]. The energies of the optimized structure are given in Table 4.10.

#### Table 4.10: The gas phase energies of β-alanine

 $\frac{\text{Energies (kcal/mol)}}{\text{E}_{tot}} = \frac{\text{E}_{vdw}}{\text{B}-alanine} = -22.66 = 0.82 = -23.78$ 

Gas phase optimizations were performed following the procedure outlined in section 4.1.1.2-4.1.1.3. The energies were calculated using the same equations 4.1-4.3 with the energy of the optimized  $\beta$ -alanine molecule replacing the energy of GABA. The

protein energies are those calculated with a constrained backbone and listed in Appendix 6.

#### 4.2.2 The Gas Phase Results of $\beta$ -Alanine Interacting with $\beta$ -Amyloid

The gas phase results are summarized in the following table. The initial orientation of  $\beta$ -alanine and the final orientation upon minimization are given with the amino acids represented by single letters. The amino and carboxylate groups of  $\beta$ -alanine are represented by N and C, respectively. Interactions occurring with amino acids outside the EVHHQK region of interest are listed under the column X. The calculated binding energies are listed for each system, as well as the number of measurable bonds that formed.

The gas phase optimizations of  $\beta$ -alanine and the different conformers of A $\beta$  indicate that binding interactions can form at multiple sites within EVHHQK. Glu11-His14, His13-His14, and His13-Lys16 are the order of preferred binding interactions.

| Conformer |     | In  | itial O | rienta | tion |     |     |     | Final | Orie | ntatior | ı   |     | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ | Measured |
|-----------|-----|-----|---------|--------|------|-----|-----|-----|-------|------|---------|-----|-----|------------------|------------------|------------------|----------|
|           | E11 | V12 | H13     | H14    | Q15  | K16 | E11 | V12 | H13   | H14  | Q15     | K16 | Х   | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       | Bonds    |
| 1AMB      | С   |     |         | Ν      |      |     |     |     |       | С    |         |     |     | -24.49           | -1.16            | -26.85           | 0        |
|           | Ν   |     |         | С      |      |     | Ν   |     |       | С    |         |     |     | -27.01           | -2.59            | -24.46           | 0        |
|           |     |     | Ν       | С      |      |     |     |     |       |      |         |     | С   | -36.33           | -3.33            | -32.71           | 0        |
|           |     |     | С       | Ν      |      |     |     |     | С     | С    |         |     | Ν   | -36.79           | -4.50            | -35.20           | 0        |
|           |     |     | С       |        |      | Ν   |     |     | С     |      |         | С   |     | -31.09           | -1.20            | -30.61           | 1        |
|           |     |     | Ν       |        |      | С   |     |     | С     |      |         |     |     | -33.62           | -1.47            | -34.05           | 0        |
| 1AMC      | С   |     |         | Ν      |      |     | Ν   |     |       |      |         |     |     | -33.13           | -0.98            | -32.66           | 1        |
|           | Ν   |     |         | С      |      |     | Ν   |     |       | С    |         |     |     | -34.61           | -0.30            | -34.82           | 1        |
|           |     |     | С       | Ν      |      |     |     |     | С     | C/N  |         |     | Ν   | -37.10           | -3.93            | -35.05           | 0        |
|           |     |     | Ν       | С      |      |     |     |     |       | С    |         |     | N/C | -10.73           | -4.28            | -7.29            | 0        |
|           |     |     | С       |        |      | Ν   |     |     | С     |      |         | С   |     | -37.01           | -3.05            | -35.12           | 1        |
|           |     |     | Ν       |        |      | С   |     |     | С     |      |         |     | С   | -34.58           | 0.23             | -36.59           | 0        |
| 1AML      | С   |     |         | Ν      |      |     |     |     |       | С    |         |     |     | -36.54           | -1.79            | -34.83           | 0        |
|           | Ν   |     |         | С      |      |     | Ν   |     |       | С    |         |     | Ν   | -33.44           | -4.57            | -29.50           | 0        |
|           |     |     | С       | Ν      |      |     |     |     | С     |      |         |     | С   | -59.92           | -7.15            | -56.11           | 1        |
|           |     |     | Ν       | С      |      |     |     |     |       |      |         |     | С   | -31.77           | 0.22             | -33.95           | 0        |
|           |     |     | С       |        |      | Ν   | -   | -   | -     | -    | -       | -   | -   | -32.86           | -1.89            | -32.15           | 0        |
|           |     |     | Ν       |        |      | С   |     |     |       |      |         | С   |     | -26.79           | -1.38            | -25.96           | 0        |
| 1BA4      | С   |     |         |        |      | Ν   | С   |     |       |      |         |     | N/C | -43.99           | -3.79            | -45.74           | 0        |
|           | Ν   |     |         |        |      | С   | Ν   |     |       |      |         |     | Ν   | -30.07           | -4.97            | -27.16           | 1        |
|           |     |     | Ν       | С      |      |     |     |     |       | С    |         |     |     | -40.08           | -2.04            | -38.07           | 0        |
|           |     |     | С       | Ν      |      |     |     |     | С     | С    |         |     |     | -32.94           | -1.89            | -30.53           | 0        |
| 1IYT      | С   |     |         | Ν      |      |     | -   | -   | -     | -    | -       | -   | -   | -2.52            | -1.66            | -3.06            | 0        |
|           | Ν   |     |         | С      |      |     | Ν   |     |       | С    |         |     |     | -28.87           | -4.00            | -24.69           | 1        |
|           |     |     | Ν       | С      |      |     |     |     | С     | С    |         |     |     | -25.89           | -1.38            | -23.21           | 0        |
|           |     |     | С       | Ν      |      |     |     |     | С     |      |         |     |     | -22.02           | -2.25            | -20.47           | 0        |
|           |     |     | С       |        |      | Ν   |     |     | С     |      |         | С   |     | -26.01           | -1.97            | -24.13           | 0        |
|           |     |     | Ν       |        |      | С   |     |     |       |      |         | С   |     | -31.49           | -2.91            | -28.57           | 1        |
| 1Z0Q      | С   |     |         | Ν      |      |     | С   |     |       | Ν    |         |     |     | 3.68             | -0.85            | 2.49             | 0        |
|           | Ν   |     |         | С      |      |     |     |     |       | С    |         |     |     | -43.36           | -2.58            | -39.68           | 0        |
|           |     |     | Ν       | С      |      |     |     |     |       | С    |         |     |     | -24.15           | -0.90            | -24.89           | 0        |
|           |     |     | С       | Ν      |      |     |     |     | С     |      |         |     |     | -30.39           | -3.01            | -27.20           | 0        |
|           |     |     | С       |        |      | Ν   |     |     | С     |      |         |     |     | -26.16           | -0.87            | -26.04           | 0        |
|           |     |     | Ν       |        |      | С   |     |     |       |      |         | С   |     | -26.07           | -0.23            | -26.03           | 0        |

Table 4.11: The gas phase results of β-alanine interacting with β-amyloid

### 4.2.3 The Solution Phase Optimization of $\beta$ -Alanine and $\beta$ -Amyloid

Each of the gas phase systems was optimized in a solution phase environment. Explicit water molecules were used to solvate the system in a box surrounding the systems, with an 8.0 Å margin selected. Periodic boundary conditions were in place during the energy minimization.

The energies of the optimized systems were measured with a constrained protein backbone and the solvent molecules excluded. The energies could therefore be compared to better understand the contributions due to the binding or non-binding interactions occurring. The same equations of 4.4-4.6 were used with the solution phase optimized  $\beta$ alanine energy replaced the solvated GABA energy. The energies of the solution phase minimized  $\beta$ -alanine are given in Table 4.12.

**Table 4.12: Solution phase energies of β-alanine** 

 $\frac{\text{Energies (kcal/mol)}}{\text{E}_{tot}} = \frac{\text{E}_{vdw}}{2.67} = \frac{\text{E}_{ele}}{-23.64}$ 

### 4.2.4 The Results of the Solution Phase Optimization of $\beta$ -Alanine and $\beta$ - Amyloid

The results of the solvation energy minimized systems of  $\beta$ -alanine and  $\beta$ -amyloid are summarized in Tables 4.13-4.18. Initial and final orientations of the interactions of  $\beta$ alanine with the protein are represented by 3 letter amino acid abbreviations, and N and C for the charged amino and carboxylate groups of  $\beta$ -alanine. The measured energies of the systems are given, and the resulting binding energies that were calculated.

Hydrogen bonds are represented by orange coloured cells, and a cation- $\pi$  interaction is in green. Interactions with the –CH<sub>2</sub>- chain of the amino acid are in indigo, while backbone interactions are coloured purple for C=O and lime green for –CH-.

|                     | Glu11   | Val12   | His13 | His14 | Gln15 | Lys16 | Tyr10   | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|---------|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|
| Initial Orientation |         |         |       | С     |       |       | N       |         |       | С     | С     |       |       |
| Final Orientation   |         |         |       | Ν     |       |       | Ν       |         |       | С     |       |       |       |
|                     |         |         |       | С     |       |       |         |         |       |       |       |       |       |
| Total =             | -60.34  | kcal/mo | ol    |       |       |       | -70.01  | kcal/mo | 1     |       |       |       |       |
| van der Waals =     | 40.23   | kcal/mo | ol    |       |       |       | 37.72   | kcal/mo | 1     |       |       |       |       |
| Electrostatic =     | -255.43 | kcal/mo | ol    |       |       |       | -266.91 | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{tot} =$  | -56.41  | kcal/mo | l     |       |       |       | -66.08  | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -10.60  | kcal/mo | 01    |       |       |       | -13.10  | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -37.57  | kcal/mo | 01    |       |       |       | -49.05  | kcal/mo | 1     |       |       |       |       |
| Initial Orientation | Ν       |         |       | С     |       |       | С       |         |       |       |       |       |       |
| Final Orientation   | Ν       |         |       | С     |       |       | С       |         |       |       | С     |       |       |
| Total =             | -65.24  | kcal/mo | ol    |       |       |       | -72.06  | kcal/mo | 1     |       |       |       |       |
| van der Waals =     | 48.37   | kcal/mo | 01    |       |       |       | 38.17   | kcal/mo | 1     |       |       |       |       |
| Electrostatic =     | -264.55 | kcal/mo | ol    |       |       |       | -277.98 | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{tot} =$  | -61.31  | kcal/mo | l     |       |       |       | -68.13  | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.45   | kcal/mo | ol    |       |       |       | -12.65  | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -46.69  | kcal/mo | ol    |       |       |       | -60.12  | kcal/mo | 1     |       |       |       |       |
| Initial Orientation |         |         | С     |       |       |       |         |         |       | С     |       |       | С     |
| Final Orientation   |         |         | С     |       |       |       |         |         |       | С     |       |       | С     |
| Total =             | -68.76  | kcal/mo | ol    |       |       |       | -55.54  | kcal/mo | 1     |       |       |       |       |
| van der Waals =     | 50.30   | kcal/mo | ol    |       |       |       | 50.72   | kcal/mo | 1     |       |       |       |       |
| Electrostatic =     | -275.90 | kcal/mo | ol    |       |       |       | -264.28 | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{tot} =$  | -64.83  | kcal/mo | ol    |       |       |       | -51.61  | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{vdw} =$  | -0.52   | kcal/mo | ol    |       |       |       | -0.10   | kcal/mo | 1     |       |       |       |       |
| $\Delta E_{ele} =$  | -58.03  | kcal/mo | ol    |       |       |       | -46.42  | kcal/mo | 1     |       |       |       |       |

# Table 4.13: The solution phase results of β-alanine interacting with the 1AMB conformer of β-amyloid

|                     | Glu11   | Val12 His1 | 3 His14 | Gln15 | Lys16 | Tyr10   | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|------------|---------|-------|-------|---------|---------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | N       |            |         |       |       | Ν       |         |       | С     | С     |       |       |       |
| Final Orientation   | Ν       |            |         |       |       | N<br>C  |         |       | С     | N     |       |       |       |
| Total =             | -70.56  | kcal/mol   |         |       |       | -78.89  | kcal/mo | 01    |       |       |       |       |       |
| van der Waals =     | 40.10   | kcal/mol   |         |       |       | 41.43   | kcal/mo | ol    |       |       |       |       |       |
| Electrostatic =     | -271.20 | kcal/mol   |         |       |       | -290.84 | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -21.81  | kcal/mol   |         |       |       | -30.14  | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 1.45    | kcal/mol   |         |       |       | 2.78    | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -17.92  | kcal/mol   |         |       |       | -37.57  | kcal/mo | ol    |       |       |       |       |       |
| Initial Orientation | Ν       |            | С       |       |       |         |         |       | С     |       |       |       | С     |
| Final Orientation   | Ν       |            |         |       |       |         |         |       |       |       |       |       | С     |
| Total =             | -89.61  | kcal/mol   |         |       |       | -85.29  | kcal/mo | ol    |       |       |       |       |       |
| van der Waals =     | 43.36   | kcal/mol   |         |       |       | 36.10   | kcal/mo | ol    |       |       |       |       |       |
| Electrostatic =     | -291.71 | kcal/mol   |         |       |       | -281.39 | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -40.86  | kcal/mol   |         |       |       | -36.54  | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 4.71    | kcal/mol   |         |       |       | -2.55   | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -38.43  | kcal/mol   |         |       |       | -28.12  | kcal/mo | ol    |       |       |       |       |       |
| Initial Orientation |         | С          |         |       | С     | Ν       |         |       |       | С     |       |       |       |
|                     |         |            |         |       |       | С       |         |       |       |       |       |       |       |
| Final Orientation   |         | С          |         |       | С     | Ν       |         |       |       | С     |       |       |       |
|                     |         |            |         |       |       | С       |         |       |       |       |       |       |       |
| Total =             | -70.52  | kcal/mol   |         |       |       | -45.86  | kcal/mo | ol    |       |       |       |       |       |
| van der Waals =     | 47.77   | kcal/mol   |         |       |       | 46.62   | kcal/mo | ol    |       |       |       |       |       |
| Electrostatic =     | -276.41 | kcal/mol   |         |       |       | -249.21 | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -21.77  | kcal/mol   |         |       |       | 2.89    | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 9.12    | kcal/mol   |         |       |       | 7.97    | kcal/mo | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -23.14  | kcal/mol   |         |       |       | 4.07    | kcal/mo | 01    |       |       |       |       |       |

# Table 4.14: The solution phase results of β-alanine interacting with the 1AMC conformer of β-amyloid

|                     | Ser8    | Glu11    | Val12 | His13 | His14 | Gln15 | Lys16 |   | Tyr10   | Glu11    | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|---|---------|----------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |          |       |       | С     |       | ř     |   | C       |          |       | С     |       |       | ř     |       |
| Final Orientation   | С       |          |       |       | С     |       |       |   | С       |          |       | С     |       |       |       | С     |
| Total =             | 66.72   | 2 kcal/m | ol    |       |       |       |       |   | 48.74   | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 72.70   | 0 kcal/m | ol    |       |       |       |       |   | 49.97   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -213.88 | 8 kcal/m | lol   |       |       |       |       |   | -242.86 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -34.27  | 7 kcal/m | ol    |       |       |       |       |   | -52.25  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 0.58    | 8 kcal/m | ol    |       |       |       |       |   | -22.15  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -19.14  | 4 kcal/m | ol    |       |       |       |       |   | -48.12  | kcal/mol |       |       |       |       |       |       |
|                     |         |          |       |       | 0     |       |       |   | 6       |          |       |       |       |       |       |       |
| Initial Orientation | N       | N        |       |       | C     |       |       |   | C       |          |       |       |       |       |       |       |
| Final Orientation   | N       | Ν        |       |       | С     |       |       |   | -       | -        | -     | -     | -     | -     | -     | -     |
| Total =             | 80.73   | 3 kcal/m | юl    |       |       |       |       |   | 62.46   | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 76.62   | 2 kcal/m | ol    |       |       |       |       |   | 74.45   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -221.04 | 4 kcal/m | ol    |       |       |       |       |   | -223.24 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -20.20  | 5 kcal/m | ol    |       |       |       |       |   | -38.53  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 4.49    | 9 kcal/m | ol    |       |       |       |       |   | 2.32    | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -26.30  | 0 kcal/m | ol    |       |       |       |       |   | -28.51  | kcal/mol |       |       |       |       |       |       |
|                     |         |          |       |       |       |       | 9     |   |         |          |       |       |       |       |       |       |
| Initial Orientation |         |          |       |       |       |       | C     | H | -       | -        | -     | -     | -     | -     | -     | -     |
| Final Orientation   |         |          |       |       |       |       | C     |   |         |          |       | С     |       |       |       |       |
| Total =             | 71.60   | 0 kcal/m | ol    |       |       |       |       |   | 82.05   | kcal/mol |       |       |       |       |       |       |
| van der Waals =     | 68.8    | 7 kcal/m | ol    |       |       |       |       |   | 80.59   | kcal/mol |       |       |       |       |       |       |
| Electrostatic =     | -209.43 | 5 kcal/m | ol    |       |       |       |       |   | -220.96 | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -29.40  | 0 kcal/m | ol    |       |       |       |       | 1 | -18.94  | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -3.20   | 6 kcal/m | ol    |       |       |       |       |   | 8.47    | kcal/mol |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -14.7   | l kcal/m | ol    |       |       |       |       |   | -26.23  | kcal/mol |       |       |       |       |       |       |

# Table 4.15: The solution phase results of β-alanine interacting with the 1AML conformer of β-amyloid

|                     | Glu3    | Glu11   | Val12 | His13 | His14 | Gln15 | Lys16 | Phe19 |
|---------------------|---------|---------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | Ν       | С       |       |       |       |       |       | С     |
| Final Orientation   | Ν       | С       |       |       |       |       | Ν     | С     |
| Total =             | 38.41   | kcal/mo | 1     |       |       |       |       |       |
| van der Waals =     | 67.50   | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic =     | -231.71 | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{tot} =$  | -70.12  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -6.30   | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{ele} =$  | -4.76   | kcal/mo | 1     |       |       |       |       |       |
| Initial Orientation |         | Ν       |       |       |       |       |       | Ν     |
| Final Orientation   |         | Ν       |       |       |       |       |       | Ν     |
| Total =             | 84.27   | kcal/mo | 1     |       |       |       |       |       |
| van der Waals =     | 70.82   | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic =     | -202.33 | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{tot} =$  | -24.25  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.98   | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{ele} =$  | -15.38  | kcal/mo | 1     |       |       |       |       |       |
| Initial Orientation |         |         |       | С     | С     |       |       |       |
| Final Orientation   |         |         |       |       | С     |       |       |       |
| Total =             | 78.45   | kcal/mo | 1     |       |       |       |       |       |
| van der Waals =     | 75.02   | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic =     | -214.41 | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{tot} =$  | -30.08  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 1.22    | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{ele} =$  | -27.46  | kcal/mo | 1     |       |       |       |       |       |
| Initial Orientation |         |         |       |       | С     |       |       |       |
| Final Orientation   |         |         |       |       | C     |       |       |       |
| Total =             | 53.81   | kcal/mo | 1     |       |       |       |       |       |
| van der Waals =     | 71.35   | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic =     | -228.96 | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{tot} =$  | -54.72  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.45   | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{ele} =$  | -42.00  | kcal/mo | 1     |       |       |       |       |       |

# Table 4.16: The solution phase results of β-alanine interacting with the 1BA4 conformer of β-amyloid

|                     | Glu11   | Val12   | His13 | His14 | Gln15 | Lys16 | Tyr10   | Glu11    | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|---------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |         | С     | С     |       |       |         | N        |       |       | С     |       |       |       |
| Final Orientation   |         |         |       | С     |       |       | С       | Ν        |       |       | С     |       |       |       |
|                     |         |         |       |       |       |       | Ν       |          |       |       |       |       |       |       |
| Total =             | 43.27   | kcal/mo | 1     |       |       |       | 30.81   | kcal/m   | ol    |       |       |       |       |       |
| van der Waals =     | 70.54   | kcal/mo | 1     |       |       |       | 54.89   | kcal/m   | əl    |       |       |       |       |       |
| Electrostatic =     | -249.65 | kcal/mo | 1     |       |       |       | -243.80 | ) kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -88.24  | kcal/mo | 1     |       |       |       | -100.70 | ) kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -8.25   | kcal/mo | 1     |       |       |       | -23.90  | ) kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -18.98  | kcal/mo | 1     |       |       |       | -13.13  | kcal/m   | ol    |       |       |       |       |       |
| Initial Orientation |         |         | С     |       |       | С     | -       | _        | _     | _     | _     | _     | -     | _     |
| Final Orientation   |         |         | e     |       |       | C     |         | Ν        |       |       |       |       |       |       |
| Total =             | 35.49   | kcal/mo | 1     |       |       |       | 68.55   | i kcal/m | əl    |       |       |       |       |       |
| van der Waals =     | 69.32   | kcal/mo | 1     |       |       |       | 66.17   | / kcal/m | əl    |       |       |       |       |       |
| Electrostatic =     | -260.79 | kcal/mo | 1     |       |       |       | -226.16 | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -96.02  | kcal/mo | 1     |       |       |       | -62.96  | kcal/m   | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -9.47   | kcal/mo | 1     |       |       |       | -12.62  | 2 kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -30.12  | kcal/mo | 1     |       |       |       | 4.52    | 2 kcal/m | ol    |       |       |       |       |       |
| Initial Orientation |         |         |       |       |       | C     |         |          |       | C     |       |       |       |       |
| Final Orientation   |         |         |       |       |       | C     |         |          |       | C     | N     |       |       | С     |
| i indi offentation  |         |         |       |       |       | C     |         |          |       | e     | 14    |       |       | e     |
| Total =             | 40.08   | kcal/mo | 1     |       |       |       | 49.03   | kcal/m   | ol    |       |       |       |       |       |
| van der Waals =     | 71.50   | kcal/mo | 1     |       |       |       | 72.21   | kcal/m   | ol    |       |       |       |       |       |
| Electrostatic =     | -252.93 | kcal/mo | 1     |       |       |       | -248.12 | 2 kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -91.43  | kcal/mo | 1     |       |       |       | -82.48  | 8 kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -7.29   | kcal/mo | 1     |       |       |       | -6.58   | 8 kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -22.25  | kcal/mo | 1     |       |       |       | -17.44  | kcal/m   | ol    |       |       |       |       |       |

# Table 4.17: The solution phase results of β-alanine interacting with the 1IYT conformer of β-amyloid

|                     | Glu11   | Val12   | His13 | His14 | Gln15 | Lys16 | Gly9    | Tyr10 Glu11 | Val12 | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|---------|-------|-------|-------|-------|---------|-------------|-------|-------|-------|-------|-------|
| Initial Orientation | С       |         |       | Ν     |       |       |         |             |       | С     |       |       |       |
| Final Orientation   | С       |         |       | Ν     |       |       | С       | C           |       | С     |       |       |       |
| Total =             | 95.81   | kcal/m  | ol    |       |       |       | 46.50   | 6 kcal/mol  |       |       |       |       |       |
| van der Waals =     | 69.36   | kcal/m  | ol    |       |       |       | 68.30   | 0 kcal/mol  |       |       |       |       |       |
| Electrostatic =     | -227.24 | kcal/m  | ol    |       |       |       | -262.33 | 3 kcal/mol  |       |       |       |       |       |
| $\Delta E_{tot} =$  | -22.61  | kcal/mo | ol    |       |       |       | -71.85  | 5 kcal/mol  |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -14.52  | kcal/m  | ol    |       |       |       | -15.59  | 9 kcal/mol  |       |       |       |       |       |
| $\Delta E_{ele} =$  | -21.97  | kcal/mo | ol    |       |       |       | -57.00  | 6 kcal/mol  |       |       |       |       |       |
| Initial Orientation |         |         |       | С     |       |       |         |             |       |       | С     |       |       |
| Final Orientation   |         |         |       | С     |       |       |         |             |       |       | С     |       |       |
| Total =             | 69.15   | kcal/m  | ol    |       |       |       | 78.34   | 4 kcal/mol  |       |       |       |       |       |
| van der Waals =     | 86.08   | kcal/m  | ol    |       |       |       | 72.3    | l kcal/mol  |       |       |       |       |       |
| Electrostatic =     | -268.04 | kcal/m  | ol    |       |       |       | -232.70 | 6 kcal/mol  |       |       |       |       |       |
| $\Delta E_{tot} =$  | -49.27  | kcal/mo | ol    |       |       |       | -40.07  | 7 kcal/mol  |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 2.20    | kcal/mo | ol    |       |       |       | -11.57  | 7 kcal/mol  |       |       |       |       |       |
| $\Delta E_{ele} =$  | -62.77  | kcal/mo | ol    |       |       |       | -27.50  | ) kcal/mol  |       |       |       |       |       |
| Initial Orientation |         |         |       |       |       | С     |         |             |       | С     |       |       |       |
| Final Orientation   |         |         |       |       |       | C     |         |             |       | C     |       |       |       |
| Total =             | 72.87   | kcal/m  | ol    |       |       |       | 63.52   | 2 kcal/mol  |       |       |       |       |       |
| van der Waals =     | 67.60   | kcal/m  | ol    |       |       |       | 67.40   | 0 kcal/mol  |       |       |       |       |       |
| Electrostatic =     | -244.30 | kcal/m  | ol    |       |       |       | -251.69 | 9 kcal/mol  |       |       |       |       |       |
| $\Delta E_{tot} =$  | -45.55  | kcal/mo | ol    |       |       |       | -54.89  | 9 kcal/mol  |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -16.28  | kcal/m  | ol    |       |       |       | -16.48  | 8 kcal/mol  |       |       |       |       |       |
| $\Delta E_{ele} =$  | -39.03  | kcal/m  | ol    |       |       |       | -46.42  | 2 kcal/mol  |       |       |       |       |       |

 Table 4.18: The solution phase results of β-alanine interacting with the 1Z0Q conformer of β-amyloid

The solution phase results indicate that fewer interactions occur between  $\beta$ alanine and  $\beta$ -amyloid in the presence of water. Interactions were favoured at Glu11-His14, although a few others formed as well. The systems formed only two measureable bonds in the presence of solvent compared to the eight in the gas phase results. Systems did tend to retain the initial orientations of interactions, but not as well as GABA.

Electrostatic energies were more negative than the van der Waals energies of the systems, indicating that they play a greater role in the overall energetic favourability of a system. The amount of binding interactions occurring had no correlation with the energies of the systems.

#### **4.3 HOMOTAURINE**

Homotaurine (Figure 4.3) is a small molecule with an analogous structure to GABA, having a sulfonate group instead of a carboxylate group. This compound is capable of crossing the blood-brain barrier by active transport, and *in vitro* studies demonstrate a capacity to bind to  $\beta$ -amyloid [105].



#### Figure 4.3: Homotaurine at physiological pH

At physiological pH, homotaurine exists in a zwitterionic form and should be capable of interacting with the EVHHQK region of  $\beta$ -amyloid.

#### 4.3.1 Gas Phase Optimizations of Homotaurine and $\beta$ -Amyloid

The structure of homotaurine was constructed in an extended form before undergoing minimization. The energies of the optimized molecule are summarized in Table 4.19.

#### Table 4.19: The gas phase energies of homotaurine

|             | Ener             | gies (kcal/ | 'mol)     |
|-------------|------------------|-------------|-----------|
|             | E <sub>tot</sub> | $E_{vdw}$   | $E_{ele}$ |
| Homotaurine | -12.58           | -0.22       | -12.86    |

The minimizations of the gas phase systems were performed following the procedure outlined in section 4.1.1.2-4.1.1.3. The binding energies were calculated using equations 4.1-4.3, where the energy of optimized homotaurine is replacing the energy of GABA. The protein energies are listed in Appendix 6.

### 4.3.2 The Gas Phase Results of Homotaurine Interacting with $\beta$ -Amyloid

The results of the gas phase energy minimized systems of homotaurine and  $A\beta$  are given in Table 4.20. The initial orientation that homotaurine was arranged in is given, along with the orientation that resulted after minimization. The amino acid residues are represented by single letters and the amino and sulfonate groups of homotaurine are represent by N, and S, respectively. The calculated binding energies for each system are included, as well as the number of measureable bonds that formed.

| Conformer |     | Init | ial O | rienta | tion |     |     |     | Final | Orie | ntation | L   |     | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ | Measured |
|-----------|-----|------|-------|--------|------|-----|-----|-----|-------|------|---------|-----|-----|------------------|------------------|------------------|----------|
|           | E11 | V12  | H13   | H14    | Q15  | K16 | E11 | V12 | H13   | H14  | Q15     | K16 | Х   | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       | Bonds    |
| 1AMB      | S   |      |       | Ν      |      |     |     |     |       | S    |         |     |     | -35.88           | -2.73            | -37.02           | 0        |
|           | Ν   |      |       | S      |      |     | Ν   |     |       | S    |         |     |     | -24.92           | -2.14            | -23.17           | 1        |
|           |     |      | S     | Ν      |      |     |     |     | S     | S    |         |     | S/N | -46.44           | -11.20           | -35.39           | 0        |
|           |     |      | Ν     | S      |      |     |     |     |       | S    |         |     | S   | -27.61           | -7.07            | -21.03           | 0        |
|           |     |      | S     |        |      | Ν   |     |     | S     |      |         | S   | S   | -32.25           | -2.99            | -30.03           | 1        |
|           |     |      | Ν     |        |      | S   |     |     | S     |      |         | S   |     | -37.17           | -3.64            | -34.02           | 1        |
| 1AMC      | S   |      |       | Ν      |      |     | Ν   |     |       |      |         |     |     | -44.18           | -1.49            | -41.72           | 1        |
|           | Ν   |      |       | S      |      |     | Ν   |     |       | S    |         |     |     | -40.50           | -0.97            | -39.41           | 1        |
|           |     |      | Ν     | S      |      |     |     |     |       | S    |         |     | S   | -50.40           | -2.07            | -49.99           | 1        |
|           |     |      | S     | Ν      |      |     |     |     | S     | N/S  |         |     | N/S | -50.25           | -9.63            | -43.30           | 0        |
|           |     |      | S     |        |      | Ν   |     |     | S     |      |         | S   | S   | -35.31           | -3.94            | -32.09           | 1        |
|           |     |      | Ν     |        |      | S   |     |     | S     |      |         | S   | S   | -35.66           | -4.02            | -33.99           | 1        |
| 1AML      | S   |      |       | Ν      |      |     |     |     |       | S    |         |     |     | -31.14           | -2.39            | -28.09           | 0        |
|           | Ν   |      |       | S      |      |     | Ν   |     |       | S    |         |     | Ν   | -29.61           | -5.09            | -24.14           | 0        |
|           |     |      | S     | Ν      |      |     |     |     | S     | S    |         |     | S   | -49.99           | -9.04            | -40.56           | 0        |
|           |     |      | Ν     | S      |      |     |     |     | S     |      |         |     | S   | -50.08           | -4.49            | -46.53           | 0        |
|           |     |      | S     |        |      | Ν   |     | S   | S     |      |         |     |     | -42.20           | -5.23            | -37.28           | 2        |
|           |     |      | Ν     |        |      | S   |     | S   | S     |      |         |     | S   | -41.29           | -5.20            | -36.29           | 1        |
| 1BA4      | Ν   |      |       |        |      | S   | Ν   |     |       |      |         |     | Ν   | -25.18           | -3.87            | -21.96           | 0        |
|           | S   |      |       |        |      | Ν   | S   |     |       |      |         |     | N/S | -43.12           | -4.93            | -39.23           | 0        |
|           |     |      | Ν     | S      |      |     |     |     | S     | S    |         |     |     | -40.99           | -4.13            | -37.58           | 0        |
|           |     |      | S     | Ν      |      |     |     |     | S     | S    |         |     |     | -44.54           | -4.15            | -40.72           | 1        |
| 1IYT      | S   |      |       | Ν      |      |     | Ν   |     |       |      |         |     |     | -33.54           | -4.92            | -27.60           | 1        |
|           | Ν   |      |       | S      |      |     | Ν   |     |       | S    |         |     |     | -29.92           | -5.97            | -23.81           | 1        |
|           |     |      | S     | Ν      |      |     |     |     | S     |      |         |     | S   | -36.64           | -6.80            | -28.71           | 0        |
|           |     |      | Ν     | S      |      |     |     |     | S     | S    |         |     | S   | -31.79           | -4.90            | -26.38           | 0        |
|           |     |      | S     |        |      | Ν   |     |     | S     |      |         |     |     | -32.03           | -2.21            | -30.80           | 0        |
|           |     |      | Ν     |        |      | S   |     |     | S     |      |         | S   |     | -34.71           | -3.90            | -30.78           | 0        |
| 1Z0Q      | S   |      |       | Ν      |      |     | Ν   |     |       |      |         |     | S   | -49.21           | -4.51            | -43.24           | 1        |
| _         | Ν   |      |       | S      |      |     | Ν   |     |       | S    |         |     | S   | -47.69           | -6.25            | -43.03           | 1        |
|           |     |      | Ν     | S      |      |     |     |     | S     | S    |         |     | S   | -34.76           | -5.73            | -29.95           | 0        |
|           |     |      | S     | Ν      |      |     |     |     | S     | S    |         |     | S   | -28.71           | -5.69            | -23.47           | 0        |
|           |     |      | Ν     |        |      | S   |     |     | S     |      |         | S   |     | -28.92           | -3.81            | -24.90           | 0        |
|           |     |      | S     |        |      | Ν   |     |     |       |      |         | S   |     | -30.56           | -1.64            | -29.10           | 1        |

Table 4.20: The gas phase results of homotaurine interacting with β-amyloid

The gas phase results of homotaurine interacting with different conformers of  $\beta$ amyloid indicate its potential to bind to the EVHHQK region of interest at multiple sites. Interactions favour His13-His14 and His13-Lys16 over Glu11-His14.

#### 4.3.3 The Solution Phase Optimization of Homotaurine and $\beta$ -Amyloid

Solution phase optimizations were performed for each of the resulting gas phase optimized systems. Water molecules were placed on the system in a box large enough to surround the protein-homotaurine complex completely.

The systems were energy minimized without constrained protein backbones, and with periodic boundary conditions in place. The energies of the optimized systems were measured with the solvent molecules excluded and a constrained protein backbone. Equations of 4.4-4.6 were used to calculate the binding energies with the solution phase optimized energy of homotaurine (Table 4.21) replacing the solvated GABA energy.

Table 4.21: Solution phase energies of homotaurine

|             | Ener      | gies (kcal/ | mol)      |
|-------------|-----------|-------------|-----------|
|             | $E_{tot}$ | $E_{vdw}$   | $E_{ele}$ |
| Homotaurine | -9.96     | -0.15       | -12.36    |

### 4.3.4 The Results of the Solution Phase Optimization of Homotaurine and $\beta$ -Amyloid

The solution phase minimized systems of homotaurine and  $\beta$ -amyloid are summarized in the following tables according to A $\beta$  conformer. Three letter abbreviations are used to indicate the amino acids for the initial and final orientations that homotaurine is located in. The amino group of homotaurine is represented by N, while the sulfonate group is represented by S. The measured energies of the system (with a constrained protein backbone, and ignoring solvent contributions) and the calculated binding energies are given.

Orange coloured cells indicate where hydrogen bonds have formed and the darker the orange, the greater the number of bonds. Interactions with the  $-CH_2$ - chain of the amino acid are coloured in indigo. Backbone interactions are coloured purple for C=O, lime green for -CH-, and yellow for -NH-.

Table 4.22: The solution phase results of homotaurine interacting with the 1AMB conformer of β-amyloid

|                     | Glu11   | Val12 His13 | His14 | Gln15 | Lys16 | Ту  | r10  | Glu11    | Vall2 | His13 | His14 | Gln15 | Lys16 | Leu17 | Val18 |
|---------------------|---------|-------------|-------|-------|-------|-----|------|----------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | Ν       |             | S     |       |       |     |      |          |       | S     |       |       | S     | S     |       |
| Final Orientation   | Ν       |             | S     |       |       |     |      |          |       | S     |       |       | S     | S     |       |
| Total =             | -58.86  | kcal/mol    |       |       |       | -5  | 6.13 | kcal/mol | l     |       |       |       |       |       |       |
| van der Waals =     | 35.20   | kcal/mol    |       |       |       | 4   | 9.98 | kcal/mol | l     |       |       |       |       |       |       |
| Electrostatic =     | -252.38 | kcal/mol    |       |       |       | -25 | 6.55 | kcal/mol | l     |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -63.29  | kcal/mol    |       |       |       | -6  | 0.55 | kcal/mol | I     |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -12.80  | kcal/mol    |       |       |       |     | 1.98 | kcal/mol | l     |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -45.80  | kcal/mol    |       |       |       | -4  | 9.97 | kcal/mol | l     |       |       |       |       |       |       |
| Initial Orientation |         |             | s     |       |       |     |      |          |       |       | s     |       |       | s     | s     |
| Final Orientation   | -       |             | -     | -     | -     |     |      |          |       |       | S     |       |       | S     | S     |
| Total =             | -80.56  | kcal/mol    |       |       |       | -5  | 4.50 | kcal/mol | l     |       |       |       |       |       |       |
| van der Waals =     | 38.11   | kcal/mol    |       |       |       | 4   | 3.23 | kcal/mol | l     |       |       |       |       |       |       |
| Electrostatic =     | -272.22 | kcal/mol    |       |       |       | -25 | 0.36 | kcal/mol | l     |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -84.98  | kcal/mol    |       |       |       | -5  | 8.93 | kcal/mol | I     |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -9.89   | kcal/mol    |       |       |       | -   | 4.77 | kcal/mol | l     |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -65.64  | kcal/mol    |       |       |       | -4  | 3.78 | kcal/mol | l     |       |       |       |       |       |       |
| Initial Orientation |         | S           |       |       | S     | S   | 5    |          |       | s     | S     |       |       |       |       |
|                     |         |             |       |       | ~     | N   | N    |          |       |       | ~     |       |       |       |       |
| Final Orientation   |         | S           |       |       | S     | 5   | 5    |          |       | S     | S     |       |       |       |       |
|                     |         |             |       |       |       | N   | V    |          |       |       | Ν     |       |       |       |       |
| Total =             | -62.72  | kcal/mol    |       |       |       | -7  | 7.83 | kcal/mol | l     |       |       |       |       |       |       |
| van der Waals =     | 53.10   | kcal/mol    |       |       |       | 2   | 9.35 | kcal/mol | l     |       |       |       |       |       |       |
| Electrostatic =     | -276.97 | kcal/mol    |       |       |       | -25 | 2.78 | kcal/mol | l     |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -67.15  | kcal/mol    |       |       |       | -8  | 2.25 | kcal/mol | I     |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 5.10    | kcal/mol    |       |       |       | - 1 | 8.66 | kcal/mol | l     |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -70.39  | kcal/mol    |       |       |       | -4  | 6.20 | kcal/mol | l     |       |       |       |       |       |       |

|                     | Asp7    | Glu11  | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 | П | Tyr10   | Glu11  | Vall2 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|--------|-------|-------|-------|-------|-------|-------|---|---------|--------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         | Ν      |       |       | S     |       |       |       | П |         |        |       | S     |       |       | S     | S     |
| Final Orientation   |         | Ν      |       |       | S     | S     |       |       |   |         |        |       | S     |       |       | S     | S     |
| Total =             | 72.39   | kcal/m | ol    |       |       |       |       |       |   | -84.84  | kcal/m | ol    |       |       |       |       |       |
| van der Waals =     | 41.11   | kcal/m | ol    |       |       |       |       |       |   | 25.00   | kcal/m | ol    |       |       |       |       |       |
| Electrostatic =     | -274.90 | kcal/m | ol    |       |       |       |       |       |   | -264.89 | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -32.00  | kcal/m | ol    |       |       |       |       |       |   | -44.45  | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 5.29    | kcal/m | ol    |       |       |       |       |       |   | -10.83  | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -32.91  | kcal/m | ol    |       |       |       |       |       |   | -22.90  | kcal/m | ol    |       |       |       |       |       |
| Initial Orientation |         | N      |       |       |       |       |       |       |   | S       |        |       |       | s     |       |       |       |
| Final Orientation   | Ν       | N      |       |       |       |       |       |       |   | s       |        |       |       | s     |       |       |       |
| Total =             | -73.06  | kcal/m | ol    |       |       |       |       |       |   | -59.21  | kcal/m | ol    |       |       |       |       |       |
| van der Waals =     | 43 80   | kcal/m | ol .  |       |       |       |       |       |   | 49.95   | kcal/m | ol    |       |       |       |       |       |
| Electrostatic =     | -271.25 | kcal/m | ol    |       |       |       |       |       |   | -268.15 | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -32.67  | kcal/m | ol    |       |       |       |       |       |   | -18.82  | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 7.97    | kcal/m | ol    |       |       |       |       |       |   | 14.12   | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -29.26  | kcal/m | ol    |       |       |       |       |       |   | -26.16  | kcal/m | ol    |       |       |       |       |       |
| Initial Orientation |         |        |       | S     |       |       | S     | S     |   | N       |        |       | s     | N     |       |       |       |
| mital Orenation     |         |        |       | 5     |       |       | 5     | 5     |   | s       |        |       | 5     | S     |       |       |       |
| Final Orientation   |         |        |       | s     |       |       |       |       |   | Ň       |        |       | S     | Ň     |       |       | s     |
|                     |         |        |       |       |       |       |       |       |   | S       |        |       |       | S     |       |       |       |
| Total =             | -74.88  | kcal/m | ol    |       |       |       |       |       |   | -72.28  | kcal/m | ol    |       |       |       |       |       |
| van der Waals =     | 38.45   | kcal/m | ol    |       |       |       |       |       |   | 40.54   | kcal/m | ol    |       |       |       |       |       |
| Electrostatic =     | -275.80 | kcal/m | ol    |       |       |       |       |       |   | -284.35 | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -34.49  | kcal/m | ol    |       |       |       |       |       |   | -31.89  | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 2.62    | kcal/m | ol    |       |       |       |       |       |   | 4.72    | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -33.81  | kcal/m | ol    |       |       |       |       |       |   | -42.36  | kcal/m | ol    |       |       |       |       |       |

### Table 4.23: The solution phase results of homotaurine interacting with the 1AMC conformer of β-amyloid

|                     | Ser8    | Glu11     | Val12 | His13 | His14 | Gln15 | Lys16 | Val18 | П | Tyr10   | Glu11  | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|-----------|-------|-------|-------|-------|-------|-------|---|---------|--------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | Ν       | Ν         |       |       | S     |       |       |       | Π |         |        | S     | S     |       |       | S     |       |
| Final Orientation   | Ν       | Ν         |       |       | S     |       |       | S     |   |         |        | S     | S     |       |       | S     |       |
| Total =             | 79.42   | 2 kcal/mc | ol    |       |       |       |       |       |   | 59.34   | kcal/m | ol    |       |       |       |       |       |
| van der Waals =     | 65.55   | 5 kcal/mc | ol    |       |       |       |       |       |   | 68.99   | kcal/m | ol    |       |       |       |       |       |
| Electrostatic =     | -205.42 | 2 kcal/mc | ol    |       |       |       |       |       |   | -219.49 | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -29.93  | 3 kcal/mc | ol    |       |       |       |       |       |   | -50.01  | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -3.75   | 5 kcal/m  | ol    |       |       |       |       |       |   | -0.32   | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -21.97  | 7 kcal/mc | ol    |       |       |       |       |       |   | -36.03  | kcal/m | ol    |       |       |       |       |       |
| Initial Orientation |         |           |       |       | ç     |       |       |       |   | S       |        |       | s     |       |       |       | ç     |
| Final Orientation   |         | ç         |       |       | 5     |       |       |       |   | 5       |        |       | 5     |       |       |       | 5     |
| r inai Orientation  |         | 3         |       |       | 3     |       |       |       |   | 3       |        |       | 3     |       |       |       | 3     |
| Total =             | 93.64   | 4 kcal/mc | ol    |       |       |       |       |       |   | 64.72   | kcal/m | ol    |       |       |       |       |       |
| van der Waals =     | 63.06   | 6 kcal/mc | ol    |       |       |       |       |       |   | 70.47   | kcal/m | ol    |       |       |       |       |       |
| Electrostatic =     | -183.71 | l keal/me | ol    |       |       |       |       |       |   | -220.18 | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -15.71  | l kcal/mc | ol    |       |       |       |       |       |   | -44.63  | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -6.24   | 4 kcal/mc | ol    |       |       |       |       |       |   | 1.17    | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -0.26   | 6 kcal/m  | ol    |       |       |       |       |       |   | -36.72  | kcal/m | ol    |       |       |       |       |       |
| Initial Orientation |         |           | S     | S     |       |       |       |       |   | s       |        |       | S     | S     |       |       | S     |
| Final Orientation   |         |           | S     | S     |       |       | ç     |       |   | s       |        |       | s     | S     |       |       | S     |
| 1 Indi Offentation  |         |           | 3     | 5     |       |       | 6     |       |   | 3       |        |       | 3     | 3     |       |       | 3     |
| Total =             | 56.39   | 9 kcal/mc | ol    |       |       |       |       |       |   | 47.65   | kcal/m | ol    |       |       |       |       |       |
| van der Waals =     | 63.50   | ) kcal/mc | ol    |       |       |       |       |       |   | 66.02   | kcal/m | ol    |       |       |       |       |       |
| Electrostatic =     | -226.29 | e kcal/mc | ol    |       |       |       |       |       |   | -235.63 | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -52.96  | 6 kcal/mc | ol    |       |       |       |       |       |   | -61.70  | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -5.80   | ) kcal/m  | ol    |       |       |       |       |       |   | -3.29   | kcal/m | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -42.84  | 4 kcal/mc | ol    |       |       |       |       |       |   | -52.18  | kcal/m | ol    |       |       |       |       |       |

### Table 4.24: The solution phase results of homotaurine interacting with the 1AML conformer of β-amyloid

|                     | Asp1    | Glu3    | Glu11 | Val12 | His13 | His14 | Gln15 | Lys16 | Phe19 |
|---------------------|---------|---------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         | Ν       | Ν     |       |       |       |       |       |       |
| Final Orientation   |         | Ν       | Ν     |       |       |       |       |       |       |
| Total =             | 116.30  | kcal/mo | 1     |       |       |       |       |       |       |
| van der Waals =     | 69.24   | kcal/mo | 1     |       |       |       |       |       |       |
| Electrostatic =     | -175.01 | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -0.58   | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -1.74   | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | 0.66    | kcal/mo | 1     |       |       |       |       |       |       |
| Initial Orientation |         | Ν       | s     |       |       |       |       |       | s     |
| Final Orientation   | Ν       | Ν       |       |       |       |       |       | Ν     | S     |
| Total =             | 83.95   | kcal/mo | 1     |       |       |       |       |       |       |
| van der Waals =     | 68.20   | kcal/mo | l     |       |       |       |       |       |       |
| Electrostatic =     | -196.75 | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -32.94  | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.78   | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -21.08  | kcal/mo | 1     |       |       |       |       |       |       |
| Initial Orientation |         |         |       |       | S     | S     |       |       |       |
| Final Orientation   |         |         |       |       | ŝ     |       |       |       |       |
| Total =             | 65.72   | kcal/mo | 1     |       |       |       |       |       |       |
| van der Waals =     | 68.50   | kcal/mo | 1     |       |       |       |       |       |       |
| Electrostatic =     | -223.82 | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -51.16  | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.48   | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -48.15  | kcal/mo | 1     |       |       |       |       |       |       |
| Initial Orientation |         |         |       |       | S     | S     |       |       |       |
| Final Orientation   |         |         |       |       | ŝ     | s     |       |       |       |
| Total =             | 55.56   | kcal/mo | 1     |       |       |       |       |       |       |
| van der Waals =     | 62.29   | kcal/mo | l     |       |       |       |       |       |       |
| Electrostatic =     | -231.22 | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -61.32  | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -8.69   | kcal/mo | 1     |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -55.55  | kcal/mo | l     |       |       |       |       |       |       |

# Table 4.25: The solution phase results of homotaurine interacting with the 1BA4 conformer of β-amyloid

|                     | Tyr10   | Glu11  | Val12 | His13 | His14 | Gln15 | Lys16 | Glu11   | Val12    | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|--------|-------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation |         | Ν      |       |       | S     |       |       |         |          | S     |       |       |       |       |
| Final Orientation   | S       | N      |       |       | S     |       |       |         |          | S     |       |       |       |       |
| Total =             | 47.31   | kcal/m | ol    |       |       |       |       | 44.75   | 5 kcal/m | ol    |       |       |       |       |
| van der Waals =     | 67.15   | kcal/m | ol    |       |       |       |       | 69.93   | 8 kcal/m | ol    |       |       |       |       |
| Electrostatic =     | -243.31 | kcal/m | ol    |       |       |       |       | -259.79 | 9 kcal/m | ol    |       |       |       |       |
| $\Delta E_{tot} =$  | -92.56  | kcal/m | ol    |       |       |       |       | -95.12  | 2 kcal/m | ol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -8.82   | kcal/m | ol    |       |       |       |       | -6.03   | 8 kcal/m | ol    |       |       |       |       |
| $\Delta E_{ele} =$  | -23.92  | kcal/m | ol    |       |       |       |       | -40.40  | ) kcal/m | ol    |       |       |       |       |
| Initial Orientation |         | N      |       |       |       |       |       |         |          | S     | s     |       |       | S     |
| Final Orientation   |         | N      |       |       |       |       |       |         |          | S     | S     |       |       | S     |
| r mai Orientation   |         | 19     |       |       |       |       |       |         |          | 5     | 5     |       |       | 5     |
| Total =             | 53.64   | kcal/m | ol    |       |       |       |       | 54.00   | ) kcal/m | ol    |       |       |       |       |
| van der Waals =     | 73.71   | kcal/m | ol    |       |       |       |       | 61.75   | 5 kcal/m | ol    |       |       |       |       |
| Electrostatic =     | -238.73 | kcal/m | ol    |       |       |       |       | -233.03 | 8 kcal/m | ol    |       |       |       |       |
| $\Delta E_{tot} =$  | -86.23  | kcal/m | ol    |       |       |       |       | -85.87  | 7 kcal/m | ol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.26   | kcal/m | ol    |       |       |       |       | -14.21  | kcal/m   | ol    |       |       |       |       |
| $\Delta E_{ele} =$  | -19.34  | kcal/m | ol    |       |       |       |       | -13.64  | l kcal/m | ol    |       |       |       |       |
| Initial Oriontation |         |        |       | S     |       |       | ç     |         |          | ç     |       |       |       | S     |
| Final Orientation   |         |        |       | S     |       |       | 5     |         |          | S     | S     |       |       | S     |
| r mai Orientation   |         |        |       | 5     |       |       | 5     |         |          | 5     | 5     |       |       | 5     |
| Total =             | 104.02  | kcal/m | ol    |       |       |       |       | 30.96   | 5 kcal/m | ol    |       |       |       |       |
| van der Waals =     | 68.79   | kcal/m | ol    |       |       |       |       | 61.35   | 5 kcal/m | ol    |       |       |       |       |
| Electrostatic =     | -257.44 | kcal/m | ol    |       |       |       |       | -242.19 | 9 kcal/m | ol    |       |       |       |       |
| $\Delta E_{tot} =$  | -35.85  | kcal/m | ol    |       |       |       |       | -108.91 | kcal/m   | ol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -7.17   | kcal/m | ol    |       |       |       |       | -14.62  | 2 kcal/m | ol    |       |       |       |       |
| $\Delta E_{ele} =$  | -38.05  | kcal/m | ol    |       |       |       |       | -22.79  | kcal/m   | ol    |       |       |       |       |

# Table 4.26: The solution phase results of homotaurine interacting with the 1IYT conformer of β-amyloid



### Table 4.27: The solution phase results of homotaurine interacting with the 1Z0Q conformer of β-amyloid

The solution phase optimizations of homotaurine and  $A\beta$  indicate that binding can occur at multiple sites within the EVHHQK region of interest. His13-His14 and His13-Lys16 were the most favoured orientations for interactions, followed immediately by Glu11-His14. Homotaurine bound quite well within the EVHHQK region of A $\beta$ , and tended to retain the same orientation as in the gas phase despite the presence of water molecules.

Hydrogen bonds were the only measureable type of bonds that were observed in the optimized systems. The energies tended to be favourable, especially the electrostatic energy contributions.

#### 4.4 3-AMINOPROPYL DIHYDROGEN PHOSPHATE

A synthetic molecule, 3-aminopropyl dihydrogen phosphate (Figure 4.4), was selected for study to compare the effect of a phosphate group on the potential binding interactions with the EVHHQK region of  $\beta$ -amyloid, relative to carboxylate or sulfonate.



Figure 4.4: 3-Aminopropyl dihydrogen phosphate at physiological pH

The functional groups on 3-aminopropyl dihydrogen phosphate exist in a zwitterionic state at physiological pH.

### 4.4.1 Gas Phase Optimizations of 3-Aminopropyl Dihydrogen Phosphate and $\beta$ -Amyloid

A model of 3-aminopropyl dihydrogen phosphate was constructed in an extended structure and geometry optimized; the energies are given in Table 4.28.

 Table 4.28: The gas phase energies of 3-aminopropyl dihydrogen phosphate

|                                    | Ener             | gies (kcal/ | 'mol)     |
|------------------------------------|------------------|-------------|-----------|
|                                    | E <sub>tot</sub> | $E_{vdw}$   | $E_{ele}$ |
| 3-aminopropyl dihydrogen phosphate | -21.69           | 1.31        | -29.25    |

Each system was prepared such that the amino and phosphate group of 3-

aminopropyl dihydrogen phosphate were oriented approximately 3.0 Å away from two of the charged amino acid side chains in the EVHHQK region of A $\beta$ . The optimizations were performed following the procedure outlined in Section 4.1.1.3. The calculated

energies used equations 4.1-4.3 with the energy of the optimized 3-aminopropyl dihydrogen phosphate replacing the energy of optimized GABA.

### 4.4.2 RESULTS OF THE GAS PHASE OPTIMIZATIONS OF 3-AMINOPROPYL DIHYDROGEN PHOSPHATE AND β-AMYLOID

The results of the gas phase optimizations of 3-aminopropyl dihydrogen phosphate with  $A\beta$  in different conformations are summarized in the following table. The initial and finial orientations of the optimized systems are given with the amino and phosphate groups of 3-aminopropyl dihydrogen phosphate represented by N and P, and the amino acids by single letters. The numbers of measured bonding interactions for each system are given along with the calculated binding energies for each system.

| Conformer |     | Initial O | rienta | tion    |     |     | Fina | l Orie | ntation | 1   |     | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ | Measured |
|-----------|-----|-----------|--------|---------|-----|-----|------|--------|---------|-----|-----|------------------|------------------|------------------|----------|
|           | E11 | V12 H13   | H14    | Q15 K16 | E11 | V12 | H13  | H14    | Q15     | K16 | Х   | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       | Bonds    |
| 1AMB      | Р   |           | Ν      |         | Р   |     |      |        |         |     |     | -23.17           | -0.79            | -25.92           | 0        |
|           | Ν   |           | Р      |         | Ν   |     |      | Р      |         |     |     | -48.14           | -4.82            | -40.69           | 1        |
|           |     | Р         | Ν      |         |     |     | Р    | Р      |         |     |     | -46.02           | -9.32            | -40.15           | 0        |
|           |     | Ν         | Р      |         |     |     |      | Р      |         |     | Р   | -61.73           | -0.44            | -56.42           | 0        |
|           |     | Р         |        | Ν       |     |     | Р    |        |         | Р   |     | -40.19           | -2.07            | -39.48           | 1        |
|           |     | Ν         |        | Р       | -   | -   | -    | -      | -       | -   | -   | -33.32           | -1.98            | -34.01           | 0        |
| 1AMC      | Р   |           | Ν      |         | Р   |     |      |        |         |     |     | -30.11           | -1.12            | -28.57           | 0        |
|           | Ν   |           | Р      |         | Ν   |     |      | Р      | Р       |     |     | -47.68           | -3.95            | -46.28           | 2        |
|           |     | Ν         | Р      |         |     |     |      | Р      |         |     |     | -42.68           | -0.31            | -45.74           | 0        |
|           |     | Р         | Ν      |         | Ν   |     | Р    | N/P    |         |     | N/P | -52.44           | -9.32            | -46.04           | 0        |
|           |     | Р         |        | Ν       |     |     | Р    |        |         | Р   |     | -43.87           | -2.02            | -42.98           | 1        |
|           |     | Ν         |        | Р       |     |     | Р    |        |         |     | Р   | -35.09           | -3.29            | -34.97           | 0        |
| 1AML      | Р   |           | Ν      |         | Р   |     |      | Р      |         |     | Р   | -42.82           | -4.81            | -39.88           | 1        |
|           | Ν   |           | Р      |         | Ν   |     |      | Р      |         |     | N/P | -50.32           | -5.83            | -39.57           | 1        |
|           |     | Р         | Ν      |         |     |     | Р    |        |         |     | Р   | -82.49           | -10.97           | -71.69           | 1        |
|           |     | Ν         | Р      |         |     |     |      | Р      |         |     | Р   | -59.91           | -3.98            | -61.92           | 0        |
|           |     | Р         |        | Ν       |     |     | Р    |        |         |     |     | -21.44           | -0.48            | -23.00           | 0        |
|           |     | Ν         |        | Р       |     |     |      |        |         | Р   |     | -22.89           | -1.24            | -23.72           | 0        |
| 1BA4      | Ν   |           |        | Р       | Ν   |     |      |        |         | Р   | Р   | -26.29           | -4.07            | -26.18           | 1        |
|           | Р   |           |        | Ν       | Р   |     |      |        |         |     | N/P | -66.40           | -11.25           | -54.24           | 0        |
|           |     | Р         | Ν      |         |     |     | Р    |        |         |     |     | -26.45           | -0.91            | -25.84           | 0        |
|           |     | N         | Р      |         |     |     |      | Р      |         |     |     | -45.55           | -1.53            | -45.26           | 1        |
| 1IYT      | Р   |           | Ν      |         | -   | -   | -    | -      | -       | -   | -   | -17.24           | -4.85            | -13.15           | 0        |
|           | Ν   |           | Р      |         | Ν   |     |      | Р      |         |     |     | -38.18           | -8.07            | -31.12           | 0        |
|           |     | Р         | Ν      |         |     |     | Р    |        |         |     |     | -36.89           | -3.83            | -32.74           | 0        |
|           |     | Ν         | Р      |         |     |     |      | Р      |         |     |     | -20.73           | -2.19            | -18.79           | 0        |
|           |     | Р         |        | Ν       |     |     | Р    |        |         |     |     | -30.19           | -0.47            | -31.02           | 0        |
|           |     | Ν         |        | Р       |     |     |      |        |         | Р   |     | -25.81           | -1.52            | -25.48           | 0        |
| 1Z0Q      | Р   |           | Ν      |         | Р   |     |      |        |         |     | N/P | -56.04           | -3.18            | -58.78           | 0        |
|           | Ν   |           | Р      |         | Ν   |     |      | Р      |         |     | Р   | -61.99           | -9.37            | -52.88           | 0        |
|           |     | Ν         | Р      |         |     |     |      | Р      |         |     |     | -29.40           | -3.87            | -27.45           | 0        |
|           |     | Р         | Ν      |         |     |     | Р    |        |         |     | Р   | -41.30           | -6.18            | -36.98           | 0        |
|           |     | Р         |        | Ν       |     |     | Р    |        |         |     |     | -33.22           | -0.90            | -32.40           | 1        |
|           |     | Ν         |        | Р       |     |     |      |        |         | Р   |     | -35.04           | -2.92            | -31.44           | 1        |
|           |     |           | Ν      | Р       |     |     |      |        |         | Р   |     | -27.13           | -5.10            | -23.00           | 0        |
|           |     |           | Р      | Ν       |     |     |      | Р      |         | Р   |     | -46.01           | -7.84            | -41.06           | 0        |

Table 4.29: The gas phase results of 3-aminopropyl dihydrogen phosphate interacting with β-amyloid

The results of the gas phase minimizations of 3-aminopropyl dihydrogen phosphate with the different conformers of A $\beta$  suggest that the molecule is capable of binding to the EVHHQK region of the protein. Interactions at Glu11-His14 were the preferred orientation of binding.

### 4.4.3 THE SOLUTION PHASE OPTIMIZATION OF 3-AMINOPROPYL DIHYDROGEN PHOSPHATE AND β-AMYLOID

Each of the systems resulting from the gas phase minimization of 3-aminopropyl dihydrogen phosphate with  $\beta$ -amyloid was subjected to solution phase optimization.

Each system was solvated using a box of explicit water molecules with periodic boundary conditions in place during the minimization and having an unconstrained protein backbone. Energies were measured with the protein backbone constrained and solvent contributions were ignored. Equations 4.4-4.6 were used to calculate the binding energies with the energy of the solution phase optimized 3-aminopropyl dihydrogen phosphate substituted for the GABA energy. Appendix 6 contains the energies of the proteins and Table 4.30 lists the energies of the optimized 3-aminopropyl dihydrogen phosphate, ignoring solvent contributions.

 Table 4.30: Solution phase energies of 3-aminopropyl dihydrogen phosphate

|                                    | Ener      | gies (kcal, | /mol)     |
|------------------------------------|-----------|-------------|-----------|
|                                    | $E_{tot}$ | $E_{vdw}$   | $E_{ele}$ |
| 3-aminopropyl dihydrogen phosphate | -16.52    | 0.76        | -29.65    |

### 4.3.4 THE RESULTS OF THE SOLUTION PHASE OPTIMIZATION OF 3-AMINOPROPYL DIHYDROGEN PHOSPHATE AND β-AMYLOID

The results of the solution phase minimization of 3-aminopropyl dihydrogen phosphate with  $\beta$ -amyloid are given in Tables 4.31-4.36 according to  $\beta$ -amyloid conformer. The amino and phosphate group of 3-aminopropyl dihydrogen phosphate are represented by N and P and are shown in the initial orientation before minimization in a solvated environment and the resulting final orientation after. The amino acids involved are listed by their three-letter abbreviations, and both the measured and calculated energies for each system are given.

Instances where hydrogen bonds have formed are coloured in orange, and interactions with the –CH<sub>2</sub>- chain of the amino acid are shown in indigo. Where interactions occur with the –CH-, -NH- or C=O of the protein backbone, cells are coloured lime green, yellow, and purple, respectively.

 Table 4.31: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1AMB conformer of β-amyloid

|                     | Glu11   | Vall2    | His13 | His14 | Gln15 | Lys16 | Val18 | Glul 1  | Val12    | His13 | His14 | Gln15 | Lys16 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|---------|----------|-------|-------|-------|-------|
| Initial Orientation |         |          |       | Р     |       |       | Р     |         |          | Р     |       |       | Р     |
| Final Orientation   |         |          |       | Р     |       |       | Р     |         |          | Р     |       |       | Р     |
| Total =             | -83.77  | kcal/mol |       |       |       |       |       | -42.55  | kcal/mol |       |       |       |       |
| van der Waals =     | 44.76   | kcal/mol |       |       |       |       |       | 48.92   | kcal/mol |       |       |       |       |
| Electrostatic =     | -290.16 | kcal/mol |       |       |       |       |       | -257.12 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -81.64  | kcal/mol |       |       |       |       |       | -40.42  | kcal/mol |       |       |       |       |
| $\Delta E_{wdw} =$  | -4.14   | kcal/mol |       |       |       |       |       | 0.01    | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -66.28  | kcal/mol |       |       |       |       |       | -33.24  | kcal/mol |       |       |       |       |
|                     |         |          |       |       |       |       |       |         |          |       |       |       |       |
| Initial Orientation |         |          | Р     | Р     |       |       |       | Ν       |          |       | Р     |       |       |
| Final Orientation   | Ν       |          | Р     | Ν     |       |       |       | Ν       |          |       |       |       |       |
| Total =             | -89.70  | kcal/mol |       |       |       |       |       | -60.75  | kcal/mol |       |       |       |       |
| van der Waals =     | 35.27   | kcal/mol |       |       |       |       |       | 52.20   | kcal/mol |       |       |       |       |
| Electrostatic =     | -286.06 | kcal/mol |       |       |       |       |       | -277.94 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -87.56  | kcal/mol |       |       |       |       |       | -58.62  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | -13.63  | kcal/mol |       |       |       |       |       | 3.30    | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -62.18  | kcal/mol |       |       |       |       |       | -54.06  | kcal/mol |       |       |       |       |
|                     |         |          |       |       |       |       |       |         |          |       |       |       |       |
| Initial Orientation | -       | -        | -     | -     | -     | -     | -     | Р       |          |       |       |       |       |
| Final Orientation   | -       | -        | -     | -     | -     | -     | -     | Р       |          |       |       |       |       |
| Total =             | -56.46  | kcal/mol |       |       |       |       |       | -54.88  | kcal/mol |       |       |       |       |
| van der Waals =     | 55.44   | kcal/mol |       |       |       |       |       | 41.59   | kcal/mol |       |       |       |       |
| Electrostatic =     | -275.92 | kcal/mol |       |       |       |       |       | -258.70 | kcal/mol |       |       |       |       |
| $\Delta E_{tot} =$  | -54.33  | kcal/mol |       |       |       |       |       | -52.75  | kcal/mol |       |       |       |       |
| $\Delta E_{vdw} =$  | 6.54    | kcal/mol |       |       |       |       |       | -7.32   | kcal/mol |       |       |       |       |
| $\Delta E_{ele} =$  | -52.04  | kcal/mol |       |       |       |       |       | -34.83  | kcal/mol |       |       |       |       |

|                     | Glu11   | Val12   | His13 | His14 | Gln15 | Lys16 | Tyr10   | Glu11     | Val12 | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|---------|-------|-------|-------|-------|---------|-----------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | Ν       |         |       | Р     | Р     |       | Р       | Ν         |       | Р     | Р     |       |       |       |
|                     |         |         |       |       |       |       | N       |           |       |       | Ν     |       |       |       |
| Final Orientation   | Ν       |         |       | Р     |       |       | Р       | Р         |       |       | Р     |       |       |       |
|                     |         |         |       |       |       |       | N       | N         |       |       | Ν     |       |       |       |
| Total =             | -89.22  | kcal/mc | ol    |       |       |       | -106.21 | l kcal/m  | ol    |       |       |       |       |       |
| van der Waals =     | 52.86   | kcal/m  | ol    |       |       |       | 35.47   | 7 kcal/m  | ol    |       |       |       |       |       |
| Electrostatic =     | -314.11 | kcal/mo | ol    |       |       |       | -311.32 | 2 kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -42.27  | kcal/mo | ol    |       |       |       | -59.20  | 5 kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 16.13   | kcal/mo | ol    |       |       |       | -1.20   | 5 kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -54.82  | kcal/mo | ol    |       |       |       | -52.03  | 3 kcal/m  | ol    |       |       |       |       |       |
|                     |         |         |       |       |       |       |         |           |       |       |       |       |       |       |
| Initial Orientation | Р       |         |       |       |       |       |         |           |       |       |       |       |       | Р     |
| Final Orientation   | -       | -       | -     | -     | -     | -     |         |           |       |       |       |       |       | Р     |
| Total =             | -87.23  | kcal/m  | ol    |       |       |       | -63.82  | 2 kcal/m  | ol    |       |       |       |       |       |
| van der Waals =     | 39.24   | kcal/m  | ol    |       |       |       | 44.95   | 5 kcal/m  | ol    |       |       |       |       |       |
| Electrostatic =     | -278.08 | kcal/m  | ol    |       |       |       | -277.87 | 7 kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -40.28  | kcal/mo | ol    |       |       |       | -16.87  | 7 kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 2.51    | kcal/mc | ol    |       |       |       | 8.22    | 2 kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -18.79  | kcal/m  | ol    |       |       |       | -18.59  | e kcal/mo | ol    |       |       |       |       |       |
|                     |         |         |       |       |       |       |         |           |       |       |       |       |       |       |
| Initial Orientation |         |         |       | Р     |       |       |         |           |       |       |       |       | Р     |       |
| Final Orientation   |         |         |       | Р     |       |       |         |           |       |       |       |       | Р     |       |
| Total =             | -65.34  | kcal/mc | ol    |       |       |       | -49.05  | 5 kcal/m  | ol    |       |       |       |       |       |
| van der Waals =     | 43.37   | kcal/m  | ol    |       |       |       | 46.64   | 4 kcal/m  | ol    |       |       |       |       |       |
| Electrostatic =     | -218.94 | kcal/m  | ol    |       |       |       | -267.60 | ) kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -18.39  | kcal/m  | ol    |       |       |       | -2.10   | ) kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 6.64    | kcal/m  | ol    |       |       |       | 9.91    | l kcal/m  | ol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -22.65  | kcal/mo | ol    |       |       |       | -8.3    | l kcal/m  | ol    |       |       |       |       |       |

### Table 4.32: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1AMC conformer of β-amyloid

|                     | His6    | Asp7   | Ser8 | Glu11 | Val12 | His13 | His14 | Gln15 | Lys16 |   | Tyr10   | Glu11 Val12 | His13 | His14 | Gln15 | Lys16 | Leul7 |
|---------------------|---------|--------|------|-------|-------|-------|-------|-------|-------|---|---------|-------------|-------|-------|-------|-------|-------|
| Initial Orientation | N       | Ν      | Ν    | Ν     |       |       | Р     |       |       |   | Р       |             |       | Р     |       |       |       |
| Final Orientation   | Ν       | Ν      | Ν    |       |       |       | Р     |       |       |   | Р       |             |       |       |       |       |       |
| Total =             | 55.93   | kcal/m | ol   |       |       |       |       |       |       |   | 35.33   | 8 kcal/mol  |       |       |       |       |       |
| van der Waals =     | 68.82   | kcal/m | ol   |       |       |       |       |       |       |   | 71.35   | 5 kcal/mol  |       |       |       |       |       |
| Electrostatic =     | -234.38 | kcal/m | ol   |       |       |       |       |       |       |   | -278.25 | 5 kcal/mol  |       |       |       |       |       |
| $\Delta E_{tot} =$  | -46.86  | kcal/m | ol   |       |       |       |       |       |       |   | -67.46  | 6 kcal/mol  |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -1.39   | kcal/m | ol   |       |       |       |       |       |       |   | 1.14    | kcal/mol    |       |       |       |       |       |
| $\Delta E_{ele} =$  | -33.63  | kcal/m | ol   |       |       |       |       |       |       |   | -77.50  | ) kcal/mol  |       |       |       |       |       |
| Initial Orientation |         |        | Р    | Р     |       |       | Р     |       |       |   | Р       |             | Р     |       |       |       | Р     |
| Final Orientation   |         |        | Р    | Р     |       |       | Р     |       |       |   | Р       |             | Р     |       |       |       |       |
| Total =             | 98.74   | kcal/m | ol   |       |       |       |       |       |       |   | 82.52   | 2 kcal/mol  |       |       |       |       |       |
| van der Waals =     | 78.45   | kcal/m | ol   |       |       |       |       |       |       |   | 69.97   | / kcal/mol  |       |       |       |       |       |
| Electrostatic =     | -222.15 | kcal/m | ol   |       |       |       |       |       |       |   | -256.88 | 3 kcal/mol  |       |       |       |       |       |
| $\Delta E_{tot} =$  | -4.05   | kcal/m | ol   |       |       |       |       |       |       |   | -20.27  | / kcal/mol  |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 8.24    | kcal/m | ol   |       |       |       |       |       |       |   | -0.23   | 8 kcal/mol  |       |       |       |       |       |
| $\Delta E_{ele} =$  | -21.40  | kcal/m | ol   |       |       |       |       |       |       |   | -56.13  | 3 kcal/mol  |       |       |       |       |       |
| Initial Orientation |         |        |      |       |       |       |       |       | р     |   |         |             | Р     |       |       |       |       |
| Final Orientation   |         |        |      |       |       |       |       |       | P     |   |         |             | P     |       |       |       |       |
| Total =             | 77 87   | kcal/m | ol   |       |       |       |       |       |       |   | 83 58   | kcal/mol    |       |       |       |       |       |
| van der Waals =     | 72.57   | kcal/m | ol   |       |       |       |       |       |       |   | 78 77   | kcal/mol    |       |       |       |       |       |
| Electrostatic =     | -218.30 | kcal/m | ol   |       |       |       |       |       |       |   | -209.99 | kcal/mol    |       |       |       |       |       |
| $\Delta E_{tot} =$  | -24.92  | kcal/m | ol   |       |       |       |       |       |       |   | -19.21  | kcal/mol    |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 2.36    | kcal/m | ol   |       |       |       |       |       |       | 1 | 8.57    | / kcal/mol  |       |       |       |       |       |
| $\Delta E_{ele} =$  | -17.55  | kcal/m | ol   |       |       |       |       |       |       | 1 | -9.24   | kcal/mol    |       |       |       |       |       |

### Table 4.33: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1AML conformer of β-amyloid

### Table 4.34: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1BA4 conformer of β-amyloid

|                     | Asp1    | Glu3    | Glu11 | Vall2 | His13 | His14 | Gln15 | Lys16 | Phe19 | Phe20 | Asp23 |
|---------------------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         | Р       | Ν     |       |       |       |       | Р     | Р     |       | Р     |
| Final Orientation   | Р       | Ν       | Ν     |       |       |       |       | Р     | Р     | Р     | Р     |
| Total =             | 76.66   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| van der Waals =     | 76.24   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -227.89 | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -33.67  | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 4.36    | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -34.92  | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| Initial Orientation | N       |         | р     |       |       |       |       |       | р     |       | N     |
| initial Orientation |         |         |       |       |       |       |       |       | N     |       | 11    |
| Final Orientation   | Ν       |         | Р     |       |       |       |       |       | Р     | Ν     | Ν     |
|                     |         |         |       |       |       |       |       |       | N     |       |       |
| Total =             | 17.79   | kcal/mo | bl    |       |       |       |       |       |       |       |       |
| van der Waals =     | 66.83   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -264.35 | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -92.54  | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -5.06   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -71.38  | kcal/mc | ol    |       |       |       |       |       |       |       |       |
|                     |         |         |       |       |       | D     |       |       |       |       |       |
| Final Orientation   |         |         |       |       |       | P     |       |       |       |       |       |
| r inai Orientation  |         |         |       |       |       | г     |       |       |       |       |       |
| Total =             | 72.75   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| van der Waals =     | 82.23   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -218.78 | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -37.57  | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 10.34   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -25.80  | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| Initial Oniontation |         |         |       |       | р     |       |       |       |       |       |       |
| Final Orientation   | -       | -       | _     | -     | r     | -     | -     | -     | -     | -     | -     |
|                     |         | -       | -     | -     | -     | -     | -     | -     | -     | -     | -     |
| Total =             | 75.27   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| van der Waals =     | 79.11   | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -224.20 | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{tot} =$  | -35.05  | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{vdw} =$  | 7.23    | kcal/mc | ol    |       |       |       |       |       |       |       |       |
| $\Delta E_{ele} =$  | -31.22  | kcal/mc | ol    |       |       |       |       |       |       |       |       |

|                     | Glu11   | Val12 Hi | s13 | His14 | Gln15 | Lys16 | Glu11   | Val12    | His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|----------|-----|-------|-------|-------|---------|----------|-------|-------|-------|-------|-------|
| Initial Orientation | Ν       |          |     | Р     |       |       |         |          | Р     |       |       |       |       |
| Final Orientation   | Ν       |          |     | Р     |       |       |         |          | Р     |       |       |       | Р     |
| Total =             | 56.67   | kcal/mol |     |       |       |       | 51.27   | kcal/mol |       |       |       |       |       |
| von der Waals –     | 72 75   | keal/mol |     |       |       |       | 75.34   | koal/mol |       |       |       |       |       |
| Flectrostatic =     | -251.36 | kcal/mol |     |       |       |       | -257.89 | kcal/mol |       |       |       |       |       |
| Electrostatic –     | -251.50 | Kearmon  |     |       |       |       | -257.07 | Keaviioi |       |       |       |       |       |
| $\Delta E_{tot} =$  | -76.64  | kcal/mol |     |       |       |       | -82.04  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -4.12   | kcal/mol |     |       |       |       | -1.53   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -14.67  | kcal/mol |     |       |       |       | -21.20  | kcal/mol |       |       |       |       |       |
|                     |         |          |     |       |       |       |         |          |       |       |       |       |       |
| Initial Orientation | -       | -        | -   | -     | -     | -     |         |          |       |       |       | Р     |       |
| Final Orientation   | Р       |          |     |       |       |       |         |          |       |       |       | Р     |       |
| Total =             | 63 97   | kcal/mol |     |       |       |       | 58 79   | kcal/mol |       |       |       |       |       |
| van der Waals =     | 74 24   | kcal/mol |     |       |       |       | 81.43   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -237 73 | kcal/mol |     |       |       |       | -261.26 | kcal/mol |       |       |       |       |       |
|                     |         |          |     |       |       |       |         |          |       |       |       |       |       |
| $\Delta E_{tot} =$  | -69.34  | kcal/mol |     |       |       |       | -74.52  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -2.63   | kcal/mol |     |       |       |       | 4.56    | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -1.04   | kcal/mol |     |       |       |       | -24.57  | kcal/mol |       |       |       |       |       |
|                     |         |          |     |       |       |       |         |          |       |       |       |       |       |
| Initial Orientation |         |          |     | Р     |       |       |         |          | Р     |       |       |       |       |
| Final Orientation   |         | 1        | N   | Р     |       |       |         |          | Р     |       |       |       |       |
| Total =             | 36.02   | kcal/mol |     |       |       |       | 116.91  | kcal/mol |       |       |       |       |       |
| van der Waals =     | 68.56   | kcal/mol |     |       |       |       | 68.15   | kcal/mol |       |       |       |       |       |
| Electrostatic =     | -254.83 | kcal/mol |     |       |       |       | -261.92 | kcal/mol |       |       |       |       |       |
| $\Delta E_{tot} =$  | -97.29  | kcal/mol |     |       |       |       | -16.40  | kcal/mol |       |       |       |       |       |
| $\Delta E_{vdw} =$  | -8.31   | kcal/mol |     |       |       |       | -8.72   | kcal/mol |       |       |       |       |       |
| $\Delta E_{ele} =$  | -18.14  | kcal/mol |     |       |       |       | -25.23  | kcal/mol |       |       |       |       |       |

### Table 4.35: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1IYT conformer of β-amyloid

### Table 4.36: The solution phase results of 3-aminopropyl dihydrogen phosphate interacting with the 1Z0Q conformer of β-amyloid

|                     | Gly9    | Tyr10 Glu11 | Val12 | His13 | His14 | Gln15 | Lys16 | Val18 | Glu22  |    | Glul 1  | Val12 His13 | His14 | Gln15 | Lys16 | Leu17 |
|---------------------|---------|-------------|-------|-------|-------|-------|-------|-------|--------|----|---------|-------------|-------|-------|-------|-------|
| Initial Orientation |         | N           |       |       | Р     |       |       | Р     | Р      |    |         |             |       |       | Р     |       |
| Final Orientation   |         | N           |       |       | Р     |       |       | Р     | Р      |    |         |             |       |       | Р     |       |
| Total =             | 34.94   | kcal/mol    |       |       |       |       |       |       |        |    | 81.59   | kcal/mol    |       |       |       |       |
| van der Waals =     | 70.19   | kcal/mol    |       |       |       |       |       |       |        |    | 59.16   | kcal/mol    |       |       |       |       |
| Electrostatic =     | -288.71 | kcal/mol    |       |       |       |       |       |       |        |    | -235.18 | kcal/mol    |       |       |       |       |
| AE -                | 85 27   | kool/mol    |       |       |       |       |       |       |        |    | 28 62   | kaal/mol    |       |       |       |       |
| $\Delta E_{tot} =$  | -05.27  | keal/mol    |       |       |       |       |       |       |        |    | -38.02  | keal/mol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -11.//  | Ireal/mol   |       |       |       |       |       |       |        |    | -22.01  | lreel/mel   |       |       |       |       |
| $\Delta E_{ele} =$  | -//.43  | kcai/moi    |       |       |       |       |       |       |        |    | -23.90  | kcal/mot    |       |       |       |       |
| Initial Orientation |         | P           |       |       |       |       |       |       | N<br>N |    |         | D           |       |       |       |       |
| Final Orientation   |         | r           |       |       |       |       |       |       | 19     |    | _       |             |       | _     | _     | -     |
|                     |         |             |       |       |       |       |       |       |        |    |         |             |       |       |       |       |
| Total =             | 53.54   | kcal/mol    |       |       |       |       |       |       |        |    | 78.53   | kcal/mol    |       |       |       |       |
| van der Waals =     | 59.59   | kcal/mol    |       |       |       |       |       |       |        |    | 65.00   | kcal/mol    |       |       |       |       |
| Electrostatic =     | -273.42 | kcal/mol    |       |       |       |       |       |       |        |    | -236.83 | kcal/mol    |       |       |       |       |
| $\Delta E_{tot} =$  | -66.67  | kcal/mol    |       |       |       |       |       |       |        |    | -41.67  | kcal/mol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -12.27  | kcal/mol    |       |       |       |       |       |       |        |    | -16.96  | kcal/mol    |       |       |       |       |
| $\Delta E_{ele} =$  | -62.14  | kcal/mol    |       |       |       |       |       |       |        |    | -25.55  | kcal/mol    |       |       |       |       |
|                     |         |             |       |       |       |       |       |       |        |    |         |             |       |       |       |       |
| Initial Orientation |         |             |       |       | Р     |       |       |       |        |    |         |             |       |       | Р     |       |
| Final Orientation   |         |             |       | Ν     | Р     |       |       |       |        |    |         | Р           |       |       | Р     |       |
| Total =             | 73 30   | kcal/mol    |       |       |       |       |       |       |        |    | 72 41   | kcal/mol    |       |       |       |       |
| van der Waals =     | 70.21   | kcal/mol    |       |       |       |       |       |       |        |    | 81.75   | kcal/mol    |       |       |       |       |
| Electrostatic =     | -247.11 | kcal/mol    |       |       |       |       |       |       |        |    | -250.43 | kcal/mol    |       |       |       |       |
| 15                  | 46.01   |             |       |       |       |       |       |       |        |    | 17.00   | 1 1/ 1      |       |       |       |       |
| $\Delta E_{tot} =$  | -46.91  | kcal/mol    |       |       |       |       |       |       |        |    | -47.80  | kcal/mol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -11.75  | kcal/mol    |       |       |       |       |       |       |        |    | -0.21   | kcal/mol    |       |       |       |       |
| $\Delta E_{ele} =$  | -35.83  | kcal/mol    |       |       |       |       |       |       |        |    | -39.15  | kcal/mol    |       |       |       |       |
| Initial Orientation | р       | P           |       | р     |       |       |       |       |        |    |         |             | р     |       | р     |       |
| Final Orientation   | P       | P           |       | P     |       |       |       |       |        |    |         | р           | Р     |       | 1     | Р     |
|                     | •       | •           |       | •     |       |       |       |       |        |    |         |             | -     |       |       | •     |
| Total =             | 71.31   | kcal/mol    |       |       |       |       |       |       |        |    | 82.86   | kcal/mol    |       |       |       |       |
| van der Waals =     | 61.68   | kcal/mol    |       |       |       |       |       |       |        |    | 80.82   | kcal/mol    |       |       |       |       |
| Electrostatic =     | -247.15 | kcal/mol    |       |       |       |       |       |       |        |    | -245.90 | kcal/mol    |       |       |       |       |
| $\Delta E_{tot} =$  | -48.90  | kcal/mol    |       |       |       |       |       |       |        | 11 | -37.35  | kcal/mol    |       |       |       |       |
| $\Delta E_{vdw} =$  | -20.28  | kcal/mol    |       |       |       |       |       |       |        | 11 | -1.14   | kcal/mol    |       |       |       |       |
| $\Delta E_{ala} =$  | -35.87  | kcal/mol    |       |       |       |       |       |       |        | lĺ | -34.62  | kcal/mol    |       |       |       |       |
| cie                 | 55.07   |             |       |       |       |       |       |       |        | Ц  | 5 1.02  |             |       |       |       |       |

The solution phase energy minimizations of 3-aminopropyl dihydrogen phosphate with the different conformers of  $\beta$ -amyloid result in multiple binding interactions in the EVHHQK region. Interactions at Glu11-His14 are favoured, followed by His13-His14. Only five hydrogen bonds were measured in the optimized systems; fewer measureable interactions occurred than in the gas phase minimized systems, however, there was not much difference in the orientations of the interactions.

The energies of the optimized systems were mostly favourable, and the electrostatic energies were much lower than the van der Waals energies. Comparing

systems with multiple interactions to those with few or none indicates that the energies vary and that having more potential binding interactions does not equate to energetic favourability. It is likely that repulsive factors are also a contributing factor in these systems.

### 4.5 Semi-Empirical Energy Calculations of GABA, β-Alanine, Homotaurine and 3-Aminopropyl Dihydrogen Phosphate with β-Amyloid

To further compare the results of the gas and solution phase minimizations of the four compounds covered in this chapter, semi-empirical calculations were performed. The Austin Model 1 (AM1) model was selected for use [42, 106].

#### 4.5.1 SELECTION OF SYSTEMS FOR SEMI-EMPIRICAL CALCULATIONS

Selected systems from the gas phase energy minimized results of each of GABA,  $\beta$ -alanine, homotaurine and 3-aminopropyl dihydrogen phosphate with  $\beta$ -amyloid, were used for semi-empirical calculations using the AM1 Hamiltonian as implemented in the Gaussian 09W suite of programs [107].

For each of the four compounds, one system with each of the six  $\beta$ -amyloid conformers was selected for modelling at the semi-empirical level. These systems needed to have binding interactions occurring with at least two different amino acid residues. The individual molecules and each A $\beta$  conformer were also submitted for energy calculations.

#### 4.5.2 SEMI-EMPIRICAL ENERGY CALCULATION SET-UP

Each of the selected systems was submitted for energy calculations. These energies were calculated in the ground state with a singlet spin. The quadratically convergent SCF function was selected, as convergence of the system was not obtained otherwise. The units of measurement of Gaussian calculations are in hartrees; the energies were converted to kcal/mol for comparison.

The energy of interaction of each system was calculated by subtracting the individual energies of each molecule and the specific  $\beta$ -amyloid conformer from the energy of the modelled system via the following equation:

$$\Delta E_{\text{bind}} = E_{A\beta \text{mol}} - E_{A\beta} - E_{\text{mol}} \tag{4.7}$$

Where  $E_{mol}$  is the energy of the target molecule,  $E_{A\beta}$  is the energy of the  $\beta$ -amyloid conformer and  $E_{A\beta mol}$  is the energy of the interacting A $\beta$ -molecule system. The energies of the A $\beta$  conformers are listed in Appendix 6.

#### 4.5.3 RESULTS OF THE SEMI-EMPIRICAL ENERGY CALCULATIONS

The energies of each of the four molecules were calculated using the AM1 model and are summarized in the following table.

|                                    | Energy                |
|------------------------------------|-----------------------|
| GABA                               | -0.053803541 hartrees |
|                                    | -33.762 kcal/mol      |
| β-alanine                          | -0.064715664 hartrees |
|                                    | -40.61 kcal/mol       |
| homotaurine                        | -0.110178939 hartrees |
|                                    | -69.138 kcal/mol      |
| 3-aminopropyl dihydrogen phosphate | -0.319778234 hartrees |
|                                    | -200.664 kcal/mol     |
|                                    |                       |

Table 4.37: Energies of GABA, β-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate calculated at the AM1 level of theory

The results of the energy calculations for each of GABA, β-alanine, homotaurine and 3-aminopropyl dihydrogen phosphate with Aβ using the AM1 level of theory are summarized in Tables 4.38-4.41. The orientation of the interaction is given with the single letter amino acid abbreviation, and the functional groups of each of the molecules are represented by N, C, S and P for the amino, carboxylate, sulfonate and phosphate groups. The measured energy of each system is given, along with the calculated binding energy.

|                     | R5 E   | 11 | V12    | H13 | H14 | Q15 | K16 | L17 |                     | E3   | E11   | V12    | H13 | H14 | Q15 | K16 | F19 |
|---------------------|--------|----|--------|-----|-----|-----|-----|-----|---------------------|------|-------|--------|-----|-----|-----|-----|-----|
| Orientation         |        |    |        | С   | С   |     |     |     | Orientation         | Ν    | С     |        |     |     |     | С   | С   |
|                     |        |    |        |     |     |     |     |     |                     | С    |       |        |     |     |     |     |     |
| Energy =            | -749.4 | 64 | kcal/r | nol |     |     |     |     | Energy =            | -107 | 8.737 | kcal/r | nol |     |     |     |     |
| $\Delta E_{bind} =$ | -41.7  | 11 | kcal/r | nol |     |     |     |     | $\Delta E_{bind} =$ | -11  | .122  | kcal/r | nol |     |     |     |     |
| Orientation         |        |    |        | С   | Ν   |     |     | С   | Orientation         |      |       |        | N   | С   |     |     |     |
|                     |        |    |        |     |     |     |     |     |                     |      |       |        | C   |     |     |     |     |
| Energy =            | -748.9 | 47 | kcal/r | nol |     |     |     |     | Energy =            | -139 | 8.660 | kcal/r | nol |     |     |     |     |
| $\Delta E_{bind} =$ | -35.71 | 13 | kcal/r | nol |     |     |     |     | $\Delta E_{bind} =$ | -0.  | 193   | kcal/r | nol |     |     |     |     |
| Orientation         | C N    | N  |        |     | С   | Ν   |     |     | Orientation         |      | Ν     |        |     | С   |     |     |     |
| Energy =            | -992.9 | 26 | kcal/r | nol |     |     |     |     | Energy =            | -917 | .623  | kcal/r | nol |     |     |     |     |
| $\Delta E_{bind} =$ | -57.66 | 59 | kcal/r | nol |     |     |     |     | $\Delta E_{bind} =$ | -76  | .516  | kcal/r | nol |     |     |     |     |

Table 4.38: AM1 energies of GABA interacting with β-amyloid

|                     | <b>S</b> 8 | E11   | V12    | H13 | H14 | Q15 | K16 |                     | E3    | E11   | V12    | H13 | H14 | Q15 | K16 | F19 |
|---------------------|------------|-------|--------|-----|-----|-----|-----|---------------------|-------|-------|--------|-----|-----|-----|-----|-----|
| Orientation         |            | Ν     |        |     | С   |     |     | Orientation         | Ν     | С     |        |     |     |     |     | С   |
| Energy =            | -735       | .381  | kcal/r | nol |     |     |     | Energy =            | -1093 | 7.851 | kcal/n | nol |     |     |     |     |
| $\Delta E_{bind} =$ | -20.       | 782   | kcal/r | nol |     |     |     | $\Delta E_{bind} =$ | -23.  | 389   | kcal/n | nol |     |     |     |     |
| Orientation         |            |       |        | С   |     |     | С   | Orientation         | Ν     |       |        |     | С   |     |     |     |
| Energy =            | -777       | .692  | kcal/r | nol |     |     |     | Energy =            | -1468 | 8.757 | kcal/n | nol |     |     |     |     |
| $\Delta E_{bind} =$ | -57.       | 610   | kcal/r | nol |     |     |     | $\Delta E_{bind} =$ | -63.  | 444   | kcal/n | nol |     |     |     |     |
| Orientation         | Ν          | N     |        |     | С   |     |     | Orientation         | С     |       |        |     | Ν   |     |     |     |
| Energy =            | -100       | 5.058 | kcal/r | nol |     |     |     | Energy =            | -814  | .268  | kcal/n | nol |     |     |     |     |
| $\Delta E_{bind} =$ | -63.       | 954   | kcal/r | nol |     |     |     | $\Delta E_{bind} =$ | 33.   | 686   | kcal/n | nol |     |     |     |     |

Table 4.39: AM1 energies of  $\beta$ -alanine interacting with  $\beta$ -amyloid

Table 4.40: AM1 energies of homotaurine interacting with  $\beta$ -amyloid

|                     | <b>S</b> 8 | Y10    | E11    | V12 | H13 | H14    | Q15 | K16 |                     | E11  | V12   | H13    | H14 | Q15 | K16 | V18 |
|---------------------|------------|--------|--------|-----|-----|--------|-----|-----|---------------------|------|-------|--------|-----|-----|-----|-----|
| Orientation         |            |        | Ν      |     |     | S      |     |     | Orientation         |      |       | S      | S   |     |     |     |
| Energy =            | -795       | .621   | kcal/r | nol |     |        |     |     | Energy =            | -116 | 0.430 | kcal/r | nol |     |     |     |
| $\Delta E_{bind} =$ | -52.       | 493    | kcal/r | nol |     |        |     |     | $\Delta E_{bind} =$ | -57  | .440  | kcal/r | nol |     |     |     |
| Orientation         |            | S<br>N |        |     | S   | N<br>S |     |     | Orientation         | N    |       |        | S   |     |     |     |
| Energy =            | -787       | .256   | kcal/r | nol |     |        |     |     | Energy =            | -149 | 4.552 | kcal/r | nol |     |     |     |
| $\Delta E_{bind} =$ | -38.       | .646   | kcal/r | nol |     |        |     |     | $\Delta E_{bind} =$ | -60  | .710  | kcal/r | nol |     |     |     |
| Orientation         | Ν          |        | Ν      |     |     | S      |     |     | Orientation         | Ν    |       |        | S   |     |     | S   |
| Energy =            | -1042      | 2.940  | kcal/r | nol |     |        |     |     | Energy =            | -943 | 8.679 | kcal/r | nol |     |     |     |
| $\Delta E_{bind} =$ | -72.       | .307   | kcal/r | nol |     |        |     |     | $\Delta E_{bind} =$ | -67  | .197  | kcal/r | nol |     |     |     |

### Table 4.41: AM1 energies of 3-aminopropyl dihydrogen phosphate interacting with β-amyloid

|                     | S8   | E11   | V12 H13  | H14 | Q15 | K16 |                     | E3    | E11   | V12    | H13 | H14 | Q15 | K16 | V18 | F19 | E22 | D23 |
|---------------------|------|-------|----------|-----|-----|-----|---------------------|-------|-------|--------|-----|-----|-----|-----|-----|-----|-----|-----|
| Orientation         |      |       | Р        |     |     | Р   | Orientation         | Р     | Ν     |        |     |     |     | Р   |     | Р   |     | Р   |
| Energy =            | -944 | .378  | kcal/mol |     |     |     | Energy =            | -1234 | 4.782 | kcal/m | ol  |     |     |     |     |     |     |     |
| $\Delta E_{bind} =$ | -69  | .725  | kcal/mol |     |     |     | $\Delta E_{bind} =$ | -0.2  | 266   | kcal/m | ol  |     |     |     |     |     |     |     |
| Orientation         |      | N     | I        | Р   | Р   |     | Orientation         |       | N     |        |     | Р   |     |     |     |     |     |     |
| Energy =            | -948 | 8.158 | kcal/mol |     |     |     | Energy =            | -1619 | 9.361 | kcal/m | ol  |     |     |     |     |     |     |     |
| $\Delta E_{bind} =$ | -68  | .023  | kcal/mol |     |     |     | $\Delta E_{bind} =$ | -53.  | 993   | kcal/m | ol  |     |     |     |     |     |     |     |
| Orientation         | Р    | Р     |          | Р   |     |     | Orientation         |       | Ν     |        |     | Р   |     |     | Р   |     | Р   |     |
| Energy =            | -111 | 1.677 | kcal/mol |     |     |     | Energy =            | -1072 | 2.663 | kcal/m | ol  |     |     |     |     |     |     |     |
| $\Delta E_{bind} =$ | -9.  | 519   | kcal/mol |     |     |     | $\Delta E_{bind} =$ | -64.  | 655   | kcal/m | ol  |     |     |     |     |     |     |     |

The energies of each system can be compared to determine whether the negatively charged functional group plays a role in the strength of the interactions that occur.

Homotaurine interacting with  $\beta$ -amyloid resulted in the most consistently favourable energies. All of the systems selected demonstrated binding within the EV**HHQK** region of A $\beta$ .

Energies of 3-aminopropyl dihydrogen phosphate binding to  $\beta$ -amyloid in different conformations were the next most favourable relative to homotaurine. With the exception of two systems, the energies were all very low, and interactions occurred at two or more sites within EVHHQK. Interestingly, the systems with the highest energies had hydrogen bonds present and multiple binding sites between the molecule and protein.

The energies calculated for GABA interacting with  $A\beta$  demonstrated slightly less favourability compared to 3-aminopropyl dihydrogen phosphate. The energies of these systems were a bit more variable.

While the calculated binding energies of  $\beta$ -alanine were more consistent than 3aminopropyl dihydrogen phosphate and GABA, they tended to be slightly higher. One system did not have interactions occurring at two sites within EVHHQK, and one occurring in that region was extremely unfavourable.

# 4.6 Conclusions on GABA, $\beta$ -Alanine, Homotaurine and 3-Aminopropyl Dihydrogen Phosphate Interacting with the EVHHQK Region of $\beta$ -Amyloid

Overall comparing the interactions occurring between GABA,  $\beta$ -alanine, homotaurine and 3-aminopropyl dihydrogen phosphate with  $\beta$ -amyloid allows for some conclusions to be drawn based on their nature.

First, both the endogenous and synthetic compounds demonstrated a capacity to bind to the EVHHQK region of  $\beta$ -amyloid *in silico*. This indicates that these small molecules may be used to target this region to prevent amyloid aggregation from occurring. Furthermore they could be used as lead molecules to design even more effective binding agents, or drugs that would increase the levels of the endogenous compounds could be developed.

Second, the nature of the negatively charged group on the zwitterions plays a role in the strength of binding interactions. Comparing the energies of the four molecules showed that the order of favourability ranked  $SO_3^- > PO_3^- > CO_2^-$ . Also, the length of the -CH<sub>2</sub>- chain played a factor. GABA was capable of forming more measureable binding interactions than  $\beta$ -alanine.

319

Homotaurine presents itself as the most viable option of the four molecules for binding to the EVHHQK region of  $\beta$ -amyloid. Indeed, this may be the mechanism by which the molecule keeps the protein in its monomeric form *in vivo* [105].

#### **4.7 INTERPRETATION**

The results of the *in silico* optimizations of GABA,  $\beta$ -alanine, homotaurine and 3aminopropyl dihydrogen phosphate demonstrate how both the size of the molecule and the anionic group are important in forming binding interactions with the EV**HHQK** region of  $\beta$ -amyloid.

Of the systems studied, the synthetic compound homotaurine demonstrated the most favourable binding energies (calculated at a semi-empirical level of theory) and the greatest capacity to form binding interactions within the EVHHQK region of interest. Homotaurine was especially capable of forming binding interactions with the **BBXB** motif of  $A\beta$ , **HHQK**.

The next most favourable interactions occurred between GABA and  $\beta$ -amyloid. More binding interactions formed in both the **HHQK** and expanded EV**HHQK** regions than 3-aminopropyl dihydrogen phosphate. The semi-empirical binding energies of GABA were more variable than those of the phosphate species, and slightly less favourable. 3-Aminopropyl dihydrogen phosphate formed fewer binding interaction than GABA in the EV**HHQK** systems studied. Though it is difficult to rank these species in terms of favourability, the binding energies suggest that 3-aminopropyl dihydrogen phosphate can interact more strongly with  $\beta$ -amyloid.

320
The interactions between  $\beta$ -alanine and  $\beta$ -amyloid are the least favourable of the four molecules examined in this chapter. The number of binding interactions occurring with the protein is less than those observed for 3-aminopropyl dihydrogen phosphate, as well the binding energies (measured by semi-empirical calculations) were the least favourable of the four; one system demonstrated highly unfavourable energetics. The molecular mechanics binding energies further support the notion that the  $\beta$ -alanine systems are less favourable than those of the other three molecules.

Overall these results can be interpreted to suggest that the anionic group present on these endogenous and synthetic species plays an important role in determining the strength of binding interactions that can occur. The three anionic groups can all be considered acidic species with the order of relative acidity sulfonic acid > phosphonic acid > carboxylic acid for the functional groups. It is more likely that this feature affects the strength of interaction, which may potentially be affected by the size of the anionic group as well: phosphonate and sulfonate are both larger than carboxylate. The larger, more acidic species can interact more strongly with the positively charged amino acids to form more energetically favourable interactions.

Furthermore, the length of the carbon chain also plays a role in the effective binding of molecules to the EVHHQK region of A $\beta$ . Although  $\beta$ -alanine and GABA are functionally identical, the difference of one carbon unit in the chain length between charged functional groups clearly impacts the amount of binding interactions that can occur. The number of binding interactions between  $\beta$ -alanine and A $\beta$  are only about half of those formed between GABA and A $\beta$ . It appears that the size of the molecule is also important for the binding interactions to form between itself and  $\beta$ -amyloid.

321

These results indicate that molecules can be developed to target the EVHHQK region of  $\beta$ -amyloid with greater specificity by tuning the anionic functional groups present to form stronger binding interactions with the positively charged amino acids. Adjusting the length/size of the molecule can also play a role in increasing the strength of interactions within the EVHHQK region of interest.

### CHAPTER 5: THE SEARCH FOR AN ENDOGENOUS ANTI-ALZHEIMER'S DRUG TARGETING LVFF

Located immediately next to the **HHQK** region of  $\beta$ -amyloid is the LVFF region. The highly positively charged **HHQK** segment plays a role in the misfolding process of the protein by binding to negatively charged glycosaminoglycans on the surface of membranes. Similarly, the LVFF region of A $\beta$  is a hydrophobic region that can interact with cholesterol rafts on the surface of membranes to further facilitate the conformational change.

The LVFF region follows a pattern that can be identified as AAXA, where A is an aliphatic or aromatic amino acid. As this motif is similar to **BBXB**, there arose the question as to whether or not a single drug molecule could bind to both **HHQK** and LVFF with the same strength and efficacy, if so this would provide further evidence to support the concept of a "promiscuous drug" targeting β-amyloid to prevent aggregation.

# 5.1 Interactions Between an Indole and the HHQK and LVFF Regions of $\beta$ -Amyloid

A simple indole (Figure 5.1) was selected for this study to determine its capacity to bind to the LVVF region of A $\beta$ , relative to **HHQK**. An indole is a small aromatic molecule that should, in essence, be able to interact with both regions by forming cation- $\pi$  and  $\pi$ - $\pi$  type interactions. The indole is also representative of biological molecules endogenous to the brain. Indole constitutes the aromatic moiety within tryptophan (examined in Chapter 4) and is present in some of tryptophan's metabolites.



Figure 5.1: Indole

### 5.1.1 ISOLATION OF THE HHQK AND LVFF REGIONS OF $\beta$ -Amyloid

To better compare the binding of indole, the LVFF and **HHQK** regions were isolated from  $\beta$ -amyloid. For the LVFF region, residues 13-24 were isolated. This provided a four amino acid cap on either side of the region that would be more reflective of the area as it exists in a natural state; isolating only the LVFF region is too exposed to empty space and is less reflective of the interactions that could form. The ends of the 13-24 residue segment were capped with amide groups. Six different conformers of A $\beta$  were used for this study and each was optimized with a constrained protein backbone *in vacuo* using the CHARMM22 force field in MOE [47, 48].

Similarly, the **HHQK** region was isolated in residues 9-20 of A $\beta$ . Each terminal end was capped with an amide group before optimization (with a constrained protein backbone) in the gas phase. The energies observed for both the isolated **HHQK** and LVFF regions of A $\beta$  used in this chapter are summarized in Appendix 5.

The indole structure was built in MOE and optimized to obtain the following energies:

324



#### Table 5.1: The gas phase energies of an indole

### 5.1.2 THE GAS PHASE OPTIMIZATION OF AN INDOLE WITH HHQK AND LVFF

Gas phase systems were set up such that the indole ring could interact with two of the basic amino acids in **HHQK** or two of the aliphatic/aromatic amino acids in LVFF. These orientations were set up such that the indole was situated approximately 3.0Å away from the two side chains. As indole is composed of a benzyl ring connected to a pyrrole ring, the systems were differentiated by denoting which ring was oriented towards the amino acids.

Each energy minimization was performed with the protein backbone constrained to prevent structural collapse, and the binding energies were calculated using the following equations:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{\text{Indole}}$$
(5.1)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwIndole}$$
(5.2)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eleIndole}$$
(5.3)

The total, van der Waals, and electrostatic energies of each of the optimized indole and  $A\beta$  segment were subtracted from the energies of the optimized systems to determine the relative strength of binding for each of the three energies.

# 5.1.3 THE RESULTS OF THE GAS PHASE OPTIMIZATIONS OF AN INDOLE AND THE HHQK AND LVFF REGIONS OF β-Amyloid

The gas phase results of the minimization of the indole with each of the isolated **HHQK** and LVFF segments of A $\beta$  in six different conformations are summarized in the following two tables. The calculated energies are given for each system, along with the initial orientation the indole was arranged in and the final orientation upon optimization. The indole ring is represented by InB to represent the benzyl ring of the indole, InP to represent the pyrrole ring, and In is used for interactions occurring with both rings. The bonding interactions that formed are coloured accordingly: orange for hydrogen bonds, light blue for  $\pi$ - $\pi$  interactions, and green for cation- $\pi$  interactions. Darker shades of the colours indicate the presence of more of that type of interaction.

| Conformer | In  | itial O | rientatio | on  | Final Orientation |     |     |     |       | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ |
|-----------|-----|---------|-----------|-----|-------------------|-----|-----|-----|-------|------------------|------------------|------------------|
|           | H13 | H14     | Q15       | K16 | H13               | H14 | Q15 | K16 | Other | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       |
| 1AMB      | InB | InP     |           |     | InB               | InP |     |     | InB   | -16.04           | -6.53            | -12.22           |
|           | InP | InB     |           |     | InP               | InB |     |     | In    | -15.43           | -8.68            | -7.00            |
|           | InB |         |           | InP |                   |     |     | InB | In    | -14.40           | -8.37            | -6.46            |
|           | InP |         |           | InB |                   |     |     | InB | In    | -15.02           | -8.37            | -6.93            |
| 1AMC      | InB | InP     |           |     |                   | InP |     |     |       | -10.99           | -6.96            | -4.33            |
|           | InP | InB     |           |     | InP               | InB |     |     | InP   | -13.05           | -7.93            | -5.75            |
|           | InB |         |           | InP | InB               |     |     |     | In    | -12.98           | -8.67            | -4.46            |
|           | InP |         |           | InB |                   |     |     |     | In    | -13.48           | -7.15            | -6.39            |
| 1AML      | InB | InP     |           |     |                   |     |     |     | In    | -8.69            | -4.08            | -5.19            |
|           | InP | InB     |           |     |                   |     |     |     | InB   | -9.61            | -4.10            | -5.91            |
|           | InB |         |           | InP | InB               |     |     | InP |       | -8.46            | -3.50            | -6.22            |
|           | InP |         |           | InB |                   |     |     | InB |       | -10.02           | -4.50            | -6.22            |
| 1BA4      | InB | InP     |           |     | InB               | InP |     |     |       | -7.46            | -4.90            | -2.96            |
|           |     |         |           |     |                   | InB |     |     |       |                  |                  |                  |
|           | InP | InB     |           |     | InP               | InB |     |     |       | -8.26            | -4.64            | -4.07            |
|           |     |         |           |     |                   | InP |     |     |       |                  |                  |                  |
| 1IYT      | InB | InP     |           |     | InB               | InP |     |     |       | -16.82           | -5.35            | -13.29           |
|           | InP | InB     |           |     | InP               | InB |     |     |       | -13.78           | -7.37            | -7.68            |
|           | InB |         |           | InP | InB               |     |     | InP |       | -11.14           | -5.47            | -5.66            |
|           | InP |         |           | InB | InP               |     |     | InB |       | -12.15           | -5.39            | -6.12            |
| 1Z0Q      | InB | InP     |           |     |                   | InP |     |     |       | -14.82           | -7.97            | -8.21            |
|           | InP | InB     |           |     | InP               |     |     |     |       | -7.57            | -5.75            | -2.08            |
|           | InB |         |           | InP | InB               |     |     | InP |       | -6.10            | -3.40            | -3.82            |
|           | InP |         |           | InB | In                |     |     |     | InB   | -13.29           | -6.67            | -7.57            |

Table 5.2: The gas phase results of an indole interacting with the HHQK region of β-amyloid

| Conformer | In  | nitial Or | ientatio | on  | Final Orienta |     |     | ntation |       | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ |
|-----------|-----|-----------|----------|-----|---------------|-----|-----|---------|-------|------------------|------------------|------------------|
|           | L17 | V18       | F19      | F20 | L17           | V18 | F19 | F20     | Other | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       |
| 1AMB      |     |           | InB      | InP |               |     |     |         | InB   | -5.26            | -3.35            | -2.62            |
|           |     |           | InP      | InB |               |     |     | InB     | In    | -17.20           | -6.49            | -11.46           |
|           | InB |           |          | InP | InB           |     |     | InP     |       | -10.06           | -4.21            | -5.87            |
|           | InP |           |          | InB | InP           |     |     | InB     |       | -8.12            | -3.00            | -5.33            |
| 1AMC      |     |           | InB      | InP |               |     |     | InP     | In    | -18.23           | -6.27            | -12.91           |
|           |     |           | InP      | InB |               |     | InP |         |       | -15.07           | -5.67            | -8.05            |
|           | InB |           |          | InP | InB           |     |     | In      |       | -8.06            | -4.22            | -3.64            |
|           | InP |           |          | InB | InP           |     |     | InB     |       | -8.22            | -4.82            | -2.70            |
| 1AML      |     |           | InB      | InP |               |     |     | InP     | InB   | -10.69           | -4.31            | -7.24            |
|           |     |           | InP      | InB |               |     | InP | InB     | InB   | -11.16           | -7.65            | -4.23            |
|           | InB |           |          | InP | -             | -   | -   | -       | -     | -4.41            | -2.97            | -1.12            |
|           | InP |           |          | InB | InP           |     |     | InB     |       | -4.25            | -3.32            | -0.90            |
| 1BA4      | InB |           |          | InP | InB           |     |     | InP     |       | -14.27           | -4.61            | -6.23            |
|           | InP |           |          | InB | InP           |     |     | InB     |       | -8.35            | -4.18            | -4.25            |
| 1IYT      |     |           | InB      | InP |               |     | InB |         | InB   | -5.54            | -3.09            | -2.51            |
|           |     |           | InP      | InB |               |     | InP |         | InP   | -9.88            | -2.72            | -6.90            |
|           | InB |           |          | InP | InB           |     |     | InP     |       | -5.71            | -3.49            | -2.63            |
|           | InP |           |          | InB | InP           |     |     | InB     |       | -7.40            | -3.84            | -3.81            |
| 1Z0Q      |     |           | InB      | InP |               |     |     | InP     |       | -9.20            | -5.23            | -5.21            |
|           |     |           | InP      | InB |               |     | InP | InB     |       | -7.23            | -3.70            | -5.54            |
|           | InB |           | InP      |     | InB           |     | InP |         |       | -6.52            | -3.27            | -3.30            |
|           | InP |           | InB      |     | In            |     | InB | InB     |       | -13.57           | -8.54            | -9.99            |
|           | InB |           |          | InP | InB           |     |     | InP     |       | -6.95            | -5.17            | -6.22            |
|           | InP |           |          | InB | InP           |     |     | InB     |       | -4.73            | -4.24            | -2.73            |

Table 5.3: The gas phase results of an indole interacting with the LVFF region of  $\beta$ -amyloid

More measureable interactions form between the indole and the **HHQK** region of  $\beta$ -amyloid compared to the LVFF region. Interactions in the **HHQK** region favour binding at His13-His14 and His13-Lys16. In the LVFF region, binding at Leu17-Phe20 is favoured over any other possible orientations.

For both regions, the electrostatic energies and van der Waals energies are comparable; the **HHQK** total binding energies are slightly more favourable than those of LVFF (although there are a few that are on par).

### 5.1.4 THE SOLUTION PHASE OPTIMIZATION OF AN INDOLE WITH HHQK AND LVFF

Each of the systems resulting from the gas phase minimizations of an indole with the **HHQK** and LVFF regions of  $A\beta$  was subjected to solution phase optimizations to determine whether binding would still occur in an aqueous environment.

A box of explicit water molecules was placed on each peptide-indole system, with periodic boundary conditions in place. The systems were optimized without constrained protein backbones. The energies for each interaction were calculated in the absence of solvent, and with a constrained protein backbone using equations 5.1-5.3. The energies of the solution phase optimized protein segments are listed in Appendix 5 and the indole is given in Table 5.4.

 Table 5.4: The solution phase energies of an indole

|        | Ener             | gies (kcal/ | 'mol)     |
|--------|------------------|-------------|-----------|
| _      | E <sub>tot</sub> | $E_{vdw}$   | $E_{ele}$ |
| Indole | 17.23            | 6.62        | -0.17     |

### 5.1.5 The Results of the Solution Phase Optimizations of an Indole and the HHQK and LVFF regions of $\beta$ -Amyloid

The results of the minimization of an indole with the **HHQK** and LVFF regions of  $\beta$ -amyloid in a solution phase environment are summarized in the following table according to A $\beta$  conformer. Each table lists the interactions in the **HHQK** region on the left-hand side, and the LVFF region on the right-hand side; initial and final orientations are given. The amino acid side chains are given in their three letter abbreviations, and the indole interactions can be represented one of three ways: interactions with both rings are represented by In, those with the benzyl ring by InB, and those with the pyrrole by InP. Coloured cells are used to indicate binding interactions: hydrogen bonds, cation- $\pi$  and  $\pi$ - $\pi$  interactions are in orange, green and light blue. Darker shaded cells indicate a greater number of bonds formed. Indigo cells represent interactions occurring with the – CH<sub>2</sub>- chain of the amino acid. Interactions with the protein backbone are signified by purple (C=O), and lime green (-CH-).

|                     | Tyr10  | His13      | His14 | Gln15 | Lys16 | Leu17 | Phe20 | Lys16  | Leu17    | Val18 | Phe19 | Phe20 |
|---------------------|--------|------------|-------|-------|-------|-------|-------|--------|----------|-------|-------|-------|
| Initial Orientation | InB    | InB        | InP   |       |       |       |       |        | InB      |       |       | InP   |
| Final Orientation   | InB    | InB        |       |       | In    |       |       |        | InB      |       |       | InP   |
| Total =             | 89.81  | kcal/mol   |       |       |       |       |       | 279.72 | kcal/mol |       |       |       |
| van der Waals =     | 41.17  | / kcal/mol |       |       |       |       |       | 40.96  | kcal/mol |       |       |       |
| Electrostatic =     | -42.30 | ) kcal/mol |       |       |       |       |       | 4.66   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -3.81  | kcal/mol   |       |       |       |       |       | 146.06 | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -6.73  | kcal/mol   |       |       |       |       |       | 6.64   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -5.51  | kcal/mol   |       |       |       |       |       | -6.06  | kcal/mol |       |       |       |
| Initial Orientation |        |            |       |       | InB   | InB   | InP   |        | InP      |       |       | InB   |
| Final Orientation   |        | InB        |       |       | InB   | InB   | InP   |        |          |       |       | InB   |
|                     |        |            |       |       |       |       | InB   |        |          |       |       |       |
| Total =             | 74.21  | kcal/mol   |       |       |       |       |       | 118.17 | kcal/mol |       |       |       |
| van der Waals =     | 32.90  | ) kcal/mol |       |       |       |       |       | 24.49  | kcal/mol |       |       |       |
| Electrostatic =     | -43.94 | kcal/mol   |       |       |       |       |       | 7.32   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -19.40 | ) kcal/mol |       |       |       |       |       | -15.50 | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -15.00 | ) kcal/mol |       |       |       |       |       | -9.83  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -7.15  | 5 kcal/mol |       |       |       |       |       | -3.40  | kcal/mol |       |       |       |
| Initial Orientation | In     | InP        | InB   |       |       |       |       | InB    |          |       |       |       |
| Final Orientation   |        |            | InB   |       |       |       |       | In     |          |       |       |       |
| Total =             | 83.11  | kcal/mol   |       |       |       |       |       | 289.23 | kcal/mol |       |       |       |
| van der Waals =     | 43.87  | / kcal/mol |       |       |       |       |       | 37.25  | kcal/mol |       |       |       |
| Electrostatic =     | -44.67 | / kcal/mol |       |       |       |       |       | 7.60   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -10.50 | ) kcal/mol |       |       |       |       |       | 155.57 | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -4.03  | kcal/mol   |       |       |       |       |       | 2.94   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -7.88  | 8 kcal/mol |       |       |       |       |       | -3.11  | kcal/mol |       |       |       |
| Initial Orientation |        |            |       |       | InB   | InB   | InB   | In     |          |       |       | InB   |
| Final Orientation   |        |            |       |       | InB   | InB   | InB   | In     |          |       | InB   |       |
| Total =             | 83.41  | kcal/mol   |       |       |       |       |       | 120.80 | kcal/mol |       |       |       |
| van der Waals =     | 39.43  | kcal/mol   |       |       |       |       |       | 26.00  | kcal/mol |       |       |       |
| Electrostatic =     | -36.79 | kcal/mol   |       |       |       |       |       | 2.70   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -10.20 | ) kcal/mol |       |       |       |       |       | -12.87 | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -8.47  | / kcal/mol |       |       |       |       |       | -8.32  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -0.01  | kcal/mol   |       |       |       |       |       | -8.02  | kcal/mol |       |       |       |

 Table 5.5: The solution phase results of an indole interacting with HHQK and LVFF on the 1AMB conformer of β-amyloid

|                     | His13  | His14    | Gln15 | Lys16 | Leu17 | Val18 | Phe20 | Lys16  | Leu17    | Val18 | Phe19 | Phe20 |
|---------------------|--------|----------|-------|-------|-------|-------|-------|--------|----------|-------|-------|-------|
| Initial Orientation |        | InP      |       |       |       |       |       | In     |          |       |       | InP   |
| Final Orientation   |        | InP      |       |       |       | In    |       | In     |          |       | InB   | In    |
|                     |        | InP      |       |       |       |       |       |        |          |       |       |       |
|                     |        | INB      |       |       |       |       |       |        |          |       |       |       |
| Total =             | 63.75  | kcal/mol |       |       |       |       |       | 112.37 | kcal/mol |       |       |       |
| van der Waals =     | 39.20  | kcal/mol |       |       |       |       |       | 24.99  | kcal/mol |       |       |       |
| Electrostatic =     | -58.16 | kcal/mol |       |       |       |       |       | 4.28   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -11.93 | kcal/mol |       |       |       |       |       | -9.24  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -3.68  | kcal/mol |       |       |       |       |       | -6.12  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -4.20  | kcal/mol |       |       |       |       |       | -5.27  | kcal/mol |       |       |       |
| Initial Orientation | InP    | InB      |       |       | InP   |       |       |        |          |       | InP   |       |
| Final Orientation   |        | In       |       |       |       | InB   |       | InB    |          |       | InB   | InB   |
| Total =             | 71.85  | kcal/mol |       |       |       |       |       | 118.76 | kcal/mol |       |       |       |
| van der Waals =     | 36.69  | kcal/mol |       |       |       |       |       | 27.09  | kcal/mol |       |       |       |
| Electrostatic =     | -51.55 | kcal/mol |       |       |       |       |       | 15.85  | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -3.83  | kcal/mol |       |       |       |       |       | -2.84  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -6.19  | kcal/mol |       |       |       |       |       | -4.02  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | 2.41   | kcal/mol |       |       |       |       |       | 6.30   | kcal/mol |       |       |       |
|                     |        |          |       |       |       |       |       |        |          |       |       |       |
| Initial Orientation | InB    |          |       |       | In    |       | InP   |        | InB      |       |       | In    |
| Final Orientation   | InB    |          |       | InB   | In    |       | InP   |        | InB      |       |       | In    |
| Total =             | 81.34  | kcal/mol |       |       |       |       |       | 115.47 | kcal/mol |       |       |       |
| van der Waals =     | 35.66  | kcal/mol |       |       |       |       |       | 28.13  | kcal/mol |       |       |       |
| Electrostatic =     | -40.71 | kcal/mol |       |       |       |       |       | 1.25   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | 5.66   | kcal/mol |       |       |       |       |       | -6.14  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -7.22  | kcal/mol |       |       |       |       |       | -2.98  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | 13.25  | kcal/mol |       |       |       |       |       | -8.30  | kcal/mol |       |       |       |
| Initial Orientation |        |          |       |       | InD   |       | InD   |        | InD      |       |       | InD   |
| Final Orientation   |        |          |       |       | InP   |       | InB   |        | InP      |       |       | InD   |
|                     |        |          |       |       |       |       | iiib  |        |          |       |       | InB   |
| Total =             | 91.09  | kcal/mol |       |       |       |       |       | 117.25 | kcal/mol |       |       |       |
| van der Waals =     | 38.12  | kcal/mol |       |       |       |       |       | 31.69  | kcal/mol |       |       |       |
| Electrostatic =     | -46.31 | kcal/mol |       |       |       |       |       | -5.22  | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | 15.41  | kcal/mol |       |       |       |       |       | -4.36  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -4.76  | kcal/mol |       |       |       |       |       | 0.59   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | 7.66   | kcal/mol |       |       |       |       |       | -14.78 | kcal/mol |       |       |       |

### Table 5.6: The solution phase results of an indole interacting with HHQK and<br/>LVFF on the 1AMC conformer of β-amyloid

|                     | His13  | His14    | Gln15 | Lys16 | Leu17 | Leu17  | Val18    | Phe19 | Phe20 | Asp23 |
|---------------------|--------|----------|-------|-------|-------|--------|----------|-------|-------|-------|
| Initial Orientation |        |          |       |       | In    |        |          |       | InP   | InB   |
| Final Orientation   |        |          |       |       | In    |        |          |       | InB   | InB   |
| Total =             | 122.09 | kcal/mol |       |       |       | 112.65 | kcal/mol |       |       |       |
| van der Waals =     | 40.08  | kcal/mol |       |       |       | 28.39  | kcal/mol |       |       |       |
| Electrostatic =     | -2.15  | kcal/mol |       |       |       | 1.95   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -2.59  | kcal/mol |       |       |       | -2.93  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -8.96  | kcal/mol |       |       |       | -5.44  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | 8.96   | kcal/mol |       |       |       | 1.46   | kcal/mol |       |       |       |
| Initial Orientation |        |          |       |       | InB   |        |          | InP   | InB   | InB   |
| Final Orientation   |        |          |       |       | In    |        |          | InB   | InB   | InB   |
| Total =             | 103.47 | kcal/mol |       |       |       | 107.88 | kcal/mol |       |       |       |
| van der Waals =     | 43.63  | kcal/mol |       |       |       | 25.62  | kcal/mol |       |       |       |
| Electrostatic =     | -18.85 | kcal/mol |       |       |       | -2.34  | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -21.21 | kcal/mol |       |       |       | -10.70 | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -5.42  | kcal/mol |       |       |       | -8.20  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -7.75  | kcal/mol |       |       |       | -2.83  | kcal/mol |       |       |       |
| Initial Orientation | InB    |          |       | InP   |       | -      | -        | -     | -     | -     |
| Final Orientation   | InB    |          |       | InP   |       | -      | -        | -     | -     | -     |
| Total =             | 124.13 | kcal/mol |       |       |       | 127.97 | kcal/mol |       |       |       |
| van der Waals =     | 43.70  | kcal/mol |       |       |       | 36.49  | kcal/mol |       |       |       |
| Electrostatic =     | -6.82  | kcal/mol |       |       |       | 1.68   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -0.55  | kcal/mol |       |       |       | 12.40  | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -5.35  | kcal/mol |       |       |       | 2.67   | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | 4.28   | kcal/mol |       |       |       | 1.19   | kcal/mol |       |       |       |
| Initial Orientation |        |          |       | InB   |       | InP    |          |       | InB   |       |
| Final Orientation   |        |          |       | In    |       |        |          |       | InB   |       |
| Total =             | 111.66 | kcal/mol |       |       |       | 118.23 | kcal/mol |       |       |       |
| van der Waals =     | 44.31  | kcal/mol |       |       |       | 32.62  | kcal/mol |       |       |       |
| Electrostatic =     | -11.97 | kcal/mol |       |       |       | 8.60   | kcal/mol |       |       |       |
| $\Delta E_{tot} =$  | -13.02 | kcal/mol |       |       |       | 2.65   | kcal/mol |       |       |       |
| $\Delta E_{vdw} =$  | -4.73  | kcal/mol |       |       |       | -1.20  | kcal/mol |       |       |       |
| $\Delta E_{ele} =$  | -0.86  | kcal/mol |       |       |       | 8.11   | kcal/mol |       |       |       |

# Table 5.7: The solution phase results of an indole interacting with HHQK and LVFF on the 1AML conformer of β-amyloid

|                     | His13  | His14    | Gln15 | Lys16 | Leu17  | Val18    | Phe19 | Phe20 |
|---------------------|--------|----------|-------|-------|--------|----------|-------|-------|
| Initial Orientation | InB    | InP      |       |       | InB    |          |       | InP   |
|                     |        | InB      |       |       |        |          |       |       |
| Final Orientation   | InB    | InB      |       |       | In     |          |       | InP   |
|                     |        | In       |       |       |        |          |       |       |
| Total =             | 116.49 | kcal/mol |       |       | 89.01  | kcal/mol |       |       |
| van der Waals =     | 46.49  | kcal/mol |       |       | 26.12  | kcal/mol |       |       |
| Electrostatic =     | -33.39 | kcal/mol |       |       | -19.18 | kcal/mol |       |       |
| $\Delta E_{tot} =$  | 1.98   | kcal/mol |       |       | -32.59 | kcal/mol |       |       |
| $\Delta E_{vdw} =$  | 2.50   | kcal/mol |       |       | -12.71 | kcal/mol |       |       |
| $\Delta E_{ele} =$  | -13.06 | kcal/mol |       |       | -8.45  | kcal/mol |       |       |
| Initial Orientation | InP    | InB      |       |       | InP    |          |       | InB   |
|                     |        | InP      |       |       |        |          |       |       |
| Final Orientation   |        | In       |       |       | InP    |          |       | In    |
| Total =             | 112.21 | kcal/mol |       |       | 107.25 | kcal/mol |       |       |
| van der Waals =     | 48.46  | kcal/mol |       |       | 33.35  | kcal/mol |       |       |
| Electrostatic =     | -27.81 | kcal/mol |       |       | -10.16 | kcal/mol |       |       |
| $\Delta E_{tot} =$  | -2.30  | kcal/mol |       |       | -14.35 | kcal/mol |       |       |
| $\Delta E_{vdw} =$  | 4.47   | kcal/mol |       |       | -5.49  | kcal/mol |       |       |
| $\Delta E_{ele} =$  | -7.48  | kcal/mol |       |       | 0.57   | kcal/mol |       |       |

### Table 5.8: The solution phase results of an indole interacting with HHQK and LVFF on the 1BA4 conformer of β-amyloid

|                     | Gly9           | Tyr10      | His13 | His14 | Gln15 | Lys16 | Leu17 | Lys16  | Leu17      | Val18 | Phe19 | Phe20 | Asp23 |
|---------------------|----------------|------------|-------|-------|-------|-------|-------|--------|------------|-------|-------|-------|-------|
| Initial Orientation |                |            | InB   | InP   |       |       |       |        |            |       | InP   |       | InP   |
| Final Orientation   | InP            | InP        | InB   | InP   |       |       |       |        |            |       | InP   |       | In    |
|                     |                |            | InB   |       |       |       |       |        |            |       |       |       |       |
|                     |                |            | InP   |       |       |       |       |        |            |       |       |       |       |
| Total =             | 84.81          | kcal/mol   |       |       |       |       |       | 108.02 | kcal/mol   |       |       |       |       |
| van der Waals =     | 39.37          | kcal/mol   |       |       |       |       |       | 31.58  | kcal/mol   |       |       |       |       |
| Electrostatic =     | -37.89         | kcal/mol   |       |       |       |       |       | -4.49  | kcal/mol   |       |       |       |       |
| $\Delta E_{tot} =$  | -21.21         | kcal/mol   |       |       |       |       |       | -6.75  | kcal/mol   |       |       |       |       |
| $\Delta E_{vdw} =$  | -14.38         | kcal/mol   |       |       |       |       |       | -5.89  | kcal/mol   |       |       |       |       |
| $\Delta E_{ala} =$  | -7.01          | kcal/mol   |       |       |       |       |       | 0.54   | kcal/mol   |       |       |       |       |
| ele                 |                |            |       |       |       |       |       |        |            |       |       |       |       |
| Initial Orientation |                |            | InP   | InB   |       |       |       |        |            |       | InB   |       | InB   |
| Final Orientation   |                | InB        | InP   |       |       |       | InB   | InP    |            |       | InB   |       | InB   |
|                     |                |            | InP   |       |       |       |       |        |            |       |       |       |       |
|                     |                |            | InB   |       |       |       |       |        |            |       |       |       |       |
| Total =             | 77.39          | kcal/mol   |       |       |       |       |       | 112.19 | kcal/mol   |       |       |       |       |
| van der Waals =     | 40.25          | kcal/mol   |       |       |       |       |       | 32.54  | kcal/mol   |       |       |       |       |
| Electrostatic =     | -43.76         | kcal/mol   |       |       |       |       |       | 4.80   | kcal/mol   |       |       |       |       |
| $\Delta F_{c,i} =$  | -28.63         | kcal/mol   |       |       |       |       |       | -2.58  | kcal/mol   |       |       |       |       |
| $\Delta E_{tot} =$  | 13.40          | kcal/mol   |       |       |       |       |       | 4.03   | keal/mol   |       |       |       |       |
| $\Delta E_{vdw} =$  | -13.47         | kcal/mol   |       |       |       |       |       | -4.93  | kcal/mol   |       |       |       |       |
| $\Delta E_{ele} =$  | -12.8/         | kcai/moi   |       |       |       |       |       | 9.83   | kcal/moi   |       |       |       |       |
| Initial Orientation |                |            | InB   |       |       | InP   |       |        | InB        |       |       | InP   |       |
| Final Orientation   |                |            | InB   |       |       | InP   |       |        | InB        |       |       | InP   |       |
|                     |                |            |       |       |       | InB   |       |        |            |       |       |       |       |
| Total =             | 80.49          | kcal/mol   |       |       |       |       |       | 114.07 | kcal/mol   |       |       |       |       |
| van der Waals =     | 42.85          | kcal/mol   |       |       |       |       |       | 30.47  | kcal/mol   |       |       |       |       |
| Electrostatic =     | -34.62         | kcal/mol   |       |       |       |       |       | 0.69   | kcal/mol   |       |       |       |       |
| $\Delta F_{tot} =$  | -27 10         | kcal/mol   |       |       |       |       |       | -0.70  | kcal/mol   |       |       |       |       |
| $\Delta E_{tot} =$  | -13.12         | kcal/mol   |       |       |       |       |       | -7.00  | kcal/mol   |       |       |       |       |
| $\Delta E_{vdw} =$  | -13.12         | kcal/mol   |       |       |       |       |       | 5 72   | keal/mol   |       |       |       |       |
| $\Delta L_{ele} -$  | -3.10          | KCal/III01 |       |       |       |       |       | 5.72   | KCal/III01 |       |       |       |       |
| Initial Orientation |                |            | InP   |       |       | InB   |       |        | InP        |       |       | InB   |       |
| Final Orientation   |                |            | InP   |       |       | InB   |       |        | InP        |       |       | InB   |       |
|                     |                |            | InB   |       |       |       |       |        |            |       |       |       |       |
| Total =             | 80.20          | koal/mol   |       |       |       |       |       | 121.00 | koal/mol   |       |       |       |       |
| van der Waak =      | 07.39<br>41.66 | kcal/mol   |       |       |       |       |       | 36.15  | kcal/mol   |       |       |       |       |
| Electrostatic =     | -34 68         | kcal/mol   |       |       |       |       |       | -2.21  | kcal/mol   |       |       |       |       |
|                     | 2 1.00         |            |       |       |       |       |       | 2.21   |            |       |       |       |       |
| $\Delta E_{tot} =$  | -16.63         | kcal/mol   |       |       |       |       |       | 7.22   | kcal/mol   |       |       |       |       |
| $\Delta E_{vdw} =$  | -12.08         | kcal/mol   |       |       |       |       |       | -1.33  | kcal/mol   |       |       |       |       |
| $\Delta E_{ele} =$  | -3.80          | kcal/mol   |       |       |       |       |       | 2.81   | kcal/mol   |       |       |       |       |

# Table 5.9: The solution phase results of an indole interacting with HHQK and LVFF on the 1IYT conformer of β-amyloid

|                     | Gly9   | Tyr10    | Vall2 | His13 | His14 | Gln15 | Lys16 |  | Lys16  | Leu17   | Val18 | Phe19 | Phe20 |
|---------------------|--------|----------|-------|-------|-------|-------|-------|--|--------|---------|-------|-------|-------|
| Initial Orientation | -      | -        |       |       | InP   |       |       |  | 2      |         |       |       | InP   |
| Final Orientation   | InB    | In       |       | InB   | InP   |       |       |  |        |         |       | InB   |       |
|                     |        |          |       |       |       |       |       |  |        |         |       | InP   |       |
| Total =             | 96.19  | kcal/mol |       |       |       |       |       |  | 139.91 | kcal/mc | ol    |       |       |
| van der Waals =     | 36.22  | kcal/mol |       |       |       |       |       |  | 32.67  | kcal/mc | ol    |       |       |
| Electrostatic =     | -36.60 | kcal/mol |       |       |       |       |       |  | 5.52   | keal/mc | ol    |       |       |
| $\Delta E_{tot} =$  | -15.91 | kcal/mol |       |       |       |       |       |  | -5.32  | kcal/mc | ol    |       |       |
| $\Delta E_{vdw} =$  | -10.19 | kcal/mol |       |       |       |       |       |  | -3.21  | kcal/mc | 01    |       |       |
| $\Delta E_{ele} =$  | -6.62  | kcal/mol |       |       |       |       |       |  | -11.56 | kcal/mc | 01    |       |       |
|                     |        |          |       |       |       |       |       |  |        |         |       |       |       |
| Initial Orientation |        |          |       | InP   |       |       |       |  |        |         |       | InP   | InB   |
| Final Orientation   | InB    | InB      |       | InB   | InB   |       |       |  |        |         |       | InP   | In    |
| Total =             | 99.64  | kcal/mol |       |       |       |       |       |  | 153.18 | kcal/mc | ol    |       |       |
| van der Waals =     | 48.75  | kcal/mol |       |       |       |       |       |  | 35.46  | keal/mc | ol    |       |       |
| Electrostatic =     | -28.34 | kcal/mol |       |       |       |       |       |  | 27.08  | keal/mc | 01    |       |       |
| $\Delta E_{tot} =$  | -12.45 | kcal/mol |       |       |       |       |       |  | 7.95   | kcal/mc | ol    |       |       |
| $\Delta E_{vdw} =$  | 2.33   | kcal/mol |       |       |       |       |       |  | -0.42  | kcal/mc | ol    |       |       |
| $\Delta E_{ele} =$  | 1.63   | kcal/mol |       |       |       |       |       |  | 10.00  | kcal/mc | 01    |       |       |
|                     |        |          |       |       |       |       |       |  |        |         |       |       |       |
| Initial Orientation |        |          |       | InB   |       |       | InP   |  |        | InB     |       |       | InP   |
| Final Orientation   |        |          |       | InB   |       |       |       |  |        | In      |       |       | InP   |
| Total =             | 108.49 | kcal/mol |       |       |       |       |       |  | 142.57 | kcal/mc | ol    |       |       |
| van der Waals =     | 36.56  | kcal/mol |       |       |       |       |       |  | 29.49  | kcal/mc | ol    |       |       |
| Electrostatic =     | -19.13 | kcal/mol |       |       |       |       |       |  | 21.38  | kcal/mc | ol    |       |       |
| $\Delta E_{tot} =$  | -3.60  | kcal/mol |       |       |       |       |       |  | -2.66  | kcal/mc | ol    |       |       |
| $\Delta E_{vdw} =$  | -9.86  | kcal/mol |       |       |       |       |       |  | -6.39  | kcal/mc | ol    |       |       |
| $\Delta E_{ele} =$  | 10.84  | kcal/mol |       |       |       |       |       |  | 4.30   | kcal/mc | ol    |       |       |
| cic .               |        |          |       |       |       |       |       |  |        |         |       |       |       |
| Initial Orientation |        |          | InB   | In    |       |       |       |  |        | InP     |       |       | InB   |
| Final Orientation   |        |          | In    | In    |       |       |       |  |        | In      |       |       | InB   |
| Total =             | 108.08 | kcal/mol |       |       |       |       |       |  | 142.26 | kcal/mc | ol    |       |       |
| van der Waals =     | 40.88  | kcal/mol |       |       |       |       |       |  | 34.78  | kcal/mc | ol    |       |       |
| Electrostatic =     | -16.52 | kcal/mol |       |       |       |       |       |  | 15.58  | keal/mc | 01    |       |       |
| $\Delta E_{tot} =$  | -4.02  | kcal/mol |       |       |       |       |       |  | -2.98  | kcal/mc | ol    |       |       |
| $\Delta E_{vdw} =$  | -5.54  | kcal/mol |       |       |       |       |       |  | -1.10  | kcal/mc | ol    |       |       |
| $\Delta E_{ele} =$  | 13.45  | kcal/mol |       |       |       |       |       |  | -1.50  | kcal/mc | 01    |       |       |
|                     |        |          |       |       |       |       |       |  |        |         |       |       |       |
| Initial Orientation |        |          |       |       |       |       |       |  |        | InB     |       | InP   |       |
| Final Orientation   |        |          |       |       |       |       |       |  |        | InB     |       | In    |       |
| Total =             |        |          |       |       |       |       |       |  | 137.51 | kcal/mc | 01    |       |       |
| van der Waals =     |        |          |       |       |       |       |       |  | 35.69  | kcal/mc | ol    |       |       |
| Electrostatic =     |        |          |       |       |       |       |       |  | 21.67  | keal/mc | ol    |       |       |
| $\Delta E_{tot} =$  |        |          |       |       |       |       |       |  | -7.73  | kcal/mc | ol    |       |       |
| $\Delta E_{vdw} =$  |        |          |       |       |       |       |       |  | -0.19  | kcal/mc | ol    |       |       |
| $\Delta E_{ele} =$  |        |          |       |       |       |       |       |  | 4.59   | kcal/mc | ol    |       |       |
|                     |        |          |       |       |       |       |       |  |        |         |       |       |       |
| Initial Orientation |        |          |       |       |       |       |       |  |        | In      |       | InB   | InB   |
| Final Orientation   |        |          |       |       |       |       |       |  | InB    | In      |       |       | InB   |
| Total =             |        |          |       |       |       |       |       |  | 138.01 | kcal/mc | ol    |       |       |
| van der Waals =     |        |          |       |       |       |       |       |  | 35.77  | kcal/mc | ol    |       |       |
| Electrostatic =     |        |          |       |       |       |       |       |  | 7.02   | keal/mc | )l    |       |       |
| $\Delta E_{tot} =$  |        |          |       |       |       |       |       |  | -7.23  | kcal/mc | ol    |       |       |
| $\Delta E_{vdw} =$  |        |          |       |       |       |       |       |  | -0.11  | kcal/mc | ol    |       |       |
| $\Delta E_{ele} =$  |        |          |       |       |       |       |       |  | -10.06 | kcal/mc | ol    |       |       |

# Table 5.10: The solution phase results of an indole interacting with HHQK and LVFF on the 1Z0Q conformer of β-amyloid

The results of the solution phase optimizations of an indole interacting with the **HHQK** and LVFF region of A $\beta$  show a capacity to bind to both regions. The indole favours binding at His13-Lys16 and His13-His14 in the **HHQK** region, while Leu17-Phe20, and Phe19-Phe20 are the favoured sites for multiple interactions in LVFF.

The binding energies are somewhat variable, with binding at **HHQK** being perhaps slightly more favourable than at LVFF. In general, the van der Waals energy contributions were more significant than those of the electrostatic energy; this is expected as the interactions occurring are primarily between aromatic ring systems.

# 5.2 Interactions Between a Biindole and the HHQK and LVFF Regions of $\beta$ -Amyloid

Given that a simple indole demonstrates a capacity to bind to both the BBXB and AAXA regions of  $\beta$ -amyloid with nearly equal strength, the question arises if a larger molecule will be able to act with the same efficacy. To this purpose, an unsubstituted biindole molecule (Figure 5.2) was constructed to determine how well it could bind to the **HHQK** and LVFF areas of interest.



Figure 5.2: Biindole

The biindole molecule was constructed and subjected to a conformational search, with the resulting lowest energy conformation selected for use. The same isolated **HHQK** and LVFF regions of  $\beta$ -amyloid were used as for the single indole calculations, and the energies are given in Appendix 5. The optimized energies of the biindole are given in Table 5.11.

|          | Ener      | gies (kcal/ | mol)             |
|----------|-----------|-------------|------------------|
| _        | $E_{tot}$ | $E_{vdw}$   | E <sub>ele</sub> |
| Biindole | 21.52     | 11.65       | 0.47             |

#### Table 5.11: The gas phase energies of a biindole

### 5.2.1 THE GAS PHASE OPTIMIZATION OF A BIINDOLE WITH HHQK AND LVFF

Gas phase minimizations were performed to determine if the biindole could interact with both the **HHQK** and LVFF regions of  $\beta$ -amyloid with the same efficacy. Systems were set up such that each of the indole groups was situated ~3.0 Å away from the basic amino acids in **HHQK** or ~3.0 Å away from the aliphatic or aromatic groups in LVFF. Where feasible, orientations were attempted with the indole in two possible positions: the benzyl groups oriented towards the side chains, or the pyrrole groups oriented towards the side chains.

Energy minimizations were performed with constrained protein backbones to prevent structural collapse. The following equations were used:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{\text{Biindole}}$$
(5.4)

 $\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwBiindole}$ (5.5)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eleBiindole}$$
(5.6)

The binding energies were calculated by subtracting the total, van der Waals and electrostatic energies of each of the optimized biindole and  $A\beta$  segment from the energies of the optimized systems.

# 5.2.2 THE RESULTS OF THE GAS PHASE OPTIMIZATIONS OF A BIINDOLE AND THE HHQK AND LVFF REGIONS OF β-Amyloid

The results of the gas phase minimization of the biindole with the isolated **HHQK** and LVFF segments of  $A\beta$  are summarized in the Tables 5.12-5.13. The indole rings of the biindole are represented by InB and InP for the benzyl ring and the pyrrole ring; interactions occurring with both rings and the amino acid are represented by In. Binding with the two different indole rings at the same amino acid residue are separated by a "/". Calculated energies are given for each system, and bonds are indicated by pink for  $\pi$ -H, and blue for  $\pi$ - $\pi$ . The darker shades indicate the presence of more bonds. Indigo is used to denote interactions with the –CH<sub>2</sub>- chain of the amino acid. The initial orientation of the two indoles is given, along with the final orientation upon optimization, and the amino acids are represented by single letters with their position on the protein.

| Conformer | In  | itial O | rientatio | on  |        | Fina   | l Orien |     | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ |            |
|-----------|-----|---------|-----------|-----|--------|--------|---------|-----|------------------|------------------|------------------|------------|
|           | H13 | H14     | Q15       | K16 | H13    | H14    | Q15     | K16 | Other            | (kcal/mol)       | (kcal/mol)       | (kcal/mol) |
| 1AMB      | InB | InB     |           |     | InB    | In/InB |         |     | In/InP           | -22.76           | -12.67           | -11.14     |
|           | InB |         |           | InB | InB    |        |         | InB | InB              | -14.28           | -6.67            | -7.84      |
| 1AMC      | InB | InB     |           |     |        | InB    |         |     | In*/InB          | -15.53           | -7.55            | -8.65      |
|           | InB |         |           | InB |        |        |         | InB | InB*/In          | -14.20           | -7.71            | -6.81      |
| 1AML      | InB | InB     |           |     | In     | InB    |         |     | InB              | -13.75           | -6.75            | -10.01     |
|           | InP | InP     |           |     | In     | In     |         |     | InB*/InP         | -20.04           | -9.53            | -13.14     |
|           | InB |         |           | InB |        |        |         |     | InB              | -9.30            | -2.84            | -6.81      |
| 1BA4      | InB | InB     |           |     | In     |        |         |     |                  | -7.89            | -1.85            | -6.20      |
|           | InP | InP     |           |     | In/InP | In     |         |     |                  | -10.19           | -3.84            | -6.21      |
| 1IYT      | InB | InB     |           |     | In     |        |         |     | InP              | -13.02           | -4.35            | -9.74      |
|           | InP | InP     |           |     | InP    | InP    |         |     |                  | -10.44           | -1.77            | -8.67      |
|           | InB |         |           | InB | In     |        |         | InB |                  | -13.63           | -4.75            | -7.69      |
|           | InP |         |           | InP | In     |        |         | InB | InB              | -18.85           | -9.76            | -11.76     |
| 1Z0Q      | InB | InB     |           |     | InB    |        |         | In  |                  | -13.38           | -4.30            | -9.43      |
|           | InP | InP     |           |     | -      | -      | -       | -   | -                | -10.59           | -4.88            | -7.29      |
|           | InB |         |           | InB |        |        |         | In  |                  | -12.43           | -3.13            | -9.54      |
|           | InP |         |           | InP | InP    |        |         | In  |                  | -10.60           | -2.69            | -9.26      |

Table 5.12: The gas phase results of a biindole interacting with the HHQK region of β-amyloid

\*indicates which indole the bond is occurring with

| Conformer | In         | itial O1   | rientatio   | on          |            |     | Final Orient | ation       |               | $\Delta E_{tot}$ | $\Delta E_{vdv}$ | $\Delta E_{ele}$ |
|-----------|------------|------------|-------------|-------------|------------|-----|--------------|-------------|---------------|------------------|------------------|------------------|
|           | L17        | V18        | F19         | F20         | L17        | V18 | F19          | F20         | Other         | (kcal/mol)       | (kcal/mol)       | (kcal/mol)       |
| 1AMB      | InB        | InB        |             |             | InB        | In  |              |             | InP           | -10.81           | -5.65            | -6.25            |
|           | InP        | InP        |             |             | In/InB*    | In  |              |             | InP           | -21.96           | -7.76            | -10.43           |
|           |            | InB        | InB         |             |            |     | InB          |             | InB           | -15.81           | -3.14            | -8.62            |
|           |            | InP        | InP         |             | -          | -   | -            | -           | -             | -9.64            | -2.96            | -9.52            |
|           |            |            | InB         | InB         |            |     | InB          | InB         | In/InB        | -18.76           | -7.46            | -12.10           |
|           |            |            | InP         | InP         |            |     | InB          |             | In/InP        | -17.66           | -5.08            | -13.95           |
|           | InB        |            |             | InB         | InB        |     |              | InB         |               | -5.80            | -3.01            | -2.79            |
|           | InP        |            |             | InP         | InP        |     |              |             |               | -11.61           | -1.17            | -11.10           |
| 1AMC      | InB        | InB        |             |             | -          | -   | -            | -           | -             | -6.17            | -1.27            | -5.13            |
|           | InP        | InP        |             |             | In         |     |              |             |               | -8.39            | -2.59            | -8.88            |
|           |            | InB        | InB         |             |            |     | InB          |             |               | -6.45            | -1.63            | -4.74            |
|           |            | InP        | InP         |             | -          | -   | -            | -           | -             | -7.63            | -3.08            | -4.59            |
|           |            |            | InB         | InB         |            |     | InB          | InB         |               | -15.02           | -5.61            | -9.42            |
|           |            |            | InP         | InP         |            |     | InB*/InP     | InP         | In/InP        | -24.11           | -13.51           | -12.90           |
|           | InB        |            |             | InB         | InB        |     |              |             |               | -6.48            | -2.36            | -6.32            |
|           | InP        |            |             | InP         | InP        |     |              | InP         |               | -7.71            | -2.70            | -5.37            |
| 1AML      | InB        | InB        |             |             | -          | -   | -            | -           | -             | -8.18            | -2.54            | -6.67            |
|           | InP        | InP        |             |             |            | InP |              |             | InP           | -14.05           | -8.33            | -9.08            |
|           |            | InB        | InB         |             |            | InB | InB          |             | InB           | -24.43           | -4.39            | -24.83           |
|           |            | InP        | InP         |             |            |     |              |             | In/InP        | -18.99           | -2.32            | -20.70           |
|           |            |            | InB         | InB         |            |     |              | InB         | InB           | -12.73           | -1.07            | -14.91           |
|           |            |            | InP         | InP         |            |     | In           |             | InP           | -27.51           | -2.78            | -29.87           |
|           | InB        |            |             | InB         |            |     |              | InP*/InB    |               | -8.45            | -5.12            | -3.58            |
|           | InP        |            |             | InP         | -          | -   | -            | -           | -             | -3.58            | -1.47            | -1.84            |
|           |            | InB        |             | InB         |            |     |              | InB         | InB           | -7.72            | -3.79            | -4.44            |
| 1BA4      | InB        |            |             | InB         |            |     |              | InB         |               | -4.59            | -1.65            | -3.27            |
|           | InP        |            |             | InP         | InB*/InP   |     |              | ln          | InB           | -21.00           | -10.70           | -15.77           |
|           | InB        | InB        |             |             | InB        |     |              |             |               | -12.12           | -2.34            | -8.10            |
|           | InP        | InP        |             |             |            | InP |              |             |               | -13.26           | -2.19            | -8.21            |
|           |            | InB        | InB         |             |            | InB |              |             | In/InB        | -10.08           | -5.19            | -6.26            |
|           |            | InP        | InP         |             |            | InP | InP          |             | In/InP        | -8.31            | -7.22            | -2.17            |
| IIYI      | InB        | InB        |             |             |            | InB |              |             |               | -6.30            | -1.85            | -7.49            |
|           | InP        | InP        |             |             | -          | -   | -            | -           | -             | -7.86            | -1.76            | -7.70            |
|           |            | InB        | InB         |             |            | InB |              |             | InB           | -9.54            | -4.30            | -7.62            |
|           |            | InP        | InP         |             |            | InP |              |             | InB/InP       | -14.34           | -6.61            | -9.82            |
|           |            |            | InB         | InB         |            |     | InB          |             | InB           | -10.79           | -4.02            | -8.38            |
|           |            |            | InP         | InP         |            |     | InP          | In          | In/InP        | -13.25           | -6.55            | -6.22            |
|           | InB        |            |             | InB         |            |     |              | InB         |               | -5.19            | -1.55            | -3.40            |
| 1700      | InP        | LD         |             | InP         | -<br>1 D   | -   | -            | -           | -             | -5.67            | -0.86            | -4.25            |
| 120Q      | InB        | InB<br>InD |             |             | InB<br>L-D | InB |              |             | InB<br>In/InD | -12.01           | -5.33            | -9.85            |
|           | InP<br>LuD | InP        | L.D         |             | InP<br>L.D | In  | L.D          |             | In/InP        | -10.91           | -5.70            | -14.01           |
|           | INB        |            | INB         |             | InB        |     | IIIB<br>IcD  |             | I. D          | -4.55            | -1.45            | -4.40            |
|           | InP        |            | IIIP<br>ImD | InD         | INP        |     | IIIP<br>Imp  |             | INB           | -9.45            | -3.83            | - 1.02           |
|           |            |            | INB         | IIIB<br>ImD |            |     | INB<br>InD   | ImD         |               | -4.94            | -1.28            | -4.55            |
|           | ImD        |            | шР          | IIIP<br>ImD | ImD        |     | ШР           | IIIP<br>ImD |               | -0.45            | -2.45            | -3.22            |
|           | INB        |            |             | INB         | InB        |     |              | InB         |               | -4.91            | -2.84            | -1.9/            |
|           | INP        |            |             | InP         | INP        |     |              | mP          |               | -7.03            | -3.30            | -3.94            |

Table 5.13: The gas phase results of a biindole interacting with the LVFF region of β-amyloid

\*indicates which indole the bond is occurring with

For the minimization of the biindole with the **HHQK** region of  $A\beta$ , there were fewer orientations available where the molecule could interact with two of the charged amino acids. The results of the optimizations indicate binding interactions can occur at multiple sites in the region, preferring His13-His14 and His13-Lys16. Binding also occurred at multiple sites within LVFF, favouring Phe19-Phe20, Leu17-Phe20 and Leu17-Val18. For both A $\beta$  regions, the electrostatic energies were more favourable than the van der Waals energies.

### 5.2.3 THE SOLUTION PHASE OPTIMIZATION OF A BIINDOLE WITH HHQK AND LVFF

Solution phase optimizations were performed for each of the systems resulting from the gas phase minimizations of the biindole with the **HHQK** and LVFF regions of  $A\beta$ . The results of these calculations will demonstrate whether the biindole is still capable of forming binding interactions when water molecules are present.

Explicit solvation was used for these minimizations. A box of water molecules of sufficient size to surround each protein-indole system was put into place, along with periodic boundary conditions. Systems were optimized without constrained protein backbones; however, the energies for each interaction were calculated with a constrained protein backbone in the absence of water and using equations 5.4-5.6. Appendix 5 contains the energies of the solution phase optimized A $\beta$  segments, and the energy of the optimized biindole is given in Table 5.14.

| TT 11 # 14   |                | 1            | • •       | 1 ** 1 1  |
|--------------|----------------|--------------|-----------|-----------|
| I ahle 5 14. | I he collition | nhase ener   | JIES AT 9 | a hundale |
| 1 abic 3.17. | I ne solution  | phase energy | gius ui a | i Dimaoic |

|          | Energies (kcal/mol) |           |                  |  |  |  |  |  |  |  |
|----------|---------------------|-----------|------------------|--|--|--|--|--|--|--|
|          | E <sub>tot</sub>    | $E_{vdw}$ | E <sub>ele</sub> |  |  |  |  |  |  |  |
| Biindole | 26.11               | 12.73     | 0.96             |  |  |  |  |  |  |  |

# 5.2.4 THE RESULTS OF THE SOLUTION PHASE OPTIMIZATIONS OF A BIINDOLE AND THE HHQK AND LVFF REGIONS OF β-Amyloid

The solution phase results are summarized in the following tables according to the region of  $\beta$ -amyloid. The initial and final orientations of the biindole are given, with each of the two indoles arbitrarily assigned as 1 or 2 to distinguish between them. The measured energies and the calculated binding energies are given, and bonds are indicated according to colour; blue for  $\pi$ - $\pi$ , pink for  $\pi$ -H, and green for cation- $\pi$ . Interactions with the backbone of the protein are purple for C=O interactions. The indigo coloured cells indicate that the –CH<sub>2</sub>- chain of the amino acid is involved in the binding.

|                     | Tyr10            | His13            | His14                                                | Gln15 | Lys16            | Val18   | Phe20                    |
|---------------------|------------------|------------------|------------------------------------------------------|-------|------------------|---------|--------------------------|
| Initial Orientation | $In^2/InP^1$     | $InB^2$          | $\mathrm{In}^{\mathrm{l}}/\mathrm{InB}^{\mathrm{2}}$ |       |                  |         |                          |
| Final Orientation   | $InP^1/InP^2$    | $InB^2$          | $\mathrm{In}^{\mathrm{l}}/\mathrm{InB}^{\mathrm{2}}$ |       |                  | $InB^1$ |                          |
|                     | InB <sup>2</sup> |                  |                                                      |       |                  |         |                          |
| Total =             | 72.50            | kcal/mo          | 1                                                    |       |                  |         |                          |
| van der Waals =     | 25.06            | kcal/mo          | 1                                                    |       |                  |         |                          |
| Electrostatic =     | -50.28           | kcal/mo          | 1                                                    |       |                  |         |                          |
| $\Delta E_{tot} =$  | -29.99           | kcal/mo          | 1                                                    |       |                  |         |                          |
| $\Delta E_{vdw} =$  | -28.95           | kcal/mo          | 1                                                    |       |                  |         |                          |
| $\Delta E_{ele} =$  | -14.61           | kcal/mo          | 1                                                    |       |                  |         |                          |
| Initial Orientation |                  | InB <sup>2</sup> |                                                      |       | InB <sup>2</sup> |         | In <b>B</b> <sup>1</sup> |
|                     |                  | IID              |                                                      |       | IID              |         |                          |
| Final Orientation   |                  | InB              |                                                      |       | InB              |         | InB                      |
| Total -             | 80.75            | konl/mo          | 1                                                    |       |                  |         |                          |
| van der Waak =      | 43 38            | kcal/mo          | 1                                                    |       |                  |         |                          |
| Flectrostatic =     | 45.50            | kcal/mo          | 1                                                    |       |                  |         |                          |
|                     | -47.05           | KCalino          | 1                                                    |       |                  |         |                          |
| $\Delta E_{tot} =$  | -21.74           | kcal/mo          | 1                                                    |       |                  |         |                          |
| $\Delta E_{vdw} =$  | -10.63           | kcal/mo          | 1                                                    |       |                  |         |                          |
| $\Delta E_{ele} =$  | -11.97           | kcal/mo          | 1                                                    |       |                  |         |                          |

Table 5.15: The solution phase results of a biindole interacting with the HHQK region on the 1AMB conformer of β-amyloid

|                     | Tyr10            | Glu11     | His13 | His14   | Gln15 | Lys16   | Leu17   | Phe20           |
|---------------------|------------------|-----------|-------|---------|-------|---------|---------|-----------------|
| Initial Orientation | In               | $InB^1$   |       | $InB^1$ |       |         |         |                 |
|                     | InB <sup>2</sup> |           |       |         |       |         |         |                 |
| Final Orientation   | In               | $InB^1$   |       | $InB^1$ |       |         |         |                 |
|                     | InB <sup>2</sup> |           |       |         | I     |         |         |                 |
| Total =             | 77.80            | kcal/mol  |       |         |       |         |         |                 |
| van der Waals =     | 39.47            | kcal/mol  |       |         |       |         |         |                 |
| Electrostatic =     | -48.43           | kcal/mol  |       |         |       |         |         |                 |
| $\Delta E_{tot} =$  | -6.77            | kcal/mol  |       |         |       |         |         |                 |
| $\Delta E_{vdw} =$  | -9.52            | kcal/mol  |       |         |       |         |         |                 |
| $\Delta E_{ele} =$  | 4.41             | kcal/mol  |       |         |       |         |         |                 |
|                     |                  |           |       |         |       |         |         |                 |
| Initial Orientation |                  |           |       |         |       | $InB^2$ | $InB^1$ | $InB^1$         |
|                     |                  |           |       |         |       |         |         | In <sup>2</sup> |
| Final Orientation   |                  |           |       |         |       | $InB^2$ | $InB^1$ | In <sup>2</sup> |
|                     |                  |           |       |         |       |         |         | In <sup>1</sup> |
| Total =             | 83.01            | kcal/mol  |       |         |       |         |         |                 |
| van der Waals =     | 41.91            | kcal/mol  |       |         |       |         |         |                 |
| Electrostatic =     | -48.33           | kcal/mol  |       |         |       |         |         |                 |
|                     | 156              | leas1/mal |       |         |       |         |         |                 |
| $\Delta E_{tot} =$  | -1.50            |           |       |         |       |         |         |                 |
| $\Delta E_{vdw} =$  | -7.08            | kcal/mol  |       |         |       |         |         |                 |
| $\Delta E_{ele} =$  | 4.51             | kcal/mol  |       |         |       |         |         |                 |

### Table 5.16: The solution phase results of a biindole interacting with the HHQK region on the 1AMC conformer of β-amyloid

|                     | Tyr10            | Val12            | His13            | His14            | Gln15 | Lys16 | Leu17            |
|---------------------|------------------|------------------|------------------|------------------|-------|-------|------------------|
| Initial Orientation | $InB^1$          |                  | In <sup>1</sup>  | $InB^2$          |       |       |                  |
| Final Orientation   | $InB^1$          |                  | $InP^1$          | InB <sup>2</sup> |       |       | InB <sup>2</sup> |
|                     |                  |                  | $InB^1$          |                  |       |       |                  |
| Total -             | 121.60           | leas/mai         |                  |                  |       |       |                  |
| Von der Weels -     | 121.09           | kcal/mol         |                  |                  |       |       |                  |
| Flootrostatio =     | 12 47            | kcal/mol         |                  |                  |       |       |                  |
| Electrostatic –     | -13.47           | KCal/IIIOI       |                  |                  |       |       |                  |
| $\Delta E_{tot} =$  | -11.87           | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{vdw} =$  | -9.19            | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{ele} =$  | -3.50            | kcal/mol         |                  |                  |       |       |                  |
|                     |                  |                  |                  |                  |       |       |                  |
| Initial Orientation |                  | $InB^1$          |                  |                  |       |       |                  |
| Final Orientation   |                  | InB <sup>1</sup> |                  |                  |       |       |                  |
|                     |                  |                  |                  |                  |       |       |                  |
| Total =             | 122.16           | kcal/mol         |                  |                  |       |       |                  |
| van der Waals =     | 48.90            | kcal/mol         |                  |                  |       |       |                  |
| Electrostatic =     | -2.44            | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{tot} =$  | -11.40           | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{vdw} =$  | -6.25            | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{ele} =$  | 7.53             | kcal/mol         |                  |                  |       |       |                  |
|                     |                  |                  |                  |                  |       |       |                  |
| Initial Orientation | InP <sup>2</sup> |                  | In <sup>1</sup>  | In <sup>2</sup>  |       |       | InP <sup>1</sup> |
|                     |                  |                  |                  |                  |       |       | $InB^1$          |
| Final Orientation   | InP <sup>2</sup> |                  | InP <sup>1</sup> | In <sup>2</sup>  |       |       | InP <sup>1</sup> |
|                     |                  |                  | $InP^2/InR^1$    | III              |       |       | InB <sup>1</sup> |
|                     |                  |                  |                  |                  |       |       | ш                |
| Total =             | 110.71           | kcal/mol         |                  |                  |       |       |                  |
| van der Waals =     | 40.94            | kcal/mol         |                  |                  |       |       |                  |
| Electrostatic =     | -12.01           | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{tot} =$  | -22.85           | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{vdw} =$  | -14.21           | kcal/mol         |                  |                  |       |       |                  |
| $\Delta E_{ele} =$  | -2.03            | kcal/mol         |                  |                  |       |       |                  |

### Table 5.17: The solution phase results of a biindole interacting with the HHQK region on the 1AML conformer of β-amyloid

|                     | His13                             | His14           | Gln15 | Lys16 |
|---------------------|-----------------------------------|-----------------|-------|-------|
| Initial Orientation | $In^1$                            |                 |       |       |
| Final Orientation   | $In^1$                            |                 |       |       |
| Total =             | 100.97                            | kcal/mol        |       |       |
| van der Waals =     | 39.79                             | kcal/mol        |       |       |
| Electrostatic =     | -32.55                            | kcal/mol        |       |       |
| $\Delta E_{tot} =$  | -22.43                            | kcal/mol        |       |       |
| $\Delta E_{vdw} =$  | -10.31                            | kcal/mol        |       |       |
| $\Delta E_{ele} =$  | -13.35                            | kcal/mol        |       |       |
|                     |                                   |                 |       |       |
| Initial Orientation | In <sup>1</sup> /InP <sup>2</sup> | $In^2$          |       |       |
| Final Orientation   | $In^1$                            | In <sup>2</sup> |       |       |
| Total =             | 100.76                            | kcal/mol        |       |       |
| van der Waals =     | 40.43                             | kcal/mol        |       |       |
| Electrostatic =     | -36.37                            | kcal/mol        |       |       |
| $\Delta E_{tot} =$  | -22.63                            | kcal/mol        |       |       |
| $\Delta E_{vdw} =$  | -9.68                             | kcal/mol        |       |       |
| $\Delta E_{ele} =$  | -17.17                            | kcal/mol        |       |       |

Table 5.18: The solution phase results of a biindole interacting with the HHQK region on the 1BA4 conformer of β-amyloid

|                     | Val12                        | His13            | His14            | Gln15 | Lys16            | Leu17            |
|---------------------|------------------------------|------------------|------------------|-------|------------------|------------------|
| Initial Orientation |                              | $In^1$           |                  |       |                  | InP <sup>1</sup> |
| Final Orientation   |                              | $In^1$           | $InB^2$          |       |                  | InP <sup>1</sup> |
| Total =             | 96 72                        | kcal/mol         |                  |       |                  |                  |
| van der Waals =     | 52.85                        | kcal/mol         |                  |       |                  |                  |
| Electrostatic =     | -37.09                       | kcal/mol         |                  |       |                  |                  |
|                     |                              |                  |                  |       |                  |                  |
| $\Delta E_{tot} =$  | -18.18                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{vdw} =$  | -7.00                        | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{ele} =$  | -7.33                        | kcal/mol         |                  |       |                  |                  |
| Initial Orientation |                              | InD <sup>1</sup> | InD <sup>2</sup> |       |                  |                  |
|                     |                              |                  |                  |       |                  |                  |
| Final Orientation   |                              | InP              | InP <sup>-</sup> |       |                  |                  |
| Total =             | 88.05                        | kcal/mol         |                  |       |                  |                  |
| van der Waals =     | 49.22                        | kcal/mol         |                  |       |                  |                  |
| Electrostatic =     | -45.32                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{tot} =$  | -26.86                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{vdw} =$  | -10.63                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{ele} =$  | -15.56                       | kcal/mol         |                  |       |                  |                  |
|                     |                              |                  |                  |       |                  |                  |
| Initial Orientation |                              | In <sup>1</sup>  |                  |       | InB <sup>2</sup> |                  |
| Final Orientation   |                              | $InB^1$          |                  |       | InB <sup>2</sup> |                  |
| Total =             | 93.00                        | kcal/mol         |                  |       |                  |                  |
| van der Waals =     | 45 16                        | kcal/mol         |                  |       |                  |                  |
| Electrostatic =     | -31.29                       | kcal/mol         |                  |       |                  |                  |
|                     | 21.01                        | 1 1/ 1           |                  |       |                  |                  |
| $\Delta E_{tot} =$  | -21.91                       |                  |                  |       |                  |                  |
| $\Delta E_{vdw} =$  | -14.69                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{ele} =$  | -1.53                        | kcal/mol         |                  |       |                  |                  |
| Initial Orientation | In <sub>P</sub> <sup>2</sup> | In <sup>2</sup>  |                  |       | In <sup>1</sup>  |                  |
|                     | IIID                         |                  |                  |       | ш<br>ь.рl        |                  |
| r inal Orientation  | InB-                         | $InP^{-}$        |                  |       | $InB^{-1}$       |                  |
|                     |                              | InB <sup>2</sup> |                  |       | InP              |                  |
| Total =             | 80.75                        | kcal/mol         |                  |       |                  |                  |
| van der Waals =     | 38.81                        | kcal/mol         |                  |       |                  |                  |
| Electrostatic =     | -40.28                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{tot} =$  | -34.16                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{vdw} =$  | -21.04                       | kcal/mol         |                  |       |                  |                  |
| $\Delta E_{ele} =$  | -10.52                       | kcal/mol         |                  |       |                  |                  |

### Table 5.19: The solution phase results of a biindole interacting with the HHQK region on the 1IYT conformer of β-amyloid

|                        | His13                    | His14      | Gln15 | Lys16                  |
|------------------------|--------------------------|------------|-------|------------------------|
| Initial Orientation    | InB <sup>1</sup>         |            |       | In <sup>1</sup>        |
| Final Orientation      | $InB^1$                  |            |       | In <sup>1</sup>        |
|                        | InP <sup>1</sup>         |            |       |                        |
| TT / 1                 | 110.51                   | 1 1/ 1     |       |                        |
| Total =                | 110.51                   | kcal/mol   |       |                        |
| Van der waals –        | 44.22                    | kcal/mol   |       |                        |
| Electrostatic –        | -23.23                   | KCal/IIIOI |       |                        |
| $\Delta E_{tot} =$     | -10.47                   | kcal/mol   |       |                        |
| $\Delta E_{vdw} =$     | -8.30                    | kcal/mol   |       |                        |
| $\Delta E_{ele} =$     | 3.60                     | kcal/mol   |       |                        |
|                        |                          |            |       |                        |
| Initial Orientation    | -                        | -          | -     | -                      |
| Final Orientation      | InP <sup>1</sup>         | $InP^{1}$  |       |                        |
| Total =                | 109.05                   | kcal/mol   |       |                        |
| van der Waals =        | 52.50                    | kcal/mol   |       |                        |
| Electrostatic =        | -29.73                   | kcal/mol   |       |                        |
| $\Delta E_{tot} =$     | -11.92                   | kcal/mol   |       |                        |
| $\Delta E_{vdw} =$     | -0.03                    | kcal/mol   |       |                        |
| $\Delta F_{ab} =$      | -0.88                    | kcal/mol   |       |                        |
|                        | 0.00                     | neurmoi    |       |                        |
| Initial Orientation    |                          |            |       | In <sup>1</sup>        |
| Final Orientation      |                          |            |       | $InB^1$                |
|                        |                          |            |       |                        |
| Total —                | 107.84                   | kaal/mal   |       |                        |
| van der Waak =         | 107.84                   | kcal/mol   |       |                        |
| Electrostatic =        | -34 63                   | kcal/mol   |       |                        |
|                        |                          |            |       |                        |
| $\Delta E_{tot} =$     | -13.14                   | kcal/mol   |       |                        |
| $\Delta E_{vdw} =$     | -3.82                    | kcal/mol   |       |                        |
| $\Delta E_{ele} =$     | -5.78                    | kcal/mol   |       |                        |
| Initial Orientation    | InD <sup>1</sup>         |            |       | In <sup>2</sup>        |
| Final Orientation      | IIIP<br>LuD <sup>1</sup> |            |       | 111<br>L. <sup>2</sup> |
| r mai Orientation      | InP                      |            |       | In                     |
|                        |                          |            |       |                        |
| Total =                | 97.31                    | kcal/mol   |       |                        |
| van der Waals = $\Box$ | 44.31                    | kcal/mol   |       |                        |
| Electrostatic =        | -39.60                   | kcai/mol   |       |                        |
| $\Delta E_{tot} =$     | -23.67                   | kcal/mol   |       |                        |
| $\Delta E_{vdw} =$     | -8.22                    | kcal/mol   |       |                        |
| $\Delta E_{ele} =$     | -10.75                   | kcal/mol   |       |                        |

Table 5.20: The solution phase results of a biindole interacting with the HHQK region on the 1Z0Q conformer of β-amyloid

|                     | Lys16 L                     | Leu17            | Val18 | Phe19            | Phe20            | Asp23                                   | Val24            | T | His14            | Leu17                             | Val18           | Phe19   | Phe20            | Ala21                              | Glu22            |
|---------------------|-----------------------------|------------------|-------|------------------|------------------|-----------------------------------------|------------------|---|------------------|-----------------------------------|-----------------|---------|------------------|------------------------------------|------------------|
| Initial Orientation |                             |                  |       | $InB^1$          | InB <sup>2</sup> | In <sup>2</sup>                         | InB <sup>2</sup> |   | InP <sup>2</sup> | InB <sup>1</sup>                  | In <sup>2</sup> |         |                  |                                    |                  |
| Final Orientation   |                             |                  |       | $InB^1$          | $\mathrm{InB}^2$ | $\mathrm{In}^2/\mathrm{In}\mathrm{P}^1$ |                  |   | In <sup>2</sup>  | $InB^1$                           | $\mathrm{In}^2$ |         |                  |                                    |                  |
| Total =             | 109.02 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | 110.34           | kcal/mol                          |                 |         |                  |                                    |                  |
| van der Waals =     | 27.59 ko                    | cal/mol          |       |                  |                  |                                         |                  |   | 32.25            | kcal/mol                          |                 |         |                  |                                    |                  |
| Electrostatic =     | 4.78 ko                     | cal/mol          |       |                  |                  |                                         |                  |   | -1.21            | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{tot} =$  | -33.53 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | -32.21           | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{vdw} =$  | -12.84 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | -8.18            | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{ele} =$  | -16.20 kc                   | cal/mol          |       |                  |                  |                                         |                  |   | -13.05           | kcal/mol                          |                 |         |                  |                                    |                  |
| Initial Orientation | $In^2/InP^1$                |                  |       | In <sup>1</sup>  |                  |                                         |                  |   |                  | InB <sup>1</sup>                  | In <sup>2</sup> |         |                  | InP <sup>2</sup> /InP <sup>1</sup> |                  |
| minual Orientation  | 111 / 1111                  |                  |       |                  |                  |                                         |                  |   |                  | InD <sup>1</sup> /In <sup>2</sup> | m               |         |                  | 1111 / 1111                        |                  |
| Einel Orientation   | $I_{\rm H}D^2/I_{\rm H}D^1$ |                  |       | Ten <sup>1</sup> |                  |                                         |                  |   |                  | III /III<br>$Im D^1 /Im^2$        | I <sup>2</sup>  |         |                  | $I_{m}D^{2}/I_{m}D^{1}$            |                  |
| Final Orientation   | InB /InP                    |                  |       | m                |                  |                                         |                  |   |                  | InP /In                           | m               |         |                  | INP /INP                           |                  |
|                     | INP                         |                  |       |                  |                  |                                         |                  |   |                  | InB                               |                 |         |                  |                                    |                  |
| Total =             | 108.71 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | 118.19           | kcal/mol                          |                 |         |                  |                                    |                  |
| van der Waals =     | 33.16 ko                    | cal/mol          |       |                  |                  |                                         |                  |   | 28.27            | kcal/mol                          |                 |         |                  |                                    |                  |
| Electrostatic =     | -7.12 ko                    | cal/mol          |       |                  |                  |                                         |                  |   | 7.93             | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{tot} =$  | -33.84 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | -24.36           | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{vdw} =$  | -7.27 ko                    | cal/mol          |       |                  |                  |                                         |                  |   | -12.16           | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{ele} =$  | -18.96 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | -3.91            | kcal/mol                          |                 |         |                  |                                    |                  |
| Initial Orientation | _                           | _                |       | _                | _                | _                                       | _                |   |                  | InB <sup>1</sup>                  |                 |         | InB <sup>2</sup> |                                    |                  |
| Final Orientation   | -                           | -                | -     | -                | -                | -                                       | -                |   |                  | InD <sup>1</sup>                  |                 |         | InD <sup>2</sup> |                                    |                  |
| Trial               | -                           | -                | -     | -                | -                | -                                       | -                |   | 121 51           | 11/1                              |                 |         | ш                |                                    |                  |
| iotai –             | 120.72 KG                   |                  |       |                  |                  |                                         |                  |   | 26.04            | kcal/mol                          |                 |         |                  |                                    |                  |
| Electrostatic =     | 9.05 kg                     | cal/mol          |       |                  |                  |                                         |                  |   | 9.10             | kcal/mol                          |                 |         |                  |                                    |                  |
| ΔE =                | -21 83 kg                   | cal/mol          |       |                  |                  |                                         |                  |   | -11 04           | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{101} =$  | -8 79 kg                    | cal/mol          |       |                  |                  |                                         |                  |   | -3.49            | kcal/mol                          |                 |         |                  |                                    |                  |
| AE -                | 2 70 k                      | cal/mol          |       |                  |                  |                                         |                  |   | 2.74             | kcal/mol                          |                 |         |                  |                                    |                  |
| ZL <sub>ele</sub> – | =2.79 K                     | carmor           |       |                  |                  |                                         |                  |   | -2.74            | Kearmon                           |                 |         |                  |                                    |                  |
| Initial Orientation |                             | InP <sup>1</sup> |       |                  |                  |                                         |                  |   |                  |                                   |                 | $InB^1$ |                  |                                    | $InB^2$          |
| Final Orientation   |                             | InP <sup>1</sup> |       |                  |                  |                                         |                  |   |                  |                                   |                 | $InB^1$ |                  |                                    | $\mathrm{InB}^2$ |
| Total =             | 118.18 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | 118.11           | kcal/mol                          |                 |         |                  |                                    |                  |
| van der Waals =     | 36.49 ko                    | cal/mol          |       |                  |                  |                                         |                  |   | 34.44            | kcal/mol                          |                 |         |                  |                                    |                  |
| Electrostatic =     | 2.52 ko                     | cal/mol          |       |                  |                  |                                         |                  |   | 2.04             | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{tot} =$  | -24.38 ko                   | cal/mol          |       |                  |                  |                                         |                  |   | -24.45           | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{vdw} =$  | -3.94 ko                    | cal/mol          |       |                  |                  |                                         |                  |   | -5.99            | kcal/mol                          |                 |         |                  |                                    |                  |
| $\Delta E_{ele} =$  | -9.32 ko                    | cal/mol          |       |                  |                  |                                         |                  |   | -9.80            | kcal/mol                          |                 |         |                  |                                    |                  |

### Table 5.21: The solution phase results of a biindole interacting with the LVFF region on the 1AMB conformer of β-amyloid

|                     | Lys16                              | Leu17    | Val18 | Phe19                              | Phe20                   | Asp23            | Leu17            | Val18    | Phe19   | Phe20           |
|---------------------|------------------------------------|----------|-------|------------------------------------|-------------------------|------------------|------------------|----------|---------|-----------------|
| Initial Orientation |                                    |          |       | $InB^2$                            | $InB^1$                 |                  | InP <sup>2</sup> |          |         | $InP^1$         |
| Final Orientation   |                                    |          |       |                                    | $InB^1$                 |                  | InP <sup>2</sup> |          |         | In <sup>1</sup> |
| Total =             | 117.95                             | kcal/mol | l     |                                    |                         |                  | 122.44           | kcal/mol |         |                 |
| van der Waals =     | 29.72                              | kcal/mol | l     |                                    |                         |                  | 30.51            | kcal/mol |         |                 |
| Electrostatic =     | -1.08                              | kcal/mol | l     |                                    |                         |                  | 9.60             | kcal/mol |         |                 |
| $\Delta E_{tot} =$  | -12.54                             | kcal/mol | l     |                                    |                         |                  | -8.05            | kcal/mol |         |                 |
| $\Delta E_{vdw} =$  | -7.50                              | kcal/mol | l     |                                    |                         |                  | -6.71            | kcal/mol |         |                 |
| $\Delta E_{ele} =$  | -11.75                             | kcal/mol | l     |                                    |                         |                  | -1.07            | kcal/mol |         |                 |
|                     | r p <sup>2</sup> r p <sup>1</sup>  |          |       | r pl                               | • <b>•</b> <sup>2</sup> | r p <sup>2</sup> | <b>-</b> 1       |          |         |                 |
| Initial Orientation | InP <sup>-</sup> /InP <sup>-</sup> |          |       | $InB^2$                            | InP <sup>-</sup>        | InB <sup>-</sup> | In               |          |         |                 |
|                     | - 2                                |          |       | InP <sup>2</sup> /InP <sup>2</sup> | - 2                     | 2                | - 1              |          |         |                 |
| Final Orientation   | In <sup>2</sup>                    |          |       | InB <sup>1</sup>                   | In <sup>2</sup>         | InB <sup>2</sup> | In               |          |         |                 |
|                     |                                    |          |       | In <sup>2</sup> /InP <sup>1</sup>  |                         |                  |                  |          |         |                 |
| Total =             | 103.49                             | kcal/mol | l     |                                    |                         |                  | 131.43           | kcal/mol |         |                 |
| van der Waals =     | 24.24                              | kcal/mol | l     |                                    |                         |                  | 36.70            | kcal/mol |         |                 |
| Electrostatic =     | -6.97                              | kcal/mol | l     |                                    |                         |                  | 12.25            | kcal/mol |         |                 |
| $\Delta E_{tot} =$  | -27.00                             | kcal/mol | l     |                                    |                         |                  | 0.94             | kcal/mol |         |                 |
| $\Delta E_{vdw} =$  | -12.98                             | kcal/mol | l     |                                    |                         |                  | -0.52            | kcal/mol |         |                 |
| $\Delta E_{ele} =$  | -17.64                             | kcal/mol | l     |                                    |                         |                  | 1.57             | kcal/mol |         |                 |
|                     |                                    |          |       |                                    |                         |                  |                  |          |         |                 |
| Initial Orientation | -                                  | -        | -     | -                                  | -                       | -                |                  |          | $InB^1$ |                 |
| Final Orientation   | -                                  | -        | -     | -                                  | -                       | -                |                  |          | $InB^1$ |                 |
| Total =             | 123.43                             | kcal/mol | l     |                                    |                         |                  | 111.68           | kcal/mol |         |                 |
| van der Waals =     | 40.64                              | kcal/mol | l     |                                    |                         |                  | 33.88            | kcal/mol |         |                 |
| Electrostatic =     | -5.29                              | kcal/mol | l     |                                    |                         |                  | -6.19            | kcal/mol |         |                 |
| $\Delta E_{tot} =$  | -7.07                              | kcal/mol | l     |                                    |                         |                  | -18.81           | kcal/mol |         |                 |
| $\Delta E_{vdw} =$  | 3.42                               | kcal/mol | l     |                                    |                         |                  | -3.34            | kcal/mol |         |                 |
| $\Delta E_{ele} =$  | -15.96                             | kcal/mol | l     |                                    |                         |                  | -16.87           | kcal/mol |         |                 |
|                     |                                    |          |       |                                    |                         |                  |                  |          |         |                 |
| Initial Orientation |                                    | $InP^1$  |       |                                    |                         |                  | -                | -        | -       | -               |
| Final Orientation   |                                    | $InP^1$  |       |                                    |                         |                  | -                | -        | -       | -               |
| Total =             | 136.20                             | kcal/mol | l     |                                    |                         |                  | 146.73           | kcal/mol |         |                 |
| van der Waals =     | 39.13                              | kcal/mol | l     |                                    |                         |                  | 43.19            | kcal/mol |         |                 |
| Electrostatic =     | 6.81                               | kcal/mol | l     |                                    |                         |                  | 12.55            | kcal/mol |         |                 |
| $\Delta E_{tot} =$  | 5.71                               | kcal/mol | l     |                                    |                         |                  | 16.24            | kcal/mol |         |                 |
| $\Delta E_{vdw} =$  | 1.91                               | kcal/mol | l     |                                    |                         |                  | 5.97             | kcal/mol |         |                 |
| $\Delta E_{ele} =$  | -3.86                              | kcal/mol | l     |                                    |                         |                  | 1.87             | kcal/mol |         |                 |

### Table 5.22: The solution phase results of a biindole interacting with the LVFF region on the 1AMC conformer of β-amyloid

|                     | Leu17            | Val18   | Phe19                 | Phe20            | Ala21            | Asp23                                   |   | Gln15           | Leu17    | Val18            | Phe19            | Phe20                 | Glu22                                     |
|---------------------|------------------|---------|-----------------------|------------------|------------------|-----------------------------------------|---|-----------------|----------|------------------|------------------|-----------------------|-------------------------------------------|
| Initial Orientation |                  |         |                       | $InB^1$          |                  | $InB^2$                                 |   | -               | -        | -                | -                | -                     | -                                         |
| Final Orientation   |                  |         |                       | $InB^1$          |                  |                                         |   | -               | -        | -                | -                | -                     | -                                         |
| Total =             | 118.91           | kcal/mc | ol                    |                  |                  |                                         |   | 125.62          | kcal/mol |                  |                  |                       |                                           |
| van der Waals =     | 34.43            | kcal/mc | ol                    |                  |                  |                                         |   | 34.16           | kcal/mol |                  |                  |                       |                                           |
| Electrostatic =     | -1.12            | kcal/mc | ol                    |                  |                  |                                         |   | 8.31            | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{tot} =$  | -5.56            | kcal/mc | ol                    |                  |                  |                                         |   | 1.16            | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{vdw} =$  | -5.51            | kcal/mc | ol                    |                  |                  |                                         |   | -5.77           | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{ele} =$  | -2.73            | kcal/mc | ol                    |                  |                  |                                         |   | 6.70            | kcal/mol |                  |                  |                       |                                           |
| Initial Orientation |                  |         | In <sup>1</sup>       |                  |                  | InP <sup>1</sup> /InP <sup>2</sup>      |   |                 |          | InD <sup>2</sup> | InD <sup>1</sup> |                       | InD <sup>1</sup> /InD <sup>2</sup>        |
| Tinual Orientation  |                  |         | III<br>I <sup>1</sup> |                  |                  | IIIF /IIIF<br>$I_{22}D^{1}/I_{22}D^{2}$ |   | I.I.            |          | $I_{\rm HD}^2$   | шы               |                       | IIID /IIID<br>$I_{III}D^{1}/I_{III}D^{2}$ |
| Final Orientation   |                  |         | In                    |                  |                  | INP /INP                                |   | In              |          | InB              |                  |                       | INB /INB                                  |
| Total =             | 90.80            | kcal/mc | 01                    |                  |                  |                                         |   | 102.30          | kcal/mol |                  |                  |                       |                                           |
| van der Waals =     | 34.19            | kcal/mc | ol                    |                  |                  |                                         |   | 31.49           | kcal/mol |                  |                  |                       |                                           |
| Electrostatic =     | -16.31           | kcal/mc | ol                    |                  |                  |                                         |   | -9.31           | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{tot} =$  | -33.66           | kcal/mc | ol                    |                  |                  |                                         |   | -22.16          | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{vdw} =$  | -5.75            | kcal/mc | 01                    |                  |                  |                                         |   | -8.44           | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{ele} =$  | -17.93           | kcal/mc | ol                    |                  |                  |                                         |   | -10.92          | kcal/mol |                  |                  |                       |                                           |
|                     |                  | 1       |                       |                  | 1                |                                         |   |                 |          |                  |                  | 1                     |                                           |
| Initial Orientation |                  | InP     |                       |                  | InP              |                                         |   |                 |          |                  |                  | InP'                  |                                           |
|                     | 2                | 1       |                       |                  | 1                |                                         |   |                 |          | 1                |                  | InB'/InB <sup>2</sup> |                                           |
| Final Orientation   | InP <sup>2</sup> | InP     |                       |                  | InP              |                                         |   |                 |          | InB'             |                  | InP                   |                                           |
|                     | InP              | InB     |                       |                  |                  |                                         |   |                 |          |                  |                  | InB <sup>1</sup>      |                                           |
| Total =             | 107.69           | kcal/mc | ol                    |                  |                  |                                         |   | 125.30          | kcal/mol |                  |                  |                       |                                           |
| van der Waals =     | 28.32            | kcal/mc | ol                    |                  |                  |                                         |   | 35.67           | kcal/mol |                  |                  |                       |                                           |
| Electrostatic =     | -0.04            | kcal/mc | ol                    |                  |                  |                                         |   | 11.15           | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{tot} =$  | -16.78           | kcal/mc | ol                    |                  |                  |                                         |   | 0.84            | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{vdw} =$  | -11.62           | kcal/mc | ol                    |                  |                  |                                         |   | -4.27           | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{ele} =$  | -1.65            | kcal/mc | ol                    |                  |                  |                                         |   | 9.54            | kcal/mol |                  |                  |                       |                                           |
|                     |                  |         |                       |                  |                  |                                         |   |                 |          |                  |                  |                       |                                           |
| Initial Orientation |                  |         |                       | $InB^2$          | InB <sup>1</sup> |                                         |   | In              |          |                  |                  |                       | InP <sup>1</sup>                          |
| Final Orientation   |                  |         |                       | InB <sup>2</sup> |                  |                                         |   | In <sup>1</sup> |          | InP <sup>1</sup> |                  |                       | $InP^1$                                   |
| Total =             | 118.36           | kcal/mc | 01                    |                  |                  |                                         |   | 97.91           | kcal/mol |                  |                  |                       |                                           |
| van der Waals =     | 36.92            | kcal/mc | ol                    |                  |                  |                                         |   | 33.29           | kcal/mol |                  |                  |                       |                                           |
| Electrostatic =     | 9.13             | kcal/mc | ol                    |                  |                  |                                         |   | -8.89           | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{tot} =$  | -6.11            | kcal/mc | ol                    |                  |                  |                                         |   | -26.55          | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{vdw} =$  | -3.01            | kcal/mc | ol                    |                  |                  |                                         |   | -6.64           | kcal/mol |                  |                  |                       |                                           |
| $\Delta E_{ele} =$  | 7.52             | kcal/mc | ol                    |                  |                  |                                         |   | -10.51          | kcal/mol |                  |                  |                       |                                           |
|                     |                  |         |                       |                  |                  |                                         |   |                 |          |                  |                  |                       |                                           |
| Initial Orientation | -                | -       | -                     | -                | -                | -                                       |   |                 |          |                  |                  |                       |                                           |
| r inal Orientation  | -                | -       | -                     | -                | -                | -                                       |   |                 |          |                  |                  |                       |                                           |
| Total =             | 134.03           | kcal/mc | ol                    |                  |                  |                                         |   |                 |          |                  |                  |                       |                                           |
| van der Waals =     | 35.05            | kcal/mc | 01                    |                  |                  |                                         |   |                 |          |                  |                  |                       |                                           |
| Electrostatic =     | 15.54            | kcal/mc | ol                    |                  |                  |                                         |   |                 |          |                  |                  |                       |                                           |
| $\Delta E_{tot} =$  | 9.57             | kcal/mc | ol                    |                  |                  |                                         |   |                 |          |                  |                  |                       |                                           |
| $\Delta E_{vdw} =$  | -4.88            | kcal/mc | ol                    |                  |                  |                                         |   |                 |          |                  |                  |                       |                                           |
| $\Delta E_{ele} =$  | 13.93            | kcal/mc | 01                    |                  |                  |                                         | 1 |                 |          |                  |                  |                       |                                           |

### Table 5.23: The solution phase results of a biindole interacting with the LVFF region on the 1AML conformer of β-amyloid

|                     | Gln15 Leu17      | Val18            | Phe19            | Phe20   | Glu22                             | His13            | His14            | Lys16            | Leu17                                                         | Val18 | Phe19 | Phe20           |
|---------------------|------------------|------------------|------------------|---------|-----------------------------------|------------------|------------------|------------------|---------------------------------------------------------------|-------|-------|-----------------|
| Initial Orientation |                  |                  |                  | $InB^1$ |                                   | InB <sup>1</sup> | InB <sup>1</sup> | InB <sup>1</sup> | InB <sup>1</sup>                                              |       |       | In <sup>2</sup> |
|                     |                  |                  |                  |         |                                   |                  |                  |                  | $InP^{1}$                                                     |       |       |                 |
| Final Orientation   |                  |                  |                  | $In^1$  |                                   |                  | $In^1$           | $InB^1$          | $\mathrm{In}^{\mathrm{l}}/\mathrm{In}\mathrm{P}^{\mathrm{2}}$ |       |       | In <sup>2</sup> |
| Total =             | 117.53 kcal/mc   | ol               |                  |         |                                   | 99.57            | kcal/mo          | 1                |                                                               |       |       |                 |
| van der Waals =     | 34.51 kcal/mc    | 01               |                  |         |                                   | 30.67            | kcal/mo          | 1                |                                                               |       |       |                 |
| Electrostatic =     | -8.15 kcal/mc    | ol               |                  |         |                                   | -25.98           | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{tot} =$  | -12.96 kcal/mc   | ol               |                  |         |                                   | -30.91           | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{vdw} =$  | -10.44 kcal/m    | 01               |                  |         |                                   | -14.28           | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{ele} =$  | 1.46 kcal/mo     | 01               |                  |         |                                   | -16.38           | kcal/mo          | 1                |                                                               |       |       |                 |
|                     | LD               | r pl             |                  |         | <b>.</b> 1                        |                  |                  |                  | r pl                                                          |       |       |                 |
| Initial Orientation | InB              | InB              |                  |         | In                                |                  |                  |                  | InB                                                           | 1     |       |                 |
| Final Orientation   | InB              | InB              | InB              |         | In'                               |                  |                  |                  | InB                                                           | InB'  |       |                 |
| Total =             | 114.48 kcal/mc   | 01               |                  |         |                                   | 137.69           | kcal/mo          | 1                |                                                               |       |       |                 |
| van der Waals =     | 35.45 kcal/m     | 01               |                  |         |                                   | 43.48            | kcal/mo          | 1                |                                                               |       |       |                 |
| Electrostatic =     | -13.64 kcal/mc   | ol               |                  |         |                                   | 4.16             | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{tot} =$  | -16.01 kcal/mc   | 01               |                  |         |                                   | 7.20             | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{vdw} =$  | -9.50 kcal/m     | 01               |                  |         |                                   | -1.47            | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{ele} =$  | -4.03 kcal/m     | ol               |                  |         |                                   | 13.76            | kcal/mo          | 1                |                                                               |       |       |                 |
|                     | 2                |                  | 2                |         | 1 2                               |                  |                  |                  |                                                               | ,     |       |                 |
| Initial Orientation | InP <sup>2</sup> | InP              | InP <sup>2</sup> |         | In <sup>1</sup> /InP <sup>2</sup> |                  |                  |                  |                                                               | InP   |       |                 |
| Final Orientation   | InP <sup>2</sup> | InP <sup>1</sup> | InP <sup>2</sup> |         | In <sup>1</sup> /InP <sup>2</sup> | -                | -                | -                | -                                                             | -     | -     | -               |
| Total =             | 113.28 kcal/mc   | 1                |                  |         |                                   | 110.53           | kcal/mo          | 1                |                                                               |       |       |                 |
| van der Waals =     | 30.46 kcal/m     | 01               |                  |         |                                   | 30.23            | kcal/mo          | 1                |                                                               |       |       |                 |
| Electrostatic =     | -5.52 kcal/mc    | ol               |                  |         |                                   | -8.61            | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{tot} =$  | -17.21 kcal/mc   | 01               |                  |         |                                   | -19.95           | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{vdw} =$  | -14.49 kcal/mc   | ol               |                  |         |                                   | -14.71           | kcal/mo          | 1                |                                                               |       |       |                 |
| $\Delta E_{ele} =$  | 4.09 kcal/m      | ol               |                  |         |                                   | 0.99             | kcal/mo          | 1                |                                                               |       |       |                 |

### Table 5.24: The solution phase results of a biindole interacting with the LVFF region on the 1BA4 conformer of β-amyloid

|                     | Ghn15 L                        | Leu17   | Val18            | Phe19            | Phe20   | Glu22                  | Lys16        | Leu17    | Val18 | Phe19            | Phe20                 | Asp23            |
|---------------------|--------------------------------|---------|------------------|------------------|---------|------------------------|--------------|----------|-------|------------------|-----------------------|------------------|
| Initial Orientation |                                |         |                  |                  | $InB^1$ |                        | -            | -        | -     | -                | -                     | -                |
| Final Orientation   | -                              | -       | -                | -                | -       | -                      | -            | -        | -     | -                | -                     | -                |
| Total =             | 127.86 kc                      | al/mol  |                  |                  |         |                        | 132.13       | kcal/mol |       |                  |                       |                  |
| van der Waals =     | 37.39 kc                       | al/mol  |                  |                  |         |                        | 34.61        | kcal/mol |       |                  |                       |                  |
| Electrostatic =     | 4.87 kc                        | cal/mol |                  |                  |         |                        | 3.63         | kcal/mol |       |                  |                       |                  |
| $\Delta E_{tot} =$  | 4.21 kc                        | al/mol  |                  |                  |         |                        | 8.48         | kcal/mol |       |                  |                       |                  |
| $\Delta E_{vdw} =$  | -6.20 kc                       | al/mol  |                  |                  |         |                        | -8.97        | kcal/mol |       |                  |                       |                  |
| $\Delta E_{ele} =$  | 8.77 kc                        | al/mol  |                  |                  |         |                        | 7.53         | kcal/mol |       |                  |                       |                  |
| Initial Orientation |                                |         | $InB^1$          |                  |         |                        | -            | -        | -     | -                | -                     | -                |
| Final Orientation   |                                |         | $InB^1$          |                  |         |                        | -            | -        | -     | -                | -                     | -                |
| Total =             | 123.05 kg                      | al/mol  |                  |                  |         |                        | 125 10       | kcal/mol |       |                  |                       |                  |
| van der Waals =     | 30.70 kc                       | al/mol  |                  |                  |         |                        | 33.23        | kcal/mol |       |                  |                       |                  |
| Electrostatic =     | 1.27 kc                        | cal/mol |                  |                  |         |                        | 8.22         | kcal/mol |       |                  |                       |                  |
| $\Delta E_{tot} =$  | -0.61 kc                       | al/mol  |                  |                  |         |                        | 1.45         | kcal/mol |       |                  |                       |                  |
| $\Delta E_{vdw} =$  | -12.89 kc                      | al/mol  |                  |                  |         |                        | -10.35       | kcal/mol |       |                  |                       |                  |
| $\Delta E_{ele} =$  | 5.17 kc                        | al/mol  |                  |                  |         |                        | 12.18        | kcal/mol |       |                  |                       |                  |
|                     |                                |         |                  |                  |         |                        |              |          |       |                  |                       |                  |
| Initial Orientation |                                |         | InB              |                  |         | InB <sup>1</sup>       |              |          |       | InB              |                       | InB <sup>1</sup> |
| Final Orientation   |                                |         | InB <sup>1</sup> | $InB^2$          |         | In <sup>1</sup>        |              |          |       | InB <sup>1</sup> | $InB^2$               | In <sup>1</sup>  |
| Total =             | 127.50 kc                      | al/mol  |                  |                  |         |                        | 126.14       | kcal/mol |       |                  |                       |                  |
| van der Waals =     | 36.33 kc                       | al/mol  |                  |                  |         |                        | 30.47        | kcal/mol |       |                  |                       |                  |
| Electrostatic =     | 9.38 kc                        | cal/mol |                  |                  |         |                        | 7.63         | kcal/mol |       |                  |                       |                  |
| $\Delta E_{tot} =$  | 3.85 kc                        | al/mol  |                  |                  |         |                        | 2.49         | kcal/mol |       |                  |                       |                  |
| $\Delta E_{vdw} =$  | -7.25 kc                       | cal/mol |                  |                  |         |                        | -13.12       | kcal/mol |       |                  |                       |                  |
| $\Delta E_{ele} =$  | 13.28 kc                       | al/mol  |                  |                  |         |                        | 11.53        | kcal/mol |       |                  |                       |                  |
| Initial Orientation | $I_{m}D^{1}$                   |         | InD <sup>2</sup> |                  |         | $ImD^2$                | $InD^1/In^2$ |          |       | ImD <sup>1</sup> | $In^2$                |                  |
|                     | ш <b>Б</b><br>т., <sup>1</sup> |         | 111F             | L.D <sup>1</sup> |         | IIIF<br>$I_{\rm H}D^2$ | IIIF /III    |          |       | ШГ               | 111<br>1 <sup>2</sup> |                  |
| Final Orientation   | In                             |         | In               |                  |         | InP                    | InB / InB    |          |       |                  | In                    |                  |
|                     |                                |         |                  | ШВ               |         |                        | ШВ           |          |       |                  |                       |                  |
| Total =             | 106.12 kc                      | cal/mol |                  |                  |         |                        | 119.02       | kcal/mol |       |                  |                       |                  |
| van der Waals =     | 33.76 kc                       | al/mol  |                  |                  |         |                        | 38.04        | kcal/mol |       |                  |                       |                  |
| Electrostatic =     | -/.19 kc                       | cal/mol |                  |                  |         |                        | -2.22        | кса/mol  |       |                  |                       |                  |
| $\Delta E_{tot} =$  | -17.53 kc                      | al/mol  |                  |                  |         |                        | -4.64        | kcal/mol |       |                  |                       |                  |
| $\Delta E_{vdw} =$  | -9.82 kc                       | cal/mol |                  |                  |         |                        | -5.54        | kcal/mol |       |                  |                       |                  |
| $\Delta E_{ele} =$  | -3.29 kc                       | cal/mol |                  |                  |         |                        | 1.68         | kcal/mol |       |                  |                       |                  |

### Table 5.25: The solution phase results of a biindole interacting with the LVFF region on the 1IYT conformer of β-amyloid

|                     | His14 Leu17      | Val18            | Phe19                        | Phe20   | Ala21            | Lys16            | Leu17            | Val18  | Phe19            | Phe20             |
|---------------------|------------------|------------------|------------------------------|---------|------------------|------------------|------------------|--------|------------------|-------------------|
| Initial Orientation | $InB^1$          |                  |                              | $InB^2$ |                  |                  | $InB^1$          |        | $InB^2$          |                   |
| Final Orientation   | $InB^1$          |                  |                              | $InB^2$ |                  | $InB^1$          | $InB^1$          |        | $InB^2$          |                   |
| Total =             | 164.88 kcal/mol  |                  |                              |         |                  | 158.50           | kcal/mol         | l      |                  |                   |
| van der Waals =     | 44.40 kcal/mol   |                  |                              |         |                  | 39.29            | kcal/mol         | l      |                  |                   |
| Electrostatic =     | 32.71 kcal/mol   |                  |                              |         |                  | 24.99            | kcal/mol         | l      |                  |                   |
| $\Delta E_{tot} =$  | 10.76 kcal/mol   |                  |                              |         |                  | 4.38             | kcal/mol         | l      |                  |                   |
| $\Delta E_{vdw} =$  | 2.42 kcal/mol    |                  |                              |         |                  | -2.69            | kcal/mol         | l      |                  |                   |
| $\Delta E_{ele} =$  | 14.50 kcal/mol   |                  |                              |         |                  | 6.78             | kcal/mol         | l      |                  |                   |
| Initial Orientation | $In^1$ $InP^1$   | In <sup>1</sup>  |                              |         | InP <sup>1</sup> |                  | InP <sup>1</sup> |        |                  | $InP^{1}/InP^{2}$ |
| Final Orientation   | In <sup>1</sup>  | In <sup>1</sup>  |                              |         | InP <sup>1</sup> |                  | InP <sup>1</sup> |        |                  | In <sup>2</sup>   |
| Total =             | 133.87 kcal/mol  |                  |                              |         |                  | 155.35           | kcal/mol         | l      |                  |                   |
| van der Waals =     | 35.70 kcal/mol   |                  |                              |         |                  | 45.44            | kcal/mol         | l      |                  |                   |
| Electrostatic =     | 6.19 kcal/mol    |                  |                              |         |                  | 16.49            | kcal/mol         | l      |                  |                   |
| $\Delta E_{tot} =$  | -20.25 kcal/mol  |                  |                              |         |                  | 1.23             | kcal/mol         | l      |                  |                   |
| $\Delta E_{vdw} =$  | -6.29 kcal/mol   |                  |                              |         |                  | 3.45             | kcal/mol         | l      |                  |                   |
| $\Delta E_{ele} =$  | -12.01 kcal/mol  |                  |                              |         |                  | -1.72            | kcal/mol         | l      |                  |                   |
| Initial Orientation | $InB^1$          | InB <sup>2</sup> |                              |         | InB <sup>2</sup> | InB <sup>1</sup> | InP <sup>1</sup> |        | InP <sup>1</sup> |                   |
| Final Orientation   | InB <sup>1</sup> | InB <sup>2</sup> |                              |         | InB <sup>2</sup> | InB <sup>1</sup> |                  |        | InP <sup>1</sup> |                   |
| Total=              | 139.34 kcal/mol  |                  |                              |         |                  | 154.99           | kcal/mol         | l      |                  |                   |
| van der Waals =     | 40.71 kcal/mol   |                  |                              |         |                  | 42.82            | kcal/mol         | l      |                  |                   |
| Electrostatic =     | 17.10 kcal/mol   |                  |                              |         |                  | 17.45            | kcal/mol         | l      |                  |                   |
| $\Delta E_{tot} =$  | -14.78 kcal/mol  |                  |                              |         |                  | 0.87             | kcal/mol         | l      |                  |                   |
| $\Delta E_{vdw} =$  | -1.28 kcal/mol   |                  |                              |         |                  | 0.83             | kcal/mol         | l      |                  |                   |
| $\Delta E_{ele} =$  | -1.10 kcal/mol   |                  |                              |         |                  | -0.75            | kcal/mol         | l      |                  |                   |
| Initial Orientation |                  |                  | In <sub>B</sub> <sup>1</sup> |         |                  |                  |                  |        | InP <sup>1</sup> | InP <sup>2</sup>  |
| Final Orientation   |                  |                  | InB <sup>1</sup>             |         |                  |                  |                  |        | InP <sup>1</sup> | InP <sup>2</sup>  |
|                     | 150 15 1 1/ 1    |                  | шэ                           |         |                  | 126.42           | 1 1/ 1           |        | 1111             |                   |
| Iotal =             | 159.15 Kcal/mol  |                  |                              |         |                  | 136.43           | kcal/mol         | L<br>I |                  |                   |
| Electrostatic =     | 33 37 kcal/mol   |                  |                              |         |                  | 13 58            | kcal/mol         | L<br>  |                  |                   |
|                     | 5 02 keel/1      |                  |                              |         |                  | 17.00            | lrool/m1         |        |                  |                   |
| $\Delta E_{tot} =$  | 1 47 kcal/mol    |                  |                              |         |                  | -17.09           | kcal/mol         | L<br>  |                  |                   |
| AE -                | 15 17 koal/mol   |                  |                              |         |                  | -2.00            | koal/mal         | L<br>  |                  |                   |
| $\Delta E_{ele} -$  | 13.17 Kcal/mol   |                  |                              |         |                  | -4.03            | KCal/IIIO        | l      |                  |                   |

### Table 5.26: The solution phase results of a biindole interacting with the LVFF region on the 1Z0Q conformer of β-amyloid

The solution phase results show that even when water molecules are present, the biindole is capable of binding to both the **HHQK** and LVFF regions of  $\beta$ -amyloid. The biindole binds to **HHQK** at His13-His14 and His13-Lys16. In the LVFF region, interactions are favoured almost equally at Leu17-Phe20, Leu17-Val18, Phe19-Phe20, and Val18-Phe19. For both regions the van der Waals energies tend to be more

favourable than the electrostatic energies when contributing to the overall binding of the system. Comparing the energies of binding at **HHQK** and LVFF, interactions at LVFF tend to be lower, and thus more favourable.

# 5.3 Interactions Between a Bi-aromatic Molecule and the HH and FF Regions of $\beta$ -Amyloid

To better compare the binding strength of aromatic molecules to the **HHQK** and LVFF regions of A $\beta$ , semi-empirical calculations were performed to measure the binding energies of a bi-aromatic molecule to His13-His14 (HH) and Phe19-Phe20 (FF). For these calculations, gas phase minimizations were performed to find the optimized interacting systems, and these optimized systems were then used for semi-empirical modelling.

### 5.3.1 PREPARATION OF THE BI-AROMATIC SYSTEMS FOR OPTIMIZATION

A simple bi-aromatic molecule, 1,2-diphenylethene (Figure 5.3), was constructed for optimization with the HH and FF regions of  $\beta$ -amyloid. This molecule was constructed to best interact with the geometric arrangements of HH and FF on six different A $\beta$  conformers; the distance between His13 and His14, and Phe19 and Phe20 was measured for each conformer and averaged to suggest that a molecule capable of spanning 10-13 Å would be ideal. As a molecule with two aromatic species was desired for interaction, several molecules were constructed before 1,2-diphenylethene was selected to fit these distances.



Figure 5.3: 1,2-diphenylethene

Gas phase systems were set up such that each ring of the bi-aromatic molecule was oriented approximately 3.0 Å away from each of the histidine, or phenylalanine residues. In the case of the 1BA4 conformer, the FF region was inaccessible and was not included in these calculations.

Each of the resulting systems was energy minimized at the semi-empirical molecular orbital level of theory using the AM1 Hamiltonian as implemented in the Gaussian 09W suite of programs [107]. Energies were calculated for the singlet state and ground state system, using quadratically convergent SCF. The energies of the  $\beta$ -amyloid conformers are given in Appendix 5, and that of 1,2-diphenylethene in the following table, for both the gas phase minimized system and its optimized energy at the AM1 level.

Table 5.27: The gas phase and semi-empirical energies of 1,2-diphenylethene

| Energies (kcal/mol) |                                                     |                                                                                                                  |  |  |  |  |  |
|---------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $E_{tot}$           | $E_{vdw}$                                           | $E_{ele}$                                                                                                        |  |  |  |  |  |
| 31.36               | 24.85                                               | -0.15                                                                                                            |  |  |  |  |  |
| 0.10126             | 5097713                                             | hartrees                                                                                                         |  |  |  |  |  |
| 63.                 | 63.542                                              |                                                                                                                  |  |  |  |  |  |
|                     | Ener<br>E <sub>tot</sub><br>31.36<br>0.10126<br>63. | Energies (kcal<br><u>E<sub>tot</sub> E<sub>vdw</sub></u><br><u>31.36</u> 24.85<br>0.10126097713<br><u>63.542</u> |  |  |  |  |  |

The binding energies were calculated using the following equations for the gas phase minimized systems:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{\text{Biaromatic}}$$
(5.7)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwBiaromatic}$$
(5.8)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eleBiaromatic}$$
(5.9)

The binding energies are calculated by subtracting the energies of the optimized biaromatic molecule and the A $\beta$  conformers (with constrained protein backbone) from the geometry optimized systems. For the semi-empirical calculations, equation 5.10 was used to calculate the binding energy for each system.

$$\Delta E_{\text{bind}} = E_{A\beta Biaromatic} - E_{A\beta} - E_{Biaromatic}$$
(5.10)

# 5.3.2 Gas Phase Results of the Optimization of a Bi-aromatic Molecule with HH and FF of $\beta$ -Amyloid

The gas phase optimized systems of 1,2-diphenylethene with the HH and FF regions of A $\beta$  are summarized in the following table. The measured and calculated binding energies of the systems are given, also the initial and final orientations of the biaromatic molecule. Each ring was arbitrarily assigned as Ar<sup>1</sup> or Ar<sup>2</sup> for the summary. Measureable bonds are coloured pink for  $\pi$ -H and blue for  $\pi$ - $\pi$ . Interactions with the -CH<sub>2</sub>- chain of the amino acid are in indigo, while purple indicates that the C=O of the protein backbone is involved and lime green, the -CH- of the backbone.
| Conformer |                     | Gly9            | Tyr10           | Glu11           | His13           | His14           | Leu17           | Vall8           | Ile31           | Lys16           | Phe19           | Phe20           | Asp23           | Val24    |
|-----------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------|
| 1AMB      | Initial Orientation |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |          |
|           | Final Orientation   |                 | $Ar^{1}/Ar^{2}$ | Ar <sup>2</sup> | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>1</sup> | Ar <sup>2</sup> | Ar <sup>2</sup> | $Ar^{2}$ |
|           | T-4-1-              | 0.06.1          |                 |                 |                 |                 |                 |                 |                 | ( 9(            | 11              |                 |                 |          |
|           | Iotal =             | -0.96 K         |                 |                 |                 |                 |                 |                 |                 | -0.80           | kcal/mol        |                 |                 |          |
|           | Flectrostatic =     | -225 53 k       | cal/mol         |                 |                 |                 |                 |                 |                 | -231.14         | kcal/mol        |                 |                 |          |
|           | Liceuosuute         | 220.00 K        | curnor          |                 |                 |                 |                 |                 |                 | 251.14          | Rearmon         |                 |                 |          |
|           | $\Delta E_{tot} =$  | -20.40 k        | cal/mol         |                 |                 |                 |                 |                 |                 | -26.30          | kcal/mol        |                 |                 |          |
|           | $\Delta E_{vdw} =$  | -13.09 k        | cal/mol         |                 |                 |                 |                 |                 |                 | -14.80          | kcal/mol        |                 |                 |          |
|           | $\Delta E_{ele} =$  | -8.36 k         | cal/mol         |                 |                 |                 |                 |                 |                 | -13.98          | kcal/mol        |                 |                 |          |
|           |                     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |          |
| 1AMC      | Initial Orientation |                 |                 |                 | Ar <sup>1</sup> | $Ar^{2}$        |                 |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |          |
|           | Final Orientation   |                 | Ar <sup>1</sup> |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 | Ar <sup>2</sup> |                 | Ar <sup>1</sup> | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |          |
|           |                     |                 |                 |                 |                 | Ar <sup>1</sup> |                 |                 |                 | Ar <sup>2</sup> |                 |                 |                 |          |
|           | T-4-1-              | 1 00 1          |                 |                 |                 |                 |                 |                 |                 | 14.00           | 11              |                 |                 |          |
|           | iotal =             | 1.00 K          |                 |                 |                 |                 |                 |                 |                 | -14.09          | kcal/mol        |                 |                 |          |
|           | Electrostatic =     | -242 51 k       | cal/mol         |                 |                 |                 |                 |                 |                 | -259.14         | kcal/mol        |                 |                 |          |
|           |                     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |          |
|           | $\Delta E_{tot} =$  | -18.44 k        | cal/mol         |                 |                 |                 |                 |                 |                 | -33.53          | kcal/mol        |                 |                 |          |
|           | $\Delta E_{vdw} =$  | -11.53 k        | cal/mol         |                 |                 |                 |                 |                 |                 | -10.84          | kcal/mol        |                 |                 |          |
|           | $\Delta E_{ele} =$  | -8.37 k         | cal/mol         |                 |                 |                 |                 |                 |                 | -25.00          | kcal/mol        |                 |                 |          |
|           |                     |                 |                 |                 |                 | _               |                 |                 |                 |                 |                 |                 |                 |          |
| 1AML      | Initial Orientation |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |          |
|           | Final Orientation   |                 | Ar <sup>1</sup> |                 | Ar <sup>1</sup> | Ar <sup>2</sup> | Ar <sup>2</sup> |                 | Ar <sup>2</sup> |                 | Ar <sup>1</sup> | Ar <sup>2</sup> | Ar <sup>1</sup> |          |
|           | Total =             | 159.69 k        | cal/mol         |                 |                 |                 |                 |                 |                 | 163.62          | kcal/mol        |                 |                 |          |
|           | van der Waals =     | 108.68 k        | cal/mol         |                 |                 |                 |                 |                 |                 | 112.01          | kcal/mol        |                 |                 |          |
|           | Electrostatic =     | -179.47 k       | cal/mol         |                 |                 |                 |                 |                 |                 | -178.51         | kcal/mol        |                 |                 |          |
|           | ΔF =                | -14 39 k        | cal/mol         |                 |                 |                 |                 |                 |                 | -10.46          | kcal/mol        |                 |                 |          |
|           | $\Delta E_{tot} =$  | -8 84 k         | cal/mol         |                 |                 |                 |                 |                 |                 | -5.51           | kcal/mol        |                 |                 |          |
|           | $\Delta E_{vdw}$    | - 0.04 K        |                 |                 |                 |                 |                 |                 |                 | -5.51           | keat/mol        |                 |                 |          |
|           | $\Delta E_{ele} -$  | -0.33 K         | carmor          |                 |                 |                 |                 |                 |                 | -3.37           | Real/III01      |                 |                 |          |
| IIVT      | Initial Orientation |                 |                 |                 | Arl             | $\Delta r^2$    |                 |                 |                 |                 | ∆r <sup>1</sup> | $\Delta r^2$    |                 |          |
|           | Final Orientation   |                 |                 |                 |                 | $\Delta r^2$    |                 |                 |                 |                 |                 | $\Delta r^2$    | $\Lambda r^2$   |          |
|           | r inai Orientation  |                 |                 |                 | 741             | Al              |                 |                 |                 |                 | AI              | A               | Ai              |          |
|           | Total =             | 72.13 k         | cal/mol         |                 |                 |                 |                 |                 |                 | 73.54           | kcal/mol        |                 |                 |          |
|           | van der Waals =     | 71.83 k         | cal/mol         |                 |                 |                 |                 |                 |                 | 73.82           | kcal/mol        |                 |                 |          |
|           | Electrostatic =     | -204.59 K       | cal/mol         |                 |                 |                 |                 |                 |                 | -205.19         | kcal/mol        |                 |                 |          |
|           | $\Delta E_{tot} =$  | -12.14 k        | cal/mol         |                 |                 |                 |                 |                 |                 | -10.74          | kcal/mol        |                 |                 |          |
|           | $\Delta E_{vdw} =$  | -8.67 k         | cal/mol         |                 |                 |                 |                 |                 |                 | -6.68           | kcal/mol        |                 |                 |          |
|           | $\Delta E_{ele} =$  | -4.23 k         | cal/mol         |                 |                 |                 |                 |                 |                 | -4.83           | kcal/mol        |                 |                 |          |
|           |                     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |          |
| 1Z0Q      | Initial Orientation |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |          |
|           | Final Orientation   | Ar <sup>1</sup> | Ar <sup>1</sup> |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |                 |                 |                 | Ar <sup>1</sup> | Ar <sup>2</sup> |                 |          |
|           |                     |                 | Ar <sup>2</sup> |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |          |
|           | Total =             | 181 65 V        | cal/mol         |                 |                 |                 |                 |                 |                 | 193 252         | kcal/mol        |                 |                 |          |
| 1         | van der Waals =     | 99.36 k         | cal/mol         |                 |                 |                 |                 |                 |                 | 106.749         | kcal/mol        |                 |                 |          |
|           | Electrostatic =     | -195.26 k       | cal/mol         |                 |                 |                 |                 |                 |                 | -190.229        | kcal/mol        |                 |                 |          |
|           | AE -                | 17.50 1         | aal/1           |                 |                 |                 |                 |                 |                 | 5.00            | Irool/1         |                 |                 |          |
| 1         | $\Delta E_{tot} =$  | -1/.59 K        |                 |                 |                 |                 |                 |                 |                 | -5.98           | kcal/mol        |                 |                 |          |
| 1         | $\Delta E_{vdw} =$  | -11.69 k        |                 |                 |                 |                 |                 |                 |                 | -4.30           | kcai/mol        |                 |                 |          |
|           | $\Delta E_{ele} =$  | -7.14 k         | cal/mol         |                 |                 |                 |                 |                 |                 | -2.11           | кcal/mol        |                 |                 |          |

Table 5.28: The gas phase results of 1,2-diphenylethene interacting with HH and FF on β-amyloid

The bi-aromatic molecule was capable of binding to HH and FF for all systems. For two of the conformers, the binding energies for FF are more favourable, while the other three indicate that binding to HH is slightly more preferable than FF.

### 5.3.3 Results of the Semi-empirical Optimization of a Bi-aromatic Molecule with HH and FF on $\beta$ -Amyloid

The energies calculated from the semi-empirical optimizations of 1,2diphenylethene with the HH and FF regions of A $\beta$  are summarized in Table 5.29. The measured energies are in Hartrees, while the calculated binding energies have been converted to kcal/mol for easier comparison. Interactions that formed at HH or FF are included – these were taken into consideration when examining the binding energies in order to determine the favoured region of binding for the bi-aromatic molecule.

| Conformer | Orientation | Interactions | Measured Energy | Binding Energy | Favoured    |
|-----------|-------------|--------------|-----------------|----------------|-------------|
| Comonici  | Orkination  | interactions | (hartrees)      | (kcal/mol)     | Orientation |
| 1AMB      | H-H         | -            | -0.98112151594  | -5.215         | ББ          |
|           | F-F         | Phe20        | -1.01462932116  | -26.241        | Г-Г         |
| 1AMC      | H-H         | His14        | -0.98447816175  | -1.932         | ЕЕ          |
|           | F-F         | Phe19        | -1.03521548273  | -33.770        | Г-Г         |
| 1AML      | H-H         | -            | -1.34255000338  | -4.510         | ББ          |
|           | F-F         | Phe19        | -1.35412604015  | -11.774        | Г-Г         |
| 1IYT      | H-H         | His13        | -2.08041616515  | -4.318         | ББ          |
|           | F-F         | Phe19/Phe20  | -2.09137849898  | -11.197        | Г-Г         |
| 1Z0Q      | H-H         | -            | -1.18594891661  | -0.392         | ии          |
|           | F-F         | Phe19        | -1.18463462204  | 0.433          | п-п         |

Table 5.29: Results of the semi-empirical calculations of a bi-aromatic molecule with HH and FF on β-amyloid

More binding interactions formed with the FF region of A $\beta$  than the HH region. Even taking these bonds into account, the bi-aromatic tended to bind more strongly to Phe19-Phe20.

#### 5.4 Conclusions on Aromatic Compounds Binding to HHQK and LVFF of β-Amyloid

The results of both the gas phase optimizations and the semi-empirical calculations suggest that within  $\beta$ -amyloid, LVFF is also a viable target for endogenous molecules to bind to in addition to **HHQK**. It appears that aromatic molecules such as indoles may bind even more strongly to the LVFF region of A $\beta$ . Therefore endogenous molecules capable of forming aromatic type interactions, such as those examined in Chapter 3, may bind to both regions of  $\beta$ -amyloid to prevent amyloid aggregation from occurring.

#### **5.5** INTERPRETATION

The binding interactions between  $\beta$ -amyloid and indole compared to an unsubstituted biindole suggest that both aromatic species bind to the **BBXB** region of A $\beta$ with comparable frequency. Biindole formed more binding interactions with the AAXA motif relative to indole; as the species are chemically similar, this is most likely a difference between the size of the biindole molecule relative to the indole.

The binding energies of biindole are more favourable than those of indole for both interactions at **HHQK** and at LVFF. This indicates that the binding interactions with the biindole molecule are likely stronger than those with indole. Again, this is most likely due to the relative size of the species examined. The biindole presents two identical indole molecules that can each bind to a separate amino acid side chain, whereas for indole, it must interact with two different side chains simultaneously. Thus the size of the

molecule is important in identifying species to interact with the **HHQK** and LVFF regions of  $A\beta$ .

The energies of interactions occurring at the AAXA motif are less for most conformations of A $\beta$  relative to those occurring at **BBXB**. For indole, the energies of interactions at LVFF are less than those at **HHQK**, despite the fact that more binding interactions can occur at LVFF versus **HHQK**. Thus the interactions occurring at LVFF are likely of a weaker type than those at **HHQK**. For biindole, more interactions have also formed at LVFF relative to **HHQK**; the measured binding energies are more comparable than seen for the indole. Although there are differences in the energetics of interaction, both indole and biindole demonstrate a capacity to bind to the AAXA motif in more systems than observed for the **BBXB** motif. This indicates that aromatic species could be designed to target both the **BBXB** and AAXA motifs of A $\beta$  to block both these regions from interactions with the negatively charged regions and the cholesterol rafts present on membrane surfaces. This would prevent unwanted conformational changes from occurring.

The semi-empirical studies further confirm that aromatic species can bind to both HH and FF on A $\beta$ , and that interactions with FF tend to be more energetically favourable, at least where unsubstituted molecules are concerned. The presence of electron withdrawing or electron donating groups on the aromatic rings would affect the strength of the binding interactions observed. The conformation of A $\beta$  also appears to play a role in how strongly the bi-aromatic molecule can bind to HH and FF. The different spatial orientations may allow for stronger stacking interactions to occur for some

360

conformations, and the surrounding amino acid side chains may also influence how energetically favourable these optimized systems are.

It can be concluded that aromatic features may be important in indentifying endogenous molecules that can target the AAXA motif of  $\beta$ -amyloid alongside the **BBXB** motif.

#### CHAPTER 6: THE SEARCH FOR A DIAGNOSTIC AGENT FOR ALZHEIMER'S DISEASE

Currently, there are no definitive methods for diagnosing Alzheimer's disease during the life of a patient; it can only be diagnosed with certainty at autopsy. In living patients, methods such as the Mini-Mental State Examination are combined with structural tools such as positron emission tomography (PET) or magnetic resonance imaging (MRI) to diagnose possible AD [20].

MRI imaging agents can be used to produce contrasting images through the use of paramagnetic species such as gadolinium. Chelated gadolinium has significantly reduced toxicity relative to gadolinium salts, and its paramagnetic nature results in a decrease of the  $T_1$  and  $T_2$  relaxation times in the MRI [108]. The chelated compound can be used to show leaky blood vessels as locations with higher concentrations of complex will show up differently; the gadolinium affects the protons in the vicinity of its chelation allowing for a contrasting image to be visualized [108]. MRI imaging agents for Alzheimer's disease are desirable as this technique is most widely available in hospitals, relative to PET and SPECT.

#### **6.1 SOLAPSONE AS AN IMAGING AGENT FOR ALZHEIMER'S DISEASE**

There is a crucial need for new imaging agents with which to visualize aggregating  $\beta$ -amyloid in the brain of a living person. An ideal imaging agent should be safe, capable of binding to A $\beta$  and capable of concomitantly binding to an MRI-active

agent such as gadolinium cations. Based upon previous work by the Weaver group, polyvinylsulfonate (PVS) has been identified as a glycosaminoglycan mimic capable of binding to the **HHQK** region of  $\beta$ -amyloid. PVS is a polyanionic substance that is capable of binding to **HHQK**, but with multiple remaining anionic functional groups capable of also binding to Gd<sup>3+</sup>; however, PVS is not a safe drug-like molecule. Accordingly, a known drug with molecular properties similar to PVS was sought.

Using standard textbooks of pharmacology and medicinal chemistry, coupled with an extensive literature review, the Weaver group assembled a library of 956 compounds as known drugs (Appendix 10). A search of the library revealed that solapsone (Figure 6.1) was a known drug with striking similarities to PVS. As a result, solapsone was studied as a potential imaging agent.



Figure 6.1: Solapsone as charged for physiological pH

Solapsone is a "moderate sized" drug molecule that was used in the early 1960s to treat leprosy [109]. Solapsone is well tolerated with low toxicity and minimal side effects; the LD50 (which is the amount of drug needed to cause death in half of the studied population) was measured as 2.7 g per kilogram [110]. It also appears that solapsone is capable of crossing the blood-brain barrier as concentrations were measured

to be between 1.3-3.7 mg per 100 mL of cerebrospinal fluid, and 2.0-6.1 mg per 100 mg of brain [111].

As it has a high concentration of aromatic rings and negatively charged sulfonate groups, solapsone could potentially interact with both  $\beta$ -amyloid and a cation available for MRI-contrast imaging. It is also structurally similar to glycosaminoglycans, such as heparin sulfate (Figure 6.2), with which A $\beta$  binds to undergo conformational changes: this suggests a capacity for solapsone to bind to the protein.



Figure 6.2: Heparin sulfate

Solapsone presents itself as a potential indicator for identifying Alzheimer's disease. Given that it has a flexible structure, it should be capable of chelating to a positively charged metal ion, such as gadolinium or manganese cations, which are commonly used in MRIs, as their paramagnetic properties allow them to be used as contrast agents [112]. The aromatic rings and sulfonate groups should be capable of interacting with the  $\beta$ -amyloid peptide in the **HHQK** and **LVFF** regions while chelating the metal ion. Therefore, this could be used as a method of identifying the amount of  $\beta$ -amyloid present in the brain and whether a patient has AD or not; the fact that solapsone has been measured in brain bodes well for its potential use as a contrast imaging agent that must cross the blood-brain barrier.

The strength of solapsone as a chelating agent for Gd<sup>3+</sup> and Mn<sup>2+</sup> was compared to that of EDTA and DPDP (Figure 6.3). EDTA and DPDP are frequently used as chelating agents; EDTA is commonly used as a chelating agent for heavy metals, while DPDP is already used as an organ specific contrast agent for MRI, when chelated to manganese [113].



Figure 6.3: EDTA and DPDP charged for physiological pH

#### 6.1.1 PREPARATION OF SOLAPSONE, EDTA, AND DPDP

Solapsone is a "moderate-sized" organic molecule with numerous aromatic rings and sulfonate groups. A conformational search was performed to determine the lowest energy structure of the molecule [47]. A neutral solapsone molecule was constructed and twelve torsional angles were used to run a systematic conformational search in the gas phase. From this search the lowest energy conformation was selected and then charged for physiological pH before being optimized in the gas phase. The lowest energy structure of solapsone is relatively symmetric, therefore one half was arbitrarily denoted as the left side and coloured blue to distinguish it from the right half of the molecule.

The same procedure was followed for both EDTA and DPDP, where the molecules were constructed in neutral forms and subjected to systematic conformational searches. There were seven torsional angles examined for EDTA and thirteen for DPDP. The lowest energy conformation from each search was then charged and minimized in the gas phase.

### 6.1.2 GAS PHASE OPTIMIZATION OF SOLAPSONE, EDTA, AND DPDP CHELATING GD<sup>3+</sup> AND MN<sup>2+</sup>

For each of solapsone, EDTA, and DPDP, initial gas phase geometry optimizations were performed with one ion of either Gd<sup>3+</sup> or Mn<sup>2+</sup> placed at distance of 10 Å from the molecule being examined. These were used to calculate the energy of a non-interactive system. Following these calculations, the ions being examined were separated from the various functional groups on each of the three molecules by approximately 3 Å. For each molecule, the interaction that resulted in the lowest overall energy was selected for solution phase optimization.

The results of the gas phase minimizations with  $Gd^{3+}$  are given in Table 6.1 where the calculated total,  $\Delta E_{tot}$ , van der Waals,  $\Delta E_{vdw}$ , and electrostatic energies,  $\Delta E_{ele}$ , for each of the gas phase systems selected are given in kcal/mol. The table also identifies functional groups where chelation was occurring.

|           | $\Delta E_{tot}$ | $\Delta E_{vdw}$ | $\Delta E_{ele}$ | Chelation sites                      |
|-----------|------------------|------------------|------------------|--------------------------------------|
| Solapsone | -231.28          | 6.92             | -244.50          | $2 \text{ SO}_3^-$                   |
| EDTA      | -234.16          | 13.85            | -247.07          | $2 \text{ CO}_2^-$ and $1 \text{ N}$ |
| DPDP      | -236.53          | 9.01             | -252.26          | $2 \text{ CO}_2$                     |

Table 6.1: Gas phase results of solapsone, EDTA and DPDP chelating Gd<sup>3+</sup>

The results of the gas phase optimization of the three molecules with  $Mn^{2+}$  are given in Table 6.2 for each of the lowest energy systems.

Table 6.2: Gas phase results of solapsone, EDTA and DPDP chelating Mn<sup>2+</sup>

|           | $\Delta E_{tot}$ | $\Delta E_{vdw}$ | $\Delta E_{ele}$ | Chelation sites                      |
|-----------|------------------|------------------|------------------|--------------------------------------|
| Solapsone | -134.67          | 4.27             | -142.39          | $2 \text{ SO}_3^-$                   |
| EDTA      | -157.36          | 8.88             | -165.20          | $2 \text{ CO}_2^-$ and $1 \text{ N}$ |
| DPDP      | -155.24          | 8.05             | -173.89          | $PO_3^{2-}$ and $1 CO_2^{}$          |

#### 6.1.3 SOLUTION PHASE OPTIMIZATION OF SOLAPSONE, EDTA, AND DPDP CHELATING GD<sup>3+</sup> AND MN<sup>2+</sup>

Each of the selected energetically favourable systems from the gas phase interactions was minimized in a solvated environment. The systems in which the chelating agents were separated by 10 Å were also optimized in the solution phase in order to determine the energies of interaction.

Each system was placed in a 30.28 Å x 30.28 Å x 30.28 Å box of water molecules and minimized. The energies for each system were calculated upon removal of the solvent (as the number of water molecules present will vary with each system) and the chelation sites were identified for solapsone, EDTA and DPDP. The results of the solution phase optimized interactions between each of the chelating agents and  $Gd^{3+}$  are given in Table 6.3, while the interactions with  $Mn^{2+}$  are given in Table 6.4. The measured energies are in kcal/mol.

Table 6.3: Solution phase results of solapsone, EDTA and DPDP chelating Gd<sup>3+</sup>

|           | $\Delta E_{tot}$ | $\Delta E_{vdw}$ | $\Delta E_{ele}$ | Chelation sites                                                  |
|-----------|------------------|------------------|------------------|------------------------------------------------------------------|
| Solapsone | -221.84          | 2.91             | -220.86          | $2 \text{ SO}_3^-$ and $2 \text{ H}_2\text{O}$                   |
| EDTA      | -232.79          | 13.33            | -240.90          | $2 \text{ CO}_2^-$ and $1 \text{ N}$ and $2 \text{ H}_2\text{O}$ |
| DPDP      | -228.86          | 4.26             | -227.98          | $2 \text{ CO}_2^-$ and $1 \text{ H}_2\text{O}$                   |

Table 6.4: Solution phase results of solapsone, EDTA and DPDP chelating Mn<sup>2+</sup>

|           | $\Delta E_{tot}$ | $\Delta E_{vdw}$ | $\Delta E_{ele}$ | Chelation sites                                                         |
|-----------|------------------|------------------|------------------|-------------------------------------------------------------------------|
| Solapsone | -128.13          | 4.45             | -134.11          | 2 SO <sub>3</sub>                                                       |
| EDTA      | -151.65          | 5.54             | -154.15          | $2 \text{ CO}_2^-$ and $1 \text{ N}$ and $2 \text{ H}_2\text{O}$        |
| DPDP      | -144.65          | 9.94             | -164.76          | $1 \text{ PO}_3^2$ and $1 \text{ CO}_2^2$ and $1 \text{ H}_2\text{O}_2$ |

#### 6.1.4 CONCLUSIONS ON SOLAPSONE, EDTA AND DPDP CHELATING GD<sup>3+</sup> AND MN<sup>2+</sup>

Gas phase minimizations indicated that solapsone was capable of chelating both  $Gd^{3+}$  and  $Mn^{2+}$ . The total binding energy of solapsone relative to EDTA and DPDP for chelating  $Gd^{3+}$  is very similar, it is also the case for the electrostatic energies. In terms of the van der Waals energies, solapsone is most favoured, followed by DPDP and then EDTA, this can be explained by the number of aromatic rings present in each molecule.

In the gas phase minimization of the three molecules with Mn<sup>2+</sup>, solapsone was less favourable in terms of binding energies, with the exception of having the best van der Waals energy of the three. Manganese is a much smaller ion than gadolinium, so it would seem that the large structure of solapsone is not as capable as the smaller EDTA and DPDP structures in terms of chelating the ion.

The solution phase results of the minimization of solapsone, EDTA and DPDP with  $Gd^{3+}$  indicate an order of overall energetic favourability of EDTA  $\geq$  DPDP > solapsone, although solapsone is still quite capable of chelating the ion. Solapsone is still preferred in terms of the van der Waals energy over the other two chelating agents. All three systems have the gadolinium ion chelating with water, as well as the molecule of interest. In the case of solapsone in particular, this indicates that the chelated system could also interact with the  $\beta$ -amyloid peptide. Figure 6.4 demonstrates the orientation of the most favourable chelated complex of solapsone and gadolinium.



Figure 6.4: Solapsone chelating gadolinium (III).

The results of the solution phase optimization of the systems involving the manganese ion indicate a distinct pattern of EDTA > DPDP > solapsone in terms of the overall binding energy. Contrary to what is seen for the gadolinium systems, DPDP chelated to  $Mn^{2+}$  has a lower electrostatic energy than EDTA, which is still much lower than the same energy for solapsone. Similarly, while solapsone is still the most favoured for van der Waals energies, EDTA exhibits a lower energy than DPDP (despite a lack of aromatic rings). One possible explanation for the less favourable solapsone energies may be due to the fact that manganese (II) is chelating in such a position that it is not interacting with any water molecules; this results in few chelation sites for the ion and may indicate that the structure of the system is less favourable as a whole.

#### 6.2 The Optimization of a Solapsone-Gd<sup>3+</sup> Complex with $\beta$ -Amyloid

As solapsone presented itself as a viable molecule for chelating paramagnetic cations, the next phase was to determine if a complex of solapsone and gadolinium would be capable of binding to  $\beta$ -amyloid. Molecular mechanics simulations were performed in gas and solution phase environments to determine if binding could occur with the **HHQK** and LVFF regions of A $\beta$ .

### 6.2.1 PREPARATION OF $\beta$ -Amyloid-Solapsone-Gd<sup>3+</sup> Systems for Gas Phase Optimization

The best chelated solapsone- $Gd^{3+}$  complex identified in Section 6.1.1 was selected for optimization with six different conformations of  $\beta$ -amyloid: 1AMB, 1AMC, 1AML, 1BA4, 1IYT and 1Z0Q (as identified by their PDB codes). The gas phase optimized energies of the A $\beta$  conformers are given in Appendix 6, and that of the solapsone-Gd<sup>3+</sup> complex is given in Table 6.5.

Table 6.5: The gas phase energies of solapsone chelating gadolinium

|                             | Energi    | es (kca   | l/mol)    |
|-----------------------------|-----------|-----------|-----------|
|                             | $E_{tot}$ | $E_{vdw}$ | $E_{ele}$ |
| Solapsone -Gd <sup>3+</sup> | -150.16   | 47.42     | -223.73   |

As the chelated solapsone-Gd<sup>3+</sup> complex is more fixed in its structure, there were only a few orientations that could be set up for optimization. Systems were prepared such that two of the functional groups on solapsone were situated ~3.0 Å away from two of the amino acid side chains of interest in the **HHQK** or LVFF region of  $\beta$ -amyloid. For the optimized results, the energies were calculated to determine the binding strength via the following equations:

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{\text{SolapGd}}$$
(6.1)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwSolapGd}$$
(6.2)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eleSolapGd}$$
(6.3)

The total, van der Waals, and electrostatic binding energies were calculated by subtracting the energy of the optimized solapsone- $Gd^{3+}$  complex and the energy of the A $\beta$  conformer from the energy of the gas phase minimized system.

The energy minimizations were performed with constrained protein backbones to prevent structural collapse.

#### 6.2.2 The Gas Phase Results of Solapsone-Gd<sup>3+</sup> Optimized with $\beta$ -Amyloid

A significant number of optimized A $\beta$ -solapsone-Gd<sup>3+</sup> systems were generated from the gas phase minimizations. The complete results are given in Appendix 11. From the gas phase results, six systems were selected for each of the **HHQK** and LVFF regions of each conformer of  $\beta$ -amyloid for solution phase optimization. The systems that were selected are listed in the following tables according to A $\beta$  conformer. The functional groups on solapsone are identified according to Figure 6.5.



Figure 6.5: Abbreviations of the functional groups on solapsone

The amino acid side chains are represented by their three letter notation, and both the initial orientation of solapsone-Gd<sup>3+</sup> and its final orientation upon minimization are given. Measured bonds that formed are coloured blue for  $\pi$ - $\pi$ , green for cation- $\pi$ , and orange for hydrogen bonds. When more than one hydrogen bond formed with an amino acid, a darker shade of orange was used. Interactions with the –CH<sub>2</sub>- of the amino acid side chain are shown in indigo, while interactions with the C=O, -NH- or –CH- of the protein backbone are coloured purple, yellow and lime green, respectively. The chelation occurring with Gd<sup>3+</sup> was also included for reference.

# Table 6.6: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the 1AMB conformer of β-amyloid

|                                                              | Tyr10                                   | His13    | His14 Gln1         | 5 Lys16  | Leul 7   | Val18 P  | he20  | Tyr10                 | His13                  | His14            | Gln15               | Lys16        | Leu17 Val18   | Phe20     | Glu22 |
|--------------------------------------------------------------|-----------------------------------------|----------|--------------------|----------|----------|----------|-------|-----------------------|------------------------|------------------|---------------------|--------------|---------------|-----------|-------|
| Initial Orientation                                          |                                         | RS1      |                    | LS1      |          |          |       |                       | RB1                    | LB1              |                     |              |               |           |       |
| Final Orientation                                            |                                         | RB1      |                    | LS1      | RS1      | 1        | LS1   | CS                    |                        | LB2              |                     |              | LB2           |           | LB2   |
|                                                              |                                         |          |                    |          |          |          |       | RB1                   |                        |                  |                     |              |               |           |       |
| Gd <sup>3+</sup> chelates 2 SO . <sup>-</sup> @ 5            | citec                                   |          |                    |          |          |          |       | Gd <sup>3+</sup> chek | ates 2 SO              | -<br>@ 1 site    |                     |              |               |           |       |
| Gu cheates 2 503 (a) 5                                       | SILCS                                   |          |                    |          |          |          |       | Gu ches               | ates 2 503             | te 4 site.       | 5                   |              |               |           |       |
| Total =                                                      | -241.32                                 | kcal/mol | $\Delta E_{Ta}$    | t -82.49 | kcal/m   | ol       |       | -238.03               | kcal/mol               |                  | $\Delta E_{Tot} =$  | -79.20       | kcal/mol      |           |       |
| Van der Waals =                                              | 78.07                                   | kcal/mol | $\Delta E_{Vd}$    | v -21.05 | 5 kcal/m | ol       |       | 86.99                 | kcal/mol               |                  | $\Delta E_{Vdw} =$  | -12.14       | kcal/mol      |           |       |
| Electrostatic =                                              | -506.18                                 | kcal/mol | $\Delta E_{Ele}$   | -70.90   | ) kcal/m | ol       |       | -502.93               | kcal/mol               |                  | $\Delta E_{Ele} =$  | -67.65       | kcal/mol      |           |       |
| Little installe                                              |                                         | 1.01     | DC1                |          |          |          |       |                       | LDI                    |                  |                     | DDI          |               |           |       |
| Final Orientation                                            | CS                                      | RB1      | RS1                |          | 151      | RS2      |       |                       | LBI<br>IBI             |                  |                     | RB1          |               | RS1       |       |
|                                                              | 00                                      | LB1      | 1001               |          | Loi      | RB2      |       |                       | LDI                    |                  |                     | RS1          |               | Roi       |       |
|                                                              |                                         | LS1      |                    |          |          |          |       |                       |                        |                  |                     |              |               |           |       |
| 2                                                            |                                         |          |                    |          |          |          |       | 2.                    |                        |                  |                     |              |               |           |       |
| Gd <sup>31</sup> chelates 2 SO <sub>3</sub> @ 5              | sites                                   |          |                    |          |          |          |       | Gd <sup>or</sup> chek | ates 2 SO <sub>3</sub> | @ 4 site:        | s                   |              |               |           |       |
| Total =                                                      | -233.53                                 | kcal/mol | $\Delta E_{T_{c}}$ | -74.69   | kcal/m   | ol       |       | -223.19               | kcal/mol               |                  | $\Delta E_{Tat} =$  | -64.36       | kcal/mol      |           |       |
| Van der Waals =                                              | 82.13                                   | kcal/mol | ΔEve               | , -16.99 | kcal/m   | ol       |       | 89.18                 | kcal/mol               |                  | $\Delta E_{Vdw} =$  | -9.95        | kcal/mol      |           |       |
| Electrostatic =                                              | -497 80                                 | kcal/mol |                    | = -62.52 | 2 kcal/m | nol      |       | -497 51               | kcal/mol               |                  | $\Delta E_{rela} =$ | -62.23       | kcal/mol      |           |       |
| Licenostine                                                  | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | neurnor  | Ele                | 02.02    | . neur n |          |       | 197.01                | neurnor                |                  | Ele                 | 02.25        |               |           |       |
| Initial Orientation                                          |                                         | RS2      | LS1                |          |          |          |       |                       | LS1                    | RS2              |                     |              |               |           |       |
| Final Orientation                                            | LB2                                     | RS2      | LS1                | RS1      | RS1      | LS1      |       | LS1                   | LS1                    | Gd <sup>3+</sup> |                     |              | LB2           |           |       |
|                                                              |                                         | RB2      | LB2                |          | LB1      |          |       |                       |                        | RS2              |                     |              |               |           |       |
|                                                              |                                         | RSI      | LS2                |          |          |          |       |                       |                        | LSI              |                     |              |               |           |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 4 | sites                                   |          |                    |          |          |          |       | Gd <sup>3+</sup> chek | ates 2 SO <sub>3</sub> | a 3 site         | s                   |              |               |           |       |
|                                                              |                                         |          |                    |          |          |          |       |                       |                        |                  |                     |              |               |           |       |
| Total =                                                      | -248.40                                 | kcal/mol | $\Delta E_{Ta}$    | t -89.57 | 7 kcal/m | ol       |       | -235.17               | kcal/mol               |                  | $\Delta E_{Tot} =$  | -76.33       | kcal/mol      |           |       |
| Van der Waals =                                              | 77.42                                   | kcal/mol | $\Delta E_{Vd}$    | v -21.70 | ) kcal/m | ol       |       | 84.99                 | kcal/mol               |                  | $\Delta E_{Vdw} =$  | -14.13       | kcal/mol      |           |       |
| Electrostatic =                                              | -506.11                                 | kcal/mol | $\Delta E_{Ele}$   | -70.83   | kcal/m   | ol       |       | -505.24               | kcal/mol               |                  | $\Delta E_{Ele} =$  | -69.96       | kcal/mol      |           |       |
|                                                              | Hie13                                   | Luc16    | Leu17 Vall         | 2 Dhe10  | Dha20    | Acn23 I  | vc28  | Hie13                 | Leu17                  | Val18            | Dhe10               | Dbe20        | Ab21 Gb22     | Gh/25 1   | 12028 |
| Initial Orientation                                          | 111515                                  | Lysto    | Lear / Van         | RB1      | LB1      | 113p25 E | Jy320 | 11615                 | LB1                    | vano             | 111017              | RB1          | Thu21 Olu22   | . Gly25 I | 29320 |
| Final Orientation                                            |                                         | LB1      |                    | CS       |          | LB2      |       | LS1                   | LB1                    |                  |                     | RB1          |               |           | RS1   |
|                                                              |                                         | LNH      |                    |          |          | CS       |       |                       |                        |                  |                     |              |               |           |       |
| $Gd^{3+}$ abalatas 3 SO $ @ 6$                               | aitaa                                   |          |                    |          |          |          |       | Gd <sup>3+</sup> abak | tas 2 SO               | - @ 5 cito       |                     | 4 sites (21  | & 2D) + 2 U   | 20        |       |
| Ou cheates $5.5O_3$ ( $w$ 0                                  | SILES                                   |          |                    |          |          |          |       | Gu chek               | ates 2 303             | W 5 site         | 5                   | 4 Siles (21. | (a 2K) + 5 IL | 20        |       |
| Total =                                                      | -237.86                                 | kcal/mol | $\Delta E_{T c}$   | t -79.02 | 2 kcal/m | ol       |       | -232.85               | kcal/mol               |                  | $\Delta E_{Tot} =$  | -74.01       | kcal/mol      |           |       |
| Van der Waals =                                              | 86.54                                   | kcal/mol | $\Delta E_{Vd}$    | -12.59   | kcal/m   | ol       |       | 88.43                 | kcal/mol               |                  | $\Delta E_{Vdw} =$  | -10.69       | kcal/mol      |           |       |
| Electrostatic =                                              | -513.32                                 | kcal/mol | $\Delta E_{Ele}$   | -78.04   | kcal/m   | юl       |       | -503.13               | kcal/mol               |                  | $\Delta E_{Ele} =$  | -67.85       | kcal/mol      |           |       |
|                                                              |                                         |          | DDI                |          | 1.51     |          |       |                       |                        | DDA              |                     | 1.00         |               |           |       |
| Initial Orientation                                          | DC1                                     |          | RBI<br>PD1         |          | LBI      |          | 1.61  |                       |                        | RB2              |                     | LB2          | I D2          |           | 1 6 1 |
| r inai Orientation                                           | KSI                                     |          | RNH                |          |          | L        | NH    |                       |                        | KD2              |                     | LD2          | LD2           |           | LSI   |
|                                                              |                                         |          |                    |          |          |          |       |                       |                        |                  |                     |              |               |           |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 6 | sites                                   |          |                    |          |          |          |       | Gd <sup>3+</sup> chek | ates 2 SO <sub>3</sub> | @ 4 site         | S                   |              |               |           |       |
| T- (-1                                                       | 225.02                                  | 1 1/1    | 45                 | (( ))    |          | 1        |       | 216.02                | 1                      |                  | 415                 | 67.00        | 1 1/ 1        |           |       |
| Iotal =                                                      | -225.03                                 | kcal/mol |                    | t -66.20 |          | 101      |       | -216.82               | kcal/mol               |                  | $\Delta E_{Tot} =$  | -57.98       | kcal/mol      |           |       |
| Van der Waals =                                              | 87.41                                   | kcal/mol | ΔE <sub>Vd</sub>   | v -11./1 | kcal/m   |          |       | 82.74                 | kcal/mol               |                  | $\Delta E_{Vdw} =$  | -16.38       | kcal/mol      |           |       |
| Electrostatic =                                              | -497.62                                 | kcal/mol | $\Delta E_{Ele}$   | = -62.34 | kcal/m   | 101      |       | -482.74               | kcal/mol               |                  | $\Delta E_{Ele} =$  | -4/.46       | kcal/mol      |           |       |
| Initial Orientation                                          |                                         |          | RB2                | LB2      |          |          |       |                       |                        | LB2              | RB2                 |              |               |           |       |
| Final Orientation                                            |                                         |          | RB2                | LB2      |          |          |       | RB2                   | RB2                    |                  |                     |              |               |           |       |
|                                                              |                                         |          |                    |          |          |          |       |                       | RS2                    |                  |                     |              |               |           |       |
| $Gd^{3+}$ chelates 2 SO $ \odot$ 5                           | sites                                   |          |                    |          |          |          |       | Gd <sup>3+</sup> abol | ates 2 SO              | - @ 5 cita       | e                   |              |               |           |       |
| $Gu$ chemics 2 $SO_3$ ( $a$ ) 5                              | 5405                                    |          |                    |          |          |          |       | Gu chei               | arcs $\angle 50_3$     | w 5 site         | 5                   |              |               |           |       |
| Total =                                                      | -214.70                                 | kcal/mol | $\Delta E_{Tc}$    | t -55.87 | 7 kcal/m | ol       |       | -212.11               | kcal/mol               |                  | $\Delta E_{Tot} =$  | -53.27       | kcal/mol      |           |       |
| Van der Waals =                                              | 89.40                                   | kcal/mol | $\Delta E_{Vd}$    | " -9.73  | 8 kcal/m | ol       |       | 92.23                 | kcal/mol               |                  | $\Delta E_{Vdw} =$  | -6.89        | kcal/mol      |           |       |
| Electrostatic =                                              | -480.93                                 | kcal/mol | $\Delta E_{Ele}$   | -45.65   | 5 kcal/m | ol       |       | -479.73               | kcal/mol               |                  | $\Delta E_{Ele} =$  | -44.45       | kcal/mol      |           |       |

|                                                      | Tyr10   | His13      | His14 | Gln15               | Lys16      | Leu17  | Phe20     | Tyr10                   | His13                  | His14       | Gln15                       | Lys16  | Leu17 Phe20 |
|------------------------------------------------------|---------|------------|-------|---------------------|------------|--------|-----------|-------------------------|------------------------|-------------|-----------------------------|--------|-------------|
| Initial Orientation                                  | ź       | LB1        | RB1   |                     |            |        |           |                         | RB2                    |             |                             | LB2    |             |
| Final Orientation                                    | CS      | LS1        | RB1   |                     |            | LS1    |           |                         | RB2                    |             |                             | LB2    | LB1         |
|                                                      | LB1     |            | CS    |                     |            |        |           |                         | RB2                    |             |                             | LS2    |             |
|                                                      |         |            |       |                     |            |        |           |                         |                        |             |                             | RS2    |             |
| $Gd^{3+}$ chelates 2 SO $\frac{1}{2}$ @ 6 site       | -c      |            |       |                     |            |        |           | Gd <sup>3+</sup> chek   | ates 3 SO.             | ∂6 sites    | 2                           |        |             |
| $Gu$ chemics 2 $3G_3$ ( $a$ $0$ she                  | .5      |            |       |                     |            |        |           | Gu chei                 | ates 5 503             | w o sue:    | 5                           |        |             |
| Total =                                              | -218.35 | kcal/mol   |       | $\Delta E_{Tot}$    | -70.68     | kcal/m | ol        | -208.95                 | kcal/mol               |             | $\Delta E_{Tot} =$          | -61.29 | kcal/mol    |
| Van der Waals =                                      | 97.45   | kcal/mol   |       | $\Delta E_{Vdw}$    | -12.38     | kcal/m | ol        | 95.96                   | kcal/mol               |             | $\Delta E_{Vdw} =$          | -13.88 | kcal/mol    |
| Electrostatic =                                      | -506.37 | kcal/mol   |       | $\Delta E_{Ele}$ =  | -57.44     | kcal/m | ol        | -496.19                 | kcal/mol               |             | $\Delta E_{Ele} =$          | -47.26 | kcal/mol    |
|                                                      |         |            |       |                     |            |        |           |                         |                        |             |                             |        |             |
| Initial Orientation                                  |         | RS2<br>PP2 |       |                     | LS2        | DD1    | 1 1 1 2 2 | 1 1 1 2 2               | DD2                    | LB2         |                             | RB2    | DS2         |
|                                                      |         | RD2<br>RS1 |       |                     | 1.51       | KD2    | LD2       | LDZ                     | RD2<br>RS2             | LB2         |                             |        | LS2         |
|                                                      |         |            |       |                     |            |        |           |                         | LS2                    |             |                             |        |             |
| a 1 <sup>3+</sup> 1 1 <b>a</b> ao ao amin'           |         |            |       |                     |            |        |           | - 1 <sup>3+</sup> · · · |                        |             |                             |        |             |
| $Gd^{3}$ chelates 2 $SO_3$ ( <i>a</i> ) 6 site       | s       |            |       |                     |            |        |           | Gd <sup>31</sup> chel   | ates 3 SO <sub>3</sub> | (a) 5 sites | s                           |        |             |
| Total =                                              | -207.89 | kcal/mol   |       | $\Delta E_{Tot}$    | -60.22     | kcal/m | ol        | -229.7                  | kcal/mol               |             | $\Delta E_{Tot} =$          | -82.07 | kcal/mol    |
| Van der Waals =                                      | 104.26  | kcal/mol   |       | $\Delta E_{Vdw}$    | -5.57      | kcal/m | ol        | 94.3                    | kcal/mol               |             | $\Delta E_{Vdw} =$          | -15.51 | kcal/mol    |
| Electrostatic =                                      | -504.15 | kcal/mol   |       | ΔE <sub>Ele</sub> = | -55.21     | kcal/m | ol        | -518.8                  | kcal/mol               |             | $\Delta E_{Fle} =$          | -69.87 | kcal/mol    |
|                                                      |         |            |       | Lie                 |            |        |           |                         |                        |             | Die 1                       |        |             |
| Initial Orientation                                  |         | RS2        |       |                     | LS1        |        |           |                         |                        | RB2         |                             | LB2    |             |
| Final Orientation                                    | RS1     | RB1        | RS1   |                     | LS1        | LS1    | LS1       | RS2                     | LS2                    | RB2         |                             |        |             |
|                                                      |         |            |       |                     | LBI        |        |           | LS2                     | LB2                    |             |                             |        |             |
|                                                      |         |            |       |                     |            |        |           | RB2                     |                        |             |                             |        |             |
|                                                      |         |            |       |                     |            |        |           |                         |                        |             |                             |        |             |
| $Gd^{3+}$ chelates 2 $SO_3^-$ @ 6 site               | s       |            |       |                     |            |        |           | Gd <sup>3+</sup> chel   | ates 2 SO <sub>3</sub> | @ 3 sites   | 5                           |        |             |
| Total =                                              | -223.14 | kcal/mol   |       | $\Delta E_{Tot}$    | -75.48     | kcal/m | ol        | -218.05                 | kcal/mol               |             | $\Delta E_{Tot} =$          | -70.38 | kcal/mol    |
| Van der Waals =                                      | 97.64   | kcal/mol   |       | $\Delta E_{Vdw}$    | -12.19     | kcal/m | ol        | 86.52                   | kcal/mol               |             | $\Delta E_{Vdw} =$          | -23.31 | kcal/mol    |
| Electrostatic =                                      | -514.30 | kcal/mol   |       | $\Delta E_{Ele} =$  | -65.37     | kcal/m | ol        | -498.94                 | kcal/mol               |             | $\Delta E_{Ele} =$          | -50.00 | kcal/mol    |
|                                                      |         | ÷.         | ,     |                     |            | ·      | -         |                         | ,                      |             |                             |        | 1           |
| Initial Orientation                                  | Gln15   | Lys16      | Leu17 | Val18               | Phe19      | Phe20  | Glu22     | His13                   | Lys16                  | Leu17       | Val18                       | Phe19  | Phe20       |
| Final Orientation                                    |         |            | KD2   | RS2                 | LB2<br>LB2 |        |           | LB2                     | RS2                    | LB2<br>LB2  |                             |        | RB2         |
|                                                      |         |            |       | RB2                 |            |        |           | RS2                     | RB2                    | RS2         |                             |        |             |
| 2+                                                   |         |            |       |                     |            |        |           | 2+                      |                        |             |                             |        |             |
| $Gd^{3}$ chelates 2 $SO_{3}$ @ 5 site                | s       |            |       |                     |            |        |           | Gd <sup>3+</sup> chela  | ates 3 $SO_3$          | @ 6 sites   | 5                           |        |             |
| Total =                                              | -234.22 | kcal/mol   |       | $\Delta E_{Tot}$    | -86.56     | kcal/m | ol        | -230.05                 | kcal/mol               |             | $\Delta E_{Tot} =$          | -82.39 | kcal/mol    |
| Van der Waals =                                      | 102.27  | kcal/mol   |       | $\Delta E_{Vdw}$    | -7.56      | kcal/m | ol        | 97.69                   | kcal/mol               |             | $\Delta E_{Vdw} =$          | -12.14 | kcal/mol    |
| Electrostatic =                                      | -531.47 | kcal/mol   |       | $\Delta E_{Ele}$ =  | -82.54     | kcal/m | ol        | -522.93                 | kcal/mol               |             | $\Delta E_{Ele} =$          | -73.99 | kcal/mol    |
|                                                      |         |            |       |                     |            |        |           |                         |                        |             |                             |        |             |
| Initial Orientation                                  | LDI     |            |       | LB1                 | RB1        |        | DD1       | T G I                   | 1.01                   | LB1         |                             |        | RB1         |
| Final Orientation                                    | LBI     |            |       | LBI                 | CS         |        | KBI       | LSI                     |                        | LB2         |                             |        | KBI<br>CS   |
|                                                      | 65      |            |       |                     | 05         |        |           |                         | LINII                  | LINII       |                             |        | LB1         |
|                                                      |         |            |       |                     |            |        |           |                         |                        |             |                             |        |             |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> @ 4 site | s       |            |       |                     |            |        |           | Gd <sup>3+</sup> chel   | ates 2 $SO_3$          | @ 5 sites   | 5                           |        |             |
| Total =                                              | -221 78 | kcal/mol   |       | AE-                 | -74 11     | kcal/m | ol        | -221 58                 | kcal/mol               |             | $\Delta E_{\pi} =$          | -73.07 | kcal/mol    |
| Van der Waak =                                       | 96.54   | kcal/mol   |       | AEu                 | -13 30     | kcal/m | ol        | 97.62                   | kcal/mol               |             | $\Delta E_{1 \text{ ot}} =$ | -12 21 | kcal/mol    |
| Electrostatic =                                      | -527.11 | kcal/mol   |       |                     | -78 17     | kcal/m | ol        | -516.36                 | kcal/mol               |             | $\Delta E_{vaw} =$          | -67.42 | kcal/mol    |
|                                                      |         |            |       | Lie                 |            |        |           |                         |                        |             | Lie                         |        |             |
| Initial Orientation                                  |         |            |       |                     | LB1        | RB1    |           |                         |                        | RB1         |                             |        | LB1         |
| Final Orientation                                    |         | RS1        |       |                     | LB1        | RS1    |           | RS1                     | RS1                    | RB1         |                             |        | LB2         |
|                                                      |         |            |       |                     | KBI        |        |           |                         |                        | KS1         |                             |        |             |
| $Gd^{3+}$ chelates 2 $SO_3^-$ ( <i>a</i> ) 5 site    | s       |            |       |                     |            |        |           | Gd <sup>3+</sup> chel   | ates 2 SO <sub>3</sub> | a) 5 sites  | 5                           |        |             |
|                                                      |         |            |       |                     |            |        |           |                         | 5                      |             |                             |        |             |
| Total =                                              | -213.93 | kcal/mol   |       | $\Delta E_{Tot}$    | -66.26     | kcal/m | ol        | -211.67                 | kcal/mol               |             | $\Delta E_{Tot} =$          | -64.01 | kcal/mol    |
| Van der Waals =                                      | 92.89   | kcal/mol   |       | $\Delta E_{Vdw}$    | -16.94     | kcal/m | ol        | 94.83                   | kcal/mol               |             | $\Delta E_{Vdw} =$          | -15.00 | kcal/mol    |
| Electrostatic =                                      | -500.23 | кcal/mol   |       | $\Delta E_{Ele}$ =  | -51.30     | кcal/m | 01        | -502.58                 | kcal/mol               |             | $\Delta E_{Ele} =$          | -53.65 | kcal/mol    |

# Table 6.7: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the 1AMC conformer of β-amyloid

|                                                                    | Tvr10       | His13    | His14 Gh | n15                | Lvs16      | Leu17      | Phe <sub>20</sub> | Val12                   | His13          | His14                | Gln15   | Lvs16      |
|--------------------------------------------------------------------|-------------|----------|----------|--------------------|------------|------------|-------------------|-------------------------|----------------|----------------------|---------|------------|
| Initial Orientation                                                | 1,110       | LB1      | RB1      |                    | 2,010      | Loui       | 1 11020           | vuir2                   | LS2            | 11011                | Ganto   | RS1        |
| Final Orientation                                                  | LB1         | LB1      | CS       |                    |            | LB1        |                   | LS2                     | LS1            |                      |         | RS1        |
|                                                                    |             | LS1      |          |                    |            |            |                   | RS2                     |                |                      |         |            |
|                                                                    |             | LNH      |          |                    |            |            |                   |                         |                |                      |         |            |
| $Cd^{3+}$ abalatas 3 SO <sup>-</sup> $@$ 7 sites                   |             |          |          |                    |            |            |                   | Cd <sup>3+</sup> abalat | 2 50 -         | 0 5 aitaa            |         |            |
| Ou chemics $5.5O_3$ ( <i>ii</i> ) / sites                          | <b>&gt;</b> |          |          |                    |            |            |                   | Gu cheiai               | $100 \pm 2003$ | <i>a</i> 5 siles     |         |            |
| Total =                                                            | -79 29      | kcal/mol | ΔĒ       |                    | -114 79    | kcal/mol   |                   | -89 72                  | kcal/mol       | $\Delta E_{Table} =$ | -125 21 | kcal/mol   |
| Van der Waals =                                                    | 131.81      | kcal/mol | ΔE       | -10t               | -6.92      | kcal/mol   |                   | 129.60                  | kcal/mol       | $\Delta E_{Mhy} =$   | -9.13   | kcal/mol   |
| Electrostatic =                                                    | -467.13     | kcal/mol | ΔF       | Eria =             | -112.86    | kcal/mol   |                   | -471.85                 | kcal/mol       | $\Delta E_{E10} =$   | -117.59 | kcal/mol   |
|                                                                    |             |          |          | Lie                |            |            |                   |                         |                | Lie                  |         |            |
| Initial Orientation                                                |             | LS1      |          | _                  | RS1        |            |                   |                         | LS1            |                      |         | RS2        |
| Final Orientation                                                  |             | LS1      |          |                    | RS1        |            |                   | LS1                     | LS1            |                      |         | RB1        |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         | LSI        |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         | RS1        |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         | 1001       |
| $Gd^{3+}$ chelates 2 $SO_3^-$ @ 6 sites                            | 3           |          |          |                    |            |            |                   | Gd <sup>3+</sup> chelat | tes 2 $SO_3^-$ | (a) 6 sites          |         |            |
|                                                                    |             |          |          |                    |            |            |                   |                         |                | 0                    |         |            |
| Total =                                                            | -74.53      | kcal/mol | ΔF       | Tot                | -110.02    | kcal/mol   |                   | -68.9                   | kcal/mol       | $\Delta E_{Tot} =$   | -104.35 | kcal/mol   |
| Van der Waals =                                                    | 135.24      | kcal/mol | ΔF       | Vdw                | -3.49      | kcal/mol   |                   | 130.1                   | kcal/mol       | $\Delta E_{Vdw} =$   | -8.63   | kcal/mol   |
| Electrostatic =                                                    | -465.66     | kcal/mol | ΔF       | E <sub>Ele</sub> = | -111.39    | kcal/mol   |                   | -465.4                  | kcal/mol       | $\Delta E_{Ele} =$   | -111.12 | kcal/mol   |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
| Initial Orientation                                                |             | RB1      |          |                    | LB1        |            |                   | 5.24                    | RS1            |                      |         | LS2        |
| Final Orientation                                                  |             |          |          |                    | LBI        |            | CS                | RS1                     | RS1            |                      |         | LS2<br>DS1 |
|                                                                    |             |          |          |                    | LINH       |            | LDI               |                         |                |                      |         | Köl        |
| $Gd^{3+}$ chelates 2 $SO_2^{-}$ @ 6 sites                          |             |          |          |                    |            |            |                   | Gd <sup>3+</sup> chelat | tes 2 $SO_2^-$ | @ 4 sites            |         |            |
|                                                                    | -           |          |          |                    |            |            |                   |                         |                | 0                    |         |            |
| Total =                                                            | -60.49      | kcal/mol | ΔF       | Tot                | -95.98     | kcal/mol   |                   | -60.35                  | kcal/mol       | $\Delta E_{Tot} =$   | -95.85  | kcal/mol   |
| Van der Waals =                                                    | 126.23      | kcal/mol | ΔF       | Vdw                | -12.50     | kcal/mol   |                   | 129.74                  | kcal/mol       | $\Delta E_{Vdw} =$   | -8.99   | kcal/mol   |
| Electrostatic =                                                    | -441.39     | kcal/mol | ΔF       | E <sub>Ele</sub> = | -87.12     | kcal/mol   |                   | -440.58                 | kcal/mol       | $\Delta E_{Ele} =$   | -86.31  | kcal/mol   |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
|                                                                    | His13       | Lys16    | Leu17 Va | al18               | Phe19      | Phe20      | Asp23             | Ala30                   | -              |                      |         |            |
| Initial Orientation                                                |             | T C 1    |          |                    | LB2        | RB2        | 1 1 2 2           |                         |                |                      |         |            |
| r mai Orientation                                                  |             | LOI      |          |                    | LB1        |            | LD2               |                         |                |                      |         |            |
|                                                                    |             |          |          |                    | 202        |            |                   |                         |                |                      |         |            |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 6 sites | 3           |          |          |                    |            |            |                   |                         |                |                      |         |            |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
| Total =                                                            | -70.15      | kcal/mol | ΔE       | Tot                | -105.64    | kcal/mol   |                   |                         |                |                      |         |            |
| Van der Waals =                                                    | 132.06      | kcal/mol | ΔE       | Vdw                | -6.67      | kcal/mol   |                   |                         |                |                      |         |            |
| Electrostatic =                                                    | -456.32     | kcal/mol | ΔE       | E <sub>Ele</sub> = | -102.06    | kcal/mol   |                   |                         |                |                      |         |            |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
| Initial Orientation                                                | 002         | DD2      | RB2      |                    | LB2        | DCO        |                   | 002                     |                |                      |         |            |
| r inal Orientation                                                 | KB2         | KB2      | KB2      |                    |            | K52<br>LS2 |                   | KB2                     |                |                      |         |            |
|                                                                    |             |          |          |                    |            | LB2        |                   |                         |                |                      |         |            |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 4 sites | 3           |          |          |                    |            |            |                   |                         |                |                      |         |            |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
| Total =                                                            | -60.29      | kcal/mol | ΔE       | Tot                | -95.78     | kcal/mol   |                   |                         |                |                      |         |            |
| Van der Waals =                                                    | 123.81      | kcal/mol | ΔE       | Vdw                | -14.92     | kcal/mol   |                   |                         |                |                      |         |            |
| Electrostatic =                                                    | -440.73     | kcal/mol | ΔE       | E <sub>Ele</sub> = | -86.47     | kcal/mol   |                   |                         |                |                      |         |            |
| Initial Oniontation                                                |             |          |          |                    | יחח        | I D1       |                   |                         |                |                      |         |            |
| Final Orientation                                                  |             | RS1      |          |                    | KBI<br>RB1 | CS         | CS                |                         |                |                      |         |            |
|                                                                    |             | RB1      |          |                    | CS         | LB1        | 00                |                         |                |                      |         |            |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 6 sites | 5           |          |          |                    |            |            |                   |                         |                |                      |         |            |
|                                                                    |             |          |          |                    |            |            |                   |                         |                |                      |         |            |
| Total =                                                            | -55.20      | kcal/mol | ΔE       | Tot                | -90.70     | kcal/mol   |                   |                         |                |                      |         |            |
| Van der Waals =                                                    | 126.54      | kcal/mol | ΔE       | Vdw                | -12.19     | kcal/mol   |                   |                         |                |                      |         |            |
| Electrostatic =                                                    | -454.14     | kcal/mol | ΔE       | Ele =              | -99.88     | kcal/mol   |                   |                         |                |                      |         |            |

# Table 6.8: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the 1AML conformer of β-amyloid

# Table 6.9: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the 1BA4 conformer of β-amyloid

|                                                                 | Asp1         | Glu3      | His6    | Asp7               | Gly9   | Tyr10     | His13  | His14                  | Gln15     | Lys16      | Gly9                   | Tyr10                 | His13       | His14               | Gln15  | Lys16    |
|-----------------------------------------------------------------|--------------|-----------|---------|--------------------|--------|-----------|--------|------------------------|-----------|------------|------------------------|-----------------------|-------------|---------------------|--------|----------|
| Initial Orientation                                             |              | _         |         |                    |        |           |        | RB2                    |           | LB2        |                        |                       | LB2         |                     |        | RB2      |
| Final Orientation                                               | LB2          | LB2       | LS1     | LB2                | LB2    | RB2       | RB2    |                        |           | LB2        | RB2                    | LB2                   | LB2         | LS1                 |        |          |
|                                                                 |              |           |         |                    |        | RS2       |        |                        |           |            |                        | RS2                   |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        | RB2                   |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            | 2.4                    |                       | _           |                     |        |          |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 5 si | ites         |           |         |                    |        |           |        |                        |           |            | Gd <sup>3</sup> chela  | tes 2 $SO_3^-$        | @ 4 sites   | 5                   |        |          |
| T-4-1-                                                          | 144.66       | 1         | ,       | AT                 | 86.2   | 1 1       | 1      |                        |           |            | 142.4                  | e 11/1                |             | AE -                | 85.00  | 11/1     |
|                                                                 | -144.00      | kcarmo    | 1<br>1  | ΔE <sub>Tot</sub>  | -80.2  |           | 1      |                        |           |            | -145.4                 |                       |             | ΔE <sub>Tot</sub> - | -85.00 |          |
| van der waars –                                                 | 92.84        | ксагно    |         | ΔE <sub>Vdw</sub>  | -15.7  |           |        |                        |           |            | 91.5                   |                       |             | ΔE <sub>Vdw</sub> – | -10.98 | kcarmoi  |
| Electrostatic =                                                 | -469.32      | kcal/mo   | 1       | $\Delta E_{Ele}$ = | - /6.0 | 5 kcal/mo | 1      |                        |           |            | -469.7                 | / kcal/mol            |             | $\Delta E_{Ele} =$  | -76.49 | kcal/mol |
| Initial Orientation                                             |              |           |         |                    |        |           | RB2    |                        |           | LB2        |                        |                       | LB1         | RB1                 |        |          |
| Final Orientation                                               |              |           |         |                    |        | RB2       | RB2    | RS1                    |           | LB2        |                        |                       | LS1         | RS1                 |        |          |
|                                                                 |              |           |         |                    |        | RS2       |        |                        |           |            |                        |                       |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       |             |                     |        |          |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 5 si | ites         |           |         |                    |        |           |        |                        |           |            | Gd <sup>3+</sup> chela | tes 2 SO <sub>3</sub> | @ 6 site:   | 5                   |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       |             |                     |        |          |
| Total =                                                         | -139.15      | kcal/mo   | l.      | $\Delta E_{Tot}$   | -80.7  | 0 kcal/mo | 1      |                        |           |            | -127.6                 | 0 kcal/mol            |             | $\Delta E_{Tot} =$  | -69.14 | kcal/mol |
| Van der Waals =                                                 | 93.59        | kcal/mo   | l.      | $\Delta E_{Vdw}$   | -14.9  | 6 kcal/mo | 1      |                        |           |            | 101.5                  | 7 kcal/mol            |             | $\Delta E_{Vdw} =$  | -6.99  | kcal/mol |
| Electrostatic =                                                 | -469.70      | kcal/mo   | 1       | $\Delta E_{Ele}$ = | -76.4  | 3 kcal/mo | 1      |                        |           |            | -454.8                 | 7 kcal/mol            |             | $\Delta E_{Ele} =$  | -61.59 | kcal/mol |
| Initial Oniontal                                                |              |           |         |                    |        |           | 1.02   | PC1                    |           |            |                        |                       | DC2         | 1.61                |        |          |
| Final Orientation                                               |              |           |         |                    |        |           | 1.82   | RS1<br>PS1             |           |            |                        |                       | RS2<br>PS1  | LSI                 |        |          |
| r inai Orientation                                              |              |           |         |                    |        |           | Loi    | RB1                    |           |            |                        |                       | LS1         | LSI                 |        |          |
|                                                                 |              |           |         |                    |        |           |        | 1001                   |           |            |                        |                       | 1.01        |                     |        |          |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 5 si | i3 sites (2L | & 1R) +   | + 2 H2C | Э                  |        |           |        |                        |           |            | Gd <sup>3+</sup> chela | tes 2 SO3             | (a) 5 sites | 5                   |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       | Ĩ           |                     |        |          |
| Total=                                                          | -130.15      | kcal/mo   | 1       | $\Delta E_{Tot}$   | -71.7  | 0 kcal/mo | 1      |                        |           |            | -124.5                 | 6 kcal/mol            |             | $\Delta E_{Tot} =$  | -66.10 | kcal/mol |
| Van der Waals =                                                 | 102.55       | kcal/mo   | l       | $\Delta E_{Vdw}$   | -6.0   | 1 kcal/mo | 1      |                        |           |            | 102.6                  | 5 kcal/mol            |             | $\Delta E_{Vdw} =$  | -5.91  | kcal/mol |
| Electrostatic =                                                 | -460.94      | kcal/mo   | 1       | $\Delta E_{Ele}$ = | -67.6  | 6 kcal/mo | 1      |                        |           |            | -452.9                 | 6 kcal/mol            |             | $\Delta E_{Ele} =$  | -59.69 | kcal/mol |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       |             |                     |        |          |
| 12101.2                                                         | His14        | Gln15     | Leu17   | Val18              | Phe19  | Phe20     | Glu22  | His14                  | Gln15     | Leu17      | Val18                  | Phe19                 | Phe20       | Glu22               |        |          |
| Einstal Orientation                                             |              |           | RB2     | LB2                |        |           |        | 1.01                   |           | LBI        |                        |                       | KBI         |                     |        |          |
| r mai Orientation                                               |              |           | KB2     | LB2                |        |           |        | LSI                    |           | CS         |                        |                       |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        | LDI                    |           | 0.5        |                        |                       |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       |             |                     |        |          |
| Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ 7 si | ites         |           |         |                    |        |           |        | Gd <sup>3+</sup> chela | ates 2 SO | , @ 6 s    | ites                   |                       |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       |             |                     |        |          |
| Total =                                                         | -128.90      | kcal/mo   | 1       | $\Delta E_{Tot}$   | -70.4  | 5 kcal/mo | 1      | -102.7                 | 7 kcal/m  | ol         | $\Delta E_{Tot} =$     | -44.32                | kcal/mol    |                     |        |          |
| Van der Waals =                                                 | 100.41       | kcal/mo   | 1       | $\Delta E_{Vdw}$   | -8.1   | 5 kcal/mo | 1      | 99.1                   | 3 kcal/m  | ol         | $\Delta E_{Vdw} =$     | -9.42                 | kcal/mol    |                     |        |          |
| Electrostatic =                                                 | -445.86      | kcal/mo   | 1       | $\Delta E_{Ele}$ = | -52.5  | 8 kcal/mo | 1      | -425.4                 | 5 kcal/m  | ol         | $\Delta E_{Ele} =$     | -32.18                | kcal/mol    |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       |             |                     |        |          |
| Initial Orientation                                             |              |           | LB2     |                    | RB2    |           |        |                        |           | RB1        | LB1                    |                       |             |                     |        |          |
| Final Orientation                                               | LS1          |           | LB2     | LS2                |        |           | RB2    | LS1                    |           | RB1        | LB1                    |                       |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           | K51        |                        |                       |             |                     |        |          |
| $Gd^{3+}$ chelates $2 SO_2^{-}$ @ 6 si                          | ites         |           |         |                    |        |           |        | Gd <sup>3+</sup> chels | ates 2 SO | -<br>- @6s | ites                   |                       |             |                     |        |          |
| ou cheates 2 303 @ 0 si                                         | iics         |           |         |                    |        |           |        | Gu chez                | ates 2 30 | 3 @ 03     | iies                   |                       |             |                     |        |          |
| Total =                                                         | -141.47      | kcal/mo   | 1       | $\Delta E_{Tot}$   | -83.0  | 2 kcal/mo | 1      | -141.5                 | 2 kcal/m  | ol         | $\Delta E_{Tot} =$     | -83.07                | kcal/mol    |                     |        |          |
| Van der Waals =                                                 | 99.11        | kcal/mo   | 1       | ΔEvdy              | -9.4   | 5 kcal/mo | 1      | 97.7                   | 6 kcal/m  | ol         | $\Delta E_{Vdw} =$     | -10.80                | kcal/mol    |                     |        |          |
| Electrostatic =                                                 | -469.08      | kcal/mo   | 1       |                    | -75.8  | 1 kcal/mo | 1      | -458 7                 | 6 kcal/m  | ol.        | $\Delta F_{E1a} =$     | -65 49                | kcal/mol    |                     |        |          |
| Licenostate                                                     | 105.00       | neurno    |         | LICELIC            | 70.0   | . neurne  |        | 120.7                  | o neurin  |            |                        | 00.19                 | neur nor    |                     |        |          |
| Initial Orientation                                             |              |           |         | RB1                | LB1    |           |        |                        |           | RB2        |                        | LB2                   |             |                     |        |          |
| Final Orientation                                               |              | CS        |         |                    | LB1    |           | LS2    |                        | LB2       | RB2        | RS2                    |                       |             | LB2                 |        |          |
|                                                                 |              |           |         |                    | CS     |           | RS1    |                        |           |            | LS2                    |                       |             |                     |        |          |
|                                                                 |              |           |         |                    |        |           |        |                        |           |            |                        |                       |             |                     |        |          |
| Gd chelates 2 SO <sub>3</sub> @ 6 si                            | ites         |           |         |                    |        |           |        | Gd <sup></sup> chela   | ates 2 SO | 3 @ 5 s    | ites                   |                       |             |                     |        |          |
| Total =                                                         | -122 /0      | keal/mo   |         | AE.                | 75.0   | 3 koal/ma | 1      | _112.0                 | 3 koal/m  | 1          | ΔE., =                 | -54 47                | kcal/mc1    |                     |        |          |
| Van der Waak =                                                  | 101.00       | koal/ma   | 1       | AE                 | -15.0  | 6 koal/ma | 1      | -112.9                 | 1 koal/m  | ,,<br>,1   | AE =                   | -54.4                 | koal/mol    |                     |        |          |
| Flastrastatia =                                                 | 470.46       | kcal/IIIO |         | AE -               | -0.5   | 8 kool/mo | 1<br>1 | 98./                   | 1 Kcal/m  | л<br>.1    | AE -                   | -9.84                 | keel/m-1    |                     |        |          |
| Electrostatic =                                                 | -4/0.46      | кса/mo    | 4       | $\Delta E_{Ele}$   | -//.1  | o kcal/mo | 1      | -434.9                 | o kcal/m  | л          | $\Delta E_{Ele} =$     | -41.62                | kca/mol     | 1                   |        |          |

|                                                       | Gly9    | His13  | His14 | Gln15 | Lys16 | Leu17 | Tyr10                  | His13                 | His14        | Gln15 | Lys16 | Leu17 |
|-------------------------------------------------------|---------|--------|-------|-------|-------|-------|------------------------|-----------------------|--------------|-------|-------|-------|
| Initial Orientation                                   |         | LB1    | RB1   |       | -     |       |                        | LS2                   | RS1          |       |       |       |
| Initial Orientation                                   | LB2     | LB2    | RB1   |       |       |       | RS1                    | RB1                   | RS1          |       |       | RB2   |
|                                                       |         | LB2    | CS    |       |       |       |                        | LS1                   |              |       |       |       |
|                                                       |         | LB1    |       |       |       |       |                        | LS2                   |              |       |       |       |
|                                                       |         |        |       |       |       |       |                        | RS2                   |              |       |       |       |
| $Gd^{3+}$ chelates 3 $SO_3^-$ @ 7 s                   | sites   |        |       |       |       |       | Gd <sup>3+</sup> chela | tes 2 SO <sub>3</sub> | -<br>@ 5 sit | es    |       |       |
|                                                       |         |        |       |       |       |       |                        |                       |              |       |       |       |
| Total =                                               | -174.37 | kcal/m | ol    |       |       |       | -168.28                | kcal/mol              |              |       |       |       |
| Van der Waals =                                       | 88.30   | kcal/m | ol    |       |       |       | 88.10                  | kcal/mol              |              |       |       |       |
| Electrostatic =                                       | -487.17 | kcal/m | ol    |       |       |       | -482.30                | kcal/mol              |              |       |       |       |
| $\Delta E_{Tot} =$                                    | -77.13  | kcal/m | ol    |       |       |       | -71.04                 | kcal/mol              |              |       |       |       |
| $\Delta E_{Vdw} =$                                    | -14.83  | kcal/m | ol    |       |       |       | -15.03                 | kcal/mol              |              |       |       |       |
| $\Delta E_{Ele} =$                                    | -63.19  | kcal/m | ol    |       |       |       | -58.31                 | kcal/mol              |              |       |       |       |
| Initial Orientation                                   |         | RS2    | LS1   |       |       |       |                        | RS1                   | 1.82         |       |       |       |
| Initial Orientation                                   |         | RS1    | LSI   |       |       | RB1   | LB2                    | RS1                   | LSI          |       |       | RB1   |
|                                                       |         | RS2    |       |       |       | LB1   |                        |                       |              |       |       | LB1   |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 5 s | sites   |        |       |       |       |       | Gd <sup>3+</sup> chela | tes 2 SO <sub>3</sub> | @ 6 sit      | es    |       |       |
| Total =                                               | -164 57 | kcal/m | al    |       |       |       | -163.1                 | kcal/mol              |              |       |       |       |
| Van der Waals =                                       | 90.55   | kcal/m | ol    |       |       |       | 96.3                   | kcal/mol              |              |       |       |       |
| Electrostatic =                                       | -479.42 | kcal/m | ol    |       |       |       | -487.4                 | kcal/mol              |              |       |       |       |
| $\Delta F_{m} =$                                      | -67 33  | kcal/m | al    |       |       |       | -65.83                 | keal/mol              |              |       |       |       |
| AE =                                                  | 12.58   | keal/m | al    |       |       |       | 6.80                   | kcal/mol              |              |       |       |       |
| AE <sub>Vdw</sub> –                                   | -12.30  | 11/    | -1    |       |       |       | -0.80                  | 11                    |              |       |       |       |
| $\Delta E_{Ele} =$                                    | -55.45  | kcai/m | 51    |       |       |       | -03.42                 | kcal/mol              |              |       |       |       |
| Initial Orientation                                   |         | LS1    | RS1   |       |       |       |                        | RS1                   |              |       | LS1   |       |
| Initial Orientation                                   |         | LS1    | RS1   |       |       | RB2   |                        | RS1                   |              |       | LS1   |       |
|                                                       |         | LS2    |       |       |       |       |                        |                       |              |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 5 s | sites   |        |       |       |       |       | Gd <sup>3+</sup> chela | tes 2 SO <sub>3</sub> | @ 6 sit      | es    |       |       |
| Total =                                               | -162.67 | kcal/m | ol    |       |       |       | -161.53                | kcal/mol              |              |       |       |       |
| Van der Waals =                                       | 90.55   | kcal/m | ol    |       |       |       | 99.37                  | kcal/mol              |              |       |       |       |
| Electrostatic =                                       | -478.55 | kcal/m | ol    |       |       |       | -484.59                | kcal/mol              |              |       |       |       |
| $\Delta E_{Tot} =$                                    | -65.42  | kcal/m | ol    |       |       |       | -64.28                 | kcal/mol              |              |       |       |       |
| $\Delta E_{Vdw} =$                                    | -12.59  | kcal/m | ol    |       |       |       | -3.77                  | kcal/mol              |              |       |       |       |
| $\Delta E_{Ele} =$                                    | -54.57  | kcal/m | ol    |       |       |       | -60.61                 | kcal/mol              |              |       |       |       |

### Table 6.10: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the HHQK region of the 1IYT conformer of β-amyloid

### Table 6.11: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the LVFF region of the 1IYT conformer of β-amyloid

|                                                   | His14         | Gln15   | Lys16                   | Leu17              | Val18  | Phe19            | Phe20            | Asp23 | His13                 | Lys16                  | Leu17            | Val18              | Phe19  | Phe20             | Ala21 | Asp23 |
|---------------------------------------------------|---------------|---------|-------------------------|--------------------|--------|------------------|------------------|-------|-----------------------|------------------------|------------------|--------------------|--------|-------------------|-------|-------|
| Initial Orientation                               |               |         |                         |                    | RB1    | LB1              |                  |       |                       |                        | RB2              |                    | LB2    |                   |       |       |
| Final Orientation                                 | RS1           | RS1     | LS1                     |                    | RS1    | LB1              |                  |       | RB2                   | RS2                    | RB2              |                    |        | RB2               |       | LB2   |
|                                                   |               | LS1     |                         |                    | RB1    | LS1              |                  |       |                       | LS2                    |                  |                    |        | RS2               |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ | 5 sites and 0 | Gln15 @ | 1 site                  |                    |        |                  |                  |       | Gd <sup>3+</sup> chek | ates 2 $SO_3$          | @ 5 sit          | tes                |        |                   |       |       |
| Total =                                           | -200.37       | kcal/mo | l                       | $\Delta E_{Tot}$   | -103.1 | 3 kcal/mol       |                  |       | -147.55               | kcal/mol               |                  | $\Delta E_{Tot} =$ | -50.30 | kcal/mo           | l     |       |
| Van der Waals =                                   | 84.01         | kcal/mo | 1                       | $\Delta E_{Vdw}$   | -19.12 | 2 kcal/mol       |                  |       | 92.24                 | kcal/mol               |                  | $\Delta E_{Vdw} =$ | -10.90 | kcal/mo           | l     |       |
| Electrostatic =                                   | -504.17       | kcal/mo | 1                       | $\Delta E_{Ele}$ = | -80.1  | 8 kcal/mol       |                  |       | -471.44               | kcal/mol               |                  | $\Delta E_{Ele} =$ | -47.45 | kcal/mo           | l     |       |
| Initial Orientation<br>Final Orientation          |               |         | RB1                     |                    |        | LB1              | RB1<br>RB1       | CS    | RB1<br>RB2            |                        | RB1<br>RB1       |                    |        | LB1<br>LB1<br>CS  |       |       |
| $\mathrm{Gd}^{3+}$ chelates 3 $\mathrm{SO}_3^-$ @ | 7 sites       |         |                         |                    |        |                  |                  |       | Gd <sup>3+</sup> chek | ates 2 SO <sub>3</sub> | @ 5 sit          | tes                |        |                   |       |       |
| Total =                                           | -139.11       | kcal/mo | I                       | $\Delta E_{Tot}$   | -41.8  | 7 kcal/mol       |                  |       | -136.96               | kcal/mol               |                  | $\Delta E_{Tot} =$ | -39.72 | kcal/mo           | l     |       |
| Van der Waals =                                   | 94.48         | kcal/mo | l                       | $\Delta E_{Vdw}$   | -8.6   | 6 kcal/mol       |                  |       | 88.44                 | kcal/mol               |                  | $\Delta E_{Vdw} =$ | -14.69 | kcal/mo           | l     |       |
| Electrostatic =                                   | -461.08       | kcal/mo | 1                       | $\Delta E_{Ele}$ = | -37.1  | 0 kcal/mol       |                  |       | -455.31               | kcal/mol               |                  | $\Delta E_{Ele} =$ | -31.33 | kcal/mo           | l     |       |
| Initial Orientation<br>Final Orientation          |               |         | RB1<br>LB1<br>CS<br>RS1 |                    |        | RB1<br>CS<br>RB1 | LB1<br>LB1<br>CS | CS    |                       |                        | LB1<br>CS<br>LB1 |                    |        | RB1<br>RB1<br>RS1 | CS    |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ | 6 sites       |         |                         |                    |        |                  |                  |       | Gd <sup>3+</sup> chek | ates 2 SO <sub>3</sub> | @ 6 sit          | tes                |        |                   |       |       |
| Total =                                           | -136.63       | kcal/mo | 1                       | $\Delta E_{Tot}$   | -39.3  | 9 kcal/mol       |                  |       | -134.72               | kcal/mol               |                  | $\Delta E_{Tot} =$ | -37.48 | kcal/mo           | l     |       |
| Van der Waals =                                   | 90.85         | kcal/mo | l                       | $\Delta E_{Vdw}$   | -12.2  | 9 kcal/mol       |                  |       | 92.94                 | kcal/mol               |                  | $\Delta E_{Vdw} =$ | -10.20 | kcal/mo           | l     |       |
| Electrostatic =                                   | -451.45       | kcal/mo | 1                       | $\Delta E_{Ele}$ = | -27.4  | 7 kcal/mol       |                  |       | -452.02               | 2 kcal/mol             |                  | $\Delta E_{Ele} =$ | -28.04 | kcal/mo           | l     |       |

# Table 6.12: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the HHQK region of the 1Z0Q conformer of β-amyloid

|                                                                      | Gly9    | Tyr10    | His13 | His14              | Gln15  | Lys16    | Leu17 | Gly9                    | Tyr10                 | His13    | His14              | Gln15  | Lys16      |
|----------------------------------------------------------------------|---------|----------|-------|--------------------|--------|----------|-------|-------------------------|-----------------------|----------|--------------------|--------|------------|
| Initial Orientation                                                  |         |          |       | RS1                |        | LS1      |       |                         |                       | LS1      | RS1                | _      |            |
| Final Orientation                                                    | CS      | CS       | LB1   | RS1                |        | LS1      |       | LS1                     | LB1                   | LS1      | RS1                |        |            |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 6 sit              | ies     |          |       |                    |        |          |       | Gd <sup>3+</sup> chelat | tes 2 $SO_3^-$        | @4 site  | s                  |        |            |
| Total =                                                              | -72.10  | kcal/mol |       | $\Delta E_{Tot} =$ | -85.39 | kcal/mol |       | -64.81                  | kcal/mol              |          | $\Delta E_{Tot} =$ | -78.09 | kcal/mol   |
| Van der Waak =                                                       | 121 54  | kcal/mol |       | $\Delta F_{MM} =$  | -7.03  | kcal/mol |       | 121.90                  | ) kcal/mol            |          | $\Delta F_{avt} =$ | -6.67  | kcal/mol   |
|                                                                      | 101 65  | kool/mol |       |                    | 70.97  | kool/mol |       | 121.70                  | kaal/mal              |          |                    | 75 00  | kool/mol   |
| Electrostatic -                                                      | -484.05 | Kearmon  |       | $\Delta L_{Ele}$ – | -/9.0/ | Kearmon  |       | -480.00                 | , Kearmon             |          | $\Delta L_{Ele}$ – | -/5.88 | KCal/IIIOI |
| Initial Orientation                                                  |         |          | RS1   | LS1                |        |          |       |                         |                       |          | LS1                |        | RS1        |
| Final Orientation                                                    |         |          | RS1   | LSI                |        |          | CS    |                         | LS1                   | RB2      | LSI                |        | RS1        |
|                                                                      |         |          |       | LB1                |        |          |       |                         |                       |          |                    |        |            |
|                                                                      |         |          |       |                    |        |          |       |                         |                       |          |                    |        |            |
| $Gd^{3+}$ chelates 2 SO <sub>3</sub> <sup>-</sup> ( <i>a</i> ) 6 sit | es      |          |       |                    |        |          |       | Gd <sup>3+</sup> chelat | tes 2 $SO_3^{-1}$     | @ 5 site | s                  |        |            |
| ,                                                                    |         |          |       |                    |        |          |       |                         |                       | Ŭ        |                    |        |            |
| Total =                                                              | -62.75  | kcal/mol |       | $\Delta E_{Tot} =$ | -76.04 | kcal/mol |       | -62.6                   | 6 kcal/mol            |          | $\Delta E_{Tot} =$ | -75.84 | kcal/mol   |
| Van der Waals =                                                      | 118.78  | kcal/mol |       | $\Delta E_{Vdw} =$ | -9.79  | kcal/mol |       | 119.0                   | ) kcal/mol            |          | $\Delta E_{Vdw} =$ | -9.53  | kcal/mol   |
| Electrostatic =                                                      | -475.26 | kcal/mol |       | $\Delta E_{Ele} =$ | -70.49 | kcal/mol |       | -474.4                  | kcal/mol              |          | $\Delta E_{Fle} =$ | -69.63 | kcal/mol   |
|                                                                      |         |          |       | Lie                |        |          |       |                         |                       |          | 2.10               |        |            |
| Initial Orientation                                                  |         |          | RS2   | LS1                |        |          |       |                         |                       | LB1      |                    |        | RB1        |
| Final Orientation                                                    | RS2     | LS1      | RS1   | LS1                |        | RS1      |       |                         |                       | LS1      | _                  |        | RB1        |
|                                                                      |         |          | RB2   |                    |        |          |       |                         |                       | CS       |                    |        | RS1        |
|                                                                      |         |          | RS2   |                    |        |          |       |                         |                       |          |                    |        |            |
|                                                                      |         |          |       |                    |        |          |       |                         |                       |          |                    |        |            |
| $Gd^{3+}$ chelates 2 $SO_3^-$ @ 6 sit                                | es      |          |       |                    |        |          |       | Gd <sup>3+</sup> chelat | tes 2 SO <sub>3</sub> | @ 6 site | s                  |        |            |
|                                                                      |         |          |       |                    |        |          |       |                         |                       |          |                    |        |            |
| Total =                                                              | -59.70  | kcal/mol |       | $\Delta E_{Tot} =$ | -72.98 | kcal/mol |       | -47.76                  | kcal/mol              |          | $\Delta E_{Tot} =$ | -61.04 | kcal/mol   |
| Van der Waals =                                                      | 116.27  | kcal/mol |       | $\Delta E_{Vdw} =$ | -12.30 | kcal/mol |       | 121.27                  | 7 kcal/mol            |          | $\Delta E_{Vdw} =$ | -7.30  | kcal/mol   |
| Electrostatic =                                                      | -473.41 | kcal/mol |       | $\Delta E_{Ele} =$ | -68.63 | kcal/mol |       | -462.81                 | kcal/mol              |          | $\Delta E_{Ele} =$ | -58.03 | kcal/mol   |

|                                                              | Lys16   | Leu17      | Val18 | Phe19 | Phe20 | His14                  | Lys16        | Leu17         | Val18 | Phe19 Phe | 20 Ala21  | Glu22 |
|--------------------------------------------------------------|---------|------------|-------|-------|-------|------------------------|--------------|---------------|-------|-----------|-----------|-------|
| Initial Orientation                                          |         | LB1        |       | RB1   |       |                        |              | RB1           | LB1   |           |           |       |
| Final Orientation                                            | LS1     | LB1        |       | CS    | CS    | LS1                    | RS1          | CS            | LB1   |           | CS        |       |
|                                                              | LB1     |            |       |       | RB1   |                        |              | RB1           |       |           |           |       |
|                                                              | LNH     |            |       |       |       |                        |              |               |       |           |           |       |
| $\mathrm{Gd}^{3+}$ chelates 3 $\mathrm{SO}_3^-$ @ 7          | 7 sites |            |       |       |       | Gd <sup>3+</sup> chela | tes 2 $SO_3$ | @ 6 sit       | es    |           |           |       |
| m ( 1                                                        | (2.02   |            |       |       |       | 17.10                  | 1 1/ 1       |               |       |           |           |       |
| Iotal =                                                      | -62.93  | kcal/mol   |       |       |       | -47.10                 | kcal/mol     |               |       |           |           |       |
| Flectrostatic =                                              | -476.38 | kcal/mol   |       |       |       | -452.50                | kcal/mol     |               |       |           |           |       |
| Electrostatic -                                              | -4/0.38 | KCal/IIIOI |       |       |       | -432.39                | KCal/IIOI    |               |       |           |           |       |
| $\Delta E_{T ot} =$                                          | -76.22  | kcal/mol   |       |       |       | -60.39                 | kcal/mol     |               |       |           |           |       |
| $\Delta E_{Vdw} =$                                           | -13.42  | kcal/mol   |       |       |       | -13.91                 | kcal/mol     |               |       |           |           |       |
| $\Delta E_{Ele} =$                                           | -71.61  | kcal/mol   |       |       |       | -47.82                 | kcal/mol     |               |       |           |           |       |
| Initial Orientation                                          |         |            |       | I B1  | RB1   |                        |              | IB2           |       | RB2       |           |       |
| Final Orientation                                            |         | RS2        |       | RB1   | RB1   |                        |              | LB2           |       | RB2       |           |       |
|                                                              |         | RB2        |       | iwi   | RB2   |                        |              | 202           |       | 102       |           |       |
|                                                              |         |            |       |       |       |                        |              |               |       |           |           |       |
| Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ 7 | 7 sites |            |       |       |       | Gd <sup>3+</sup> chela | tes 3 $SO_3$ | a 7 sit       | es    |           |           |       |
|                                                              |         |            |       |       |       |                        |              |               |       |           |           |       |
| Total =                                                      | -36.08  | kcal/mol   |       |       |       | -33.05                 | kcal/mol     |               |       |           |           |       |
| Van der Waals =                                              | 118.41  | kcal/mol   |       |       |       | 122.21                 | kcal/mol     |               |       |           |           |       |
| Electrostatic =                                              | -443.94 | kcal/mol   |       |       |       | -450.01                | kcal/mol     |               |       |           |           |       |
| $\Delta E_{T ot} =$                                          | -49.36  | kcal/mol   |       |       |       | -46.33                 | kcal/mol     |               |       |           |           |       |
| $\Delta E_{Vdw} =$                                           | -10.16  | kcal/mol   |       |       |       | -6.36                  | kcal/mol     |               |       |           |           |       |
| $\Delta E_{Ele} =$                                           | -39.16  | kcal/mol   |       |       |       | -45.23                 | kcal/mol     |               |       |           |           |       |
|                                                              |         |            |       |       |       |                        |              |               |       |           |           |       |
| Initial Orientation                                          |         |            |       | RB1   | LB1   |                        |              | LB1           | RB1   |           |           |       |
| Final Orientation                                            |         | CS         |       |       | LB1   | RB1                    |              | LB1           | CS    |           | CS        | CS    |
|                                                              |         | RB1        |       |       | CS    |                        |              |               |       |           | LB1       |       |
| $Gd^{3+}$ chelates 2 SO $ @$ 5                               | citor   |            |       |       |       | Gd <sup>3+</sup> chela | tes 2 SO     | <br>- @ 6 sit | 00    |           |           |       |
| Ou chemics 2 503 (d)                                         | ) sites |            |       |       |       | Gu chea                | us 2 303     | u o su        |       |           |           |       |
| Total =                                                      | -29.97  | kcal/mol   |       |       |       | -23.73                 | kcal/mol     |               |       |           | -         |       |
| Van der Waals =                                              | 119.23  | kcal/mol   |       |       |       | 111.48                 | kcal/mol     |               |       |           |           |       |
| Electrostatic =                                              | -442.94 | kcal/mol   |       |       |       | -427.48                | kcal/mol     |               |       |           | 100000000 |       |
| $\Delta E_{Tot} =$                                           | -43.26  | kcal/mol   |       |       |       | -37.01                 | kcal/mol     |               |       |           |           |       |
| $\Delta E_{Vdw} =$                                           | -9.34   | kcal/mol   |       |       |       | -17.09                 | kcal/mol     |               |       |           |           |       |
| $\Delta E_{Ele} =$                                           | -38.16  | kcal/mol   |       |       |       | -22.70                 | kcal/mol     |               |       |           | 1000000   |       |

#### Table 6.13: Selected results of the gas phase minimization of solapsone-Gd<sup>3+</sup> with the LVFF region of the 1Z0Q conformer of β-amyloid

Where possible, the gas phase systems selected for optimization in the solution phase had low energies, and binding interactions occurring at multiple sites within the A $\beta$ region of interest. It can be seen that the complex can bind to  $\beta$ -amyloid at multiple sites within the **HHQK** and LVFF regions and gadolinium can chelate solapsone at multiple sites while these interactions are occurring.

#### 6.2.3 THE SOLUTION PHASE OPTIMIZATION OF SOLAPSONE-GD<sup>3+</sup> WITH β-AMYLOID

The solution phase optimizations were performed by surrounding the gas phase system with a box of explicit water molecules. Minimization was performed with unconstrained protein backbones and periodic boundary conditions in place. Each of the optimized systems was examined for potential binding interactions, the energies were measured ignoring solvent contributions, and with a constrained protein backbone. The binding energies were calculated using equations 6.1-6.3; the energies of the solution phase optimized proteins are given in Appendix 6, and the energy of the solapsone-Gd<sup>3+</sup> complex is given in the following table.

Table 6.14: The solution phase energies of solapsone-Gd<sup>3+</sup>

|                             | Energi    | es (kca   | l/mol)    |
|-----------------------------|-----------|-----------|-----------|
|                             | $E_{tot}$ | $E_{vdw}$ | $E_{ele}$ |
| Solapsone -Gd <sup>3+</sup> | -130.46   | 51.01     | -210.73   |

### 6.2.4 Results of the Solution Phase Optimization of Solapsone-Gd<sup>3+</sup> with $\beta$ -Amyloid

The results of the A $\beta$ -solapsone-Gd<sup>3+</sup> systems geometry optimized in an aqueous environment are summarized in the following tables according to  $\beta$ -amyloid conformer and region of interest (**HHQK** or LVFF). The measured and calculated energies for each system are given, along with the initial and final orientations of binding (amino acids are noted by their three letter abbreviations). The chelation occurring with gadolinium is also given, and the measured bonds that formed in the systems are indicated according to the following colours: orange for hydrogen bonds, green for cation- $\pi$ , and blue for  $\pi$ - $\pi$ . Darker shades indicate the formation of multiple bonds of that type. Indigo is used for interactions occurring with the  $-CH_2$ - chain of the amino acid, lime green is used for the -CH- of the backbone, and yellow and purple are used for the -NH- and C=O of the backbone.

| <b>Table 6.15:</b> | The solution phase results of solapsone-Gd <sup>3+</sup> interacting with the |
|--------------------|-------------------------------------------------------------------------------|
|                    | HHQK region of the 1AMB conformer of β-amyloid                                |

|                                                     | Tyr10         | His13            | His14 Gln15 | Lys16 | Leu17 | Val18 | Phe20 | Tyr10                  | His13                 | His14            | Gln15 Lys16            | Leu17 | Val18 | Phe20 | Glu22 |
|-----------------------------------------------------|---------------|------------------|-------------|-------|-------|-------|-------|------------------------|-----------------------|------------------|------------------------|-------|-------|-------|-------|
| Initial Orientation                                 |               | RB1              |             | LS1   | RS1   |       | LS1   | CS                     |                       | LB2              |                        |       | LB2   |       | LB2   |
|                                                     |               |                  |             |       |       |       |       | RB1                    |                       |                  |                        |       |       |       |       |
| Final Orientation                                   |               | RB1              |             | LS1   | RS1   |       | LS1   | CS                     |                       | LB1              |                        |       | LB2   |       |       |
|                                                     |               | LB1<br>DNII      |             | LB1   |       |       |       |                        |                       | LB1              |                        |       |       |       |       |
|                                                     |               | КINП             |             |       |       |       |       |                        |                       |                  |                        |       |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 5 | 5 sites + 2 I | I <sub>2</sub> O |             |       |       |       |       | Gd <sup>3+</sup> chela | tes 2 SO <sub>3</sub> | @ 4 site         | s + 3 H <sub>2</sub> O |       |       |       |       |
| Total =                                             | -218 65       | kcal/mol         |             |       |       |       |       | -215 96                | kcal/mol              |                  |                        |       |       |       |       |
| Van der Waals =                                     | 93.07         | kcal/mol         |             |       |       |       |       | 83.65                  | kcal/mol              |                  |                        |       |       |       |       |
| Electrostatic =                                     | -489.39       | kcal/mol         |             |       |       |       |       | -478.85                | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta E_{Tot} =$                                  | -96.13        | kcal/mol         |             |       |       |       |       | -93.45                 | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta E_{Vdw} =$                                  | -9.82         | kcal/mol         |             |       |       |       |       | -19.24                 | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta E_{Ele} =$                                  | -66.74        | kcal/mol         |             |       |       |       |       | -56.20                 | kcal/mol              |                  |                        |       |       |       |       |
| Lie                                                 |               |                  |             |       |       |       |       |                        |                       |                  |                        |       |       |       |       |
| Initial Orientation                                 | CS            | RB1              | RS1         |       | LS1   | RS2   |       |                        | LB1                   |                  | RB1                    |       |       | RS1   |       |
|                                                     |               | LB1              |             |       |       | RB2   |       |                        |                       |                  | RS1                    |       |       |       |       |
| Einel Onivertetien                                  | 65            | LSI              | DD1         |       | 1.01  |       |       |                        | I D1                  |                  | DD1                    |       |       | DC1   |       |
| Final Orientation                                   | CS .          | LSI              | KBI         |       | LSI   |       |       |                        | LBI                   |                  | RS1                    |       |       | K51   |       |
|                                                     |               |                  |             |       |       |       |       |                        | Latin                 |                  | Rot                    |       |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4 | 1 sites       |                  |             |       |       |       |       | Gd <sup>3+</sup> chela | tes 2 SO3             | @ 4 site:        | $s + 2 H_2O$           |       |       |       |       |
| Total =                                             | -234.93       | kcal/mol         |             |       |       |       |       | -215.20                | kcal/mol              |                  |                        |       |       |       |       |
| Van der Waals =                                     | 85.20         | kcal/mol         |             |       |       |       |       | 87.94                  | kcal/mol              |                  |                        |       |       |       |       |
| Electrostatic =                                     | -485.81       | kcal/mol         |             |       |       |       |       | -489.67                | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta F_{m} =$                                    | -112.41       | kcal/mol         |             |       |       |       |       | -92.69                 | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta E_{Tot} =$                                  | 17.60         | kool/mol         |             |       |       |       |       | -92.09                 | kool/mol              |                  |                        |       |       |       |       |
| AE -                                                | -17.09        | kool/mol         |             |       |       |       |       | -14.93                 | kool/mol              |                  |                        |       |       |       |       |
| ZLEIe -                                             | -05.10        | KCavinoi         |             |       |       |       |       | -07.02                 | KCarmor               |                  |                        |       |       |       |       |
| Initial Orientation                                 | LB2           | RS2              | 1.51        | RS1   | RS1   | LS1   |       | LS1                    | LS1                   | Gd <sup>3+</sup> |                        | LB2   |       |       |       |
|                                                     |               | RB2              | LB2         |       | LB1   |       |       |                        |                       | RS2              |                        |       |       |       |       |
|                                                     |               | RS1              | LS2         |       |       |       |       |                        |                       | LS1              |                        |       |       |       |       |
| Final Orientation                                   | RS2           | RS2              | LS1         |       | RS1   | LS1   |       | LS1                    | LS1                   | LS1              |                        | LS1   | LB2   |       |       |
|                                                     |               | RB2              | LS2         |       | RB1   |       |       |                        |                       | LS2              |                        | LB2   |       |       |       |
|                                                     |               | RSI              | LB2         |       |       |       |       |                        |                       |                  |                        |       |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 3 | 3 sites       |                  |             |       |       |       |       | Gd <sup>3+</sup> chela | tes 1 SO3             | @ 3 site:        | s                      |       |       |       |       |
| Total =                                             | -233.83       | kcal/mol         |             |       |       |       |       | -250.55                | kcal/mel              |                  |                        |       |       |       |       |
| Van der Waals =                                     | 74.41         | kcal/mol         |             |       |       |       |       | 78.59                  | kcal/mol              |                  |                        |       |       |       |       |
| Electrostatic =                                     | -479.85       | kcal/mol         |             |       |       |       |       | -500.63                | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta E_{Tat} =$                                  | -111 31       | kcal/mol         |             |       |       |       |       | -128.03                | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta E_{xy} =$                                   | -28.48        | kcal/mol         |             |       |       |       |       | -24 30                 | kcal/mol              |                  |                        |       |       |       |       |
| $\Delta E_{ray} =$                                  | -57 20        | kcal/mol         |             |       |       |       |       | -77 98                 | kcal/mol              |                  |                        |       |       |       |       |
| Lie –                                               | -57.20        | rearmon .        |             |       | 1     |       |       | -//.90                 | Rearmon               |                  |                        | -     |       |       |       |

| <b>Table 6.16:</b> | The solution phase results of solapsone-Gd <sup>3+</sup> interacting with the LVFF |
|--------------------|------------------------------------------------------------------------------------|
|                    | region of the 1AMB conformer of β-amyloid                                          |

|                                                            | His13 Lys16        | Leu17 Val18  | Phe19 | Phe20 | Asp23 | Val24 | Lys28 | His13                 | Leul7          | Val18 Phel             | 9 Phe20              | Ala21     | Glu22 | Gly25 | Lys28 |
|------------------------------------------------------------|--------------------|--------------|-------|-------|-------|-------|-------|-----------------------|----------------|------------------------|----------------------|-----------|-------|-------|-------|
| Initial Orientation                                        | LB1                |              | CS    |       | LB2   |       |       | LS1                   | LB1            |                        | RB1                  |           |       |       | RS1   |
|                                                            | LNH                |              |       |       | CS    |       |       |                       |                |                        |                      |           |       |       |       |
| Final Orientation                                          | LB1                |              | LB1   | LB1   | LB2   | LB2   |       | LS1                   | LB1            |                        | RB1                  |           |       |       | RS1   |
|                                                            | LNH                |              | CS    | LB2   | CS    |       |       |                       | LS1            |                        | CS                   |           |       |       | RNH   |
|                                                            |                    |              |       |       |       |       |       |                       | CS             |                        |                      |           |       |       |       |
|                                                            |                    |              |       |       |       |       |       |                       |                |                        |                      |           |       |       |       |
| Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ | 6 sites $+ 2 H_2O$ |              |       |       |       |       |       | Gd <sup>3+</sup> chel | ates 2 SO      | $_{3}^{-}$ @ 4 sites + | + 3 H <sub>2</sub> O |           |       |       |       |
|                                                            |                    |              |       |       |       |       |       |                       |                |                        |                      |           |       |       |       |
| Total =                                                    | -135.45 kcal/mol   |              |       |       |       |       |       | -231.41               | kcal/mol       |                        |                      |           |       |       |       |
| Van der Waals =                                            | 88.01 kcal/mol     |              |       |       |       |       |       | 82.93                 | kcal/mol       |                        |                      |           |       |       |       |
| Electrostatic =                                            | -476.73 kcal/mol   |              |       |       |       |       |       | -484.24               | kcal/mol       |                        |                      |           |       |       |       |
|                                                            | 12 02 1 1/ 1       |              |       |       |       |       |       | 100.00                |                |                        |                      |           |       |       |       |
| $\Delta E_{Tot} =$                                         | -12.93 Kcal/mol    |              |       |       |       |       |       | -108.90               | kcal/mol       |                        |                      |           |       |       |       |
| $\Delta E_{Vdw} =$                                         | -14.88 kcal/mol    |              |       |       |       |       |       | -19.97                | kcal/mol       |                        |                      |           |       |       |       |
| $\Delta E_{Ele} =$                                         | -54.08 kcal/mol    |              |       |       |       |       |       | -61.59                | kcal/mol       |                        |                      |           |       |       |       |
|                                                            |                    |              |       |       |       |       |       |                       |                |                        |                      |           |       |       |       |
| Initial Orientation                                        | RSI                | RBI          |       |       |       |       | LSI   |                       |                | RB2                    | LB2                  | LB2       |       |       | LSI   |
| Final Orientation                                          | DC1                | RINFI<br>DD1 |       |       |       |       | LNI   |                       |                | DD1                    |                      | 1 1 1 2 2 | DD1   | 1 102 | 1.61  |
| ritaroricitation                                           | KST                | KDI          |       |       |       |       | INH   |                       |                | KD2                    |                      | LD2       | KD2   | LDZ   | LOI   |
| Gd <sup>3+</sup> chebtes 2 SO- <sup>-</sup>                | 6 sites ± 1 H-O    |              |       |       |       |       | LITT  | Gd <sup>3+</sup> chel | l<br>htec 2 SO | - @ 3 sites =          | - 2 H.O              | 1         |       |       |       |
| Gu enclates 2 503 @                                        | 0 51105 + 1 1120   |              |       |       |       |       |       | Gu chei               |                | 3 W 5 Siles            | 2 1120               |           |       |       |       |
| Total =                                                    | -225.90 kcal/mol   |              |       |       |       |       |       | -220.27               | kcal/mol       |                        |                      |           |       |       |       |
| Van der Waals =                                            | 87.51 kcal/mol     |              |       |       |       |       |       | 88.94                 | kcal/mol       |                        |                      |           |       |       |       |
| Electrostatic =                                            | -482.70 kcal/mol   |              |       |       |       |       |       | -488.15               | kcal/mol       |                        |                      |           |       |       |       |
|                                                            |                    |              |       |       |       |       |       |                       |                |                        |                      |           |       |       |       |
| $\Delta E_{Tot} =$                                         | -103.38 kcal/mol   |              |       |       |       |       |       | -97.75                | kcal/mol       |                        |                      |           |       |       |       |
| $\Delta E_{Vdw} =$                                         | -15.38 kcal/mol    |              |       |       |       |       |       | -13.95                | kcal/mol       |                        |                      |           |       |       |       |
| $\Delta E_{Ele} =$                                         | -60.05 kcal/mol    |              |       |       |       |       |       | -65.50                | kcal/mol       |                        |                      |           |       |       |       |
|                                                            |                    |              |       |       |       |       |       |                       |                |                        |                      |           |       |       |       |
| Initial Orientation                                        |                    | RB2          | LB2   |       |       |       |       | RB2                   | RB2            |                        |                      |           |       |       |       |
|                                                            |                    |              |       |       |       |       |       |                       | RS2            |                        |                      |           |       |       |       |
| Final Orientation                                          |                    | RB2          | LB2   |       |       |       |       | RB2                   | RB2            | LB2                    |                      |           |       |       |       |
|                                                            |                    |              |       |       |       |       |       |                       | RS2            |                        |                      |           |       |       |       |
| 2.4                                                        |                    |              |       |       |       |       |       | 2                     |                |                        |                      |           |       |       |       |
| $\mathrm{Gd}^{3^+}$ chelates 2 $\mathrm{SO}_3^-$ @         | 4 sites $+ 1 H_2O$ |              |       |       |       |       |       | Gd <sup>3+</sup> chel | ates 2 SO      | $_{3}^{-}$ @ 5 sites - | + 1 H <sub>2</sub> O | ,         |       |       |       |
| <b>T</b> . 1                                               | 154021 1/1         |              |       |       |       |       |       |                       |                |                        |                      |           |       |       |       |
| 1 otal =<br>Van dar Wash =                                 | -154.82 kcal/mol   |              |       |       |       |       |       | -216.83               | kcal/mol       |                        |                      |           |       |       |       |
| Van der Waars –                                            | 92.29 Kcal/mol     |              |       |       |       |       |       | 97.34                 | kcal/mol       |                        |                      |           |       |       |       |
| Electrostatic -                                            | -407.85 KCal/mol   |              |       |       |       |       |       | -4/0./8               | KCal/mol       |                        |                      |           |       |       |       |
| $\Delta F_{m}$ =                                           | -32 31 kcal/mol    |              |       |       |       |       |       | -94 31                | kcal/mol       |                        |                      |           |       |       |       |
| ΔE =                                                       | -10.60 kcal/mol    |              |       |       |       |       |       | -5.56                 | kcal/mol       |                        |                      |           |       |       |       |
| AE -                                                       | -10.00 Kcal/II01   |              |       |       |       |       |       | -5.50                 | 11             |                        |                      |           |       |       |       |
| $\Delta E_{Ele} =$                                         | -45.18 kcal/mol    |              |       |       |       |       |       | -48.13                | kcai/mol       |                        |                      |           |       |       |       |

|                                                                 | Tyr10                   | His13        | His14 C | 3ln15 | Lys16 | Leu17 | Phe20 | Tyr10                 | His13                  | His14             | Gln15              | Lys16    | Leu17 | Phe20 |
|-----------------------------------------------------------------|-------------------------|--------------|---------|-------|-------|-------|-------|-----------------------|------------------------|-------------------|--------------------|----------|-------|-------|
| Initial Orientation                                             | CS                      | LS1          | RB1     |       |       | LS1   |       |                       | RB2                    |                   |                    | LB2      |       | LB1   |
|                                                                 | LB1                     |              | CS      |       |       |       |       |                       | RB2                    |                   |                    | LS2      |       |       |
|                                                                 |                         |              |         |       |       |       |       |                       |                        |                   |                    | RS2      |       |       |
| Final Orientation                                               | LB1                     | LS1          | RB1     |       |       | LS1   |       |                       | RB2                    |                   |                    | LB2      |       | LB1   |
|                                                                 | CS                      | LB1          | LB1     |       |       |       |       |                       | RB2                    |                   |                    | LS2      |       |       |
|                                                                 |                         |              | RS1     |       |       |       |       |                       | RS2                    |                   |                    | RS2      |       |       |
|                                                                 |                         |              | CS      |       |       |       |       |                       |                        |                   |                    |          |       |       |
|                                                                 |                         |              |         |       |       |       |       |                       |                        |                   |                    |          |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ 4 si | ites + 2 $H_2$          | ç            |         |       |       |       |       | Gd <sup>3+</sup> chek | tes 3 SO <sub>3</sub>  | a 6 sites         | $s + 2 H_2 C$      | )        |       |       |
|                                                                 |                         |              |         |       |       |       |       |                       |                        |                   |                    |          |       |       |
| Total =                                                         | -189.11                 | kcal/mol     |         |       |       |       |       | -218.76               | kcal/mol               |                   |                    |          |       |       |
| Van der Waals =                                                 | 93.59                   | kcal/mol     |         |       |       |       |       | 85.90                 | kcal/mol               |                   |                    |          |       |       |
| Electrostatic =                                                 | -458.63                 | kcal/mol     |         |       |       |       |       | -472.52               | kcal/mol               |                   |                    |          |       |       |
| $\Delta E_{Tat} =$                                              | -68 96                  | kcal/mol     |         |       |       |       |       | -98.61                | kcal/mol               |                   |                    |          |       |       |
| AF =                                                            | -22.09                  | kcal/mol     |         |       |       |       |       | -29.78                | kcal/mol               |                   |                    |          |       |       |
|                                                                 | 42.00                   | leas 1/mas 1 |         |       |       |       |       | 57.75                 | less l/mal             |                   |                    |          |       |       |
| $\Delta E_{Ele} =$                                              | -43.86                  | kcai/moi     |         |       |       |       |       | -57.75                | kcal/moi               |                   |                    |          |       |       |
| Initial Orientation                                             |                         | RB2          |         |       | LS1   | RB2   | LB2   | LB2                   | RB2                    | LS2               |                    |          | RS2   |       |
|                                                                 |                         | RS1          |         |       |       |       |       |                       | RS2                    | LB2               |                    |          | LS2   |       |
|                                                                 |                         |              |         |       |       |       |       |                       | LS2                    |                   |                    |          |       |       |
| Final Orientation                                               |                         | RS1          |         |       | LS1   | RS2   |       |                       | RB2                    | LB2               |                    | RB2      | RS2   |       |
|                                                                 |                         |              |         |       |       |       |       |                       | RS2                    | LS2               |                    |          | LS2   |       |
|                                                                 |                         |              |         |       |       |       |       |                       | LS2                    |                   |                    |          |       |       |
| $Cd^{3+}$ abalatas 2 SO <sup>-</sup> @ 2 si                     | $t_{22} \pm 2HC$        |              |         |       |       |       |       | Cd <sup>3+</sup> abak | tas 2 SO               | - @ 3 sites       | $\pm 1 \mathbf{U}$ | <b>`</b> |       |       |
| Ou chelates $2.5O_3$ ( $\underline{w}, 2.5)$                    | $les + 5H_2C$           | 1            |         |       |       |       |       | Gu chek               |                        |                   | $5 + 1 H_2 C$      | ,        |       |       |
| Total =                                                         | -188.56                 | kcal/mol     |         |       |       |       |       | -230.5                | kcal/mol               |                   |                    |          |       |       |
| Van der Waals =                                                 | 97.45                   | kcal/mol     |         |       |       |       |       | 83.3                  | kcal/mol               |                   |                    |          |       |       |
| Electrostatic =                                                 | -464.24                 | kcal/mol     |         |       |       |       |       | -512.8                | kcal/mol               |                   |                    |          |       |       |
| ΔF=                                                             | -68.41                  | kcal/mol     |         |       |       |       |       | -110.37               | kcal/mol               |                   |                    |          |       |       |
| AE -                                                            | 10 24                   | least/mail   |         |       |       |       |       | -110.57               | less l/mal             |                   |                    |          |       |       |
| ΔE <sub>Vdw</sub> –                                             | -18.24                  | Kcal/mol     |         |       |       |       |       | -32.40                | kcal/moi               |                   |                    |          |       |       |
| $\Delta E_{Ele} =$                                              | -49.46                  | kcal/mol     |         |       |       |       |       | -98.08                | kcal/mol               |                   |                    |          |       |       |
| Initial Orientation                                             | RS1                     | RB1          | RS1     |       | LS1   | LS1   | LS1   | RS2                   | LS2                    | RB2               |                    |          |       |       |
|                                                                 |                         |              |         |       | LB1   |       |       | RS1                   | LB2                    |                   |                    |          |       |       |
|                                                                 |                         |              |         |       |       |       |       | LS2                   |                        |                   |                    |          |       |       |
|                                                                 |                         |              |         |       |       |       |       | RB2                   |                        |                   |                    |          |       |       |
| Final Orientation                                               | RS1                     | RB1          |         |       | LS1   | LS1   | LS1   | RS2                   | LS1                    | RB2               |                    |          | LS2   |       |
|                                                                 |                         | RS1          |         |       | LB1   |       |       | RB2                   | LS2                    |                   |                    |          |       |       |
|                                                                 |                         |              |         |       |       |       |       | RS1                   |                        |                   |                    |          |       |       |
|                                                                 |                         |              |         |       |       |       |       | LS1                   |                        |                   |                    |          |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4 si          | ites + 1 H <sub>2</sub> | C            |         |       |       |       |       | Gd <sup>3+</sup> chek | ates 2 SO <sub>3</sub> | $a^{-}$ @ 3 sites | 5                  |          |       |       |
|                                                                 |                         |              |         |       |       |       |       |                       |                        |                   |                    |          |       |       |
| Total =                                                         | -185.90                 | kcal/mol     |         |       |       |       |       | -220.02               | kcal/mol               |                   |                    |          |       |       |
| Van der Waals =                                                 | 78.92                   | kcal/mol     |         |       |       |       |       | 82.54                 | kcal/mol               |                   |                    |          |       |       |
| Electrostatic =                                                 | -444.80                 | kcal/mol     |         |       |       |       |       | -487.04               | kcal/mol               |                   |                    |          |       |       |
| $\Delta F_{T-1} =$                                              | -65 75                  | kcal/mol     |         |       |       |       |       | _99.87                | kcal/mol               |                   |                    |          |       |       |
| AE =                                                            | _26.75                  | keal/mel     |         |       |       |       |       | _22.14                | keal/mol               |                   |                    |          |       |       |
| AE -                                                            | -30.70                  | koal/mol     |         |       |       |       |       | -55.14                | kcal/mol               |                   |                    |          |       |       |
| $\Delta E_{Ele} =$                                              | -30.03                  | kcai/mol     |         |       |       | -     |       | - /2.27               | kcai/mol               |                   |                    |          |       |       |

## Table 6.17: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the HHQK region of the 1AMC conformer of β-amyloid

|                                                            | Gln15           | Lys16            | Leu17 Val18 | Phe19 | Phe20 | Ala21 | Glu22 | His13                  | Lys16                  | Leu17  | Val18 Phe19    | Phe20 | Lys28 |
|------------------------------------------------------------|-----------------|------------------|-------------|-------|-------|-------|-------|------------------------|------------------------|--------|----------------|-------|-------|
| Initial Orientation                                        |                 |                  | RS2         | LB2   |       |       |       | LB2                    | RS2                    | LB2    |                | RB2   |       |
|                                                            |                 |                  | RB2         |       |       |       |       | RS2                    | RB2                    | RS2    |                |       |       |
| Final Orientation                                          |                 |                  | RB2         | LB2   |       | RB2   | LB2   | LS2                    | RB2                    | LB2    |                |       |       |
|                                                            |                 |                  | RS2         |       |       |       | LS2   | LB2                    | RS2                    | RS2    |                |       |       |
|                                                            |                 |                  |             |       |       |       |       | RS2                    |                        | LS2    |                |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites + 1 s   | ite @ Gh         | u22         |       |       |       |       | Gd <sup>3+</sup> chela | ntes 3 SO <sub>3</sub> | @ 5 si | tes + 1 $H_2O$ |       |       |
| Total =                                                    | -218.82         | kcal/mol         |             |       |       |       |       | -214.91                | kcal/mol               |        |                |       |       |
| Van der Waals =                                            | 107.43          | kcal/mol         |             |       |       |       |       | 87.25                  | kcal/mol               |        |                |       |       |
| Electrostatic =                                            | -514.19         | kcal/mol         |             |       |       |       |       | -486.99                | kcal/mol               |        |                |       |       |
| $\Delta E_{Tot} =$                                         | -98.67          | kcal/mol         |             |       |       |       |       | -94.76                 | kcal/mol               |        |                |       |       |
| $\Delta E_{Vdw} =$                                         | -8.25           | kcal/mol         |             |       |       |       |       | -28.43                 | kcal/mol               |        |                |       |       |
| $\Delta F_{ru} =$                                          | -99.42          | kcal/mol         |             |       |       |       |       | -72.22                 | kcal/mol               |        |                |       |       |
| ZDEle                                                      | <i>))</i> .12   | Rearmon          |             |       |       |       |       | , 2.22                 | Rearmon                |        |                |       |       |
| Initial Orientation                                        | LB1             |                  | LB1         | RB1   |       |       | RB1   | LS1                    | LS1                    | LB2    |                | RB1   |       |
|                                                            | CS              |                  |             | CS    |       |       |       |                        | LNH                    | LNH    |                | CS    |       |
|                                                            |                 |                  |             |       |       |       |       |                        |                        |        |                | LB1   |       |
| Final Orientation                                          | LB1             |                  |             | RB1   |       |       | RB1   | LS1                    | LS1                    | LB2    |                | LB1   | RB2   |
|                                                            | CS              |                  |             | CS    |       |       | LS2   |                        | LNH                    | LNH    |                | CS    |       |
|                                                            |                 |                  |             |       |       |       | RS2   |                        |                        |        |                |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites $+ 2$ s | ites @ G         | hu22        |       |       |       |       | Gd <sup>3+</sup> chela | ates 2 SO <sub>3</sub> | @ 5 si | tes + 1 $H_2O$ |       |       |
| Total =                                                    | -234.87         | kcal/mol         |             |       |       |       |       | -229.24                | kcal/mol               |        |                |       |       |
| Van der Waals =                                            | 93 30           | kcal/mol         |             |       |       |       |       | 86.87                  | kcal/mol               |        |                |       |       |
| Electrostatic =                                            | -529.51         | kcal/mol         |             |       |       |       |       | -501.00                | kcal/mol               | ****   |                |       |       |
|                                                            |                 |                  |             |       |       |       |       |                        |                        |        |                |       |       |
| $\Delta E_{Tot} =$                                         | -114.72         | kcal/mol         |             |       |       |       |       | -109.09                | kcal/mol               |        |                |       |       |
| $\Delta E_{Vdw} =$                                         | -22.38          | kcal/mol         |             |       |       |       |       | -28.81                 | kcal/mol               |        |                |       |       |
| $\Delta E_{rel} =$                                         | -114 74         | kcal/mol         |             |       |       |       |       | -86 23                 | kcal/mol               |        |                |       |       |
| Ele                                                        |                 |                  |             |       |       |       |       |                        |                        |        |                |       |       |
| Initial Orientation                                        |                 | RS1              |             | LB1   | RS1   |       |       | RS1                    | RS1                    | RB1    |                | LB2   |       |
|                                                            |                 |                  |             | RB1   |       |       |       |                        |                        | RS1    |                |       |       |
| Final Orientation                                          |                 | RS1              |             | LB2   |       |       |       | RS1                    | RS1                    | RS1    |                | LS2   | LB1   |
|                                                            |                 |                  |             | CS    |       |       |       |                        |                        | RB1    |                | LB2   |       |
|                                                            |                 |                  | _           | RB1   |       |       |       |                        |                        |        |                | LB1   |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @          | 4 sites + 1 F   | I <sub>2</sub> O |             |       |       |       |       | Gd <sup>3+</sup> chela | ates 1 SO <sub>3</sub> | @ 2 si | tes $+ 4H_2O$  |       |       |
| Total =                                                    | -213 15         | kcal/mol         |             |       |       |       |       | -202.00                | kcal/mol               |        |                |       |       |
| Van der Waals =                                            | 80.56           | kcal/mol         |             |       |       |       |       | 89.85                  | kcal/mol               | ****   |                |       |       |
| Electrostatic =                                            | -484.06         | kcal/mol         |             |       |       |       |       | -476.35                | kcal/mol               |        |                |       |       |
| AE -                                                       | 02.00           | Irool/m-1        |             |       |       |       |       | 01.05                  | Iraal/m-1              |        |                |       |       |
| $\Delta E_{Tot} =$                                         | -93.00          | keat/mol         |             |       |       |       |       | -81.85                 | kcai/mol               |        |                |       |       |
| $\Delta E_{Vdw} =$                                         | -35.12          | kcal/mol         |             |       |       |       |       | -25.84                 | кcal/mol               |        |                |       |       |
| $\Delta E_{Ele} =$                                         | -69.29          | kcal/mol         |             |       |       |       |       | -61.58                 | kcal/mol               |        |                |       |       |

## Table 6.18: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the LVFF region of the 1AMC conformer of β-amyloid

| [                                               | Trm10         | LLia12   | His14 Cha14 | Lug16   | Laul 7 Dho20 | Val12                  | IIia12                 | LLia14      | Ch 15       | Lug16      |
|-------------------------------------------------|---------------|----------|-------------|---------|--------------|------------------------|------------------------|-------------|-------------|------------|
| Initial Oniontation                             | Tyr10         | HIS13    | HIST4 GINT: | b Lysio | Leur / Phe20 |                        | HIS13                  | HIS14       | Gm15        | Lys10      |
| Initial Orientation                             | LBI           | LBI      | CS          |         | LBI          | LS2<br>DS2             | LSI                    |             |             | KSI        |
|                                                 |               | LSI      |             |         |              | RS2                    |                        |             |             |            |
|                                                 | 1.51          | LNH      | 66          |         | 66           | DCO                    | 1.01                   |             |             | DCI        |
| Final Orientation                               | LBI           | LSI      | CS          |         | CS           | RS2                    | LSI                    |             |             | RSI        |
|                                                 | LB1           | LB1      |             |         | LB1          | LS2                    |                        |             |             |            |
|                                                 | CS            | LNH      |             |         |              |                        |                        |             |             |            |
|                                                 |               |          |             |         |              | -                      |                        |             |             |            |
| $Gd^{3+}$ chelates 3 $SO_3^-$ @ 7 sites         | 3             |          |             |         |              | Gd <sup>3+</sup> chela | ates 2 $SO_3$          | a 4 sites   | $s + 1H_2O$ | )          |
|                                                 |               |          |             |         |              |                        |                        |             |             |            |
| Total =                                         | -207.77       | kcal/mol |             |         |              | -80.04                 | kcal/mol               |             |             |            |
| Van der Waals =                                 | 41.45         | kcal/mol |             |         |              | 109.77                 | kcal/mol               |             |             |            |
| Electrostatic =                                 | -356.12       | kcal/mol |             |         |              | -439.86                | kcal/mol               |             |             |            |
|                                                 |               |          |             |         |              |                        |                        |             |             |            |
| $\Delta E_{Tot} =$                              | -231.43       | kcal/mol |             |         |              | -103.70                | kcal/mol               |             |             |            |
| ΔE =                                            | -90.24        | kcal/mol |             |         |              | -21.92                 | kcal/mol               |             |             |            |
|                                                 | - )0.24       |          |             |         |              | -21.92                 |                        |             |             |            |
| $\Delta E_{Ele} =$                              | -9.69         | kcal/mol |             |         |              | -93.43                 | kcal/mol               |             |             |            |
|                                                 |               | 1.01     |             | DC1     |              | 1.01                   | 1.01                   |             |             | DD1        |
| Initial Orientation                             |               | LSI      |             | KSI     |              | LSI                    | LSI                    |             |             | KB1        |
|                                                 |               |          |             |         |              |                        |                        |             |             | LSI        |
|                                                 |               |          |             |         |              |                        |                        |             |             | LB1<br>DC1 |
|                                                 |               | 1.01     |             | DC1     |              |                        | 1.01                   |             |             | KS1        |
| Final Orientation                               |               | LSI      |             | RSI     |              |                        | LSI                    |             |             | RB1        |
|                                                 |               |          |             |         |              |                        |                        |             |             | RSI        |
|                                                 |               |          |             |         |              |                        |                        |             |             | LSI        |
|                                                 |               |          |             |         |              |                        |                        |             |             | LBI        |
|                                                 |               |          |             |         |              | G 1 <sup>3+</sup> 1 1  |                        |             |             |            |
| $Gd^{*}$ chelates 2 $SO_3$ ( <i>a</i> ) 5 sites | $3 + 1 H_2 C$ | )        |             |         |              | Gd <sup>*</sup> chela  | ates 2 SO <sub>3</sub> | (a) 5 sites | 3           |            |
|                                                 |               |          |             |         |              |                        |                        |             |             |            |
| lotal=                                          | -48.94        | kcal/mol |             |         |              | -75.3                  | kcal/mol               |             |             |            |
| Van der Waals =                                 | 137.61        | kcal/mol |             |         |              | 117.7                  | kcal/mol               |             |             |            |
| Electrostatic =                                 | -445.33       | kcal/mol |             |         |              | -438.8                 | kcal/mol               |             |             |            |
|                                                 |               |          |             |         |              |                        |                        |             |             |            |
| $\Delta E_{Tot} =$                              | -72.60        | kcal/mol |             |         |              | -99.00                 | kcal/mol               |             |             |            |
| $\Delta E_{Vdw} =$                              | 5.92          | kcal/mol |             |         |              | -14.02                 | kcal/mol               |             |             |            |
| $\Delta E_{Ele} =$                              | -98.90        | kcal/mol |             |         |              | -92.38                 | kcal/mol               |             |             |            |
|                                                 |               |          |             |         |              |                        |                        |             |             |            |
| Initial Orientation                             |               |          |             | LB1     | CS           | RS1                    | RS1                    |             |             | LS2        |
|                                                 |               |          |             | LNH     | LB1          |                        |                        |             |             | RS1        |
| Final Orientation                               |               |          |             | LB1     | CS           | RS1                    | RS1                    |             |             | LS2        |
|                                                 |               |          |             |         | LB1          |                        |                        |             |             | RS1        |
|                                                 |               |          |             |         |              |                        |                        |             |             |            |
| $Gd^{3+}$ chelates 2 $SO_2^{-}$ @ 4 sites       | $s + 2 H_2 C$ | )        |             |         |              | Gd <sup>3+</sup> chek  | ates $2 SO_2$          | a 4 sites   | 5           |            |
|                                                 | 2 -           |          |             |         |              |                        | ]                      | 0           |             |            |
| Total =                                         | -62.85        | kcal/mol |             |         | 10000000     | -53.04                 | kcal/mol               |             |             |            |
| Van der Waals =                                 | 113.75        | kcal/mol |             |         | 10000000     | 121.25                 | kcal/mol               |             |             |            |
| Electrostatic =                                 | -426.12       | kcal/mol |             |         | 1000000      | -423.96                | kcal/mol               |             |             |            |
|                                                 | .20.12        |          |             |         |              |                        |                        |             |             |            |
| $\Delta F_{T,i} =$                              | -86 51        | kcal/mol |             |         |              | -76 70                 | kcal/mol               |             |             |            |
|                                                 | 17.04         | kool/mol |             |         | 7004000      | 10.70                  | kool/mol               |             |             |            |
| $\Delta E_{Vdw} =$                              | -1/.94        | kearmol  |             |         |              | -10.44                 | kcai/mol               |             |             |            |
| $\Delta E_{Ele} =$                              | -79.69        | kcal/mol |             |         |              | -77.53                 | kcal/mol               |             |             |            |

## Table 6.19: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the HHQK region of the 1AML conformer of β-amyloid

|                                                     | His13       | Lys16            | Leu17 Val18 | Phe19      | Phe20      | Asp23 | Ala30 |
|-----------------------------------------------------|-------------|------------------|-------------|------------|------------|-------|-------|
| Initial Orientation                                 |             | LS1              |             | LS1        |            | LB2   |       |
|                                                     |             | 1.01             |             | LB2        | 1.01       | 1.00  |       |
| Final Orientation                                   |             | LSI              |             | LB2<br>LS1 | LSI        | LB2   |       |
|                                                     |             |                  |             | LSI        |            |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 5 | sites + 1 I | ł <sub>2</sub> O |             |            |            |       |       |
| Total=                                              | -70.66      | kcal/mol         |             |            |            |       |       |
| Van der Waals =                                     | 121.33      | kcal/mol         |             |            |            |       |       |
| Electrostatic =                                     | -437.88     | kcal/mol         |             |            |            |       |       |
| $\Delta E_{Tat} =$                                  | -94.32      | kcal/mol         |             |            |            |       |       |
| $\Delta F_{\text{AVder}} =$                         | -10.36      | kcal/mol         |             |            |            |       |       |
| $\Delta E_{vdw} =$                                  | -91 44      | kcal/mol         |             |            |            |       |       |
|                                                     | ,           |                  |             |            |            |       |       |
| Initial Orientation                                 | RB2         | RB2              | RB2         |            | RS2        |       | RB2   |
|                                                     |             |                  |             |            | LS2        |       |       |
| Final Orientation                                   | RB2         | RB2              | RB2         |            | LB2<br>LB2 | LB2   | RB2   |
|                                                     | 102         | 102              | 102         |            | RB2        | 202   | 1002  |
|                                                     |             |                  |             |            | LS2        |       |       |
|                                                     |             |                  |             |            | RS2        |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4 | sites       |                  |             |            |            |       |       |
| Total=                                              | -59 73      | kcal/mol         |             |            |            |       |       |
| Van der Waals =                                     | 118.48      | kcal/mol         |             |            |            |       |       |
| Electrostatic =                                     | -435.25     | kcal/mol         |             |            |            |       |       |
|                                                     |             |                  |             |            |            |       |       |
| $\Delta E_{T \text{ ot}} =$                         | -83.39      | kcal/mol         |             |            |            |       |       |
| $\Delta E_{Vdw} =$                                  | -13.21      | kcal/mol         |             |            |            |       |       |
| $\Delta E_{Ele} =$                                  | -88.82      | kcal/mol         |             |            |            |       |       |
| Initial Orientation                                 |             | DC1              |             | DD1        | CS         | CS    |       |
| miliar Orientation                                  |             | RB1              |             | CS         | LB1        | CS    |       |
| Final Orientation                                   |             | RB1              |             | CS         | LB1        | LB1   |       |
|                                                     |             | RS1              |             | RB1        | CS         | CS    |       |
| $\mathrm{Gd}^{3+}$ chelates 1 $\mathrm{SO}_3^-$ @ 2 | sites + 2H  | 2O               |             |            |            |       |       |
| Total =                                             | -23.53      | kcal/mol         |             |            |            |       |       |
| Van der Waals =                                     | 127.86      | kcal/mol         |             |            |            |       |       |
| Electrostatic =                                     | -398.53     | kcal/mol         |             |            |            |       |       |
| $\Delta E_{Tot} =$                                  | -47 19      | kcal/mol         |             |            |            |       |       |
| $\Delta F_{a/dy} =$                                 | -3.83       | kcal/mol         |             |            |            |       |       |
| $\Delta F_{r_1} =$                                  | -52 10      | kcal/mol         |             |            |            |       |       |
| Ele                                                 | -52.10      | reat 1101        |             |            |            |       |       |

## Table 6.20: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the LVFF region of the 1AML conformer of β-amyloid

## Table 6.21: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the HHQK region of the 1BA4 conformer of β-amyloid

|                                                      | Asp1                | Glu3    | His6 | Asp7 | Gly9 | Tyr10 | His13 | His14 | Gln15 | Lys16 | Gly9                     | Tyr10                | His13     | His14                  | Gln15 | Lys16 |
|------------------------------------------------------|---------------------|---------|------|------|------|-------|-------|-------|-------|-------|--------------------------|----------------------|-----------|------------------------|-------|-------|
| Initial Orientation                                  | LB2                 | LB2     | LS1  | LB2  | LB2  | RB2   | RB2   |       |       | LB2   | RB2                      | LB2                  | LB2       | LS1                    |       |       |
|                                                      |                     |         |      |      |      | RS2   |       |       |       |       |                          | RS2                  |           |                        | -     |       |
|                                                      |                     |         |      |      |      |       |       |       |       |       |                          | RB2                  |           |                        |       |       |
| Final Orientation                                    | LB2                 | LB2     | LS1  | LB2  | LB2  | RB2   | RB2   |       |       | LB2   |                          | LB2                  | LB2       | LS1                    |       |       |
|                                                      |                     |         |      |      |      | RS2   |       |       |       |       |                          | RS2                  | LB2       |                        |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ :  | 5 sites + 1 $H_2$ C | )       |      |      |      |       |       |       |       |       | Gd <sup>3+</sup> chelate | es 2 SO $_3$         | @ 3 sites | s + 1 H <sub>2</sub> 0 | C     |       |
| Total=                                               | -99.93              | kcal/mo | 1    |      |      |       |       |       |       |       | -90.20                   | kcal/mol             |           |                        |       |       |
| Van der Waals =                                      | 107.16              | kcal/mo | 1    |      |      |       |       |       |       |       | 119.14                   | kcal/mol             |           |                        |       |       |
| Electrostatic =                                      | -457.60             | kcal/mo | 1    |      |      |       |       |       |       |       | -454.64                  | kcal/mol             |           |                        |       |       |
| $\Delta E_{Tot} =$                                   | -97.78              | kcal/mo | 1    |      |      |       |       |       |       |       | -88.06                   | kcal/mol             |           |                        |       |       |
| $\Delta E_{Vdw} =$                                   | -25.90              | kcal/mo | 1    |      |      |       |       |       |       |       | -13.91                   | kcal/mol             |           |                        |       |       |
| $\Delta E_{Ele} =$                                   | -77 22              | kcal/mo | 1    |      |      |       |       |       |       |       | -74 27                   | kcal/mol             |           |                        |       |       |
| Ele                                                  | ,,                  |         | -    |      |      |       |       |       |       |       |                          |                      |           |                        |       |       |
| Initial Orientation                                  |                     |         |      |      |      | RB2   | RB2   | RS1   |       | LB2   |                          |                      | LS1       | RS1                    |       |       |
| Final Orientation                                    |                     |         |      |      |      | RB2   | RS1   | RS1   |       | I B2  |                          |                      | 151       | RS1                    |       |       |
| i mai orientation                                    |                     |         |      |      |      | RS2   | RB2   | Rol   |       | 202   |                          |                      | Loi       | RB1                    |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4  | 4 sites + $1H_2C$   | ,       |      |      |      |       |       |       |       |       | Gd <sup>3+</sup> chelate | es 2 SO <sub>3</sub> | @ 5 sites | s + 1 H <sub>2</sub> 0 | D     |       |
| Total=                                               | -86.34              | kcal/mo | 1    |      |      |       |       |       |       |       | -86.3                    | kcal/mol             |           |                        |       |       |
| Van der Waals =                                      | 112.38              | kcal/mo | 1    |      |      |       |       |       |       |       | 122.3                    | kcal/mol             |           |                        |       |       |
| Electrostatic =                                      | -452.20             | kcal/mo | 1    |      |      |       |       |       |       |       | -445.4                   | kcal/mol             |           |                        |       |       |
| $\Delta E_{Tot} =$                                   | -84.19              | kcal/mo | 1    |      |      |       |       |       |       |       | -84.19                   | kcal/mol             |           |                        |       |       |
| $\Delta E_{Vdw} =$                                   | -20.68              | kcal/mo | 1    |      |      |       |       |       |       |       | -10.75                   | kcal/mol             |           |                        |       |       |
| $\Delta E_{Ele} =$                                   | -71.82              | kcal/mo | 1    |      |      |       |       |       |       |       | -65.03                   | kcal/mol             |           |                        |       |       |
| Initial Orientation                                  |                     |         |      |      |      |       | 1.51  | DS1   |       |       |                          |                      | DC1       | 151                    |       |       |
| Initial Offentation                                  |                     |         |      |      |      |       | 1.51  | RB1   |       |       |                          |                      | LSI       | 1.51                   |       |       |
| Final Orientation                                    |                     |         |      |      |      |       | LS1   | RS1   |       |       |                          |                      | LS1       | LS1                    |       |       |
|                                                      |                     |         |      |      |      |       | LS2   | RB1   |       |       |                          |                      | RS1       |                        |       |       |
| $\mathrm{Gd}^{3^+}$ chelates 2 $\mathrm{SO}_3^-$ @ 2 | 3 sites + 3 $H_2$ C | )       |      |      |      |       |       |       |       |       | Gd <sup>3+</sup> chelate | es 2 SO <sub>3</sub> | @ 4 sites | $s + 1H_2C$            | )     |       |
| Total =                                              | -52.97              | kcal/mo | 1    |      |      |       |       |       |       |       | -66.49                   | kcal/mol             |           |                        |       |       |
| Van der Waals =                                      | 142.41              | kcal/mo | 1    |      |      |       |       |       |       |       | 134.18                   | kcal/mol             |           |                        |       |       |
| Electrostatic =                                      | -438.81             | kcal/mo | 1    |      |      |       |       |       |       |       | -431.55                  | kcal/mol             |           |                        |       |       |
| $\Delta E_{Tot} =$                                   | -50.82              | kcal/mo | 1    |      |      |       |       |       |       |       | -64.34                   | kcal/mol             |           |                        |       |       |
| $\Delta E_{Vdw} =$                                   | 9.35                | kcal/mo | 1    |      |      |       |       |       |       |       | 1.12                     | kcal/mol             |           |                        |       |       |
| $\Delta E_{Ele} =$                                   | -58.43              | kcal/mo | 1    |      |      |       |       |       |       |       | -51.17                   | kcal/mol             |           |                        |       |       |

|                                                         | His14 Gln15         | Leu17 | Val18 | Phe19 | Phe20 | Glu22 | His14                   | Gln15                 | Leu17    | Val18 Phe19                  | Phe20 | Glu22 |
|---------------------------------------------------------|---------------------|-------|-------|-------|-------|-------|-------------------------|-----------------------|----------|------------------------------|-------|-------|
| Initial Orientation                                     |                     | RB2   | LB2   |       |       |       | LS1                     |                       | LB1      |                              |       |       |
|                                                         |                     |       |       |       |       |       | LB1                     |                       | CS       |                              |       |       |
|                                                         |                     |       |       |       |       |       | LNH                     |                       |          |                              |       |       |
| Final Orientation                                       |                     | RB2   | LB2   |       |       |       | LS1                     |                       | LB1      |                              |       |       |
|                                                         |                     |       |       |       |       |       | LB1                     |                       | CS       |                              |       |       |
|                                                         |                     |       |       |       |       |       | LNH                     |                       |          |                              |       |       |
|                                                         |                     |       |       |       |       |       |                         |                       |          |                              |       |       |
| $\mathrm{Gd}^{3+}$ chelates 3 $\mathrm{SO}_3^-$ @ 6     | sites $+ 1 H_2O$    |       |       |       |       |       | Gd <sup>3+</sup> chelat | tes 2 $SO_3$          | @ 4 sit  | tes $+ 1 H_2O$               |       |       |
| Total =                                                 | -64.06 kcal/mol     |       |       |       |       |       | -47.23                  | kcal/mol              |          |                              |       |       |
| Van der Waak =                                          | 148 07 kcal/mol     |       |       |       |       |       | 123 38                  | kcal/mol              |          |                              |       |       |
| Flectrostatic =                                         | -446 28 kcal/mol    |       |       |       |       |       | -401 70                 | kcal/mol              |          |                              |       |       |
| Licerostatic                                            | -++0.20 Kearmon     |       |       |       |       |       | -401.70                 | Kearmon               |          |                              |       |       |
| $\Delta E_{Tot} =$                                      | -61.92 kcal/mol     |       |       |       |       |       | -45.09                  | kcal/mol              |          |                              |       |       |
| $\Delta E_{Vdw} =$                                      | 15.01 kcal/mol      |       |       |       |       |       | -9.68                   | kcal/mol              |          |                              |       |       |
| $\Delta E_{Ele} =$                                      | -65.90 kcal/mol     |       |       |       |       |       | -21.32                  | kcal/mol              |          |                              |       |       |
|                                                         |                     |       |       |       |       |       |                         |                       |          |                              |       |       |
| Initial Orientation                                     | LS1                 | LB2   | LS2   |       |       | RB2   | LS1                     |                       | RB1      | LB1                          |       |       |
|                                                         | 1.01                |       | 1.00  |       |       | 0.00  | I D1                    |                       | RS1      | LDI                          |       |       |
| E: 10 :                                                 | LSI                 |       | LS2   |       |       | KB2   | LBI                     |                       | RBI      | LBI                          |       |       |
| Final Orientation                                       |                     |       | RS2   |       |       |       | LSI                     |                       | KS1      | CS                           |       |       |
|                                                         |                     |       |       |       |       |       |                         |                       | LBI      |                              |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_{3}^{-}$ @ 5 | sites               |       |       |       |       |       | Gd <sup>3+</sup> chelat | tes 2 SO <sub>2</sub> | 0.5 sit  | tes $\pm 2$ H <sub>2</sub> O |       |       |
| ou enemes 2 503, @5                                     | Sheb                |       |       |       |       |       | ou enem                 |                       |          | 21120                        |       |       |
| Total =                                                 | -95.13 kcal/mol     |       |       |       |       |       | -109.35                 | kcal/mol              |          |                              |       |       |
| Van der Waals =                                         | 124.38 kcal/mol     |       |       |       |       |       | 110.61                  | kcal/mol              |          |                              |       |       |
| Electrostatic =                                         | -455.35 kcal/mol    |       |       |       |       |       | -458.02                 | kcal/mol              |          |                              |       |       |
| $\Delta E_{Tot} =$                                      | -92.99 kcal/mol     |       |       |       |       |       | -107.21                 | kcal/mol              |          |                              |       |       |
| $\Delta F_{avtru} =$                                    | -8.68 kcal/mol      |       |       |       |       |       | -22.45                  | kcal/mol              |          |                              |       |       |
| $\Delta E_{ru} =$                                       | -74 97 kcal/mol     |       |       |       |       |       | -77.64                  | kcal/mol              |          |                              |       |       |
| Ele                                                     | ,,                  |       |       |       |       |       | ,,,,,,,                 |                       |          |                              |       |       |
| Initial Orientation                                     | CS                  |       |       | LB1   |       | LS2   |                         | LB2                   | RB2      | RS2                          |       | LB2   |
|                                                         |                     |       |       | CS    |       | RS1   |                         |                       |          | LS2                          |       |       |
| Final Orientation                                       | CS                  |       |       | CS    |       | LS2   |                         | LB2                   | RB2      | LS2                          |       | LB2   |
|                                                         |                     |       |       |       |       | CS    |                         |                       |          | RS2                          |       |       |
|                                                         |                     |       |       |       |       | RS2   |                         |                       |          |                              |       |       |
|                                                         |                     |       |       |       |       | RB2   |                         |                       |          |                              |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4     | sites + Glu22 $@$ 1 | site  |       |       |       |       | Gd <sup>3+</sup> chelat | tes 2 SO <sub>3</sub> | a. 3 sit | tes $+ 2 H_2O$               |       |       |
|                                                         |                     |       |       |       |       |       |                         |                       |          | 2 -                          |       |       |
| Total =                                                 | -87.29 kcal/mol     |       |       |       |       |       | -19.10                  | kcal/mol              |          |                              |       |       |
| Van der Waals =                                         | 235.74 kcal/mol     |       |       |       |       |       | 116.18                  | kcal/mol              |          |                              |       |       |
| Electrostatic =                                         | -420.33 kcal/mol    |       |       |       |       |       | -373.70                 | kcal/mol              |          |                              |       |       |
| ΔE <sub>m</sub> . =                                     | -85 14 kcal/mol     |       |       |       |       |       | -16.96                  | keal/mel              |          |                              |       |       |
| AE -                                                    | 102.68 kool/mol     |       |       |       |       |       | -10.90                  | kool/mc1              |          |                              |       |       |
| AE -                                                    | 20.05 kcarmol       |       |       |       |       |       | -10.88                  | Ireel/mc1             |          |                              |       |       |
| $\Delta E_{Ele} =$                                      | -39.95 kcal/mol     |       |       |       |       |       | 6.68                    | кcal/mol              |          |                              |       |       |

## Table 6.22: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the LVFF region of the 1BA4 conformer of β-amyloid

|                                                            | Gly9              | Tyr10    | Val12 | His13            | His14 | Gln15 | Lys16 | Leu17 | Gly9                      | Tyr10               | His13     | His14       | Gln15    | Lys16 | Leu17 |
|------------------------------------------------------------|-------------------|----------|-------|------------------|-------|-------|-------|-------|---------------------------|---------------------|-----------|-------------|----------|-------|-------|
| Initial Orientation                                        | LB2               |          |       | LB2              | RB1   |       | -     |       |                           | RS1                 | RB1       | RS1         |          | ž     | RB2   |
|                                                            |                   |          |       | LB2              | CS    |       |       |       |                           |                     | LS1       |             |          |       |       |
|                                                            |                   |          |       | LB1              |       |       |       |       |                           |                     | LS2       |             |          |       |       |
|                                                            |                   |          |       |                  |       |       |       |       |                           |                     | RS2       |             |          |       |       |
| Final Orientation                                          | LB2               | RB1      | LB2   | LB2              | RB1   |       |       | CS    | RB1                       | RS1                 | LS1       | RS1         |          |       | RB2   |
|                                                            |                   | RNH      |       | LB2              | CS    |       |       |       |                           |                     | LS2       |             |          |       |       |
|                                                            |                   |          |       | LB1              |       |       |       |       |                           |                     | RB1       |             |          |       |       |
|                                                            |                   |          |       | CS               |       |       |       |       |                           |                     |           |             |          |       |       |
| $Cd^{3+}$ abalatas 2 SO <sup>-</sup> $\odot$ 5 a           | ites + 2 II (     | ~        |       |                  |       |       |       |       | Cd <sup>3+</sup> abalata  |                     | A aitaa   | 1 2 11 (    |          |       |       |
| Ou chemics 5 503 (2) 5                                     | $1005 + 2.11_{2}$ | )        |       |                  |       |       |       |       | Gu cheate                 | \$ 2 503            | a 4 sites | 121120      | )        |       |       |
| Total =                                                    | -127.87           | kcal/mo  | 1     |                  |       |       |       |       | -126.68                   | kcal/mol            |           |             |          |       |       |
| Van der Waals =                                            | 114.23            | kcal/mo  | 1     |                  |       |       |       |       | 114.09                    | kcal/mol            |           |             |          |       |       |
| Electrostatic =                                            | -488.23           | kcal/mo  | 1     |                  |       |       |       |       | -482.56                   | kcal/mol            |           |             |          |       |       |
| $\Delta F_{m} =$                                           | -52 59            | keal/mo  | 1     |                  |       |       |       |       | -51.40                    | kcal/mol            |           |             |          |       |       |
| $\Delta E_{1 \text{ ot}} =$                                | -8.41             | kcal/mo  |       |                  |       |       |       |       | -8.55                     | keal/mol            |           |             |          |       |       |
| AEVdw -                                                    | -0.41             |          | 1     |                  |       |       |       |       | -8.55                     |                     |           |             |          |       |       |
| $\Delta E_{Ele} =$                                         | -57.00            | kcal/mo  | 1     |                  |       |       |       |       | -51.33                    | kcal/mol            |           |             |          |       |       |
| Initial Orientation                                        |                   |          |       | RS1              | LS1   |       |       | RB1   |                           | LB2                 | RS1       | LS1         |          |       | RB1   |
|                                                            |                   |          |       | RS2              | 201   |       |       | LB1   |                           | 202                 |           | 201         |          |       | LB1   |
| Final Orientation                                          |                   |          |       | RS2              | LS1   |       |       | RB1   |                           | LS2                 | RS1       | LS1         |          |       | RB1   |
|                                                            |                   |          |       | RS1              |       |       |       | LB1   |                           | LB2                 |           | LS2         |          |       |       |
| 34                                                         |                   |          |       |                  |       |       |       |       | .2.4                      |                     |           |             |          |       |       |
| $Gd^{3}$ chelates 2 $SO_3$ @ 4 s                           | ites + 2 $H_2$ C  | 0        |       |                  |       |       |       |       | Gd <sup>3+</sup> chelate  | $s 2 SO_3$          | @ 5 sites | $s + 1 H_2$ | )        |       |       |
| Total=                                                     | -86.38            | kcal/mo  | 1     |                  |       |       |       |       | -98.6                     | kcal/mol            |           |             |          |       |       |
| Van der Waals =                                            | 112.68            | kcal/mo  | 1     |                  |       |       |       |       | 132.2                     | kcal/mol            |           |             |          |       |       |
| Electrostatic =                                            | -495.57           | kcal/mo  | 1     |                  |       |       |       |       | -477.1                    | kcal/mol            |           |             |          |       |       |
| AE -                                                       | 11.10             | Irool/mo | 1     |                  |       |       |       |       | 22.20                     | 1.001/mo1           |           |             |          |       |       |
| AE -                                                       | -11.10            | 11/      | 1     |                  |       |       |       |       | -23.28                    | 11/1                |           |             |          |       |       |
| $\Delta E_{Vdw} =$                                         | -9.96             | kcal/mo  | 1     |                  |       |       |       |       | 9.55                      | kcal/mol            |           |             |          |       |       |
| $\Delta E_{Ele} =$                                         | -64.34            | kcal/mo  | I     |                  |       |       |       |       | -45.92                    | kcal/mol            |           |             |          |       |       |
| Initial Orientation                                        |                   |          |       | LS1              | RS1   |       |       | RB2   |                           |                     | RS1       |             |          | LS1   |       |
|                                                            |                   |          |       | LS2              |       |       |       |       |                           |                     |           |             |          |       |       |
| Final Orientation                                          |                   |          |       | Gd <sup>3+</sup> | RB2   |       |       | RS2   |                           |                     | RS1       |             |          | LS1   |       |
|                                                            |                   |          |       | LS2              | RS1   |       |       | RB2   |                           |                     |           |             |          |       |       |
|                                                            |                   |          |       | LS1              |       |       |       |       |                           |                     |           |             |          |       |       |
|                                                            |                   |          |       | LB2              |       |       |       |       |                           |                     |           |             |          |       |       |
|                                                            |                   |          |       | RS2              |       |       |       |       |                           |                     |           |             |          |       |       |
| C 1 <sup>3+</sup> - 1-1-1                                  |                   | ~        |       |                  |       |       |       |       | C 1 <sup>3+</sup> -1-1-1- | - 2 50              |           |             | <u>,</u> |       |       |
| Gd chelates $2 \text{ sO}_3$ ( <i>a</i> ) $3 \text{ si}_3$ | $Hes + 2 H_2 C$   | )        |       |                  |       |       |       |       | Gd chelate                | s 2 SO <sub>3</sub> | a 5 sites | $+1 H_2$    | )        |       |       |
| Total=                                                     | -52.97            | kcal/mo  | 1     |                  |       |       |       |       | -100.56                   | kcal/mol            |           |             |          |       |       |
| Van der Waals =                                            | 142.41            | kcal/mo  | 1     |                  |       |       |       |       | 113.09                    | kcal/mol            |           |             |          |       |       |
| Electrostatic =                                            | -438.81           | kcal/mo  | 1     |                  |       |       |       |       | -461.92                   | kcal/mol            |           |             |          |       |       |
|                                                            |                   |          |       |                  |       |       |       |       |                           |                     |           |             |          |       |       |
| $\Delta E_{Tot} =$                                         | 22.32             | kcal/mo  | l     |                  |       |       |       |       | -25.28                    | kcal/mol            |           |             |          |       |       |
| $\Delta E_{Vdw} =$                                         | 19.77             | kcal/mo  | 1     |                  |       |       |       |       | -9.55                     | kcal/mol            |           |             |          |       |       |
| $\Delta E_{Ele} =$                                         | -7.57             | kcal/mo  | 1     |                  |       |       |       |       | -30.68                    | kcal/mol            |           |             |          |       |       |

## Table 6.23: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the HHQK region of the 1IYT conformer of β-amyloid

|                                                              | His14                                              | Gln15            | Lys16 Le   | eu17 Val18 | Phe19 | Phe20 | Asp23 | His13                 | Lys16                  | Leu17   | Val18 Phe19    | Phe20 | Ala21 | Asp23 |
|--------------------------------------------------------------|----------------------------------------------------|------------------|------------|------------|-------|-------|-------|-----------------------|------------------------|---------|----------------|-------|-------|-------|
| Initial Orientation                                          | RS1                                                | RS1              | LS1        | RS1        | LB1   |       |       | RB2                   | RS2                    | RB2     |                | RB2   |       | LB2   |
|                                                              |                                                    | LS1              |            | RB1        | LS1   |       |       |                       | LS2                    |         |                | RS2   |       |       |
| Final Orientation                                            |                                                    | LS2              | LS1        | RS1        | LB1   |       |       |                       | RB2                    | RB2     |                | RB2   |       | LB2   |
|                                                              |                                                    | LS1              |            |            | LS1   |       |       |                       | RS2                    |         |                | RS2   |       |       |
|                                                              |                                                    | RS2              |            |            | LNH   |       |       |                       |                        |         |                | LS2   |       |       |
|                                                              |                                                    | RS1              |            |            |       |       |       |                       |                        |         |                |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4          | 4 sites + Gl                                       | n15@1            | sites + 2H | $_{2}O$    |       |       |       | Gd <sup>3+</sup> chel | ates 2 SO <sub>3</sub> | @ 5 si  | tes            |       |       |       |
| Total =                                                      | -127.96                                            | keal/mol         |            |            |       |       |       | -82.25                | R kcal/mol             |         |                |       |       |       |
| Van der Waals =                                              | 109.91                                             | kcal/mol         |            |            |       |       |       | 106.50                | 5 kcal/mol             |         |                |       |       |       |
| Electrostatic =                                              | -488.27                                            | kcal/mol         |            |            |       |       |       | -499.2                | kcal/mol               |         |                |       |       |       |
|                                                              |                                                    |                  |            |            |       |       |       |                       |                        |         |                |       |       |       |
| $\Delta E_{Tot} =$                                           | -52.68                                             | kcal/mol         |            |            |       |       |       | -7.00                 | ) kcal/mol             |         |                |       |       |       |
| $\Delta E_{Vdw} =$                                           | -12.73                                             | kcal/mol         |            |            |       |       |       | -16.08                | 8 kcal/mol             |         |                |       |       |       |
| $\Delta E_{Ele} =$                                           | -57.04                                             | kcal/mol         |            |            |       |       |       | -67.98                | 8 kcal/mol             |         |                |       |       |       |
|                                                              |                                                    |                  |            |            |       |       |       |                       |                        |         |                |       |       |       |
| Initial Orientation                                          |                                                    |                  | RB1        |            |       | RB1   | CS    | RB1                   |                        | RB1     |                | LB1   |       |       |
|                                                              |                                                    |                  |            |            |       |       |       | RB2                   |                        |         |                | CS    |       |       |
| Final Orientation                                            |                                                    |                  | RB1        |            |       | CS    | CS    | RB2                   |                        | RB1     |                | LB1   |       |       |
|                                                              |                                                    |                  |            |            |       | KBI   |       | RBI                   |                        |         |                | CS    |       |       |
|                                                              |                                                    |                  |            |            |       |       |       | KINH                  |                        |         |                |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 3          | $Gd^{3+}$ chelates 2 $SO_3^-$ @ 3 sites + 2 $H_2O$ |                  |            |            |       |       |       | Gd <sup>3+</sup> chel | ates 2 SO <sub>3</sub> | @ 4 si  | tes + 2 $H_2O$ |       |       |       |
| Total =                                                      | -47.01                                             | kcal/mol         |            |            |       |       |       | -34.80                | 5 kcal/mol             |         |                |       |       |       |
| Van der Waals =                                              | 129.69                                             | kcal/mol         |            |            |       |       |       | 130.54                | 4 kcal/mol             |         |                |       |       |       |
| Electrostatic =                                              | -425.91                                            | kcal/mol         |            |            |       |       |       | -471.42               | 2 kcal/mol             |         |                |       |       |       |
| AE -                                                         | 28.26                                              | 11               |            |            |       |       |       | 40.42                 | 11                     |         |                |       |       |       |
| $\Delta E_{Tot} =$                                           | 28.28                                              |                  |            |            |       |       |       | 40.42                 |                        |         |                |       |       |       |
| $\Delta E_{Vdw} =$                                           | 7.05                                               | kcal/mol         |            |            |       |       |       | /.90                  | ) kcal/mol             |         |                |       |       |       |
| $\Delta E_{Ele} =$                                           | 5.33                                               | kcal/mol         |            |            |       |       |       | -40.19                | kcal/mol               |         |                |       |       |       |
| Initial Orientation                                          |                                                    |                  | DD1        |            | CS    | I D1  | CS    |                       |                        | CS      |                | DD1   | CS    |       |
| miliar Offentation                                           |                                                    |                  | LB1        |            | RB1   | CS    | C3    |                       |                        | LB1     |                | RS1   | 0.5   |       |
|                                                              |                                                    |                  | CS         |            | ittai | 05    |       |                       |                        | 201     |                | 1001  |       |       |
|                                                              |                                                    |                  | RS1        |            |       |       |       |                       |                        |         |                |       |       |       |
| Final Orientation                                            |                                                    |                  | RS1        |            | RB1   | CS    | CS    |                       |                        | LS1     |                | RB1   | CS    |       |
|                                                              |                                                    |                  | RB1        |            | CS    |       |       |                       |                        | LB1     |                | RS1   |       |       |
|                                                              |                                                    |                  | CS         |            |       |       |       |                       |                        | CS      |                |       |       |       |
|                                                              |                                                    |                  |            |            |       |       |       |                       |                        | RB1     |                |       |       |       |
| Gd <sup>3+</sup> chelates 1 SO <sub>3</sub> <sup>-</sup> @ 2 | 2 sites + 31                                       | I <sub>2</sub> O |            |            |       |       |       | Gd <sup>3+</sup> chel | ates 2 SO3             | @ 6 si  | tes + 2 $H_2O$ |       |       |       |
| L .                                                          |                                                    |                  |            |            |       |       |       |                       |                        |         |                |       |       |       |
| Iotal=                                                       | -21.05                                             | kcal/mol         |            |            |       |       |       | -13.72                | 2 kcal/mol             | 4000000 |                |       |       |       |
| van der waals =                                              | 291 99                                             | kcal/mol         |            |            |       |       |       | 152.4                 | 7 kool/mol             |         |                |       |       |       |
| Electrostatic =                                              | -381.88                                            | kcal/mol         |            |            |       |       |       | -454.4                | / Kcal/mol             | -       |                |       |       |       |
| $\Delta E_{Tot} =$                                           | 54.23                                              | kcal/mol         |            |            |       |       |       | 61.57                 | 7 kcal/mol             |         |                |       |       |       |
| $\Delta E_{Vdw} =$                                           | -4 94                                              | kcal/mol         |            |            |       |       |       | 9.8                   | kcal/mol               |         |                |       |       |       |
| $\Delta E_{Ele} =$                                           | 49.36                                              | kcal/mol         |            |            |       |       |       | -23.24                | 4 kcal/mol             | -       |                |       |       |       |

## Table 6.24: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the LVFF region of the 1IYT conformer of β-amyloid

|                                                        | Gly9    | Tyr10     | His13 | His14      | Gln15 | Lys16                   | Leu17          | Gly9      | Tyr10         | His13 | His14 | Gln15 | Lys16 | Leu17 |
|--------------------------------------------------------|---------|-----------|-------|------------|-------|-------------------------|----------------|-----------|---------------|-------|-------|-------|-------|-------|
| Initial Orientation                                    | CS      | CS        | LB1   | RS1        |       | LS1                     |                | LS1       | LB1           | LS1   | RS1   |       |       |       |
| Final Orientation                                      |         | CS        | LB1   | RS1        |       | LS1                     |                | LS1       | CS            | LS1   | RS1   |       |       |       |
|                                                        |         |           | CS    |            |       |                         |                |           | LB1           |       |       |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4 s  |         |           |       |            |       | Gd <sup>3+</sup> chelat | tes 2 $SO_3$   | @ 3 sites | $s + 2 H_2 G$ | )     |       |       |       |       |
| Total =                                                | -39.54  | kcal/mo   | 1     |            |       |                         |                | -86.70    | ) kcal/mol    |       |       |       |       |       |
| Van der Waals =                                        | 105 47  | kcal/mo   |       |            |       |                         |                | 113.23    | kcal/mol      |       |       |       |       |       |
| Electrostatic =                                        | -472.05 | kcal/mo   | Ì     |            |       |                         |                | -464.94   | kcal/mol      |       |       |       |       |       |
|                                                        |         |           |       |            |       |                         |                |           |               |       |       |       |       |       |
| $\Delta E_{Tot} =$                                     | -46.11  | kcal/mo   | l     |            |       |                         |                | -93.28    | 8 kcal/mol    |       |       |       |       |       |
| $\Delta E_{Vdw} =$                                     | -22.79  | kcal/mo   | l     |            |       |                         |                | -15.04    | kcal/mol      |       |       |       |       |       |
| $\Delta E_{Ele} =$                                     | -88.13  | kcal/mo   | I     |            |       |                         |                | -81.02    | 2 kcal/mol    |       |       |       |       |       |
| Initial Orientation                                    |         |           | RS1   | LS1        |       |                         | CS             |           | LS1           | RB2   | LS1   |       | RS1   |       |
| Final Orientation                                      | RS1     |           | RS1   | LB1<br>LS1 |       |                         | CS             | LS1       | LS1           | RB2   | LS1   |       | RS1   | cs    |
| $\mathrm{Gd}^{3^+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4 s |         |           |       |            |       | Gd <sup>3+</sup> chelat | tes 2 $SO_3^-$ | @ 4 sites | $s + 1H_2C$   | )     |       |       |       |       |
| Total =                                                | -138.20 | kcal/mo   | 1     |            |       |                         |                | -88.9     | kcal/mol      |       |       |       |       |       |
| Van der Waals =                                        | 101.63  | kcal/mo   | ĺ     |            |       |                         |                | 130.2     | kcal/mol      |       |       |       |       |       |
| Electrostatic =                                        | -485.00 | ) kcal/mo | I     |            |       |                         |                | -479.1    | kcal/mol      |       |       |       |       |       |
| $\Delta E_{Tot} =$                                     | -144.77 | kcal/mo   | I     |            |       |                         |                | -95.42    | 2 kcal/mol    |       |       |       |       |       |
| $\Delta E_{Vdw} =$                                     | -26.64  | kcal/mo   | ĺ     |            |       |                         |                | 1.89      | kcal/mol      |       |       |       |       |       |
| $\Delta E_{Ele} =$                                     | -101.08 | kcal/mo   | I     |            |       |                         |                | -95.21    | kcal/mol      |       |       |       |       |       |
| Initial Orientation                                    | RS2     | LS1       | RS1   | LS1        |       | RS1                     |                |           |               | LS1   |       |       | RB1   |       |
|                                                        |         |           | RB2   |            |       |                         |                |           |               | CS    |       |       | RS1   |       |
|                                                        |         |           | RS2   |            |       |                         |                |           |               |       |       |       |       |       |
| Final Orientation                                      |         | LS1       | RS1   | LS1        |       | RS1                     |                |           |               | LS1   |       |       | RS1   |       |
|                                                        |         |           | RS2   |            |       |                         |                |           |               | LB1   |       |       | RB1   |       |
|                                                        |         |           |       |            |       |                         |                |           |               |       |       |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 6 s  |         |           |       |            |       | Gd <sup>3+</sup> chelat | tes 2 $SO_3^-$ | @ 3 sites | $s + 2 H_2 C$ | )     |       |       |       |       |
| Total =                                                | -80.00  | kcal/mo   | I     |            |       |                         |                | -95.61    | kcal/mol      |       |       |       |       |       |
| Van der Waals =                                        | 121.45  | kcal/mo   | l     |            |       |                         |                | 118.61    | kcal/mol      |       |       |       |       |       |
| Electrostatic =                                        | -473.46 | kcal/mo   | I     |            |       |                         |                | -453.28   | 8 kcal/mol    |       |       |       |       |       |
| $\Delta E_{Tot} =$                                     | -86.57  | kcal/mo   | I     |            |       |                         |                | -102.18   | 8 kcal/mol    |       |       |       |       |       |
| $\Delta E_{Vdw} =$                                     | -6.82   | kcal/mo   | I     |            |       |                         |                | -9.66     | kcal/mol      |       |       |       |       |       |
| $\Delta E_{Ele} =$                                     | -89.55  | kcal/mo   | i     |            |       |                         |                | -69.36    | 6 kcal/mol    |       |       |       |       |       |

## Table 6.25: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the HHQK region of the 1Z0Q conformer of β-amyloid
|                                                     | Lys16        | Leu17            | Val18 Phe19 | Phe20      | His14                   | Lys16                 | Leu17  | Val18    | Phe19 1          | Phe20 | Ala21 | Glu22 |
|-----------------------------------------------------|--------------|------------------|-------------|------------|-------------------------|-----------------------|--------|----------|------------------|-------|-------|-------|
| Initial Orientation                                 | LS1          | LB1              | CS          | CS         | LS1                     | RS1                   | CS     | LB1      |                  |       | CS    |       |
|                                                     | LB1          |                  |             | RB1        |                         |                       | RB1    |          |                  |       |       |       |
|                                                     | LNH          |                  |             |            |                         |                       |        |          |                  |       |       |       |
| Final Orientation                                   | LS1          | CS               | CS          | RB1        | LS1                     |                       | CS     | CS       |                  |       | LB1   |       |
|                                                     | CS           | LB1              |             | CS         | RNH                     |                       | RB1    |          |                  |       | CS    |       |
|                                                     | LB1          |                  |             |            |                         |                       |        |          |                  |       |       |       |
|                                                     | LNH          |                  |             |            |                         |                       |        |          |                  |       |       |       |
|                                                     |              |                  |             |            |                         |                       |        |          |                  |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 3 $\mathrm{SO}_3^-$ @ 5 | 5 sites      |                  |             |            | Gd <sup>3+</sup> chelat | tes 2 SO <sub>3</sub> | @ 3 si | tes + 1  | H <sub>2</sub> O |       |       |       |
| Total =                                             | -105.95      | kcal/mol         |             |            | -89.80                  | kcal/mol              |        |          |                  |       |       |       |
| Van der Waals =                                     | 106.34       | kcal/mol         |             |            | 93.80                   | kcal/mol              |        |          |                  |       |       |       |
| Electrostatic =                                     | -468.66      | kcal/mol         |             |            | -443.33                 | kcal/mol              |        |          |                  |       |       |       |
|                                                     |              |                  |             |            |                         |                       |        |          |                  |       |       |       |
| $\Delta E_{Tot} =$                                  | -112.52      | kcal/mol         |             |            | -96.37                  | kcal/mol              |        |          |                  |       |       |       |
| $\Delta F_{m} =$                                    | -21.93       | kcal/mol         |             |            | -34 47                  | kcal/mol              |        |          |                  |       |       |       |
| AE -                                                | 21.22        | koal/mol         |             |            | 50.42                   | kool/mol              |        |          |                  |       |       |       |
| $\Delta L_{Ele} =$                                  | -04./4       | Kearmon          |             |            | -39.42                  | KCal/IIDI             |        |          |                  |       |       |       |
| Initial Orientation                                 |              | DSD              | DD1         | DD1        |                         |                       | 102    |          | DD1              |       |       |       |
| initial Offentation                                 |              | RB2              | KD1         | RB1<br>RB2 |                         |                       | LD2    |          | KD2              |       |       |       |
| Final Orientation                                   |              | RD2<br>RS2       | RS2         | RB2        |                         |                       | RS2    |          | RB2              |       |       |       |
| 1 Indi Offendation                                  |              | RB2              | RB1         | RB1        |                         |                       | 102    |          | RS2              |       |       |       |
|                                                     |              | KD2              | CS          | RNH        |                         |                       |        |          | 1052             |       |       |       |
|                                                     |              |                  | ĊĎ          | KIVII      |                         |                       |        |          |                  |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 3 $\mathrm{SO}_3^-$ @ 6 | 5 sites      |                  |             |            | Gd <sup>3+</sup> chelat | tes 3 SO <sub>3</sub> | @ 5 si | tes + 11 | $H_2O$           |       |       |       |
| Total =                                             | 72.60        | kcal/mol         |             |            | -21.72                  | keal/mol              |        |          |                  |       |       |       |
| Van der Waak =                                      | 105.06       | kcal/mol         |             |            | 103.68                  | kcal/mol              |        |          |                  |       |       |       |
| Flectrostatic =                                     | -453.66      | kcal/mol         |             |            | -396.89                 | kcal/mol              |        |          |                  |       |       |       |
| Electostate                                         | 155.00       | Rearing          |             |            | 570.07                  | Rearing               |        |          |                  |       |       |       |
| $\Delta E_{Tot} =$                                  | -79.17       | kcal/mol         |             |            | -28.29                  | kcal/mol              |        |          |                  |       |       |       |
| $\Delta E_{Vdw} =$                                  | -23.20       | kcal/mol         |             |            | -24.59                  | kcal/mol              |        |          |                  |       |       |       |
| $\Delta F_{ru} =$                                   | -69 74       | kcal/mol         |             |            | -12.98                  | kcal/mol              |        |          |                  |       |       |       |
| Ele                                                 | 07.71        | Rearino          |             |            | 12.70                   | Rearing               |        |          |                  |       |       |       |
| Initial Orientation                                 |              | CS               |             | LB1        | RB1                     |                       | LB1    | CS       |                  |       | CS    | CS    |
| ninui orientation                                   |              | RB1              |             | CS         | 1001                    |                       | LDI    | 00       |                  |       | LBI   | 00    |
| Final Orientation                                   | RB1          | CS               | CS          | LB1        | RB1                     |                       | LS1    | LB1      |                  |       |       | CS    |
|                                                     |              | RB1              | RB1         | CS         | LB1                     |                       |        | CS       |                  |       |       |       |
|                                                     |              |                  |             |            | RNH                     |                       |        |          |                  |       |       |       |
|                                                     |              |                  |             |            |                         |                       |        |          |                  |       |       |       |
| $\mathrm{Gd}^{3+}$ chelates 2 $\mathrm{SO}_3^-$ @ 4 | 4 sites + 3H | I <sub>2</sub> O |             |            | Gd <sup>3+</sup> chelat | tes 2 SO <sub>3</sub> | @ 6 si | tes + 1  | $H_2O$           |       |       |       |
| Total =                                             | -31.47       | kcal/mol         |             |            | -61.96                  | kcal/mol              |        |          |                  |       |       |       |
| Van der Waals =                                     | 113.37       | kcal/mol         |             |            | 117.61                  | kcal/mol              |        |          |                  |       |       |       |
| Electrostatic =                                     | -402.15      | kcal/mol         |             |            | -435.34                 | kcal/mol              |        |          |                  |       |       |       |
|                                                     |              |                  |             |            |                         |                       |        |          |                  |       |       |       |
| $\Delta E_{Tot} =$                                  | -38.04       | kcal/mol         |             |            | -68.53                  | kcal/mol              |        |          |                  |       |       |       |
| $\Delta F_{\text{system}} =$                        | -14 90       | kcal/mol         |             |            | -10.65                  | kcal/mol              |        |          |                  |       |       |       |
| $\Delta F_{} =$                                     | _18.22       | kcal/mol         |             |            | _51 /2                  | kcal/mol              |        |          |                  |       |       |       |
| Ele -                                               | -10.23       | rear mon         | L           |            | -51.45                  | rear 1101             | 1      |          |                  |       |       |       |

### Table 6.26: The solution phase results of solapsone-Gd<sup>3+</sup> interacting with the LVFF region of the 1Z0Q conformer of β-amyloid

The solution phase optimized systems of  $\beta$ -amyloid and solapsone-Gd<sup>3+</sup> showed binding could occur between the complex and the **HHQK** and LVFF regions of interest. The orientation of the interactions tended to remain the same as in the gas phase system, and gadolinium was still capable of chelating to solapsone in the presence of water, and even interacted with the protein in some instances. An example of the binding interactions can be seen in Figure 6.6, with the water molecules removed except for those interacting with gadolinium. The electrostatic energies are more favourable than the van der Waals energies of the systems. Binding occurs preferentially at His13-His14, followed by His13-Lys16 in the **HHQK** region, while Leu17-Phe20, Phe19-Phe20, and Leu17-Val18 are favoured in the LVFF region.



Figure 6.6: Solution phase interactions between the chelated solapsone-Gd<sup>3+</sup> complex and β-amyloid. Dashed green lines indicate the formation of aromatic-aromatic and cation-aromatic interactions. Dashed purple lines represent the formation of hydrogen bonds, and dashed blue lines indicate metal-ligation interactions.

#### **6.3 SOLAPSONE AS AN AMYLOID ANTI-AGGREGANT**

Given the success of solapsone-Gd<sup>3+</sup> binding to  $\beta$ -amyloid, solapsone was examined by itself as a potential inhibitor of A $\beta$  aggregations. Both gas phase and solution phase optimizations were performed to determine solapsone's ability to bind to the  $\beta$ -amyloid protein.

#### 6.3.1 Gas Phase Optimizations of Solapsone with $\beta$ -Amyloid

Gas phase minimizations were performed for solapsone interacting with five different conformers of A $\beta$  (the 1AMB and 1AMC conformers are nearly identical, so only one was used) using the CHARMM22 force field in the Molecular Operating Environment [48, 87]. Each system was set up such that a combination of two of the functional groups on solapsone were oriented towards two of the amino acid side chains on A $\beta$  in one of three regions: **HHQK**, LVFF and overlapping both **HHQK** and LVFF. The functional groups were selected such that a combination of one group from each half of the molecule was selected, or one group from the side along with the central SO<sub>2</sub> group.

For these optimizations, the lowest energy structure identified from the systematic conformational search performed in section 6.1.1 was selected for use. The energies of the A $\beta$  conformers, measured with a constrained protein backbone, are given in Appendix 6, and the energies of the optimized solapsone molecule are given in the following table.

|           | Energ     | ies (kca  | l/mol)    |
|-----------|-----------|-----------|-----------|
|           | $E_{tot}$ | $E_{vdw}$ | $E_{ele}$ |
| Solapsone | 81.13     | 40.56     | 20.81     |

 Table 6.27: The gas phase energies of solapsone

Using these energies, equations 6.4-6.6 were used to calculate the binding energies for the optimized systems.

$$\Delta E_{\text{tot}} = E_{\text{tot}} - E_{A\beta} - E_{\text{Solapsone}}$$
(6.4)

$$\Delta E_{vdw} = E_{vdw} - E_{vdwA\beta} - E_{vdwSolapsone}$$
(6.5)

$$\Delta E_{ele} = E_{ele} - E_{eleA\beta} - E_{eleSolapsone}$$
(6.6)

The total,  $\Delta E_{tot}$ , van der Waals,  $\Delta E_{vdw}$ , and electrostatic energies,  $\Delta E_{ele}$ , were calculated by subtracting the energies of the individually optimized A $\beta$  proteins and the solapsone molecule from the energies of the minimized protein-solapsone systems.

#### 6.3.2 Results of the Gas Phase Optimization of Solapsone and $\beta$ -Amyloid

The minimization of solapsone with five different conformations of  $\beta$ -amyloid resulted in a massive number of systems. From these systems, one fifth of the results for each of the three regions of A $\beta$  were selected for solution phase optimizations, these are summarized in the following tables. Each table shows the initial and final orientation of solapsone, with the functional groups identified according to Figure 6.4. The amino acids are represented by their three letter abbreviations, and the different binding interactions are noted by colour: orange, green and blue are used for hydrogen bonds, cation- $\pi$ , and  $\pi$ - $\pi$  interactions; yellow, purple and lime green are used for interactions with the –NH-, C=O, and –CH- of the protein backbone; indigo is used for interactions occurring with the –CH<sub>2</sub>- chain of the amino acids.

|                     | His6    | Gly9                | Tyr10 | His13                | His14   | Gln15     | Lys16 | Leu17 | Phe20 | Lys28 | His6   | Gly9        | Tyr10 | His13                | His14   | Gln15    | Lys16 | Leu17 | Phe20 |
|---------------------|---------|---------------------|-------|----------------------|---------|-----------|-------|-------|-------|-------|--------|-------------|-------|----------------------|---------|----------|-------|-------|-------|
| Initial Orientation |         |                     |       | LB1                  |         |           | RS1   |       |       |       |        | _           |       | CS                   |         |          | LS1   |       |       |
| Final Orientation   | LS2     | LS1                 | LS1   | RB1                  |         |           | RS1   | RS1   | RS1   |       | RS1    | RS1         | RS1   | RB1                  |         |          | LS1   | LS2   | LS2   |
|                     | LSI     |                     |       | LBI                  |         |           | RS2   |       |       |       |        |             |       | LBI                  |         |          |       | LSI   | LSI   |
|                     | LB2     |                     |       | LSI                  |         |           |       |       |       |       |        |             |       | RNH<br>RS1           |         |          |       | LBI   |       |
|                     |         |                     |       |                      |         |           |       |       |       |       |        |             |       | Roi                  |         |          |       |       |       |
| Total =             | -86.46  | kcal/mo             | 1     | $\Delta E_{Tot} =$   | -155.80 | ) kcal/mo | 1     |       |       |       | -70.5  | 53 kcal/n   | ol    | $\Delta E_{Tot} =$   | -139.87 | kcal/mo  | I     |       |       |
| Van der Waals =     | 75.57   | kcal/mo             | 1     | $\Delta E_{Vdw} =$   | -20.27  | 7 kcal/mo | 1     |       |       |       | 74.4   | ↓6 kcal/n   | ol    | $\Delta E_{Vdw} =$   | -21.38  | kcal/mo  | I     |       |       |
| Electrostatic =     | -327.17 | kcal/mo             | 1     | $\Delta E_{Ele} =$   | -136.28 | 8 kcal/mo | 1     |       |       |       | -323.9 | 94 kcal∕n   | юl    | $\Delta E_{Ele} =$   | -133.04 | kcal/mo  | I     |       |       |
|                     |         |                     |       |                      |         |           |       |       |       |       |        |             |       |                      |         |          |       |       |       |
| Initial Orientation |         |                     |       | LS1                  |         |           | RB1   |       |       |       |        |             |       | RB1                  |         |          | LB1   |       |       |
| Final Orientation   |         |                     | LB2   | LB1                  | LS1     |           | RS1   | RS1   | RS1   |       |        | RS1         | RS1   | RB1                  |         |          | LS1   |       |       |
|                     |         |                     |       | LS1                  |         |           | RS2   | LB1   |       |       |        |             |       | CS                   |         |          | LS2   |       |       |
|                     |         |                     |       | 1.52                 |         |           |       | LSI   |       |       |        |             |       | RS2<br>PS1           |         |          | CS    |       |       |
|                     |         |                     |       |                      |         |           |       |       |       |       |        |             |       | Kor                  |         |          | 03    |       |       |
| Total =             | -85.25  | kcal/mo             | 1     | $\Delta E_{Tot} =$   | -154.59 | kcal/mo   | 1     |       |       |       | -66.6  | 52 kcal/n   | ol    | $\Delta E_{Tot} =$   | -135.96 | kcal/mo  | I     |       |       |
| Van der Waals =     | 74.78   | kcal/mo             | 1     | $\Delta E_{Vdw} =$   | -21.06  | 5 kcal/mo | 1     |       |       |       | 77.3   | 3 kcal/n    | ol    | $\Delta E_{Vdw} =$   | -18.51  | kcal/mo  | I     |       |       |
| Electrostatic =     | -328.79 | kcal/mo             | 1     | $\Delta E_{Ele} =$   | -137.90 | ) kcal/mo | 1     |       |       |       | -315.2 | 20 kcal/n   | ol    | $\Delta E_{Ele} =$   | -124.31 | kcal/mo  | I     |       |       |
|                     |         |                     |       | Lin                  |         |           |       |       |       |       |        |             |       | e                    |         |          |       |       |       |
| Initial Orientation |         |                     |       | RB1                  |         |           | LS2   |       |       |       |        |             |       | RS1                  |         |          | LB1   |       |       |
| Final Orientation   |         |                     | RS1   | LS1                  | RS2     |           | LS2   |       | LB2   |       |        |             | RB2   | RS2                  |         |          | LS2   | CS    | LB1   |
|                     |         |                     | RS2   | RB1                  |         |           | LS1   |       |       |       |        |             |       | RS1                  |         |          | LB2   | LB1   | LNH   |
|                     |         |                     |       | RNH                  |         |           |       |       |       |       |        |             |       | RB1                  |         |          |       |       | LS1   |
|                     |         |                     |       | K52                  |         |           |       |       |       |       |        |             |       |                      |         |          |       |       | LB2   |
| Total =             | -81.42  | kcal/mo             | 1     | $\Delta E_{Tot} =$   | -150.77 | 7 kcal/mo | 1     |       |       |       | -62.1  | 4 kcal/n    | ol    | $\Delta E_{Tot} =$   | -131.48 | kcal/mo  | I     |       |       |
| Van der Waals =     | 77.39   | kcal/mo             | 1     | $\Delta E_{Vdw} =$   | -18.45  | 5 kcal/mo | 1     |       |       |       | 77.9   | 0 kcal/n    | ol    | ΔE <sub>Vdw</sub> =  | -17.94  | kcal/mo  | I     |       |       |
| Electrostatic =     | -330.03 | kcal/mo             | 1     | $\Delta E_{E1a} =$   | -139.14 | 4 kcal/mo | 1     |       |       |       | -316.2 | 21 kcal/n   | ol    | $\Delta E_{E1a} =$   | -125.32 | kcal/mo  | I     |       |       |
|                     |         |                     |       | Lie                  |         |           |       |       |       |       |        |             |       | Lie                  |         |          |       |       |       |
| Initial Orientation |         |                     |       | LB1                  |         |           | CS    |       |       |       |        |             |       |                      | RB2     |          | LB2   |       |       |
| Final Orientation   |         |                     |       | LS1                  |         |           | LB1   | RS1   | RB1   | RS2   |        |             | RS2   | LB1                  | RB2     |          | LB2   | LS2   | LB2   |
|                     |         |                     |       |                      |         |           | LS1   |       | RS2   |       |        |             |       | LS2                  |         |          | LS2   | LB1   |       |
|                     |         |                     |       |                      |         |           | LS2   |       | RSI   |       |        |             |       | LSI                  |         |          |       |       |       |
| Total =             | -67 71  | kcal/mo             | 1     | ΔE <sub>T of</sub> = | -137.04 | 5 kcal/mo | 1     |       |       |       | -60 3  | 38 kcal/n   | ol    | ΔE <sub>T of</sub> = | -129 72 | kcal/mo  |       |       |       |
| Van der Waak =      | 74 67   | kcal/mo             | 1     | ΔE <sub>xth</sub> =  | -21.12  | 7 kcal/mo | 1     |       |       |       | 73 2   | 27 kcal/n   | ol    | $\Delta F_{aview} =$ | -22.57  | kcal/mo  |       |       |       |
| Electrostatic =     | -311.42 | kcal/mo             | 1     | AEm =                | -120.53 | keal/mo   | 1     |       |       |       | -306.1 | 2 kcal/n    | nl    | AEm =                | -115.23 | kcal/mo  |       |       |       |
| Licenosuite         | -511.42 | . Kearino           |       | ALEIe                | -120.5. | , Kearino | 1     |       |       |       | -500.1 | 2 Kearn     | 01    | ALEle                | -115.25 | Rearino  |       |       |       |
| Initial Orientation |         |                     |       | RS2                  |         |           | LS2   |       |       |       |        |             |       | CS                   |         |          | RB1   |       |       |
| Final Orientation   |         |                     |       | RS2                  |         |           | LS2   | RS2   | LB2   |       |        |             | LB2   | LB1                  | LS1     |          | RS1   | RB1   | RS1   |
|                     |         |                     |       | RS1                  |         |           | LS1   |       | LS2   |       |        |             | LS2   | LS1                  |         |          |       |       |       |
|                     |         |                     |       | -                    |         |           |       |       |       |       |        |             |       | CS                   |         |          |       |       |       |
| Total =             | -64.12  | keal/mo             | 1     | ΔE- =                | -133.46 | 5 kcal/mo | 1     |       |       |       | -62 4  | 5 kcal/n    | nl    | ΔE- =                | -131.89 | kcal/mo  |       |       |       |
| Van der Waak -      | 81.94   | keal/mo             | 1     | AEm =                | -135.40 | ) kcal/m  |       |       |       |       | 70 1   | 2 keal/n    | ol.   | AEm -                | -16.62  | kcal/mo  |       |       |       |
| Flactrostatio -     | 212 52  | kool/mo             | 1     | AE -                 | 121 43  | kool/mo   |       |       |       |       | 212    | 2 Kealin    | ol.   | AE -                 | 122.20  | koal/ma  |       |       |       |
| Electrostatic -     | -312.33 | <pre>kcai/in0</pre> | 1     | Ele -                | -121.03 | s kcarino | 1     |       |       |       | -515.4 | . / Kcal/II | 01    | μαr <sub>Ele</sub> = | -122.38 | KCarino. |       |       |       |

|                     | Val12   | His13 His14 | Gln15                      | Lys16   | Leu17    | Val18 | Phe19 | Phe20 | His13  | Lys16    | Leu17 | Val18              | Phe19   | Phe20  | Val24 | Lvs28 |
|---------------------|---------|-------------|----------------------------|---------|----------|-------|-------|-------|--------|----------|-------|--------------------|---------|--------|-------|-------|
| Initial Orientation |         |             |                            |         |          |       | RB1   | LB1   |        |          | LB2   |                    |         | RB2    |       | )     |
| Final Orientation   | RS1     | LS1         | RS1                        | RS2     |          |       | RS1   | LB1   | LS2    | LS1      | LB2   |                    |         | RS2    | RB2   | RS2   |
|                     |         |             |                            | RB1     |          |       | RB1   | LNH   | LS1    |          |       |                    |         | RB2    |       |       |
|                     |         |             |                            | RS1     |          |       | CS    |       |        |          |       |                    |         |        |       |       |
|                     |         |             |                            | LB1     |          |       |       |       |        |          |       |                    |         |        |       |       |
|                     |         |             |                            | LS1     |          |       |       |       |        |          |       |                    |         |        |       |       |
|                     |         |             |                            | LS2     |          |       |       |       |        |          |       |                    |         |        |       |       |
| Total =             | -59.60  | ) kcal/mol  | $\Delta E_{Tot} =$         | -128.94 | 4 kcal/m | ol    |       |       | -56.0  | 8 kcal/m | ol    | $\Delta E_{Tot} =$ | -125.42 | kcal/m | ol    |       |
| Van der Waals =     | 68.57   | 7 kcal/mol  | $\Delta E_{Vdw} =$         | -27.27  | 7 kcal/m | ol    |       |       | 77.3   | 5 kcal/m | ol    | $\Delta E_{Vdw} =$ | -18.49  | kcal/m | ol    |       |
| Electrostatic =     | -303.53 | 3 kcal/mol  | $\Delta E_{Ele} =$         | -112.63 | 8 kcal/m | ol    |       |       | -308.0 | 0 kcal/m | ol    | $\Delta E_{Ele} =$ | -117.10 | kcal/m | əl    |       |
| Initial Orientation |         |             |                            |         | RB2      | LB2   |       |       |        |          | LB1   |                    |         | RB1    |       |       |
| Final Orientation   |         | LB2         |                            |         |          |       |       |       | LS2    | LS2      | LS1   |                    |         | CS     |       | RS1   |
|                     |         | LB2         |                            |         |          |       |       |       | LS1    | LS1      |       |                    |         | RB1    |       |       |
|                     |         |             |                            |         |          |       |       |       |        | LB1      |       |                    |         |        |       |       |
| Total =             | 22.73   | 3 kcal/mol  | $\Delta E_{Tot} =$         | -46.61  | l kcal/m | ol    |       |       | -52.8  | 7 kcal/m | ol    | $\Delta E_{Tot} =$ | -122.21 | kcal/m | əl    |       |
| Van der Waals =     | 86.93   | 3 kcal/mol  | $\Delta E_{\text{Webu}} =$ | -8.91   | kcal/m   | ol    |       |       | 83.5   | 7 kcal/m | ol    | $\Delta E_{Vdw} =$ | -12.27  | kcal/m | ol    |       |
| Electrostatic =     | -235.18 | 8 kcal/mol  | $\Delta E_{Ele} =$         | -44.29  | kcal/m   | ol    |       |       | -308.1 | 8 kcal/m | ol    | $\Delta E_{Ele} =$ | -117.28 | kcal/m | ol    |       |
|                     |         |             |                            |         |          |       |       |       |        |          |       |                    |         |        |       |       |
| Initial Orientation |         |             |                            |         |          |       | LB2   | RB2   |        |          | LB2   |                    |         | RB1    |       |       |
| Final Orientation   |         | RS2         |                            | LS2     | RS2      |       | LB2   | RS2   |        | RS2      | LB2   |                    |         | LS2    |       | LS1   |
|                     |         |             |                            | LNH     | KB2      |       |       |       |        |          |       |                    |         | LBI    |       | L82   |
|                     |         |             | 1                          | RS2     |          |       |       |       |        |          |       |                    |         | KBI    |       |       |
|                     |         |             |                            |         |          |       |       |       |        |          |       |                    |         |        |       |       |
| Total =             | -52.56  | 5 kcal/mol  | $\Delta E_{Tot} =$         | -121.90 | ) kcal/m | ol    |       |       | -51.4  | 6 kcal/m | ol    | $\Delta E_{Tot} =$ | -120.80 | kcal/m | ol    |       |
| Van der Waals =     | 79.19   | → kcal/mol  | $\Delta E_{Vdw} =$         | -16.65  | 5 kcal/m | ol    |       |       | 84.5   | 1 kcal/m | ol    | $\Delta E_{Vdw} =$ | -11.33  | kcal/m | ol    |       |
| Electrostatic =     | -297.39 | → kcal/mol  | $\Delta E_{Ele} =$         | -106.50 | ) kcal/m | ol    |       |       | -305.4 | 6 kcal/m | ol    | $\Delta E_{Ele} =$ | -114.57 | kcal/m | ol    |       |

|                     | Gly9    | Tyr10      | His13       | His14                       | Gln15   | Lys16     | Leu17      | Val18 | Phe19 | Phe20       | Ala21 | Val24 | Gly25 | Lys28 |
|---------------------|---------|------------|-------------|-----------------------------|---------|-----------|------------|-------|-------|-------------|-------|-------|-------|-------|
| Initial Orientation |         | _          | RB1         | _                           |         |           | LB1        |       |       |             |       |       |       |       |
| Final Orientation   | RS2     | RS2        | RB1         |                             |         |           | LB1        |       |       | LS1         |       |       |       | LS2   |
|                     |         |            | RS1         |                             |         |           |            |       |       |             |       |       |       |       |
|                     |         |            | K52         |                             |         |           |            |       |       |             |       |       |       |       |
| Total =             | -83.43  | 8 kcal/mol |             | $\Delta E_{Tot} =$          | -152.77 | / kcal/mo | 1          |       |       |             |       |       |       |       |
| Van der Waals =     | 75.19   | kcal/mol   |             | $\Delta E_{Vdw} =$          | -20.65  | kcal/mo   | 1          |       |       |             |       |       |       |       |
| Electrostatic =     | -329.61 | kcal/mol   |             | $\Delta E_{Ele} =$          | -138.71 | kcal/mo   | 1          |       |       |             |       |       |       |       |
|                     |         |            | DCO         |                             |         |           | 1.02       |       |       |             |       |       |       |       |
| Final Orientation   | PB2     |            | RS2<br>RB1  |                             |         | RS2       | LB2        |       |       | 182         | 152   |       | 182   | 151   |
| 1 mar Orientation   | RD2     |            | RB2         |                             |         | 102       | 1.52       |       |       | 1.52        | LB2   |       | LDZ   | LB1   |
|                     |         |            | RNH         |                             |         |           |            |       |       |             |       |       |       |       |
|                     |         |            |             |                             |         |           |            |       |       |             |       |       |       |       |
| Total =             | -74.11  | kcal/mol   |             | $\Delta E_{Tot} =$          | -143.45 | i kcal/mo | 1          |       |       |             |       |       |       |       |
| Van der Waals =     | 72.86   | 5 kcal/mol |             | $\Delta E_{Vdw} =$          | -22.98  | 8 kcal/mo | 1          |       |       |             |       |       |       |       |
| Electrostatic =     | -318.46 | 5 kcal/mol |             | $\Delta E_{Ele} =$          | -127.57 | / kcal/mo | 1          |       |       |             |       |       |       |       |
| Initial Orientation |         |            | LS1         |                             |         |           | RB1        |       |       |             |       |       |       |       |
| Final Orientation   |         | LS1        | LS1         |                             |         |           |            |       |       | RS1         |       |       |       | RS2   |
|                     |         |            | LS2         |                             |         |           |            |       |       |             |       |       |       | RS1   |
|                     |         |            |             |                             |         |           |            |       |       |             |       |       |       |       |
| Total =             | -72.21  | kcal/mol   |             | $\Delta E_{Tot} =$          | -141.55 | kcal/mo   | 1          |       |       |             |       |       |       |       |
| Van der Waals =     | 79.44   | kcal/mol   |             | $\Delta E_{Vdw} =$          | -16.40  | ) kcal/mo | 1          |       |       |             |       |       |       |       |
| Electrostatic =     | -323.23 | 8 kcal/mol |             | $\Delta E_{Fle} =$          | -132.34 | kcal/mo   | 1          |       |       |             |       |       |       |       |
|                     |         |            |             | Ele                         |         |           |            |       |       |             |       |       |       |       |
| Initial Orientation |         |            | LB1         |                             |         |           | RB1        |       |       |             |       |       |       |       |
| Final Orientation   |         | LS1        | LB1         |                             |         |           | RB1        |       |       | RS1         | RS1   |       |       | RS1   |
|                     |         |            | LS1<br>1 S2 |                             |         |           |            |       |       |             |       |       |       | KS2   |
|                     |         |            | 1.02        |                             |         |           |            |       |       |             |       |       |       |       |
| Total =             | -70.35  | 5 kcal/mol |             | $\Delta E_{Tot} =$          | -139.69 | kcal/mo   | 1          |       |       |             |       |       |       |       |
| Van der Waals =     | 76.49   | kcal/mol   |             | $\Delta E_{Vdw} =$          | -19.34  | kcal/mo   | 1          |       |       |             |       |       |       |       |
| Electrostatic =     | -315.76 | 6 kcal/mol |             | $\Delta E_{Ele} =$          | -124.87 | / kcal/mo | 1          |       |       |             |       |       |       |       |
|                     |         |            | DDO         |                             |         |           |            |       |       | 1.02        |       |       |       |       |
| Final Orientation   |         | RB2        | RB2<br>RS2  | RS2                         |         | 152       | RS2        |       |       | LB2<br>I R1 |       |       |       |       |
| 1 Indi Orientation  |         | KD2        | RS1         | 102                         |         | LB1       | RB1        |       |       | LS1         |       |       |       |       |
|                     |         |            |             |                             |         | LNH       | LB1        |       |       |             |       |       |       |       |
| Total =             | _68 21  | keal/mel   |             | ΔF- =                       | -137.65 | keal/mo   | 1          |       |       |             |       |       |       |       |
| Van der Waak =      | 73 25   | kcal/mol   |             | $\Delta E_{1 \text{ ot}} =$ | -22 46  | kcal/mo   | 1          |       |       |             |       |       |       |       |
| Electrostatic =     | -309.77 | / kcal/mol |             | $\Delta E_{Ele} =$          | -118.88 | kcal/mo   | 1          |       |       |             |       |       |       |       |
|                     |         |            |             | Lie                         |         |           |            |       |       |             |       |       |       |       |
| Initial Orientation |         | _          | LS2         |                             |         |           |            |       |       | RB1         |       |       |       | _     |
| Final Orientation   |         |            | LSI         |                             |         | LS2       | LS2        |       |       | CS          |       |       |       | RS1   |
|                     |         |            | L52         |                             |         |           | LSI<br>LBI |       |       | к52         |       |       |       |       |
|                     |         |            |             |                             |         |           |            |       |       |             |       |       |       |       |
| Total =             | -64.80  | ) kcal/mol |             | $\Delta E_{Tot} =$          | -134.14 | kcal/mo   | 1          |       |       |             |       |       |       |       |
| Van der Waals =     | 78.01   | kcal/mol   |             | $\Delta E_{Vdw} =$          | -17.83  | kcal/mo   | 1          |       |       |             |       |       |       |       |
| Electrostatic =     | -314.12 | 2 kcal/mol |             | $\Delta E_{Ele} =$          | -123.23 | kcal/mo   | 1          |       |       |             |       |       |       |       |

|                        | Glv9 Tvr10 Hi    | s13 His14          | Gh15 Lys16 L     | eu17 | Val18 | Phe19 Phe   | 20 Ala21 | Val24   | Lvs28 |
|------------------------|------------------|--------------------|------------------|------|-------|-------------|----------|---------|-------|
| Initial Orientation    |                  | LS2                |                  | RB1  | vano  | 111019 1110 | 20 11421 | 1 412 1 | 19520 |
| Final Orientation      | LB2 L            | S2 LS2             | ]                | RS2  |       | RS          | 2        | CS      | RS1   |
|                        |                  |                    |                  | CS   |       |             |          |         | RS2   |
|                        |                  |                    | ]                | LB1  |       |             |          |         |       |
|                        |                  |                    |                  |      |       |             |          |         |       |
| Total =                | -62.36 kcal/mol  | $\Delta E_{Tot} =$ | -131.70 kcal/mol |      |       |             |          |         |       |
| Van der Waals =        | 77.45 kcal/mol   | $\Delta E_{Vdw} =$ | -18.39 kcal/mol  |      |       |             |          |         |       |
| Electrostatic =        | -308.69 kcal/mol | $\Delta E_{Ele} =$ | -117.80 kcal/mol |      |       |             |          |         |       |
| Initial Orientation    | т                | D1                 |                  |      |       | DE          | 2        |         |       |
| Final Orientation      |                  | B1                 | LB2 F            | RNH  |       | RF          | 2        |         |       |
|                        | R                | B1                 | RS1 I            | RB1  |       | RS          | 1        |         |       |
|                        | L                | B1                 | RNH              |      |       |             |          |         |       |
|                        | Lì               | NH                 | RB1              |      |       |             |          |         |       |
|                        | L                | S1                 |                  |      |       |             |          |         |       |
| Total                  | 62.08 kaal/mal   | AE -               | 121.42 kaal/mal  |      |       |             |          |         |       |
| Total<br>Ven den Weele | -02.08 Kcal/mol  | $\Delta E_{Tot} =$ | -131.42 Kcal/mol |      |       |             |          |         |       |
| Van der waals          | 71.44 Kcal/mol   | $\Delta E_{Vdw} -$ | -24.40 kcal/mol  |      |       |             |          |         |       |
| Electrostatic          | -305.99 kcal/mol | $\Delta E_{Ele} =$ | -115.10 kcal/mol |      |       |             |          |         |       |
| Initial Orientation    | R                | S1                 | 1                | LB1  |       |             |          |         |       |
| Final Orientation      | RS1 R            | B2 RS1             | ]                | LSI  |       | LS          | 1        |         | LS2   |
|                        | RS2 R            | B2                 | ]                | LB1  |       |             |          |         |       |
|                        | R                | NH                 |                  |      |       |             |          |         |       |
|                        | R                | S1                 |                  |      |       |             |          |         |       |
| Tatal                  | 50.01 least/mal  | AE -               | 129.25 least/mal |      |       |             |          |         |       |
| Total                  | -39.01 kcal/mol  | $\Delta E_{Tot} -$ | -128.33 Keal/mol |      |       |             |          |         |       |
| Van der waals          | 70.65 kcal/mol   | $\Delta E_{Vdw} =$ | -25.19 kcal/mol  |      |       |             |          |         |       |
| Electrostatic          | -300.95 kcal/mol | $\Delta E_{Ele} =$ | -110.06 kcal/mol |      |       |             |          |         |       |
| Initial Orientation    | R                | B1                 |                  |      |       | LE          | 2        |         |       |
| Final Orientation      | R                | B2                 | RB2              | LS1  |       | LS          | 1        |         | LS2   |
|                        | R                | S1                 |                  |      |       | LE          | 2        |         |       |
|                        | RI               | NH                 |                  |      |       |             |          |         | LB2   |
|                        | K                | BI                 |                  |      |       |             |          |         |       |
| Total                  | -55.20 kcal/mol  | $\Delta E_{Tot} =$ | -124.54 kcal/mol |      |       |             |          |         |       |
| Van der Waals          | 76.56 kcal/mol   | $\Delta E_{Vdw} =$ | -19.28 kcal/mol  |      |       |             |          |         |       |
| Electrostatic          | -310.76 kcal/mol | $\Delta E_{Ele} =$ | -119.86 kcal/mol |      |       |             |          |         |       |
|                        |                  | Ee                 |                  |      |       |             |          |         |       |
| Initial Orientation    | L                | S2                 | I                | RB2  |       |             |          |         |       |
| Final Orientation      | L                | S2 RS2             | LS2 I            | RB1  | RS2   |             | RB2      |         |       |
|                        | L                | B1                 | LNH              | RS2  | RB2   |             |          |         |       |
|                        |                  |                    | LB1 I            | RB2  |       |             |          |         |       |
| Total                  | -54.86 kcal/mol  | $\Delta F_{T} =$   | -124.20 kcal/mol |      |       |             |          |         |       |
| Van der Waals          | 80.19 kcal/mol   | $\Delta E_{10t} =$ | -15 65 kcal/mol  |      |       |             |          |         |       |
| Flectrostatic          | -303 44 kcal/mol | $\Delta E_{vaw} =$ | -112 55 kcal/mol |      |       |             |          |         |       |
| Licenostatie           | 505.11 Rearing   | Ele                | 112.00 Rearing   |      |       |             |          |         |       |
| Initial Orientation    | L                | S2                 |                  |      | RB1   |             |          |         |       |
| Final Orientation      | L                | S2 RS2             | LS2              | RB1  | RS2   |             |          |         |       |
|                        | L                | B1                 | LNH              | RS2  |       |             |          |         |       |
|                        |                  |                    | LB2              |      |       |             |          |         |       |
| Total                  | -54.79 kcal/mol  | $\Delta F_{med} =$ | -124.13 kcal/mol |      |       |             |          |         |       |
| Van der Waak           | 84.03 kcal/mol   | $\Delta F_{10t} =$ | -11.81 kcal/mol  |      |       |             |          |         |       |
| Electrostatic          | -309 00 kcal/mol | $\Delta E_{vdw} =$ | -118 11 kcal/mol |      |       |             |          |         |       |
| Lieuosuut              | 507.00 Keurinoi  | Ele                | 110.11 Kearnoi   |      |       |             |          |         |       |

|                     | Gly9    | Tyr10      | Val12 | His13                       | His14   | Gln15    | Lys16       | Leu17      | Val18 | Phe19 | Phe20      | Ala21 | Val24      | Lys28      |
|---------------------|---------|------------|-------|-----------------------------|---------|----------|-------------|------------|-------|-------|------------|-------|------------|------------|
| Initial Orientation |         |            |       | CS                          |         |          | 1.00        | RB1        |       |       | DCO        |       |            | DD2        |
| Final Orientation   |         |            |       | LB1<br>LS1                  |         |          | LS2         | RB1        |       |       | K52        |       |            | KB2        |
|                     |         |            |       |                             |         |          |             |            |       |       |            |       |            |            |
| Total =             | -78.98  | kcal/mol   |       | $\Delta E_{Tot} =$          | -148.32 | kcal/mol |             |            |       |       |            |       |            |            |
| Van der Waals =     | 77.21   | kcal/mol   |       | $\Delta E_{Vdw} =$          | -18.63  | kcal/mol |             |            |       |       |            |       |            |            |
| Electrostatic =     | -323.94 | kcal/mol   |       | $\Delta E_{Ele} =$          | -133.05 | kcal/mol |             |            |       |       |            |       |            |            |
| Initial Orientation |         |            |       |                             |         |          | <b>PS</b> 2 | 182        |       |       |            |       |            |            |
| Final Orientation   |         |            |       | RB2                         |         |          | RS2         | RB1        |       |       | LS2        |       |            | LS1        |
|                     |         |            |       | RS1                         |         |          | RB1         |            |       |       |            |       |            | LS2        |
|                     |         |            |       | RNH                         |         |          |             |            |       |       |            |       |            |            |
| Total=              | -73.59  | kcal/mol   |       | $\Delta E_{Tot} =$          | -142.93 | kcal/mol |             |            |       |       |            |       |            |            |
| Van der Waals =     | 71.76   | kcal/mol   |       | $\Delta E_{Vdw} =$          | -24.08  | kcal/mol |             |            |       |       |            |       |            |            |
| Electrostatic =     | -314.61 | kcal/mol   |       | $\Delta E_{Ele} =$          | -123.72 | kcal/mol |             |            |       |       |            |       |            |            |
|                     |         |            |       |                             |         |          |             |            |       |       |            |       |            |            |
| Final Orientation   | LB2     | LB2        |       | LB2<br>LB2                  |         |          | LB1         | RB2<br>RB2 |       |       | RS1        | RB2   |            | RS1        |
| i mui orientation   | 202     | LDZ        |       | LB1                         |         |          | LNH         | ND2        |       |       | RNH        | RD2   |            | 101        |
|                     |         |            |       | LNH                         |         |          | LS1         |            |       |       |            |       |            |            |
| Total=              | -71 30  | ) kcal/mol |       | $\Delta F_{m} =$            | -140 64 | kcal/mol |             |            |       |       |            |       |            |            |
| Van der Waals =     | 69.88   | kcal/mol   |       | $\Delta E_{1 \text{ ot}} =$ | -25.95  | kcal/mol |             |            |       |       |            |       |            |            |
| Electrostatic =     | -309.26 | kcal/mol   |       | $\Delta E_{\text{VdW}} =$   | -118.37 | kcal/mol |             |            |       |       |            |       |            |            |
|                     |         |            |       | E.C.                        |         |          |             |            |       |       |            |       |            |            |
| Initial Orientation |         |            |       |                             |         |          | LS1         | RB1        |       |       | 1.54       |       |            |            |
| Final Orientation   |         |            |       | LSI                         |         |          | LS2         | LSI        |       |       | CS         |       |            | RS2<br>RS1 |
|                     |         |            |       |                             |         |          | LOI         |            |       |       | 00         |       |            | 101        |
| Total =             | -69.14  | kcal/mol   |       | $\Delta E_{Tot} =$          | -138.48 | kcal/mol |             |            |       |       |            |       |            |            |
| Van der Waals =     | 78.19   | kcal/mol   |       | $\Delta E_{Vdw} =$          | -17.65  | kcal/mol |             |            |       |       |            |       |            |            |
| Electrostatic =     | -317.42 | kcal/mol   |       | $\Delta E_{Ele} =$          | -126.53 | kcal/mol |             |            |       |       |            |       |            |            |
| Initial Orientation |         |            |       |                             |         |          |             | 182        |       |       |            |       |            |            |
| Final Orientation   |         |            |       | RB2                         |         |          | RS2         | LS2        |       |       | LS2        |       |            | LS1        |
|                     |         |            |       |                             |         |          |             |            |       |       |            |       |            | LS2        |
| Total=              | -68 14  | kcal/mol   |       | $\Delta E_{Tax} =$          | -137 48 | kcal/mol |             |            |       |       |            |       |            |            |
| Van der Waals =     | 77.03   | kcal/mol   |       | $\Delta E_{Adm} =$          | -18.81  | kcal/mol |             |            |       |       |            |       |            |            |
| Electrostatic =     | -315.12 | kcal/mol   |       | $\Delta E_{Fle} =$          | -124.22 | kcal/mol |             |            |       |       |            |       |            |            |
|                     |         |            |       |                             |         |          |             |            |       |       |            |       |            |            |
| Initial Orientation |         |            |       | LS2                         |         |          | LDI         | LDI        |       |       | RB2        |       | DDA        | DCO        |
| Final Orientation   |         |            |       | LS2<br>LS1                  |         |          | LBI         | LBI        |       |       | RB2<br>RS2 |       | RB2<br>RS2 | RS2<br>RB2 |
|                     |         |            |       | LOI                         |         |          | 1.52        |            |       |       | RB1        |       | 102        | RD2        |
|                     |         |            |       |                             |         |          |             |            |       |       | CS         |       |            |            |
| Total=              | -63.76  | kcal/mol   |       | $\Delta E_{Tot} =$          | -133.10 | kcal/mol |             |            |       |       |            |       |            |            |
| Van der Waals =     | 72.92   | kcal/mol   |       | $\Delta E_{Vdw} =$          | -22.92  | kcal/mol |             |            |       |       |            |       |            |            |
| Electrostatic =     | -306.56 | kcal/mol   |       | $\Delta E_{Ele} =$          | -115.67 | kcal/mol |             |            |       |       |            |       |            |            |

|                     | Gly9 His13 His1  | 4 Gln15            | Lys16 Leu1     | 7 Val18 Phe19 | Phe20 | Lys28 |
|---------------------|------------------|--------------------|----------------|---------------|-------|-------|
| Initial Orientation |                  |                    | CS             |               | LB1   |       |
| Final Orientation   | RS1              |                    | RB1            |               | CS    | LS2   |
|                     | K82              |                    | RS2            |               |       |       |
|                     |                  |                    | RS1            |               | 1.52  |       |
|                     |                  |                    |                |               |       |       |
| Total =             | -62.21 kcal/mol  | $\Delta E_{Tot} =$ | -131.55 kcal/1 | nol           |       |       |
| Van der Waals =     | 78.29 kcal/mol   | $\Delta E_{Vdw} =$ | -17.55 kcal/1  | nol           |       |       |
| Electrostatic =     | -312.41 kcal/mol | $\Delta E_{Ele} =$ | -121.52 kcal/1 | nol           |       |       |
|                     |                  |                    |                |               |       |       |
| Initial Orientation | LSI<br>LP2       |                    | 101 101        |               | RBI   | DSO   |
| Final Orientation   | LB2<br>LS2       |                    | LSI LSI        |               | CS    | RS1   |
|                     | LS1              |                    | 202            |               |       | 1.01  |
|                     |                  |                    |                |               |       |       |
| Total =             | -59.24 kcal/mol  | $\Delta E_{Tot} =$ | -128.58 kcal/1 | nol           |       |       |
| Van der Waals =     | 82.18 kcal/mol   | $\Delta E_{Vdw} =$ | -13.66 kcal/1  | nol           |       |       |
| Electrostatic =     | -312.37 kcal/mol | $\Delta E_{Ele} =$ | -121.48 kcal/1 | nol           |       |       |
|                     |                  |                    | DDO            |               | LDI   |       |
| Final Orientation   | RB2 RB2          |                    | RB2<br>RB1 RS1 |               | CS    |       |
| I mai Orientation   | RD2 RD2<br>RS1   |                    | LS2            |               | CS    |       |
|                     |                  |                    | LB1            |               |       |       |
|                     |                  |                    |                |               |       |       |
| Total =             | -56.67 kcal/mol  | $\Delta E_{Tot} =$ | -126.02 kcal/1 | nol           |       |       |
| Van der Waals =     | 77.54 kcal/mol   | $\Delta E_{Vdw} =$ | -18.30 kcal/1  | nol           |       |       |
| Electrostatic =     | -305.97 kcal/mol | $\Delta E_{Ele} =$ | -115.08 kcal/1 | nol           |       |       |
| Initial Orientation | CS               |                    |                |               | 1.82  |       |
| Final Orientation   | RS2 RS2          | 2                  | LS2 RB2        | 2 RB2         | LB2   |       |
|                     | LB1              |                    |                |               | LS2   |       |
|                     | CS               |                    |                |               |       |       |
|                     | RB1              |                    |                |               |       |       |
| Total =             | -55.19 kcal/mol  | $\Delta F_{m} =$   | -124 53 kcal/  | mol           |       |       |
| Van der Waak =      | -55.17 Keal/mol  | $\Delta E_{Tot} =$ | -16 18 kcal/   | mol           |       |       |
| Flectrostatic =     | -305 54 kcal/mol | $\Delta E_{vdw} =$ | -114 65 kcal/  | mol           |       |       |
| Electrosuite        |                  | Ele                | 111.05 Keuri   |               |       |       |
| Initial Orientation | RS1              |                    |                |               | LB1   |       |
| Final Orientation   | RS1              |                    | RS1 RS1        |               | LS1   | LS1   |
|                     | RS2              |                    |                |               | LB1   |       |
| Total -             | 54.44 koal/mol   | ΔE –               | 122 78 kool/   | mol           |       |       |
| Van der Waak =      | 85.48 kcal/mol   | $\Delta E_{Tot} =$ | -10.36 kcal/   | mol           |       |       |
| Flectrostatic =     | -306 72 kcal/mol | $\Delta E_{Vdw} =$ | -115 82 kcal/  | mol           |       |       |
| Electrostatic –     | -500.72 Keatmon  | $\Delta L_{Ele}$ – | -115.62 Kedri  | 101           |       |       |
| Initial Orientation | RS2              |                    |                |               | LB2   |       |
| Final Orientation   | RS2              |                    | RS2 RS2        | 2             | LS2   |       |
|                     | RS1              |                    | LS1            |               | LB2   |       |
| Total -             | 62 17 Iraal/mal  | AE -               | 121 01 1-2-1/  | mal           |       |       |
| Von der Weste -     | -02.47 KCal/mol  | $\Delta E_{Tot} =$ | -151.81 Kcal/1 | mal           |       |       |
| Valider waals =     | 62.02 Kcal/mol   | $\Delta E_{Vdw} =$ | -13.82 Kcal/1  | mol           |       |       |
| Electrostatic =     | -121.07 Kcal/mol | $\Delta E_{Ele} =$ | 09.82 Kcal/i   | 101           |       |       |

|                     | Ser8 Tyr10 Val12 | His13              | His14 Gh15 Ly16  | Leu17 | Vall8 | Phe20 | Ala21 Il | e31 | Tyr10   | Vall2    | His13      | His14              | Gln15 Lys16    | Leu17 | Ile31 |
|---------------------|------------------|--------------------|------------------|-------|-------|-------|----------|-----|---------|----------|------------|--------------------|----------------|-------|-------|
| Initial Orientation |                  | LS2                | RS2              |       |       |       |          |     |         |          | LB2        | RB2                |                |       |       |
| Final Orientation   | RS2 LS1          | LS2                | RS2              | LS2   |       |       | I        | .B2 | RS1     | LS2      | LB1        | RB2                | LB2            | LS2   | RB2   |
|                     | LB1              | LS1                | RB2              |       |       |       | I        | .S2 |         |          | LS2        |                    | LS2            |       |       |
|                     | CS               |                    |                  |       |       |       |          |     |         |          | LNH        |                    |                |       |       |
|                     | KB1              |                    |                  |       |       |       |          |     |         |          | 1.82       |                    |                |       |       |
| Total =             | 102.54 kcal/mol  | $\Delta E_{Tot} =$ | -164.25 kcal/mol |       |       |       |          |     | 82.0    | 8 kcal/m | ol         | $\Delta E_{Tot} =$ | -184.70 kcal/m | ol    |       |
| Van der Waals =     | 112.36 kcal/mol  | $\Delta E_{Vdw} =$ | -19.51 kcal/mol  |       |       |       |          |     | 107.93  | 3 kcal/m | ol         | $\Delta E_{Vdw} =$ | -23.93 kcal/m  | ol    |       |
| Electrostatic =     | -257.90 kcal/mol | $\Delta E_{Ele} =$ | -148.17 kcal/mol |       |       |       |          |     | -275.64 | 4 kcal/m | ol         | $\Delta E_{Ele} =$ | -165.92 kcal/m | pl    |       |
| Initial Orientation |                  | LBI                | RB2              |       |       |       |          |     |         |          | CS         | LS2                |                |       |       |
| Final Orientation   | RS2              | LB1                | RB2 LB2          | RB1   |       | LB2   | R        | RBI | LB2     | RS2      | RB1        | LS2                | RS2            | LS2   | LS1   |
|                     | RB2              | RB1                | LS2              | RS1   |       |       | F        | RS1 | LS2     | RB2      | RS2        |                    |                |       | LB1   |
|                     |                  | LS2                |                  |       |       |       |          |     |         |          | LS2        |                    |                |       |       |
|                     |                  |                    |                  |       |       |       |          |     |         |          | LBI        |                    |                |       |       |
| Total =             | 82.45 kcal/mol   | $\Delta E_{Tot} =$ | -184.33 kcal/mol |       |       |       |          |     | 85.3    | l kcal/m | ol         | $\Delta E_{Tot} =$ | -181.47 kcal/m | ol    |       |
| Van der Waals =     | 107.24 kcal/mol  | $\Delta E_{Vdw} =$ | -24.62 kcal/mol  |       |       |       |          |     | 108.60  | ) kcal/m | ol         | $\Delta E_{Vdw} =$ | -23.27 kcal/m  | ol    |       |
| Electrostatic =     | -272.63 kcal/mol | $\Delta E_{Ele} =$ | -162.90 kcal/mol |       |       |       |          |     | -268.43 | 3 kcal/m | ol         | $\Delta E_{Ele} =$ | -158.70 kcal/m | ol    |       |
|                     |                  |                    |                  |       |       |       |          |     |         |          |            |                    |                |       |       |
| Initial Orientation |                  | LB1                | RB2              |       |       |       |          |     |         |          | RB1        | LS2                |                |       |       |
| Final Orientation   | LS2 RB2          | LB1                | LS2 RB2          | LS2   |       |       |          |     | LB2     | RS2      | RS2        | LB2                | RS2            | LS2   | LS1   |
|                     | LB2              | LDI<br>PS2         | K52              |       |       |       |          |     | 1.52    | KD2      | LS2<br>PB1 | 1.52               |                |       |       |
|                     |                  | RB1                |                  |       |       |       |          |     |         |          | КDТ        |                    |                |       |       |
|                     |                  | LS2                |                  |       |       |       |          |     |         |          |            |                    |                |       |       |
| Total =             | 86.32 kcal/mol   | $\Delta E_{Tot} =$ | -180.46 kcal/mol |       |       |       |          |     | 87.5    | ) kcal/m | ol         | $\Delta E_{Tot} =$ | -179.20 kcal/m | ol    |       |
| Van der Waals =     | 111.15 kcal/mol  | $\Delta E_{Vdw} =$ | -20.71 kcal/mol  |       |       |       |          |     | 109.6   | l kcal/m | ol         | $\Delta E_{Vdw} =$ | -22.25 kcal/m  | ol    |       |
| Electrostatic =     | -272.26 kcal/mol | $\Delta E_{Ele} =$ | -162.54 kcal/mol |       |       |       |          |     | -271.8  | l kcal/m | ol         | $\Delta E_{Ele} =$ | -162.08 kcal/m | pl    |       |
| Initial Orientation |                  | RB2                | I B1             |       |       |       |          |     |         |          | CS         | RS1                |                |       |       |
| Final Orientation   | RBI              | RB2                | LBI              | LB2   | LB2   |       | LB2      |     | RS1     |          | LSI        | RSI                |                | RS1   | RS2   |
|                     | RNH              | RS2                | LB1              | RS2   |       |       |          |     |         |          | LNH        | RB2                |                |       |       |
|                     | RS1              |                    | LB2              |       |       |       |          |     |         |          | LB1        |                    |                |       |       |
|                     | RB2              |                    | LNH              |       |       |       |          |     |         |          | RS1        |                    |                |       |       |
|                     |                  |                    | RB1              |       |       |       |          |     |         |          |            |                    |                |       |       |
|                     |                  |                    | KS2              |       |       |       |          |     |         |          |            |                    |                |       |       |
| Total =             | 87.92 kcal/mol   | $\Delta E_{Tot} =$ | -178.87 kcal/mol |       |       |       |          |     | 88.3    | 5 kcal/m | ol         | $\Delta E_{Tot} =$ | -178.43 kcal/m | ol    |       |
| Van der Waals =     | 105.74 kcal/mol  | $\Delta E_{Vdw} =$ | -26.12 kcal/mol  |       |       |       |          |     | 115.52  | 2 kcal/m | ol         | $\Delta E_{Vdw} =$ | -16.35 kcal/m  | ol    |       |
| Electrostatic =     | -267.35 kcal/mol | $\Delta E_{Ele} =$ | -157.63 kcal/mol |       |       |       |          |     | -273.13 | 3 kcal/m | ol         | $\Delta E_{Ele} =$ | -163.40 kcal/m | ol    |       |

|                     | Tyr10   | Val12    | His13              | His14   | Gln15    | Ly16 | Leu17 | Ala30 | Ile31 | Met35 | Tyr10   | His13    | His14              | Gln15   | Lys16  | Leu17 | Val18 | Ala21 | Ile31 |
|---------------------|---------|----------|--------------------|---------|----------|------|-------|-------|-------|-------|---------|----------|--------------------|---------|--------|-------|-------|-------|-------|
| Initial Orientation |         |          |                    | LB2     |          | RB2  |       |       |       |       |         | RB1      | LB2                |         |        |       |       |       |       |
| Final Orientation   | LB1     | RB2      | RS2                | LB2     |          | RB2  | LS2   |       |       |       | LB1     | LB1      | LS2                |         | RB2    | LS2   |       |       | LS1   |
|                     | LNH     | RS2      | RB1                | LS2     |          | RS2  |       |       |       |       | LS2     | LB1      |                    |         | RS2    |       |       |       |       |
|                     |         | RNH      | LB1                |         |          |      |       |       |       |       | LB2     | RB1      |                    |         |        |       |       |       |       |
|                     |         | RB1      | LS2                |         |          |      |       |       |       |       |         | LS1      |                    |         |        |       |       |       |       |
|                     |         |          |                    |         |          |      |       |       |       |       |         | LS2      |                    |         |        |       |       |       |       |
| Total =             | 89.20   | kcal/mol | $\Delta E_{Tot} =$ | -177.59 | kcal/m   | ol   |       |       |       |       | 90.05   | kcal/mol | $\Delta E_{Tot} =$ | -176.73 | kcal/m | ol    |       |       |       |
| Van der Waals =     | 109.49  | kcal/mol | $\Delta E_{Vdw} =$ | -22.37  | kcal/mo  | ol   |       |       |       |       | 111.04  | kcal/mol | $\Delta E_{Vdw} =$ | -20.82  | kcal/m | ol    |       |       |       |
| Electrostatic =     | -265.45 | kcal/mol | $\Delta F_{cu} =$  | -155 72 | kcal/m   | 1    |       |       |       |       | -267.29 | kcal/mol | $\Delta F_{rm} =$  | -157 56 | kcal/m | 1     |       |       |       |
| Liebuosaile         | 200.10  | Rearmon  | Ele                | 100.72  | . neur m |      |       |       |       |       | 207.27  | Rearing  | Ele                | 107.00  | neurm  |       |       |       |       |
| Initial Orientation |         |          | RS2                | CS      |          |      |       |       |       |       |         | RB1      | LS1                |         |        |       |       |       |       |
| Final Orientation   | LS2     |          | RS2                | LB1     |          |      |       |       | CS    |       | RB1     | RB1      | LS2                |         |        | LS1   |       |       |       |
|                     | RS2     |          |                    | LS2     |          |      |       |       | RB1   |       | CS      | RB1      | LS1                |         |        |       |       |       |       |
|                     | RB2     |          |                    | LS1     |          |      |       |       | RS1   |       | LB1     | RS1      |                    |         |        |       |       |       |       |
|                     |         |          |                    |         |          |      |       |       |       |       | LS1     | RNH      |                    |         |        |       |       |       |       |
|                     |         |          |                    |         |          |      |       |       |       |       |         | LS1      |                    |         |        |       |       |       |       |
|                     |         |          |                    |         |          |      |       |       |       |       |         |          |                    |         |        |       |       |       |       |
| Total =             | 91.68   | kcal/mol | $\Delta E_{Tot} =$ | -175.11 | kcal/m   | ol   |       |       |       |       | 92.27   | kcal/mol | $\Delta E_{Tot} =$ | -174.51 | kcal/m | ol    |       |       |       |
| Van der Waals =     | 102.88  | kcal/mol | $\Delta E_{Vdw} =$ | -28.99  | kcal/m   | ol   |       |       |       |       | 108.97  | kcal/mol | $\Delta E_{Vdw} =$ | -22.89  | kcal/m | ol    |       |       |       |
| Electrostatic =     | -260.36 | kcal/mol | $\Delta E_{Ele} =$ | -150.63 | kcal/m   | ol   |       |       |       |       | -266.00 | kcal/mol | $\Delta E_{Ele} =$ | -156.28 | kcal/m | 51    |       |       |       |
|                     |         |          |                    |         |          |      |       |       |       |       |         |          |                    |         |        |       |       |       |       |
| Initial Orientation |         |          | CS                 | RB1     |          |      |       |       |       |       |         | LS2      | RB1                |         |        |       |       |       |       |
| Final Orientation   | LS1     |          | LB1                | RS1     |          | LS2  | RB1   |       | CS    | RS2   | LS1     | LB2      | RB1                |         |        | LS2   | RS2   | RB2   |       |
|                     |         |          | LS2                |         |          |      | RS1   |       | RB1   |       |         | LS2      | LS2                |         |        |       | RB2   |       |       |
|                     |         |          | LS1                |         |          |      |       |       | RS2   |       |         |          | RNH                |         |        |       |       |       |       |
|                     |         |          | RBI                |         |          |      |       |       |       |       |         |          | RS2                |         |        |       |       |       |       |
| Total =             | 94.32   | kcal/mol | $\Delta E_{Tot} =$ | -172.47 | kcal/mc  | ol   |       |       |       |       | 97.58   | kcal/mol | $\Delta E_{Tot} =$ | -169.21 | kcal/m | ol    |       |       |       |
| Van der Waals =     | 109.47  | kcal/mol | $\Delta E_{Vdw} =$ | -22.39  | kcal/m   | ol   |       |       |       |       | 112.97  | kcal/mol | $\Delta E_{Vdw} =$ | -18.89  | kcal/m | ol    |       |       |       |
| Electrostatic =     | -265.25 | kcal/mol | $\Delta E_{Ele} =$ | -155.52 | kcal/m   | ol   |       |       |       |       | -261.45 | kcal/mol | $\Delta E_{Ele} =$ | -151.72 | kcal/m | ol    |       |       |       |

|                     | Arg5    | Ser8     | Tyr10 | Vall2                  | His13   | His14    | Lys16 | Leul7 | Val18 | Phe19 | Phe20 | Ala21 | Glu22 | Ala30 | Ile31 |
|---------------------|---------|----------|-------|------------------------|---------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |          |       |                        |         |          |       | LB2   | RB2   |       |       |       |       |       |       |
| Final Orientation   | RS2     |          | LB2   |                        | LB2     | LB1      |       | LS2   | RS2   |       |       |       |       |       |       |
|                     |         |          | LS2   |                        | LS2     | LS2      |       |       | RB2   |       |       |       |       |       |       |
|                     |         |          |       |                        |         | RBI      |       |       |       |       |       |       |       |       |       |
| Total =             | 94.30   | kcal/mol |       | $\Delta E_{Tot} =$     | -172.49 | kcal/mol |       |       |       |       |       |       |       |       |       |
| Van der Waals =     | 110.92  | kcal/mol |       | $\Delta E_{Vdw} =$     | -20.94  | kcal/mol |       |       |       |       |       |       |       |       |       |
| Electrostatic =     | -264.34 | kcal/mol |       | $\Delta E_{Ele} =$     | -154.62 | kcal/mol |       |       |       |       |       |       |       |       |       |
| Initial Orientation |         |          |       |                        |         |          |       | LB2   |       | RB2   |       |       |       |       |       |
| Final Orientation   |         |          |       | LB1                    | LB2     |          | LS2   | LB2   |       | RB2   | LS2   |       |       |       |       |
|                     |         |          |       |                        | LS1     |          | RB1   |       |       |       |       |       |       |       |       |
|                     |         |          |       |                        | LNH     |          | RNH   |       |       |       |       |       |       |       |       |
|                     |         |          |       |                        | LBI     |          | R82   |       |       |       |       |       |       |       |       |
| Total =             | 109.48  | kcal/mol |       | $\Delta E_{Tot} =$     | -157.31 | kcal/mol |       |       |       |       |       |       |       |       |       |
| Van der Waals =     | 113.85  | kcal/mol |       | $\Delta E_{Vdw} \!=\!$ | -18.02  | kcal/mol |       |       |       |       |       |       |       |       |       |
| Electrostatic =     | -252.91 | kcal/mol |       | $\Delta E_{Ele} =$     | -143.18 | kcal/mol |       |       |       |       |       |       |       |       |       |
| Initial Orientation |         |          |       |                        |         |          |       | RB2   |       |       | LB2   |       |       |       |       |
| Final Orientation   |         |          | RS2   |                        | LB1     | RB2      | LS2   | RS2   |       |       | LB2   |       |       |       | RB1   |
|                     |         |          |       |                        | RB1     | RS2      |       |       |       |       | LS2   |       |       |       | RNH   |
|                     |         |          |       |                        | RS2     |          |       |       |       |       |       |       |       |       |       |
| Total =             | 96.27   | kcal/mol |       | $\Delta E_{Tot} =$     | -170.52 | kcal/mol |       |       |       |       |       |       |       |       |       |
| Van der Waals =     | 110.67  | kcal/mol |       | $\Delta E_{Vdw} \!=\!$ | -21.19  | kcal/mol |       |       |       |       |       |       |       |       |       |
| Electrostatic =     | -261.60 | kcal/mol |       | $\Delta E_{Ele} =$     | -151.88 | kcal/mol |       |       |       |       |       |       |       |       |       |
| Initial Orientation |         |          |       |                        |         |          |       | RB2   | LB2   |       |       |       |       |       |       |
| Final Orientation   | LB2     | LB1      | RB1   |                        | RB2     | RB1      |       | RS2   | LB2   |       |       |       |       |       | RS2   |
|                     | LS1     |          | RS1   |                        |         | LB1      |       | RB2   |       |       |       |       |       |       | RB2   |
| Total=              | 115.98  | kcal/mol |       | $\Delta E_{Tot} =$     | -150.81 | kcal/mol |       |       |       |       |       |       |       |       |       |
| Van der Waals =     | 110.77  | kcal/mol |       | $\Delta E_{Vdw} =$     | -21.09  | kcal/mol |       |       |       |       |       |       |       |       |       |
| Electrostatic =     | -242.87 | kcal/mol |       | $\Delta E_{Ele} =$     | -133.14 | kcal/mol |       |       |       |       |       |       |       |       |       |

|                     | Arg5    | Tyr10    | Val12 | His13              | His14      | Gln15  | Lys16 | Leu17 | Val18 | Phe19 | Phe20 | Glu22 | Gly29 | Ala30 | Ile31 |
|---------------------|---------|----------|-------|--------------------|------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |          |       |                    | RB2        |        |       |       | LB2   |       |       |       |       |       |       |
| Final Orientation   | LB2     | RS2      |       | RS2                | RB1        |        |       | RS2   | LB2   |       |       |       |       |       | RS1   |
|                     | LSI     | KD2      |       |                    | RS2        |        |       |       | L82   |       |       |       |       |       |       |
|                     |         |          |       |                    | 162        |        |       |       |       |       |       |       |       |       |       |
| Total =             | 77.70   | kcal/mol |       | $\Delta E_{Tot} =$ | -189.09    | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Van der Waals =     | 103.79  | kcal/mol |       | $\Delta E_{Vdw} =$ | -28.07     | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -272.46 | kcal/mol |       | $\Delta E_{Ele} =$ | -162.73    | kcal/m | ol    |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    |            |        |       |       |       |       |       |       |       |       |       |
| Initial Orientation |         |          |       |                    | LB1        |        |       |       | RB2   |       |       |       |       |       |       |
| Final Orientation   | RB2     | LB2      |       | LB2                | LB1        |        |       | LS2   | RS2   |       |       | RB2   |       |       |       |
|                     | RSI     | L82      |       | L82                | LS2<br>PB1 |        |       |       | KB2   |       |       |       |       |       |       |
|                     |         |          |       |                    | RS2        |        |       |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    | 102        |        |       |       |       |       |       |       |       |       |       |
| Total =             | 94.00   | kcal/mol |       | $\Delta E_{Tot} =$ | -172.79    | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Van der Waals =     | 106.26  | kcal/mol |       | $\Delta E_{Vdw} =$ | -25.60     | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -263.29 | kcal/mol |       | $\Delta E_{Ele} =$ | -153.56    | kcal/m | ol    |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    |            |        |       |       |       |       |       |       |       |       |       |
| Initial Orientation |         |          |       |                    | RB2        |        |       |       |       |       | LB2   |       |       |       |       |
| Final Orientation   |         | RS2      |       | LS2                | RB2        |        | LB2   | RS2   |       |       | LB2   |       |       |       | RB1   |
|                     |         |          |       | LB1<br>DD1         | RS2        |        | LS2   |       |       |       |       |       |       |       | RNH   |
|                     |         |          |       | RS2                |            |        |       |       |       |       |       |       |       |       |       |
|                     |         |          |       | 1052               |            |        |       |       |       |       |       |       |       |       |       |
| Total =             | 98.66   | kcal/mol |       | $\Delta E_{Tot} =$ | -168.12    | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Van der Waals =     | 105.25  | kcal/mol |       | $\Delta E_{Vdw} =$ | -26.62     | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -252.76 | kcal/mol |       | $\Delta E_{Ele} =$ | -143.03    | kcal/m | ol    |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    |            |        |       |       |       |       |       |       |       |       |       |
| Initial Orientation |         |          |       | RB2                |            |        |       |       |       |       | LB1   |       |       |       |       |
| Final Orientation   |         |          | RB2   | RS1                |            |        | LB1   | RS1   |       | LB2   | LB1   |       |       | RS1   |       |
|                     |         |          |       | KB2                |            |        | LS2   |       |       | LNH   | KBI   |       |       |       |       |
|                     |         |          |       |                    |            |        | RB1   |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    |            |        | RNH   |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    |            |        | RS1   |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    |            |        | RB2   |       |       |       |       |       |       |       |       |
| Total =             | 102.45  | kcal/mol |       | $\Delta E_{Tot} =$ | -164.34    | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Van der Waals =     | 106.46  | kcal/mol |       | $\Delta E_{Vdw} =$ | -25.40     | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -252.08 | kcal/mol |       | $\Delta E_{Ele} =$ | -142.36    | kcal/m | ol    |       |       |       |       |       |       |       |       |
|                     |         |          |       |                    |            |        |       |       |       |       |       |       |       |       |       |
| Initial Orientation |         |          |       | CS                 |            |        |       | _     |       |       | RB2   |       |       | _     |       |
| Final Orientation   |         |          |       | RB1                |            |        | LS2   | RS2   |       |       | RB2   |       | RB2   | RB2   |       |
|                     |         |          |       | RS2                |            |        | RS2   | RS1   |       |       |       |       |       | RS1   |       |
|                     |         |          |       | KS1<br>LB1         |            |        | 1.85  |       |       |       |       |       |       |       |       |
|                     |         |          |       | LDI                |            |        | LD2   |       |       |       |       |       |       |       |       |
| Total =             | 106.81  | kcal/mol |       | $\Delta E_{Tot} =$ | -159.98    | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Van der Waals =     | 116.91  | kcal/mol |       | $\Delta E_{Vdw} =$ | -14.95     | kcal/m | ol    |       |       |       |       |       |       |       |       |
| Electrostatic =     | -266.85 | kcal/mol |       | $\Delta E_{Ele} =$ | -157.12    | kcal/m | ol    |       |       |       |       |       |       |       |       |

|                     | Arg5    | His6       | Glul 1 | Val12              | His13   | His14    | Gln15 | Lys16       | Leul7 | Val18 | Phe19 | Phe20 | Glu22 | Lys28 | Ile31 |
|---------------------|---------|------------|--------|--------------------|---------|----------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |            |        |                    | RS2     |          |       |             |       |       |       | LB1   |       |       |       |
| Final Orientation   |         |            |        |                    | RB2     |          |       | RSI         |       |       |       | CS    |       | LB2   |       |
|                     |         |            |        |                    | K52     |          |       | K32         |       |       |       |       |       | L52   |       |
| Total =             | 110.32  | 2 kcal/mol |        | $\Delta E_{Tot} =$ | -156.46 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Van der Waals =     | 117.20  | ) kcal/mol |        | $\Delta E_{Vdw} =$ | -14.67  | kcal/mol |       |             |       |       |       |       |       |       |       |
| Electrostatic =     | -264.49 | 9 kcal/mol |        | $\Delta E_{Ele} =$ | -154.76 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Initial Orientation |         |            |        |                    |         | RB1      |       |             |       | LB1   |       |       |       |       |       |
| Final Orientation   | LS2     |            |        |                    |         | RB1      |       |             | RS1   | LS1   |       |       | LS1   |       | RS1   |
|                     | LS1     |            |        |                    |         | RS1      |       |             |       |       |       |       |       |       |       |
|                     |         |            |        |                    |         | RS2      |       |             |       |       |       |       |       |       |       |
| Total =             | 113.29  | ) kcal/mol |        | $\Delta E_{Tot} =$ | -153.50 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Van der Waals =     | 115.02  | 2 kcal/mol |        | $\Delta E_{Vdw} =$ | -16.84  | kcal/mol |       |             |       |       |       |       |       |       |       |
| Electrostatic =     | -251.51 | l kcal/mol |        | $\Delta E_{Ele} =$ | -141.78 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Initial Orientation |         |            |        | _                  | LS2     |          |       |             | _     |       |       | RB2   |       |       |       |
| Final Orientation   |         |            |        | LS2                | LS2     |          |       | LS2         |       |       | RNH   | CS    |       |       |       |
|                     |         |            |        |                    | LS1     |          |       | LB1         |       |       | RS1   |       |       |       |       |
|                     |         |            |        |                    |         |          |       | RNH         |       |       |       |       |       |       |       |
|                     |         |            |        |                    |         |          |       | RS1         |       |       |       |       |       |       |       |
| Total =             | 115.77  | 7 kcal/mol |        | $\Delta E_{Tot} =$ | -151.01 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Van der Waals =     | 110.52  | 2 kcal/mol |        | $\Delta E_{Vdw} =$ | -21.34  | kcal/mol |       |             |       |       |       |       |       |       |       |
| Electrostatic =     | -242.45 | 5 kcal/mol |        | $\Delta E_{Fle} =$ | -132.73 | kcal/mol |       |             |       |       |       |       |       |       |       |
|                     |         |            |        | Ele                |         |          |       |             |       |       |       |       |       |       |       |
| Initial Orientation |         |            |        |                    | RB2     |          |       |             |       |       | LB2   |       |       |       |       |
| Final Orientation   |         | LB2        |        |                    | RB2     |          |       | LS2         |       |       | LS1   |       |       |       |       |
|                     |         |            |        |                    | RS2     |          |       | LNH<br>I D1 |       |       | LNH   |       |       |       |       |
|                     |         |            |        |                    |         |          |       | LDI         |       |       |       |       |       |       |       |
| Total =             | 112.03  | 3 kcal/mol |        | $\Delta E_{Tot} =$ | -154.75 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Van der Waals =     | 114.10  | ) kcal/mol |        | $\Delta E_{Vdw} =$ | -17.76  | kcal/mol |       |             |       |       |       |       |       |       |       |
| Electrostatic =     | -247.53 | 3 kcal/mol |        | $\Delta E_{Ele} =$ | -137.80 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Initial Orientation |         |            |        |                    | LS1     |          |       |             |       |       | RB2   |       |       |       |       |
| Final Orientation   |         |            | RB1    | LB1                | LS1     |          |       | LB1         |       |       | RB2   |       |       |       |       |
|                     |         |            |        | CS                 |         |          |       | RB1         |       |       |       |       |       |       |       |
|                     |         |            |        |                    |         |          |       | RS2         |       |       |       |       |       |       |       |
| Total =             | 115.60  | ) kcal/mol |        | $\Delta E_{Tot} =$ | -151.19 | kcal/mol |       |             |       |       |       |       |       |       |       |
| Van der Waals =     | 118.5   | l kcal/mol |        | $\Delta E_{Vdw} =$ | -13.36  | kcal/mol |       |             |       |       |       |       |       |       |       |
| Electrostatic =     | -254.84 | 4 kcal/mol |        | $\Delta E_{Ele} =$ | -145.11 | kcal/mol |       |             |       |       |       |       |       |       |       |

|                     | Arg5    | Tyr10   | His13 | His14              | Gln15   | Lys16        | Leu17 | Val18 | Phe19 | Phe20       | Ala21 | Gly29 | Ala30 | Ile31 | Ile32 | Met35 |
|---------------------|---------|---------|-------|--------------------|---------|--------------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|
| Initial Orientation |         |         | RB2   |                    |         |              |       | LB2   |       |             |       |       |       |       |       |       |
| Final Orientation   |         | RS1     | RS2   | LB1                |         |              | RS2   |       |       |             | LB2   |       |       | RS2   | LS2   |       |
|                     |         |         |       | RB1                |         |              |       |       |       |             |       |       |       | RB2   |       |       |
|                     |         |         |       | LNH                |         |              |       |       |       |             |       |       |       |       |       |       |
| Total =             | 92.36   | kcal/mc | ol    | $\Delta E_{Tot} =$ | -174.42 | kcal/mc      | 1     |       |       |             |       |       |       |       |       |       |
| Van der Waals =     | 111.48  | kcal/mo | ol    | $\Delta E_{Vdw} =$ | -20.38  | 8 kcal/mc    | 1     |       |       |             |       |       |       |       |       |       |
| Electrostatic =     | -269.37 | kcal/mo | ol    | $\Delta E_{Ele} =$ | -159.64 | kcal/mc      | 1     |       |       |             |       |       |       |       |       |       |
| Initial Orientation |         |         |       | LB2                |         |              |       | RB2   |       |             |       |       |       |       |       |       |
| Final Orientation   | RB2     | LS2     | LB2   | RB1                |         |              | LS2   | RB2   |       |             |       |       |       | LB1   |       |       |
|                     | RS2     |         |       | LB1                |         |              |       |       |       |             |       |       |       | LNH   |       |       |
|                     |         |         |       | LS2                |         |              |       |       |       |             |       |       |       | LB2   |       |       |
| Total =             | 98.28   | kcal/mc | ol    | $\Delta E_{Tot} =$ | -168.50 | ) kcal/mc    | 1     |       |       |             |       |       |       |       |       |       |
| Van der Waals =     | 110.56  | kcal/mc | ol    | $\Delta E_{Vdw} =$ | -21.31  | kcal/mc      | 1     |       |       |             |       |       |       |       |       |       |
| Electrostatic =     | -255.87 | kcal/mc | ol    | $\Delta E_{Ele} =$ | -146.14 | kcal/mc      | 1     |       |       |             |       |       |       |       |       |       |
|                     |         |         |       |                    |         |              |       |       |       |             |       |       |       |       |       |       |
| Initial Orientation |         |         | LB2   |                    |         |              |       | RB2   |       |             |       |       |       |       |       | ~~~   |
| Final Orientation   | RB2     | LB2     | LB2   | LB1                |         |              | LS2   | RB2   |       |             |       |       |       | LB1   |       | CS    |
|                     |         | L82     | L32   | RB1                |         |              |       |       |       |             |       |       |       |       |       |       |
|                     |         |         |       | RS2                |         |              |       |       |       |             |       |       |       |       |       |       |
|                     |         |         |       |                    |         |              |       |       |       |             |       |       |       |       |       |       |
| Total =             | 100.46  | kcal/mo | ol    | $\Delta E_{Tot} =$ | -166.33 | kcal/mc      | 1     |       |       |             |       |       |       |       |       |       |
| Van der Waals =     | 106.94  | kcal/mo | ol    | $\Delta E_{Vdw} =$ | -24.92  | 2 kcal/mc    | 1     |       |       |             |       |       |       |       |       |       |
| Electrostatic =     | -262.13 | kcal/mo | ol    | $\Delta E_{Ele} =$ | -152.40 | ) kcal/mc    | 1     |       |       |             |       |       |       |       |       |       |
| Initial Orientation |         |         |       | I B2               |         |              |       |       |       | <b>PB</b> 2 |       |       |       |       |       |       |
| Final Orientation   |         | LB1     | RB1   | LB2                |         |              | LS2   |       |       | ICD2        |       | RB2   | RB2   | LS2   |       |       |
|                     |         | LNH     |       | LB2                |         |              |       |       |       |             |       |       | RS2   |       |       |       |
|                     |         | LS1     |       |                    |         |              |       |       |       |             |       |       |       |       |       |       |
| Total =             | 94.41   | kcal/mc | ol    | $\Delta E_{Tot} =$ | -172.37 | kcal/m       | 1     |       |       |             |       |       |       |       |       |       |
| Van der Waals =     | 109.97  | kcal/mo | ol    | $\Delta E_{Vdw} =$ | -21.89  | kcal/mc      | 1     |       |       |             |       |       |       |       |       |       |
| Electrostatic =     | -256.25 | kcal/m  | ol    | $\Delta E_{Ele} =$ | -146.52 | 2 kcal/m     | 1     |       |       |             |       |       |       |       |       |       |
| Initial Orientation |         |         |       |                    |         | RS1          |       |       |       | LB2         |       |       |       |       |       |       |
| Final Orientation   |         |         | LB1   |                    |         | RB2          | LS1   |       | RB2   | LS1         |       |       |       |       |       |       |
|                     |         |         | LS1   |                    |         | RNH          |       |       |       |             |       |       |       |       |       |       |
|                     |         |         | LS2   |                    |         | LBI          |       |       |       |             |       |       |       |       |       |       |
|                     |         |         |       |                    |         | LINII<br>LS1 |       |       |       |             |       |       |       |       |       |       |
| Total =             | 109.03  | kcal/mc | ol    | $\Delta E_{Tot} =$ | -157.76 | 5 kcal/m     | 1     |       |       |             |       |       |       |       |       |       |
| Van der Waals =     | 107.90  | kcal/m  | ol    | $\Delta E_{Vdw} =$ | -23.96  | 6 kcal/m     | 1     |       |       |             |       |       |       |       |       |       |
| Electrostatic =     | -256.69 | kcal/mc | ol    | $\Delta E_{Fle} =$ | -146.97 | / kcal/mc    | 1     |       |       |             |       |       |       |       |       |       |

|                        | His13   | His14     | Gln15 Lys16 | Leu17 | His13   | His14     | Gln15 | Lys16 |
|------------------------|---------|-----------|-------------|-------|---------|-----------|-------|-------|
| Initial Orientation    | RS2     | LB2       |             |       | RS2     | LS2       |       |       |
| Final Orientation      | RB1     | LS1       | RS2         |       | RS1     | LS2       |       |       |
|                        | RB1     | LS2       |             |       | RS2     | LS1       |       |       |
|                        | RS2     |           |             |       |         |           |       |       |
|                        | RS1     |           |             |       |         |           |       |       |
| m . 1                  | 21.01   | 1 1/ 1    |             |       | 24.01   | 1 1/ 1    |       |       |
| Total =                | 31.01   | kcal/mol  |             |       | 34.01   | kcal/mol  |       |       |
| Van der Waals =        | 88.68   | kcal/mol  |             |       | 94.79   | kcal/mol  |       |       |
| Electrostatic =        | -278.35 | kcal/mol  |             |       | -268.75 | kcal/mol  |       |       |
| ΔE- =                  | -1/1 83 | kcal/mol  |             |       | -138.83 | kcal/mol  |       |       |
| $\Delta E_{\rm rot} =$ | 12.01   | lrool/mol |             |       | -150.05 | lrool/mol |       |       |
| $\Delta E_{Vdw} -$     | -15.01  |           |             |       | -0.90   |           |       |       |
| $\Delta E_{Ele} =$     | -129.62 | kcal/mol  |             |       | -120.01 | kcal/mol  |       |       |
| Initial Orientation    | RB2     | LB2       |             |       | CS      | RS1       |       |       |
| Final Orientation      | LS2     | LS2       | LB2         |       | LB1     | RS1       |       |       |
|                        | RB1     |           |             |       | LS2     | RS2       |       |       |
|                        | RNH     |           |             |       | LS1     |           |       |       |
|                        | RB2     |           |             |       |         |           |       |       |
|                        |         |           |             |       |         |           |       |       |
| Total =                | 45.51   | kcal/mol  |             |       | 46.29   | kcal/mol  |       |       |
| Van der Waals =        | 85.74   | kcal/mol  |             |       | 92.47   | kcal/mol  |       |       |
| Electrostatic =        | -262.02 | kcal/mol  |             |       | -267.83 | kcal/mol  |       |       |
| ΔE- =                  | -127 33 | kcal/mol  |             |       | -126.55 | kcal/mol  |       |       |
| $\Delta E_{Tot} =$     | -127.33 | 11/1      |             |       | -120.55 | 11/1      |       |       |
| $\Delta E_{Vdw} =$     | -15.95  | kcal/mol  |             |       | -9.22   | kcal/mol  |       |       |
| $\Delta E_{Ele} =$     | -113.28 | kcal/mol  |             |       | -119.09 | kcal/mol  |       |       |
| Initial Orientation    | 1.82    | RS2       |             |       | CS      | LS2       |       |       |
| Final Orientation      | LB1     | CS        | CS          | RS1   | LB1     | LS2       |       |       |
|                        | LS2     | RB1       |             |       | LS2     | LS1       |       |       |
|                        |         | RS1       |             |       | LS1     |           |       |       |
|                        |         | RS2       |             |       | CS      |           |       |       |
|                        |         |           |             |       | RS2     |           |       |       |
|                        |         |           |             |       |         |           |       |       |
| Total =                | 46.42   | kcal/mol  |             |       | 49.63   | kcal/mol  |       |       |
| Van der Waals =        | 87.71   | kcal/mol  |             |       | 89.96   | kcal/mol  |       |       |
| Electrostatic =        | -261.28 | kcal/mol  |             |       | -263.92 | kcal/mol  |       |       |
| AE -                   | 126.42  | keal/mol  |             |       | 123 21  | keal/mol  |       |       |
| $\Delta E_{Tot} =$     | -120.42 |           |             |       | -125.21 |           |       |       |
| $\Delta E_{Vdw} =$     | -13.99  |           |             |       | -11./4  |           |       |       |
| $\Delta E_{Ele} =$     | -112.55 | kcal/mol  |             |       | -115.19 | kcal/mol  |       |       |
| Initial Orientation    | 1.82    | CS        |             |       |         |           |       |       |
| Final Orientation      | 1.52    | LB1       |             | RS1   |         |           |       |       |
|                        | 2.52    | LS2       |             | RS2   |         |           |       |       |
|                        |         | RB1       |             |       |         |           |       |       |
|                        |         | RS2       |             |       |         |           |       |       |
|                        |         |           |             |       |         |           |       |       |
| Total=                 | 49.67   | kcal/mol  |             |       |         |           |       |       |
| Van der Waals =        | 90.52   | kcal/mol  |             |       |         |           |       |       |
| Electrostatic =        | -261.68 | kcal/mol  |             |       |         |           |       |       |
| AF                     | 172 17  | koal/mal  |             |       |         |           |       |       |
| AE -                   | -123.17 |           |             |       |         |           |       |       |
| AE <sub>Vdw</sub> –    | -11.1/  |           |             |       |         |           |       |       |
| $\Delta E_{Ele} =$     | -112.94 | kcal/mol  |             |       |         |           |       |       |

|                      | His14   | Leu17      | Val18               | Phe19   | Phe20      | Ala21 | Val24 | Lys28 | His13   | His14      | Gln15 | Lys16              | Leu17  | Val18      | Phe19 | Phe20 | Val24 | Lys28 |
|----------------------|---------|------------|---------------------|---------|------------|-------|-------|-------|---------|------------|-------|--------------------|--------|------------|-------|-------|-------|-------|
| Initial Orientation  |         |            | LB2                 |         | RB2        |       |       |       |         |            | _     |                    |        | RB1        |       | LB1   |       |       |
| Final Orientation    | LS1     | LB1        | LB1                 |         |            | RB1   | RB2   | RB2   |         | RB1        | RS1   |                    | LB1    | RB1        |       |       |       |       |
|                      |         | LNH        | LB2                 |         |            | CS    |       | RS2   |         | RNH        |       |                    |        | RS1        |       |       |       |       |
|                      |         |            |                     |         |            | LB1   |       |       |         | RS1        |       |                    |        |            |       |       |       |       |
| Total =              | 55.79   | kcal/mol   | $\Delta E_{Tot} =$  | -117.05 | kcal/mol   |       |       |       | 83.39   | kcal/mol   |       | $\Delta E_{Tot} =$ | -89.45 | kcal/mol   |       |       |       |       |
| Van der Waak =       | 79 39   | kcal/mol   | ΔE =                | -22.30  | kcal/mol   |       |       |       | 83.41   | kcal/mol   |       | ΔE··· =            | -18.28 | kcal/mol   |       |       |       |       |
|                      | 220.52  | less l/mol | AEVdw               | -22.50  | less l/mor |       |       |       | 200.72  | less l/mol |       | AE -               | -10.20 | less l/mol |       |       |       |       |
| Electrostatic =      | -239.52 | kcai/moi   | $\Delta E_{Ele} =$  | -90.79  | kca/moi    |       |       |       | -209.63 | kcal/moi   |       | $\Delta E_{Ele} =$ | -60.89 | kcai/moi   |       |       |       |       |
| Initial Orientation  |         | RB2        |                     |         | LB1        |       |       |       |         |            |       |                    |        | RB2        |       | LB1   |       |       |
| Final Orientation    | RS2     | RS2        |                     |         | LB1        |       |       |       | LB2     |            |       | LB2                | LB2    |            |       | LB1   | RS1   | RS1   |
|                      |         | RNH        |                     |         |            |       |       |       |         |            |       |                    |        |            |       | RB1   |       |       |
|                      |         | RB1        |                     |         |            |       |       |       |         |            |       |                    |        |            |       |       |       |       |
| Total =              | 83 54   | kcal/mol   | $\Delta F_{m} =$    | -89 30  | kcal/mol   |       |       |       | 83 58   | kcal/mol   |       | $\Delta F_{m}$ =   | -89.26 | kcal/mol   |       |       |       |       |
| Von der Weels =      | 01.22   | kool/mol   |                     | 10.46   | kool/mol   |       |       |       | 03.50   | kool/mol   |       |                    | 17.10  | least/mal  |       |       |       |       |
| van der waars -      | 91.25   | Real/III01 | ΔE <sub>Vdw</sub> – | -10.40  | kearmor    |       |       |       | 64.59   | Kearmon    |       | ΔEVdw -            | -17.10 | Kearmon    |       |       |       |       |
| Electrostatic =      | -238.55 | kcal/mol   | $\Delta E_{Ele} =$  | -89.82  | kcal/mol   |       |       |       | -228.30 | kcal/mol   |       | $\Delta E_{Ele} =$ | -79.57 | kcal/mol   |       |       |       |       |
| Initial Orientation  |         | RB1        |                     |         | LB2        |       |       |       |         |            |       |                    | I B1   | RB2        |       |       |       |       |
| Final Orientation    | RS2     | RBI        | RS2                 |         | LB2        |       |       |       | LS2     | 1.52       |       |                    | LB1    | RB2        |       |       |       |       |
| i inter of terminoli | 102     | itali      | 102                 |         | LS2        |       |       |       | 2.02    | 2.02       |       |                    | 201    | RS2        |       |       |       |       |
|                      |         |            |                     |         |            |       |       |       |         |            |       |                    |        |            |       |       |       |       |
| Total =              | 85.42   | kcal/mol   | $\Delta E_{Tot} =$  | -87.42  | kcal/mol   |       |       |       | 86.05   | kcal/mol   |       | $\Delta E_{Tot} =$ | -86.79 | kcal/mol   |       |       |       |       |
| Van der Waals =      | 90.61   | kcal/mol   | $\Delta E_{Vdw} =$  | -11.08  | kcal/mol   |       |       |       | 88.26   | kcal/mol   |       | $\Delta E_{Vdw} =$ | -13.43 | kcal/mol   |       |       |       |       |
| Electrostatic =      | -224.83 | kcal/mol   | $\Delta E_{Ele} =$  | -76.09  | kcal/mol   |       |       |       | -210.98 | kcal/mol   |       | $\Delta E_{Ele} =$ | -62.24 | kcal/mol   |       |       |       |       |

|                     | His13 His1     | 4 Gln15 | Lvs16              | Leu17   | Va    | 18 Phe19 | Phe20 | His13      | His14      | Gln15 | Lvs16              | Leu17   | Val18    | Phe19 | Phe20 |
|---------------------|----------------|---------|--------------------|---------|-------|----------|-------|------------|------------|-------|--------------------|---------|----------|-------|-------|
| Initial Orientation | RB2            |         | _                  |         | LE    | 31       |       | RS1        |            |       |                    | LB2     |          |       |       |
| Final Orientation   | RS1 LS         | RB1     |                    | LS2     | LE    | 31       |       | RNH        | LB1        |       |                    | LS1     | LS1      |       |       |
|                     | RB2 LB         |         |                    | LNH     | С     | s        |       | RS1        | RB1        |       |                    |         |          |       |       |
|                     | RB             |         |                    | LB1     |       |          |       | RB2        | LS1        |       |                    |         |          |       |       |
|                     | RB             |         |                    |         |       |          |       |            | RNH        |       |                    |         |          |       |       |
|                     |                |         |                    |         |       |          |       |            | K32        |       |                    |         |          |       |       |
| Total =             | 44.20 kcal/n   | ol      | $\Delta E_{Tot} =$ | -128.64 | 4 kca | l/mol    |       | 45.41      | kcal/mol   |       | $\Delta E_{Tot} =$ | -127.43 | kcal/mol |       |       |
| Van der Waals =     | 79.61 kcal/n   | ol      | $\Delta E_{Vdw} =$ | -22.0   | 9 kca | l/mol    |       | 83.15      | kcal/mol   |       | $\Delta E_{Vdw} =$ | -18.54  | kcal/mol |       |       |
| Electrostatic =     | -260.72 kcal/n | ol      | $\Delta E_{Fle} =$ | -111.9  | 8 kca | l/mol    |       | -250.32    | kcal/mol   |       | $\Delta E_{Fle} =$ | -101.59 | kcal/mol |       |       |
|                     |                |         | 1.10               |         |       |          |       |            |            |       | Lie                |         |          |       |       |
| Initial Orientation | RB             |         |                    | LB2     |       |          |       | LB1        |            |       |                    |         |          |       | RB2   |
| Final Orientation   | RS2 RS2        |         |                    | LS2     |       |          |       | RB1        | LB1        |       | RS1                | RB2     |          |       | RB2   |
|                     | RS1 RB         |         |                    | LB2     |       |          |       | LB1        | LB1        |       |                    | RS1     |          |       |       |
|                     | LS             |         |                    |         |       |          |       | LS1        | RBI        |       |                    |         |          |       |       |
|                     |                |         |                    |         |       |          |       |            | LNH<br>LB2 |       |                    |         |          |       |       |
|                     |                |         |                    |         |       |          |       |            | LDZ        |       |                    |         |          |       |       |
| Total =             | 51.89 kcal/n   | ol      | $\Delta E_{Tot} =$ | -120.93 | 5 kca | l/mol    |       | 52.73      | kcal/mol   |       | $\Delta E_{Tot} =$ | -120.11 | kcal/mol |       |       |
| Van der Waals =     | 90.68 kcal/n   | ol      | $\Delta E_{Vdw} =$ | -11.0   | 1 kca | l/mol    |       | 79.17      | kcal/mol   |       | $\Delta E_{Vdw} =$ | -22.52  | kcal/mol |       |       |
| Electrostatic =     | -263.69 kcal/n | ol      | $\Delta E_{Fle} =$ | -114.9  | 5 kca | l/mol    |       | -250.91    | kcal/mol   |       | $\Delta E_{Fle} =$ | -102.17 | kcal/mol |       |       |
|                     |                |         | 1.10               |         |       |          |       |            |            |       | Lie                |         |          |       |       |
| Initial Orientation | CS             |         | _                  | RB1     |       |          |       |            | LB2        |       |                    | RB2     |          |       |       |
| Final Orientation   | LS2 LS         | LS1     |                    | RS1     |       |          |       | LB2        | RB1        |       |                    | RB2     |          |       |       |
|                     | LS1 LB         |         |                    |         |       |          |       | LS2        | LS2        |       |                    |         |          |       |       |
|                     | RB             |         |                    |         |       |          |       | LNH        | LBI        |       |                    |         |          |       |       |
|                     |                |         |                    |         |       |          |       |            | KNH        |       |                    |         |          |       |       |
| Total =             | 54.84 kcal/n   | ol      | $\Delta E_{Tot} =$ | -118.00 | 0 kca | l/mol    |       | 55.58      | kcal/mol   |       | $\Delta E_{Tot} =$ | -117.26 | kcal/mol |       |       |
| Van der Waals =     | 89.51 kcal/n   | ol      | $\Delta E_{Vdw} =$ | -12.1   | 8 kca | l/mol    |       | 83.97      | kcal/mol   |       | $\Delta E_{Vdw} =$ | -17.72  | kcal/mol |       |       |
| Electrostatic =     | -259.82 kcal/n | ol      | $\Delta E_{Ele} =$ | -111.0  | 8 kca | l/mol    |       | -254.38    | kcal/mol   |       | $\Delta E_{Ele} =$ | -105.64 | kcal/mol |       |       |
|                     |                |         |                    |         |       |          |       |            |            |       |                    |         |          |       |       |
| Initial Orientation | RB1            | _       |                    | LB2     |       |          |       |            | RB1        |       |                    | LB1     |          |       |       |
| Final Orientation   | RBI RB         | LS1     |                    | LB2     |       |          |       | RS1<br>RS2 | RB1        |       |                    | LS1     |          |       |       |
|                     | RNH LS         |         |                    |         |       |          |       | R82        | KSI        |       |                    |         |          |       |       |
|                     | 1031           |         |                    |         |       |          |       |            |            |       |                    |         |          |       |       |
| Total =             | 56.32 kcal/n   | ol      | $\Delta E_{Tot} =$ | -116.52 | 2 kca | l/mol    |       | 56.78      | kcal/mol   |       | $\Delta E_{Tot} =$ | -116.06 | kcal/mol |       |       |
| Van der Waals =     | 83.38 kcal/n   | ol      | $\Delta E_{Vdw} =$ | -18.3   | 1 kca | l/mol    |       | 90.71      | kcal/mol   |       | $\Delta E_{Vdw} =$ | -10.98  | kcal/mol |       |       |
| Electrostatic =     | -257.31 kcal/n | ol      | $\Delta E_{Ele} =$ | -108.5  | 8 kca | l/mol    |       | -255.38    | kcal/mol   |       | $\Delta E_{Ele} =$ | -106.65 | kcal/mol |       |       |
|                     |                |         |                    |         |       |          |       |            |            |       |                    |         |          |       |       |
| Initial Orientation | RB             | 2       |                    | LB1     |       |          |       | RS2        |            |       |                    |         | LB2      |       |       |
| Final Orientation   | RB2 RB         |         |                    | LS2     |       |          |       | RB2        | LS2        |       |                    |         | LS2      |       |       |
|                     | RNH RN         | 1       |                    | LNH     |       |          |       | RB2        |            |       |                    |         | LB2      |       |       |
|                     | KS1 RS.        |         |                    | LBI     |       |          |       | K52        |            |       |                    |         |          |       |       |
| Total =             | 57 99 kcal/n   | ol      | AET at =           | -114.8  | 5 kca | l/mol    |       | 58.36      | kcal/mol   |       | $\Delta E_{Tot} =$ | -114 48 | kcal/mol |       |       |
| Van der Waals =     | 81.15 kcal/n   | ol      | $\Delta E_{Vdw} =$ | -20 5   | 4 kca | l/mol    |       | 91 72      | kcal/mol   |       | $\Delta E_{Vdw} =$ | -9.97   | kcal/mol |       |       |
| Electrostatic =     | -242.98 kcal/n | ol      | $\Delta E_{Fle} =$ | -94 24  | 4 kca | l/mol    |       | -244 10    | ) kcal/mol |       | $\Delta E_{Fle} =$ | -95.36  | kcal/mol |       |       |

|                     | His13   | His14      | Gln15 | Lys16              | Leu17   | Val18     | Phe19 | Phe20 | Val12   | His13    | His14 | Gln15              | Lys16   | Leu17    | Val18 | Phe19 | Phe20 |
|---------------------|---------|------------|-------|--------------------|---------|-----------|-------|-------|---------|----------|-------|--------------------|---------|----------|-------|-------|-------|
| Initial Orientation | LB1     |            |       |                    | RB2     |           |       |       |         |          | RS1   |                    |         |          | LB2   |       |       |
| Final Orientation   | RB1     | RB1        |       |                    | RB2     |           |       | RB2   |         | LS1      | LB1   | LB2                |         | RB1      |       |       |       |
|                     | LB1     | RNH        |       |                    |         |           |       |       |         |          | RB1   |                    |         |          |       |       |       |
|                     | LNH     |            |       |                    |         |           |       |       |         |          | RSI   |                    |         |          |       |       |       |
|                     | LSI     | LNH<br>LP2 |       |                    |         |           |       |       |         |          | KNH   |                    |         |          |       |       |       |
|                     |         | LD2        |       |                    |         |           |       |       |         |          |       |                    |         |          |       |       |       |
| Total =             | 58.81   | kcal/mol   |       | $\Delta E_{Tot} =$ | -114.03 | 3 kcal/mo | ıl    |       | 59.38   | kcal/mol |       | $\Delta E_{Tot} =$ | -113.46 | kcal/mol |       |       |       |
| Van der Waals =     | 83.76   | kcal/mol   |       | $\Delta E_{Vdw} =$ | -17.93  | 3 kcal/mo | d     |       | 86.95   | kcal/mol |       | $\Delta E_{Vdw} =$ | -14.74  | kcal/mol |       |       |       |
| Electrostatic =     | -252.23 | kcal/mol   |       | $\Delta E_{Ele} =$ | -103.49 | ) kcal/mo | l     |       | -253.90 | kcal/mol |       | $\Delta E_{Ele} =$ | -105.16 | kcal/mol |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         |          |       |                    |         |          |       |       |       |
| Initial Orientation | RB2     |            |       |                    | LB1     |           |       |       |         |          | LS2   |                    |         |          | RB2   |       |       |
| Final Orientation   | LB2     | LB1        |       |                    | LS1     | CS        |       |       |         | LB2      | LS2   |                    |         |          | RB2   |       |       |
|                     | RNH     | RB1        |       |                    | LB1     |           |       |       |         | LS2      |       |                    |         |          |       |       |       |
|                     | RSI     |            |       |                    |         |           |       |       |         | LSI      |       |                    |         |          |       |       |       |
| Total =             | 61.17   | kcal/mol   |       | $\Delta E_{Tot} =$ | -111.67 | 7 kcal/mo | 1     |       | 64.94   | kcal/mol |       | $\Delta E_{Tot} =$ | -107.90 | kcal/mol |       |       |       |
| Van der Waals =     | 86.68   | kcal/mol   |       | $\Delta E_{Vdw} =$ | -15.01  | l kcal/mo | d     |       | 88.58   | kcal/mol |       | $\Delta E_{Vdw} =$ | -13.11  | kcal/mol |       |       |       |
| Electrostatic =     | -246.66 | kcal/mol   |       | $\Delta E_{Ele} =$ | -97.92  | 2 kcal/mo | ol    |       | -247.34 | kcal/mol |       | $\Delta E_{Ele} =$ | -98.61  | kcal/mol |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         |          |       |                    |         |          |       |       |       |
| Initial Orientation |         | RB1        |       |                    |         | LB1       |       |       |         |          | LS2   |                    |         | RB1      |       |       |       |
| Final Orientation   | RS1     | CS         | CS    |                    |         | LB1       |       |       |         | LS1      | LB1   |                    |         | RS2      |       |       |       |
|                     | RS2     | RB1        |       |                    |         | CS        |       |       |         |          | LS2   |                    |         |          |       |       |       |
|                     |         | RSI        |       |                    |         |           |       |       |         |          | LSI   |                    |         |          |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         |          |       |                    |         |          |       |       |       |
| Total =             | 66.15   | kcal/mol   |       | $\Delta E_{Tot} =$ | -106.69 | ) kcal/mo | l     |       | 67.15   | kcal/mol |       | $\Delta E_{Tot} =$ | -105.69 | kcal/mol |       |       |       |
| Van der Waals =     | 85.73   | kcal/mol   |       | $\Delta E_{Vdw} =$ | -15.97  | / kcal/mo | d     |       | 90.63   | kcal/mol |       | $\Delta E_{Vdw} =$ | -11.06  | kcal/mol |       |       |       |
| Electrostatic =     | -242.59 | kcal/mol   |       | $\Delta E_{Ele} =$ | -93.85  | 5 kcal/mo | ol    |       | -245.26 | kcal/mol |       | $\Delta E_{Ele} =$ | -96.53  | kcal/mol |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         |          |       |                    |         |          |       |       |       |
| Initial Orientation |         | RS1        |       |                    |         | LB1       |       |       |         | LB2      |       |                    |         | RB1      |       |       |       |
| Final Orientation   | RS1     | RS1        | CS    |                    |         | LB1       |       |       | LS1     | LB2      | RB1   |                    |         | RS1      |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         | LB2      | RB1   |                    |         |          |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         | LSI      | LBI   |                    |         |          |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         | LINH     | INH   |                    |         |          |       |       |       |
|                     |         |            |       |                    |         |           |       |       |         |          | 2.311 |                    |         |          |       |       |       |
| Total =             | 67.18   | kcal/mol   |       | $\Delta E_{Tot} =$ | -105.66 | 5 kcal/mo | 1     |       | 70.63   | kcal/mol |       | $\Delta E_{Tot} =$ | -102.21 | kcal/mol |       |       |       |
| Van der Waals =     | 93.08   | kcal/mol   |       | $\Delta E_{Vdw} =$ | -8.61   | i kcal/mo | l     |       | 81.86   | kcal/mol |       | $\Delta E_{Vdw} =$ | -19.83  | kcal/mol |       |       |       |
| Electrostatic =     | -236.65 | kcal/mol   |       | $\Delta E_{Ele} =$ | -87.91  | i kcal/mo | ol    |       | -240.31 | kcal/mol |       | $\Delta E_{Ele} =$ | -91.58  | kcal/mol |       |       |       |

|                     | Gly9    | Tyr10   | Val12 | His13              | His14   | Gln15     | Lys16 | Leu17 | Phe20 | His6    | Tyr10    | Val12 | His13              | His14   | Gln15    | Lys16 | Leu17 | Phe20 |
|---------------------|---------|---------|-------|--------------------|---------|-----------|-------|-------|-------|---------|----------|-------|--------------------|---------|----------|-------|-------|-------|
| Initial Orientation |         |         |       | CS                 | LS2     |           |       |       |       |         |          |       | LS2                | RS2     |          |       |       |       |
| Final Orientation   | LS2     | LS2     | RS2   | RB1                | LS1     |           | RS1   | LS1   |       |         | RS2      |       | LB1                | RB2     |          | LS2   | LS2   | LB2   |
|                     |         |         |       | LB1                |         |           | RS2   |       |       |         |          |       | LS2                | RS2     |          |       | RB2   | LS2   |
|                     |         |         |       | LBI                |         |           |       |       |       |         |          |       | LSI                |         |          |       |       |       |
|                     |         |         |       | Loi                |         |           |       |       |       |         |          |       | KDI                |         |          |       |       |       |
| Total =             | -12.90  | kcal/mo | 1     | $\Delta E_{Tot} =$ | -146.9  | 5 kcal/mo | 1     |       |       | -10.19  | kcal/mol |       | $\Delta E_{Tot} =$ | -144.24 | kcal/mol |       |       |       |
| Van der Waals =     | 75.90   | kcal/mo | 1     | $\Delta E_{Vdw} =$ | -20.3   | 7 kcal/mo | 1     |       |       | 70.93   | kcal/mol |       | $\Delta E_{Vdw} =$ | -25.35  | kcal/mol |       |       |       |
| Electrostatic =     | -305.24 | kcal/mo | 1     | $\Delta E_{Ele} =$ | -125.79 | 9 kcal/mo | 1     |       |       | -295.20 | kcal/mol |       | $\Delta E_{Ele} =$ | -115.75 | kcal/mol |       |       |       |
| Initial Orientation |         |         |       | LB1                | RB2     |           |       |       |       |         |          |       | LB1                | RB1     |          |       |       |       |
| Final Orientation   | RS2     | RS2     |       | LB1                | RB2     |           | LS2   | LS2   | LB2   |         |          |       | LB1                | RS1     |          | LS2   |       | LB2   |
|                     |         |         |       | RB1                | RS2     |           | LS1   |       | LS2   |         |          |       | LS2                |         |          |       |       | LS2   |
|                     |         |         |       | RB1                |         |           |       |       |       |         |          |       | LS1                |         |          |       |       |       |
|                     |         |         |       | L82                |         |           |       |       |       |         |          |       | RB1                |         |          |       |       |       |
|                     |         |         |       |                    |         |           |       |       |       |         |          |       | Rot                |         |          |       |       |       |
| Total =             | -4.98   | kcal/mo | 1     | $\Delta E_{Tot} =$ | -139.03 | 3 kcal/mo | d     |       |       | -4.18   | kcal/mol |       | $\Delta E_{Tot} =$ | -138.23 | kcal/mol |       |       |       |
| Van der Waals =     | 68.42   | kcal/mo | 1     | $\Delta E_{Vdw} =$ | -27.8   | 5 kcal/mo | 1     |       |       | 75.97   | kcal/mol |       | $\Delta E_{Vdw} =$ | -20.30  | kcal/mol |       |       |       |
| Electrostatic =     | -293.09 | kcal/mo | 1     | $\Delta E_{Ele} =$ | -113.65 | 5 kcal/mo | 1     |       |       | -292.82 | kcal/mol |       | $\Delta E_{Ele} =$ | -113.37 | kcal/mol |       |       |       |
| Initial Orientation |         |         |       | RB1                |         |           | LS2   |       |       |         |          |       | RB1                | LS2     |          |       |       |       |
| Final Orientation   | RS1     |         |       | RB1                | RS2     |           | LS2   | RS2   |       |         |          | RS2   | RB1                | LB2     |          | RS1   | LS2   |       |
|                     |         |         |       | RS1                |         |           | LS1   |       |       |         |          |       | LS2                | LS2     |          | RS2   | LB1   |       |
|                     |         |         |       | RS2                |         |           |       |       |       |         |          |       | LB1                |         |          |       | CS    |       |
|                     |         |         |       | RB2                |         |           |       |       |       |         |          |       | RNH                |         |          |       |       |       |
|                     |         |         |       |                    |         |           |       |       |       |         |          |       | K52                |         |          |       |       |       |
| Total =             | -1.70   | kcal/mo | 1     | $\Delta E_{Tot} =$ | -135.7  | 5 kcal/mo | 1     |       |       | 1.03    | kcal/mol |       | $\Delta E_{Tot} =$ | -133.02 | kcal/mol |       |       |       |
| Van der Waals =     | 78.30   | kcal/mo | 1     | $\Delta E_{Vdw} =$ | -17.9   | 7 kcal/mo | 1     |       |       | 76.12   | kcal/mol |       | $\Delta E_{Vdw} =$ | -20.15  | kcal/mol |       |       |       |
| Electrostatic =     | -301.33 | kcal/mo | 1     | $\Delta E_{Ele} =$ | -121.88 | 8 kcal/mo | 1     |       |       | -294.24 | kcal/mol |       | $\Delta E_{Ele} =$ | -114.80 | kcal/mol |       |       |       |
| Initial Orientation |         |         |       | RS2                | LB2     |           |       |       |       |         |          |       | CS                 |         |          | RB2   |       |       |
| Final Orientation   |         |         | RS2   | RB1                | LS2     |           | RS2   | CS    |       | LS2     |          | RS2   | RB1                |         |          | RS1   |       |       |
|                     |         |         |       | RS2                | RB2     |           | RS1   | LB1   |       | LB2     |          |       | CS                 |         |          | RS2   |       |       |
|                     |         |         |       | LB1                |         |           |       | LS2   |       |         |          |       | RS1                |         |          |       |       |       |
|                     |         |         |       | LS2                |         |           |       |       |       |         |          |       | KS2                |         |          |       |       |       |
| Total =             | 1.45    | kcal/mo | 1     | $\Delta E_{Tot} =$ | -132.60 | ) kcal/mo | 1     |       |       | 2.81    | kcal/mol |       | $\Delta E_{Tot} =$ | -131.24 | kcal/mol |       |       |       |
| Van der Waals =     | 75.24   | kcal/mo | 1     | $\Delta E_{Vdw} =$ | -21.03  | 3 kcal/mo | 1     |       |       | 78.98   | kcal/mol |       | $\Delta E_{Vdw} =$ | -17.29  | kcal/mol |       |       |       |
| Electrostatic =     | -290.00 | kcal/mo | 1     | $\Delta E_{Ele} =$ | -110.5  | 5 kcal/mo | 1     |       |       | -292.32 | kcal/mol |       | $\Delta E_{Ele} =$ | -112.87 | kcal/mol |       |       |       |



|                     | Val12   | His13     | His14 | Lys16              | Leu17      | Val18   | Phe19 | Phe20 | His13   | His14   | Lys16      | Leu17              | Val18   | Phe19    | Phe20 | Asp23 |
|---------------------|---------|-----------|-------|--------------------|------------|---------|-------|-------|---------|---------|------------|--------------------|---------|----------|-------|-------|
| Initial Orientation |         |           |       |                    | RB1        |         |       | LB1   |         |         |            | RB1                |         |          | LB2   |       |
| Final Orientation   | LS1     | LB1       | RS1   | LS2                | CS         |         |       | LS2   | LB1     | RS2     | LS2        | RS2                |         |          | LS2   |       |
|                     |         | LS1       |       | LS1                | RB1        |         |       |       | LS1     |         | LS1        | RB1                |         |          | LB2   |       |
|                     |         | LNH       |       |                    |            |         |       |       | CS      |         |            |                    |         |          |       |       |
|                     |         | RB1       |       |                    |            |         |       |       | LS2     |         |            |                    |         |          |       |       |
|                     |         | RS1       |       |                    |            |         |       |       |         |         |            |                    |         |          |       |       |
| Total =             | 1.58    | 8 kcal/mo | 1     | $\Delta E_{Tot} =$ | -132.48    | kcal/mc | ol    |       | 12.50   | kcal/mo | ol         | $\Delta E_{Tot} =$ | -121.55 | kcal/mol |       |       |
| Van der Waals =     | 74.94   | 4 kcal/mo | l     | $\Delta E_{Vdw} =$ | -21.34     | kcal/mc | ol    |       | 73.70   | kcal/mo | ol         | $\Delta E_{Vdw} =$ | -22.57  | kcal/mol |       |       |
| Electrostatic =     | -287.03 | 3 kcal/mo | 1     | $\Delta E_{Ele} =$ | -107.59    | kcal/mc | ol    |       | -282.13 | kcal/mc | ol         | $\Delta E_{Ele} =$ | -102.68 | kcal/mol |       |       |
|                     |         |           |       |                    |            |         |       |       |         |         |            |                    |         |          |       |       |
| Initial Orientation |         |           |       |                    | RB2        |         |       | LB1   |         |         |            |                    |         | LB1      | RB1   |       |
| Final Orientation   | LS2     | LS2       |       | LSI                | RS2        |         |       | CS    | RSI     |         | LBI        |                    |         | LS2      | CS    | CS    |
|                     | LB2     |           |       | LBI                | KNH<br>DD1 |         |       | LBI   |         |         | LSI        |                    |         | LSI      | RBI   |       |
|                     |         |           |       | LNH                | KBI        |         |       |       |         |         | LNH<br>DD1 |                    |         | LBI      | K52   |       |
|                     |         |           |       |                    |            |         |       |       |         |         | RB1        |                    |         |          |       |       |
|                     |         |           |       |                    |            |         |       |       |         |         | K01        |                    |         |          |       |       |
| Total =             | 29.68   | 8 kcal/mo | 1     | $\Delta E_{Tot} =$ | -104.38    | kcal/mc | ol    |       | 37.83   | kcal/mc | ol         | $\Delta E_{Tot} =$ | -96.22  | kcal/mol |       |       |
| Van der Waals =     | 77.51   | l kcal/mo | l     | $\Delta E_{Vdw} =$ | -18.76     | kcal/mc | ol    |       | 75.40   | kcal/mo | ol         | $\Delta E_{Vdw} =$ | -20.87  | kcal/mol |       |       |
| Electrostatic =     | -267.83 | 8 kcal/mo | l     | $\Delta E_{Ele} =$ | -88.38     | kcal/mc | ol    |       | -261.18 | kcal/mc | ol         | $\Delta E_{Ele} =$ | -81.73  | kcal/mol |       |       |
|                     |         |           |       |                    |            |         |       |       |         |         |            |                    |         |          |       |       |
| Initial Orientation |         |           |       |                    | LB1        |         |       | RB1   |         |         |            |                    |         |          |       |       |
| Final Orientation   |         | LBI       |       | CS                 | LBI        |         |       | RBI   |         |         |            |                    |         |          |       |       |
|                     |         | CS        |       |                    |            |         |       |       |         |         |            |                    |         |          |       |       |
|                     |         | LSI       |       |                    |            |         |       |       |         |         |            |                    |         |          |       |       |
| Total =             | 75.19   | e kcal/mo | 1     | $\Delta E_{Tot} =$ | -58.86     | kcal/mc | ol    |       |         |         |            |                    |         |          |       |       |
| Van der Waals =     | 83.10   | ) kcal/mo | 1     | $\Delta E_{Vdw} =$ | -13.17     | kcal/mc | ol    |       |         |         |            |                    |         |          |       |       |
| Electrostatic =     | -222.94 | 4 kcal/mo | l     | $\Delta E_{Ele} =$ | -43.50     | kcal/mc | ol    |       |         |         |            |                    |         |          |       |       |

|                     | Gly9 Tyr10     | Val12 | His13              | His14      | Gln15 Lys16 | 5 Leu17 | Val18 | Phe19       | Phe20 | Tyr10   | Val12    | His13 | His14              | Gln15    | Lys16    | Leu17 Val18 | Phe19 | Phe20 |
|---------------------|----------------|-------|--------------------|------------|-------------|---------|-------|-------------|-------|---------|----------|-------|--------------------|----------|----------|-------------|-------|-------|
| Initial Orientation |                | _     |                    | LS2        |             | RB1     |       |             |       |         |          |       |                    |          | LB1      |             |       | RB2   |
| Final Orientation   | LS2 LS2        |       | RB1                | LS1        | RS2         | CS      |       |             |       |         |          | RS1   |                    | LS2      | LB1      |             | LS2   | RS2   |
|                     |                |       | LB1                |            |             | LSI     |       |             |       |         |          | RS2   |                    | LB2      | RS2      |             | LB2   |       |
|                     |                |       | LS2                |            |             |         |       |             |       |         |          |       |                    |          | LS2      |             |       |       |
| Total =             | -3 70 kcal/m   | al    | ΔE=                | -137.84    | kcal/mol    |         |       |             |       | 1.71    | keal/mol |       | ΔE =               | -132.35  | keal/mol |             |       |       |
| Van dar Waak -      | 77.20 koal/m   | al    | AE -               | 19 07      | koal/mol    |         |       |             |       | 75.51   | koal/mol |       | AE                 | - 152.55 | konl/mol |             |       |       |
| Valider Waats -     | 200.02 L       |       | AEVdw -            | -10.77     | kcarmoi     |         |       |             |       | 200.45  |          |       | AEVdw -            | 20.70    |          |             |       |       |
| Electrostatic =     | -298.03 Kcal/m | 01    | $\Delta E_{Ele} =$ | -118.58    | kcai/moi    |         |       |             |       | -289.4  | kcai/moi |       | $\Delta E_{Ele} =$ | -110.03  | kcal/mol |             |       |       |
| Initial Orientation |                |       |                    |            | LB2         |         |       | RB2         |       |         |          | I B1  |                    |          |          | RB2         |       |       |
| Final Orientation   |                | LS2   | LS1                |            | RB1         |         |       | RB2         |       | RS2     | LS2      | LB1   | RB2                |          | LB1      | RB1         |       |       |
|                     |                |       | LS2                |            | LS1         |         |       |             |       |         |          | LS1   | RS2                |          | LS2      |             |       |       |
|                     |                |       | LB2                |            |             |         |       |             |       |         |          | RS2   |                    |          | LB2      |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          | RB1   |                    |          |          |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          | LS2   |                    |          |          |             |       |       |
| Tetal               | 4.02 has//m    | -1    | AE -               | 120.12     | 11          |         |       |             |       | 7.00    |          |       | AE -               | 126 77   | 1        |             |       |       |
| Iotal=              | 4.93 kcal/m    | 01    | $\Delta E_{Tot} =$ | -129.12    | kcal/mol    |         |       |             |       | /.28    | kcal/mol |       | $\Delta E_{Tot} =$ | -126.//  | kcal/moi |             |       |       |
| Van der Waals =     | //.43 kcal/m   | ol    | $\Delta E_{Vdw} =$ | -18.84     | kcal/mol    |         |       |             |       | /5.28   | kcal/mol |       | $\Delta E_{Vdw} =$ | -20.99   | kcal/mol |             |       |       |
| Electrostatic =     | -290.83 kcal/m | ol    | $\Delta E_{Ele} =$ | -111.38    | kcal/mol    |         |       |             |       | -286.57 | kcal/mol |       | $\Delta E_{Ele} =$ | -107.12  | kcal/mol |             |       |       |
| Initial Orientation |                |       |                    |            | DCO         | I D1    |       |             |       |         |          | 182   |                    |          |          | DD1         |       |       |
| Final Orientation   |                |       | RB1                | 1.52       | RS2         | CS      |       |             |       |         |          | LS2   | RS2                |          | LB2      | RS2         |       | LB2   |
| i inti oricination  |                |       | LS2                | 1.02       | 102         | LSI     |       |             |       |         |          | LS1   | 102                |          | LS2      | RB1         |       | LS2   |
|                     |                |       |                    |            |             |         |       |             |       |         |          | CS    |                    |          |          |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          | LS2   |                    |          |          |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          |       |                    |          |          |             |       |       |
| Total =             | 7.46 kcal/m    | ol    | $\Delta E_{Tot} =$ | -126.59    | kcal/mol    |         |       |             |       | 8.08    | kcal/mol |       | $\Delta E_{Tot} =$ | -125.98  | kcal/mol |             |       |       |
| Van der Waals =     | 81.90 kcal/m   | ol    | $\Delta E_{Vdw} =$ | -14.37     | kcal/mol    |         |       |             |       | 77.12   | kcal/mol |       | $\Delta E_{Vdw} =$ | -19.15   | kcal/mol |             |       |       |
| Electrostatic =     | -289.93 kcal/m | ol    | $\Delta E_{Ele} =$ | -110.48    | kcal/mol    |         |       |             |       | -284.23 | kcal/mol |       | $\Delta E_{Ele} =$ | -104.78  | kcal/mol |             |       |       |
| Initial Oniontation |                |       |                    |            | DD1         | 1.02    |       |             |       |         |          | CE    |                    |          |          | I D1        |       |       |
| Final Orientation   |                | RB1   | IB2                |            | RDI<br>RS2  | LB2     |       | <b>RS</b> 2 | 151   |         |          | RBI   |                    |          | RS1      | LDI         |       |       |
| I mai Orientation   |                | icb1  | LS2                |            | LS2         | LS2     |       | R52         | 1.51  |         |          | RS2   |                    |          | Roi      | 1.51        |       |       |
|                     |                |       | LB1                |            |             |         |       |             |       |         |          | LB1   |                    |          |          |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          | LS1   |                    |          |          |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          |       |                    |          |          |             |       |       |
| Total =             | 8.52 kcal/m    | ol    | $\Delta E_{Tot} =$ | -125.53    | kcal/mol    |         |       |             |       | 9.38    | kcal/mol |       | $\Delta E_{Tot} =$ | -124.67  | kcal/mol |             |       |       |
| Van der Waals =     | 76.03 kcal/m   | ol    | $\Delta E_{Vdw} =$ | -20.24     | kcal/mol    |         |       |             |       | 83.75   | kcal/mol |       | $\Delta E_{Vdw} =$ | -12.52   | kcal/mol |             |       |       |
| Electrostatic =     | -280.89 kcal/m | ol    | $\Delta E_{Ele} =$ | -101.44    | kcal/mol    |         |       |             |       | -293.75 | kcal/mol |       | $\Delta E_{Ele} =$ | -114.30  | kcal/mol |             |       |       |
| Initial Oniontation |                |       |                    | DCO        |             |         |       |             | 1.02  |         |          |       |                    |          | DD1      |             |       | 1.02  |
| Final Orientation   | DS1            |       | 1.52               | RS2<br>PS1 | 1.52        | 182     |       |             | LB2   |         | DD1      | I D1  |                    |          | RB1      | 1.51        | DCI   | LB2   |
| r mai Orientation   | K31            |       | LS2<br>LS1         | RS2        | 1.32        | RS2     |       |             | LB2   |         | KBI      | LSI   |                    |          | LS1      | 1.51        | K.51  | LD2   |
|                     |                |       | LB1                |            |             |         |       |             |       |         |          |       |                    |          | LNH      |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          |       |                    |          | LB1      |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          |       |                    |          | RNH      |             |       |       |
|                     |                |       |                    |            |             |         |       |             |       |         |          |       |                    |          | RS1      |             |       |       |
| T ( )               | 0.751          | ,     | 45                 | 104.00     |             |         |       |             |       |         |          |       | 4.5                | 101.07   |          |             |       |       |
| lotal=              | 9.75 kcal/m    | 01    | $\Delta E_{Tot} =$ | -124.30    | kcal/mol    |         |       |             |       | 9.79    | Kcal/mol |       | $\Delta E_{Tot} =$ | -124.26  | kcal/mol |             |       |       |
| Van der Waals =     | 79.30 kcal/m   | ol    | $\Delta E_{Vdw} =$ | -16.98     | kcal/mol    |         |       |             |       | 66.25   | kcal/mol |       | $\Delta E_{Vdw} =$ | -30.02   | kcal/mol |             |       |       |
| Electrostatic =     | -285.87 kcal/m | ol    | $\Delta E_{Ele} =$ | -106.42    | kcal/mol    |         |       |             |       | -285.95 | kcal/mol |       | $\Delta E_{Ele} =$ | -106.51  | kcal/mol |             |       |       |

| -                    |                   |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
|----------------------|-------------------|-------------|---------------------|---------|--------------|-------|-------|-------|------------|------------|-------|----------------------|------------|-------------|-------|------------|-------|
| Initial Onivertation | Vall2 His13       | His14       | Gln15               | Lys16   | Leul7        | Val18 | Phe19 | Phe20 | Vall2      | His13      | His14 | Gln15                | Lys16      | Leu17       | Val18 | Phe19      | Phe20 |
| Final Orientation    | RBI               |             |                     | 151     | LDI<br>IS1   |       |       |       | RS1        | RS1        |       |                      | I B1       |             |       | LDI<br>ISI |       |
| 1 mai Orientation    | RS2               |             |                     | 1.51    | 1.51         |       |       |       | KOT        | RS2        |       |                      | RS2        |             |       | 1.51       |       |
|                      | LB1               |             |                     |         |              |       |       |       |            | RB2        |       |                      |            |             |       |            |       |
|                      | LS1               |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
| Total =              | 10.20 kcal/mol    |             | $\Delta E_{Tot} =$  | -123.85 | kcal/mol     |       |       |       | 13.8       | l kcal/mol |       | $\Delta E_{Tot} =$   | -120.24    | kcal/mol    |       |            |       |
| Van der Waals =      | 84.05 kcal/mol    |             | $\Delta E_{Vdw} =$  | -12.23  | kcal/mol     |       |       |       | 81.1       | 3 kcal/mol |       | $\Delta E_{Vdw} =$   | -15.14     | kcal/mol    |       |            |       |
| Electrostatic =      | -293.05 kcal/mol  |             | $\Delta E_{Ele} =$  | -113.60 | kcal/mol     |       |       |       | -285.2     | 5 kcal/mol |       | $\Delta E_{Ele} =$   | -105.80    | ) kcal/mol  |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
| Initial Orientation  |                   | LS1         |                     |         |              |       |       | RB2   |            |            |       |                      | RS2        | LB2         |       |            |       |
| Final Orientation    | RB1               | LS1         |                     | RS1     | LB1          |       |       | RB2   | RS2        | LB2        |       |                      | RB1        | LS2         |       |            | LB1   |
|                      | LB1               |             |                     |         | LNH          |       |       | RS1   |            | LS2        |       |                      | RS1        | LB2         |       |            | LS1   |
|                      | LS1               |             |                     |         |              |       |       |       |            |            |       |                      | RS2        |             |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      | L82        |             |       |            |       |
| Tetal                | 14.57 [mail/mail  |             | AE -                | 110.49  | 1            |       |       |       | 16.12      | 2 I        |       | AE -                 | 117.03     | 1           |       |            |       |
| Total –              | 14.37 Kcavinol    |             | ΔE <sub>Tot</sub> = | -119.48 | kearmoi      |       |       |       | 76.0       |            |       | ΔE <sub>Tot</sub> =  | -117.93    |             |       |            |       |
| Van der Waals =      | 75.26 kcal/mol    |             | $\Delta E_{Vdw} =$  | -21.01  | kcal/mol     |       |       |       | /6.8.      | 2 kcal/mol |       | $\Delta E_{Vdw} =$   | -19.43     | kcal/mol    |       |            |       |
| Electrostatic =      | -276.30 kcal/mol  |             | $\Delta E_{Ele} =$  | -96.85  | kcal/mol     |       |       |       | -280.8     | 3 kcal/mol |       | $\Delta E_{Ele} =$   | -101.39    | kcal/mol    |       |            |       |
| Initial Orientation  | 1.52              |             |                     |         |              | DD2   |       |       |            |            |       |                      | I D1       |             |       | DD1        |       |
| Final Orientation    | LS2<br>LB1        | <b>RS</b> 2 |                     | 152     | 152          | KD2   |       | LB2   |            | 151        |       | RS1                  | RB1        |             |       | RB2<br>RB2 | LB2   |
| 1 mai Orientation    | LSI               | 1052        |                     | 1.02    | RB1          |       |       | LDZ   |            | Loi        |       | Roi                  | LB1        |             |       | RS1        | LDZ   |
|                      | LS1<br>LS2        |             |                     |         | RB2          |       |       |       |            |            |       |                      | RS1        |             |       | RNH        |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      | RNH        |             |       | RB1        |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      | LNH        |             |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      | LS1        |             |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
| Total =              | 16.52 kcal/mol    |             | $\Delta E_{Tot} =$  | -117.54 | kcal/mol     |       |       |       | 16.92      | 2 kcal/mol |       | $\Delta E_{Tot} =$   | -117.13    | 8 kcal/mol  |       |            |       |
| Van der Waals =      | 73.67 kcal/mol    |             | $\Delta E_{Vdw} =$  | -22.60  | kcal/mol     |       |       |       | 73.62      | 2 kcal/mol |       | $\Delta E_{Vdw} =$   | -22.65     | 5 kcal/mol  |       |            |       |
| Electrostatic =      | -274.94 kcal/mol  |             | $\Delta E_{Ele} =$  | -95.50  | kcal/mol     |       |       |       | -279.5     | 3 kcal/mol |       | $\Delta E_{Ele} =$   | -100.08    | 8 kcal/mol  |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
| Initial Orientation  | LB1               |             |                     | 555     |              |       |       | RB2   |            |            |       |                      | RS2        |             |       | LB2        |       |
| Final Orientation    | RBI               |             |                     | RB2     | LSI          |       |       | RB2   |            | RS2        |       |                      | RBI        |             |       | LB2        | RB2   |
|                      | LSI<br>LDI        |             |                     | KINTI   | LIND<br>I D1 |       |       |       |            |            |       |                      | LS2<br>LD1 |             |       | 1.52       |       |
|                      | RNH               |             |                     |         | LDI          |       |       |       |            |            |       |                      | RS2        |             |       |            |       |
|                      | RS1               |             |                     |         |              |       |       |       |            |            |       |                      | 10.2       |             |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
| Total =              | 17.70 kcal/mol    |             | $\Delta E_{Tot} =$  | -116.35 | kcal/mol     |       |       |       | 18.12      | 2 kcal/mol |       | $\Delta E_{Tot} =$   | -115.93    | kcal/mol    |       |            |       |
| Van der Waals =      | 76.58 kcal/mol    |             | $\Delta E_{Vdw} =$  | -19.69  | kcal/mol     |       |       |       | 76.04      | 4 kcal/mol |       | $\Delta E_{Vdw} =$   | -20.23     | kcal/mol    |       |            |       |
| Electrostatic =      | -277.28 kcal/mol  |             | $\Delta E_{Ele} =$  | -97.83  | kcal/mol     |       |       |       | -276.20    | ) kcal/mol |       | $\Delta E_{Ele} =$   | -96.76     | 5 kcal/mol  |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      |            |             |       |            |       |
| Initial Orientation  |                   |             |                     | RB2     | LB2          |       |       |       |            |            |       |                      | RB2        |             |       |            | LB1   |
| Final Orientation    | RB2 LB1           |             |                     | RS1     | LS2          |       |       |       | RS2        | LB2        |       |                      | RB1        | LS2         |       |            | LS2   |
|                      | RS2 RS2           |             |                     | RS2     | LB2          |       |       |       |            | LS2        |       |                      | LS2        |             |       |            | LB1   |
|                      | LNH               |             |                     |         |              |       |       |       |            |            |       |                      | CS         |             |       |            | CS    |
|                      | LB2               |             |                     |         |              |       |       |       |            |            |       |                      | RS1        |             |       |            |       |
|                      |                   |             |                     |         |              |       |       |       |            |            |       |                      | R52        |             |       |            |       |
| Total =              | 22.00 kcal/mol    |             | $\Delta E_{Tat} =$  | -112.05 | kcal/mol     |       |       |       | 22.2       | 2 kcal/mol |       | AE <sub>T at</sub> = | -111.83    | kcal/mol    |       |            |       |
| Van der Waals =      | 82.30 kcal/mol    |             | $\Delta E_{VI} =$   | -13.05  | kcal/mol     |       |       |       | 75 3       | 1 kcal/mel |       | ΔE <sub>10t</sub> =  | -20.03     | kcal/mol    |       |            |       |
| Flectrostatic =      | -277 77 koal/mol  |             | AE =                | -13.97  | keal/mol     |       |       |       | -272 5     | keal/mel   |       | AE =                 | -20.9      | keal/mel    |       |            |       |
| Lacuostate -         | =2//.// KCd/IIIOI |             | ac <sub>Ele</sub> = | - 20.32 | - KCaFHOI    |       |       |       | = = 412.34 | 5 KCAFIIOI |       | Ele -                | -75.14     | r KUAFIIIOI |       |            |       |

|                     | Val12   | His13      | His14 | Gln15              | Lys16   | Leu17    | Val18 | Phe19 | Phe20 | His13   | His14    | Gln15 | Lys16              | Leu17   | Val18    | Phe19 | Phe20 |
|---------------------|---------|------------|-------|--------------------|---------|----------|-------|-------|-------|---------|----------|-------|--------------------|---------|----------|-------|-------|
| Initial Orientation |         |            |       |                    | RB2     |          |       | LB1   |       | RS1     |          |       |                    | LB1     |          |       |       |
| Final Orientation   | RS2     | RB2        |       | LS2                | RB1     |          |       | LB1   |       | RB1     | LS1      |       | RB2                | RS1     |          |       | RS1   |
|                     |         | RS2        |       | LB2                | LB1     |          |       | LNH   |       | RS2     |          |       | RS2                | LB1     |          |       |       |
|                     |         |            |       |                    | RS2     |          |       | LS1   |       | RS1     |          |       | RS1                |         |          |       |       |
|                     |         |            |       |                    |         |          |       | LB2   |       | CS      |          |       |                    |         |          |       |       |
| Total =             | 23.03   | 3 kcal/mol |       | $\Delta E_{Tot} =$ | -111.02 | kcal/mol |       |       |       | 23.69   | kcal/mol |       | $\Delta E_{Tot} =$ | -110.37 | kcal/mol |       |       |
| Van der Waals =     | 75.84   | 4 kcal/mol |       | $\Delta E_{Vdw} =$ | -20.43  | kcal/mol |       |       |       | 75.60   | kcal/mol |       | $\Delta E_{Vdw} =$ | -20.67  | kcal/mol |       |       |
| Electrostatic =     | -269.36 | 5 kcal/mol |       | $\Delta E_{Ele} =$ | -89.92  | kcal/mol |       |       |       | -272.74 | kcal/mol |       | $\Delta E_{Ele} =$ | -93.29  | kcal/mol |       |       |
| Initial Orientation |         |            |       |                    | LB1     | RB2      |       |       |       |         |          |       | RB2                |         |          | LB2   |       |
| Final Orientation   |         | RS2        |       |                    | LB1     | RS2      |       |       | RB1   | RS2     |          |       | RB1                |         |          | LS2   | RB2   |
|                     |         | RB2        |       |                    | LS2     | RB2      |       |       |       |         |          |       | LS2                |         |          | LB2   |       |
|                     |         |            |       |                    | LNH     |          |       |       |       |         |          |       | RS2                |         |          |       |       |
|                     |         |            |       |                    | RS2     |          |       |       |       |         |          |       |                    |         |          |       |       |
| Total =             | 23.71   | l kcal/mol |       | $\Delta E_{Tot} =$ | -110.34 | kcal/mol |       |       |       | 23.82   | kcal/mol |       | $\Delta E_{Tot} =$ | -110.23 | kcal/mol |       |       |
| Van der Waals =     | 78.43   | 8 kcal/mol |       | $\Delta E_{Vdw} =$ | -17.84  | kcal/mol |       |       |       | 79.67   | kcal/mol |       | $\Delta E_{Vdw} =$ | -16.60  | kcal/mol |       |       |
| Electrostatic =     | -274.36 | 6 kcal/mol |       | $\Delta E_{Ele} =$ | -94.91  | kcal/mol |       |       |       | -271.64 | kcal/mol |       | $\Delta E_{Ele} =$ | -92.20  | kcal/mol |       |       |
| Initial Orientation |         |            |       |                    | DD1     |          |       | 1.02  |       |         |          |       |                    |         |          |       |       |
| Time Orientation    |         | DCO        |       |                    | RB1     |          |       | LB2   | DD2   |         |          |       |                    |         |          |       |       |
| Final Orientation   |         | K52        |       |                    | IS2     |          |       | 1.82  | KB2   |         |          |       |                    |         |          |       |       |
|                     |         |            |       |                    | RS2     |          |       | 1.32  |       |         |          |       |                    |         |          |       |       |
|                     |         |            |       |                    |         |          |       |       |       |         |          |       |                    |         |          |       |       |
| Total =             | 24.06   | 6 kcal/mol |       | $\Delta E_{Tot} =$ | -110.00 | kcal/mol |       |       |       |         |          |       |                    |         |          |       |       |
| Van der Waals =     | 81.32   | 2 kcal/mol |       | $\Delta E_{Vdw} =$ | -14.95  | kcal/mol |       |       |       |         |          |       |                    |         |          |       |       |
| Electrostatic =     | -275.91 | l kcal/mol |       | $\Delta E_{Ele} =$ | -96.46  | kcal/mol |       |       |       |         |          |       |                    |         |          |       |       |

|                     | Gly9    | Tyr10        | His13 | His14                       | Gln15   | Lys16    | Leu17    | Val18 | Gly9    | Tyr10      | Vall2 | His13                | His14      | Gln15 Lys1 | 6 Leu17 | Vall 8 |
|---------------------|---------|--------------|-------|-----------------------------|---------|----------|----------|-------|---------|------------|-------|----------------------|------------|------------|---------|--------|
| Initial Orientation |         |              |       | RS2                         |         | LS2      |          |       |         |            |       | LB1                  | RS2        |            |         |        |
| Final Orientation   | CS      | CS           | LB1   | RS1                         |         | LS2      | RS2      | RS2   | CS      | CS         |       | LB1                  | RS2        | LS2        |         |        |
|                     |         |              | LS1   | RS2                         |         |          |          |       |         |            |       | LS1                  | RS1        | RS2        |         |        |
|                     |         |              | CS    |                             |         |          |          |       |         |            |       | LS2                  |            |            |         |        |
| Total =             | 94 27   | kcal/mol     |       | AFr. =                      | -150.30 | ) kcal/m | nl       |       | 98.47   | / kcal/mol |       | ΔE <sub>2</sub> . =  | -146.1     | 1 kcal/mol |         |        |
| Van der Waak =      | 106.03  | kcal/mol     |       | $\Delta E_{1 \text{ ot}} =$ | -15.67  | 7 keal/m | -1<br>-1 |       | 104.34  | kcal/mol   |       | AE =                 | 173        | 4 kcal/mol |         |        |
| Vanuer waats –      | 205.63  | leas 1/man 1 |       | AE -                        | 125.20  | 2 1 1/m  | -1       |       | 202.44  |            |       | AE -                 | -17.5      |            |         |        |
| Electrostatic -     | -293.02 | Kcal/moi     |       | $\Delta E_{Ele} -$          | -155.50 | s kcarm  | 51       |       | -292.4  | s Kcal/mor |       | ΔL <sub>Ele</sub> –  | -132.2     | 1 Kcal/mol |         |        |
| Initial Orientation |         |              |       | LS2                         |         | CS       |          |       |         |            |       | LS2                  | RB1        |            |         |        |
| Final Orientation   |         | LS2          | RS2   | LS2                         |         | RB1      | LS1      |       | LS1     | CS         |       | LB1                  | RB1        | LB2        | RS2     | RS2    |
|                     |         |              | LS2   | LB2                         |         | RS1      |          |       |         |            |       | LS2                  | CS         | LS2        |         |        |
|                     |         |              |       |                             |         | LS1      |          |       |         |            |       | LS1                  | RS1        |            |         |        |
|                     |         |              |       |                             |         |          |          |       |         |            |       |                      | RS2        |            |         |        |
| Total =             | 98.55   | kcal/mol     |       | $\Delta E_{Tot} =$          | -146.03 | 3 kcal/m | l<br>ol  |       | 99.12   | 2 kcal/mol |       | $\Delta E_{Tot} =$   | -145.4     | 6 kcal/mol |         |        |
| Van der Waals =     | 106.87  | kcal/mol     |       | ΔE <sub>vitu</sub> =        | -14.84  | 4 kcal/m | ol       |       | 100.02  | 2 kcal/mol |       | ΔE <sub>vitu</sub> = | -21.6      | 9 kcal/mol |         |        |
| Electrostatic =     | -292.23 | kcal/mol     |       | $\Delta E_{r_1} =$          | -131.99 | 9 kcal/m | nl.      |       | -291.07 | kcal/mol   |       | $\Delta F_{r_1} =$   | -130.8     | 3 kcal/mol |         |        |
|                     |         |              |       | Bie                         |         |          |          |       |         |            |       | Eic                  |            |            |         |        |
| Initial Orientation |         |              | CS    | RS2                         |         |          |          |       |         |            |       | CS                   | LS1        |            |         |        |
| Final Orientation   | CS      | CS           | LB1   | RS2                         |         | LS2      |          |       |         |            |       | RB1                  | LS2        | RS1        |         |        |
|                     |         |              | LS1   | RS1                         |         | RS2      |          |       |         |            |       | RS1                  | LS1        | RB1        |         |        |
|                     |         |              | LS2   |                             |         |          |          |       |         |            |       | RS2                  |            | RNH        |         |        |
| Total =             | 99.51   | kcal/mol     |       | $\Delta E_{Tot} =$          | -145.07 | 7 kcal/m | ol       |       | 105.3   | kcal/mol   |       | $\Delta E_{Tot} =$   | -139.2     | 7 kcal/mol |         |        |
| Van der Waals =     | 109.29  | kcal/mol     |       | $\Delta E_{Vdw} =$          | -12.41  | l kcal/m | ol       |       | 110.47  | / kcal/mol |       | $\Delta E_{Vdw} =$   | -11.2      | 3 kcal/mol |         |        |
| Electrostatic =     | -293.14 | kcal/mol     |       | $\Delta E_{Ele} =$          | -132.90 | 0 kcal/m | ol       |       | -291.80 | ) kcal/mol |       | $\Delta E_{Ele} =$   | -131.5     | 6 kcal/mol |         |        |
|                     |         |              |       |                             |         |          |          |       |         |            |       |                      |            |            |         |        |
| Initial Orientation | DDI     |              | RB1   | LB1                         |         |          |          |       |         |            |       | LS2                  | RS2        | 1.00       |         |        |
| Final Orientation   | KBI     |              | RBI   | LS2                         |         | LSI      |          |       |         | CS         |       | LS2                  | RB1        | LB2        |         |        |
|                     |         |              | RS1   | LSI                         |         |          |          |       |         |            |       | LSI                  | RS1<br>RS2 | 1.52       |         |        |
|                     |         |              | RB2   |                             |         |          |          |       |         |            |       |                      | 102        |            |         |        |
|                     |         |              |       |                             |         |          |          |       |         |            |       |                      |            |            |         |        |
| Total =             | 106.00  | kcal/mol     |       | $\Delta E_{Tot} =$          | -138.58 | 8 kcal/m | ol       |       | 106.18  | 8 kcal/mol |       | $\Delta E_{Tot} =$   | -138.3     | 9 kcal/mol |         |        |
| Van der Waals =     | 105.86  | kcal/mol     |       | $\Delta E_{Vdw} =$          | -15.84  | 4 kcal/m | ol       |       | 107.6   | kcal/mol   |       | $\Delta E_{Vdw} =$   | -14.0      | 9 kcal/mol |         |        |
| Electrostatic =     | -288.01 | kcal/mol     |       | $\Delta E_{Ele} =$          | -127.76 | 6 kcal/m | ol       |       | -285.38 | 8 kcal/mol |       | $\Delta E_{Ele} =$   | -125.1     | 4 kcal/mol |         |        |
| Initial Orientation |         |              | RB1   | LB2                         |         |          |          |       |         |            |       | LS2                  | RB2        |            |         |        |
| Final Orientation   | LB1     | LS1          | LB1   | LB2                         |         | RS2      |          |       |         |            |       | LS2                  | RB2        | LS2        |         | RB2    |
|                     |         | LNH          | RB1   | LS1                         |         | RB1      |          |       |         |            |       | LS1                  |            |            |         |        |
|                     |         | LB1          | RB1   |                             |         |          |          |       |         |            |       |                      |            |            |         |        |
|                     |         |              | LNH   |                             |         |          |          |       |         |            |       |                      |            |            |         |        |
|                     |         |              | KNH   |                             |         |          |          |       |         |            |       |                      |            |            |         |        |
| Total =             | 107.41  | kcal/mol     |       | $\Delta E_{Tot} =$          | -137.16 | 6 kcal/m | ol       |       | 107.9   | kcal/mol   |       | $\Delta E_{Tot} =$   | -136.6     | 6 kcal/mol |         |        |
| Van der Waals =     | 97.73   | kcal/mol     |       | $\Delta E_{Vdw} =$          | -23.97  | 7 kcal/m | ol       |       | 105.29  | kcal/mol   |       | $\Delta E_{Vdw} =$   | -16.4      | 2 kcal/mol |         |        |
| Electrostatic =     | -275.24 | kcal/mol     | -     | $\Delta E_{Ele} =$          | -115.00 | 0 kcal/m | ol       |       | -282.70 | kcal/mol   |       | $\Delta E_{Ele} =$   | -122.4     | 6 kcal/mol |         |        |

|                     | Tvr10   | His13    | His14 | Gln15              | Lvs16    | Leu17 Val18 | Glv9    | Tvr10      | His13 | His14              | Gln15   | Lvs16 Le   | ul7 V | al18 | Ala21 |
|---------------------|---------|----------|-------|--------------------|----------|-------------|---------|------------|-------|--------------------|---------|------------|-------|------|-------|
| Initial Orientation |         | LS1      | CS    |                    | <u> </u> |             | - ).    |            | RS1   | CS                 |         |            |       |      |       |
| Final Orientation   | CS      | LS1      | RB1   |                    | LB1      |             | RS2     |            | RS2   | LS1                |         | RS1        |       |      |       |
|                     |         | CS       | RS2   |                    | LS2      |             |         |            | RS1   | LS2                |         |            |       |      |       |
|                     |         |          | CS    |                    | LS1      |             |         |            |       |                    |         |            |       |      |       |
|                     |         |          | RS1   |                    |          |             |         |            |       |                    |         |            |       |      |       |
| Total =             | 108.86  | kcal/mol |       | $\Delta E_{Tot} =$ | -135.72  | kcal/mol    | 110.05  | kcal/mol   |       | $\Delta E_{Tot} =$ | -134.53 | 3 kcal/mol |       |      |       |
| Van der Waals =     | 104 22  | kcal/mol |       | ΔEvite =           | -17 48   | kcal/mol    | 109.65  | kcal/mol   |       | ΔEviter =          | -12.04  | kcal/mol   |       |      |       |
| Electrostatic =     | -287.62 | kcal/mol |       | $\Delta E_{rat} =$ | -127.38  | kcal/mol    | -284 10 | ) kcal/mol |       | $\Delta E_{r_1} =$ | -123.84 | 5 kcal/mol |       |      |       |
| Licerostatic        | -207.02 | Rearmon  |       | ADEle              | -127.50  | Rearring    | -204.10 | , Kearmon  |       | ALEle              | -125.0. | Rearmon    |       |      |       |
| Initial Orientation |         |          | CS    |                    | RS2      |             |         |            |       | LB2                |         | RB2        |       |      |       |
| Final Orientation   | LS2     | RS2      | LS1   |                    | RS2      |             |         |            | RB2   | LNH                |         | RS2        | L     | .B2  | LB2   |
|                     |         | CS       | CS    |                    | RS1      |             |         |            | RS1   | LS1                |         | RB1        |       |      |       |
|                     |         |          |       |                    | CS       |             |         |            | RNH   |                    |         |            |       |      |       |
|                     |         |          |       |                    |          |             |         |            | RB1   |                    |         |            |       |      |       |
| Total =             | 110.37  | kcal/mol |       | $\Delta E_{Tot} =$ | -134.21  | kcal/mol    | 112.24  | kcal/mol   |       | $\Delta E_{Tot} =$ | -132.34 | 4 kcal/mol |       |      |       |
| Van der Waals =     | 106.66  | kcal/mol |       | $\Delta E_{Vdw} =$ | -15.04   | kcal/mol    | 103.13  | kcal/mol   |       | $\Delta E_{Vdw} =$ | -18.57  | 7 kcal/mol |       |      |       |
| Electrostatic =     | -285.89 | kcal/mol |       | $\Delta E_{E1a} =$ | -125.65  | kcal/mol    | -280.21 | kcal/mol   |       | $\Delta E_{E1a} =$ | -119.90 | 6 kcal/mol |       |      |       |
|                     |         |          |       | Lie                |          |             |         |            |       | Ele                |         |            |       |      |       |
| Initial Orientation |         | RS2      | CS    |                    |          |             |         |            | RS2   | LS2                |         |            |       |      |       |
| Final Orientation   |         | RS2      | LB1   |                    | RS1      | CS          |         |            | RB2   | LS2                |         | RS1 C      | CS    |      |       |
|                     |         |          | LS1   |                    | CS       |             |         |            | RS2   |                    |         | RS2        |       |      |       |
|                     |         |          | CS    |                    |          |             |         |            |       |                    |         | RB1        |       |      |       |
|                     |         |          |       |                    |          |             |         |            |       |                    |         | CS         |       |      |       |
| Total=              | 113.76  | kcal/mol |       | $\Delta E_{Tot} =$ | -130.82  | kcal/mol    | 114.82  | kcal/mol   |       | $\Delta E_{Tot} =$ | -129.7  | 5 kcal/mol |       |      |       |
| Van der Waals =     | 105.47  | kcal/mol |       | $\Delta E_{Vdw} =$ | -16.23   | kcal/mol    | 106.72  | kcal/mol   |       | $\Delta E_{Vdw} =$ | -14.99  | kcal/mol   |       |      |       |
| Electrostatic =     | -278.63 | kcal/mol |       | $\Delta E_{Ele} =$ | -118.39  | kcal/mol    | -279.91 | kcal/mol   |       | $\Delta E_{Ele} =$ | -119.6  | 7 kcal/mol |       |      |       |
|                     |         |          |       |                    |          |             |         |            |       |                    |         |            |       |      |       |
| Initial Orientation |         |          | LB2   | _                  | RS2      |             |         |            |       |                    |         |            |       |      |       |
| Final Orientation   |         | RB2      | LB2   |                    | RS2      | CS LB2      |         |            |       |                    |         |            |       |      |       |
|                     |         | RS1      | LNH   |                    | CS       |             |         |            |       |                    |         |            |       |      |       |
|                     |         |          |       |                    | RBI      |             |         |            |       |                    |         |            |       |      |       |
| Total =             | 116.63  | kcal/mol |       | $\Delta E_{Tot} =$ | -127.94  | kcal/mol    |         |            |       |                    |         |            |       |      |       |
| Van der Waals =     | 104.70  | kcal/mol |       | $\Delta E_{Vdw} =$ | -17.00   | kcal/mol    |         |            |       |                    |         |            |       |      |       |
| Electrostatic =     | -275.83 | kcal/mol |       | $\Delta E_{Ele} =$ | -115.59  | kcal/mol    |         |            |       |                    |         |            |       |      |       |

|                     | His14 Lys16      | Leu17 | Val18               | Phe19  | Phe20     | Ala21 | Glu22 | Asp23 | Val24 | Lys28 | Val12   | His14 (    | Gln15 | Lys16               | Leu17  | Val18   | Phe19 | Phe20 | Val24 | Lys28 |
|---------------------|------------------|-------|---------------------|--------|-----------|-------|-------|-------|-------|-------|---------|------------|-------|---------------------|--------|---------|-------|-------|-------|-------|
| Initial Orientation |                  | RB1   | LB2                 |        |           |       |       |       |       |       |         |            |       |                     | LB1    | RB2     |       |       |       |       |
| Final Orientation   | LB2 RS1          | RB1   | LB2                 |        |           |       |       |       |       |       |         | RB2        |       | LS2                 | LB1    | RB2     |       |       |       |       |
|                     | LS1 RNH          | LB1   |                     |        |           |       |       |       |       |       |         | RS2        |       | LB1                 | RB1    |         |       |       |       |       |
| Total =             | 156 16 kcal/mol  |       | ΔE <sub>π</sub> =   | -88 42 | kcal/m    | ol.   |       |       |       |       | 161.24  | 5 kcal/mol |       | ΔE <sub>4</sub> =   | -83 33 | kcal/m  | 51    |       |       |       |
| Van der Waak =      | 107.95 kcal/mol  |       | ΔE =                | -13.75 | keal/m    | 1     |       |       |       |       | 110.04  | 5 kcal/mol |       | AE =                | -11.65 | kcal/m  | 1     |       |       |       |
| Flastrostatia =     | 240.60 keal/mol  |       | AE -                | -15.75 | kool/m    | 1     |       |       |       |       | 222.7   | konl/mol   |       | AE -                | 72 47  | konl/m  | 1     |       |       |       |
| Electrostatic -     | =249.00 Kcarmor  |       | AL <sub>Ele</sub> – | -89.30 | , KCaviik | ,     |       |       |       |       | =233.7  | r Keavinoi |       | ΔL <sub>Ele</sub> – | =/3.4/ | KCaFIIK | ,1    |       |       |       |
| Initial Orientation |                  |       | LB2                 |        | RB2       |       |       |       |       |       |         |            |       |                     | LB2    |         | RB1   |       |       |       |
| Final Orientation   | LB2 LS1          | LS1   | LB2                 |        | RS2       | LB2   | LB2   |       |       |       | RB2     |            | RB2   | RB1                 | LB2    |         | RB1   | LS2   |       |       |
|                     | LS2              | LNH   |                     |        | RB2       | LB1   |       |       |       |       |         |            |       | RB2                 | LS2    |         | RS2   |       |       |       |
|                     | LS1              | LB1   |                     |        |           |       |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |
| Total =             | 161.66 kcal/mol  |       | ΔE <sub>π</sub> =   | -82.92 | kcal/m    | ol.   |       |       |       |       | 164 34  | 4 kcal/mol |       | ΔE <sub>4</sub> =   | -80 24 | kcal/m  | 51    |       |       |       |
| Van der Waals =     | 104.25 kcal/mol  |       | AE <sub>10t</sub> = | -17.45 | kcal/m    | n l   |       |       |       |       | 102.53  | kcal/mol   |       | AEve =              | -19.18 | kcal/m  | 1     |       |       |       |
| Flectrostatic =     | -233 26 kcal/mol |       | AE <sub>w</sub> =   | -73.02 | keal/m    | 1     |       |       |       |       | -226.59 | kcal/mol   |       | AE <sub>w</sub> =   | -66 35 | kcal/m  | 1     |       |       |       |
| Licenostatie        | -255.20 Kearmon  |       | ALLIE               | -75.02 | . Kearin  |       |       |       |       |       | -220.5  | / Kearinoi |       | ALLE!               | -00.55 | Kearin  | ,,    |       |       |       |
| Initial Orientation |                  | LB2   |                     |        | RB1       |       |       |       |       |       |         |            |       |                     |        |         | RB1   | LB1   |       |       |
| Final Orientation   | LB2              | LB2   |                     |        | RB1       |       |       |       |       | RS1   |         |            |       |                     |        |         | RS1   | LB1   | LS1   | LS1   |
|                     |                  |       |                     |        | LB1       |       |       |       |       | RNH   |         |            |       |                     |        |         |       | RB1   |       | LNH   |
| Total =             | 167 30 kcal/mol  |       | ΔE <sub>7.1</sub> = | -77 27 | kcal/m    | 51    |       |       |       |       | 172.5   | 5 kcal/mol |       | ΔE <sub>7</sub> =   | -72.02 | kcal/m  | 51    |       |       |       |
| Van der Waals =     | 108.22 kcal/mol  |       | ΔE <sub>10t</sub> = | -13 49 | kcal/m    | n l   |       |       |       |       | 110.90  | 5 kcal/mol |       | ΔE <sub>10t</sub> = | -10.74 | kcal/m  | ol.   |       |       |       |
| Electrostatic =     | -233 09 kcal/mol |       | $\Delta E_{E1a} =$  | -72.84 | kcal/m    | n l   |       |       |       |       | -223.03 | 2 kcal/mol |       | $\Delta E_{vaw} =$  | -62.78 | kcal/m  | ol.   |       |       |       |
|                     |                  |       | Lie                 |        |           | -     |       |       |       |       |         |            |       | Eic                 |        |         |       |       |       |       |
| Initial Orientation |                  |       |                     | RB2    | LB1       |       |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |
| Final Orientation   |                  | LS2   |                     |        | RB2       |       |       | RB2   | RS2   | RS2   |         |            |       |                     |        |         |       |       |       |       |
|                     |                  |       |                     |        | RS2       |       |       |       |       | RB2   |         |            |       |                     |        |         |       |       |       |       |
|                     |                  |       |                     |        | RB1       |       |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |
|                     |                  |       |                     |        | CS        |       |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |
|                     |                  |       |                     |        | 1.52      |       |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |
| Total =             | 179.19 kcal/mol  |       | $\Delta E_{Tot} =$  | -65.39 | kcal/m    | ol    |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |
| Van der Waals =     | 108.95 kcal/mol  |       | $\Delta E_{Vdw} =$  | -12.75 | kcal/m    | ol    |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |
| Electrostatic =     | -204.46 kcal/mol |       | $\Delta E_{Ele} =$  | -44.22 | kcal/m    | ol    |       |       |       |       |         |            |       |                     |        |         |       |       |       |       |

|                     | His13      | His14       | Gln15 Lys16         | Leul7  | Val18 Phe   | 19 Phe20 Al | la21 | Gly9    | Tyr10     | His13 | His14              | Gln15   | Lys16     | Leul 7 | Val18 1 | Phe19 Phe | 20 Ala21 |
|---------------------|------------|-------------|---------------------|--------|-------------|-------------|------|---------|-----------|-------|--------------------|---------|-----------|--------|---------|-----------|----------|
| Initial Orientation | RB2        |             |                     |        | LB2         |             |      |         |           |       |                    |         | RS2       |        | LB2     |           |          |
| Final Orientation   | RS2        | LS1         | RS1                 | LS2    |             | L           | .B2  |         |           | RS1   | LS1                |         | RS2       | LS1    | LS1     |           | LB2      |
|                     | RB1        |             | RS2                 |        |             |             |      |         |           | RNH   | LB2                |         |           |        | LB2     |           |          |
|                     |            |             |                     |        |             |             |      |         |           | RB1   |                    |         |           |        |         |           |          |
|                     |            |             |                     |        |             |             |      |         |           |       |                    |         |           |        |         |           |          |
| Total =             | 108.84     | 4 kcal/mol  | $\Delta E_{Tot} =$  | -135.7 | 4 kcal/mol  |             |      | 118.88  | kcal/m    | ol    | $\Delta E_{Tot} =$ | -125.70 | ) keal/m  | ol     |         |           |          |
| Van der Waals =     | 105.35     | 5 kcal/mol  | $\Delta E_{Vdw} =$  | -16.3  | 5 kcal/mol  |             |      | 106.61  | kcal/m    | ol    | $\Delta E_{Vdw} =$ | -15.09  | kcal/m    | ol     |         |           |          |
| Electrostatic =     | -285.60    | ) kcal/mol  | $\Delta E_{Ele} =$  | -125.3 | 6 kcal/mol  |             |      | -276.19 | kcal/m    | ol    | $\Delta E_{Ele} =$ | -115.95 | 5 kcal/m  | ol     |         |           |          |
| Initial Orientation |            |             | DS3                 |        | ID          | n           |      |         |           |       |                    |         | 1.52      | 002    |         |           |          |
| Final Orientation   | RS1        |             | LBI                 |        | LB          | 12          |      |         |           | LS2   | RS2                |         | LS2       | RS2    |         |           |          |
|                     | RS2        |             | RB1                 |        |             |             |      |         |           |       |                    |         | LS1       |        |         |           |          |
|                     |            |             | RS2                 |        |             |             |      |         |           |       |                    |         | LB1       |        |         |           |          |
|                     |            |             |                     |        |             |             |      |         |           |       |                    |         | RS2       |        |         |           |          |
| Tatal -             | 110.05     | 2 1.001/mol | AE -                | 125.5  | 0.1.001/mo1 |             |      | 121.80  | 1.001/000 | .1    | AE -               | 122.60  | ) 1.001/m | ~1     |         |           |          |
| Total -             | 119.00     |             | $\Delta E_{Tot} =$  | -123.3 |             |             |      | 121.69  | kcarink   | 1     | $\Delta E_{Tot} =$ | -122.05 | Kcal/III  | .1     |         |           |          |
| van der waais =     | 113.42     |             | $\Delta E_{Vdw} =$  | -8.2   | 8 kcal/mol  |             |      | 113.12  | kcal/m    |       | $\Delta E_{Vdw} =$ | -8.50   | s keal/m  |        |         |           |          |
| Electrostatic =     | -279.96    | 5 kcal/mol  | $\Delta E_{Ele} =$  | -119.7 | 2 kcal/mol  |             |      | -277.75 | kcal/m    | ol    | $\Delta E_{Ele} =$ | -117.51 | l kcal/m  | ol     |         |           |          |
| Initial Orientation |            |             | 1.82                |        | RB2         |             |      |         |           | LSI   |                    |         |           |        | RBI     |           |          |
| Final Orientation   | LS2        | RB2         | LS2                 |        | RB2         |             |      | LS1     | LS1       | LS1   | RB1                |         | LB1       | CS     | RB1     |           | RS1      |
|                     |            | RS2         | LNH                 |        |             |             |      |         |           |       | LB1                |         | LS2       |        |         |           |          |
|                     |            |             | LB1                 | _      |             |             |      |         |           |       | CS                 |         |           |        |         |           |          |
|                     |            |             | RS2                 |        |             |             |      |         |           |       | RNH                |         | CS        |        |         |           |          |
| Total =             | 122.12     | 2 kcal/mol  | $\Delta E_{Tot} =$  | -122.4 | 6 kcal/mol  |             |      | 125.60  | kcal/m    | ol    | $\Delta E_{Tot} =$ | -118.98 | 3 kcal/m  | ol     |         |           |          |
| Van der Waals =     | 112.06     | 5 kcal/mol  | ΔE <sub>Vdw</sub> = | -9.6   | 5 kcal/mol  |             |      | 102.17  | kcal/m    | ol    | $\Delta E_{Vdw} =$ | -19.53  | 3 kcal/m  | ol     |         |           |          |
| Electrostatic =     | -274.47    | 7 kcal/mol  | $\Delta E_{Ele} =$  | -114.2 | 3 kcal/mol  |             |      | -262.57 | kcal/m    | ol    | $\Delta E_{Ele} =$ | -102.33 | 3 kcal/m  | ol     |         |           |          |
|                     |            |             |                     |        |             |             |      |         |           |       |                    |         |           |        |         |           |          |
| Initial Orientation |            | _           | RB2                 | _      | LB2         |             |      |         |           | RS2   |                    |         |           | LB2    |         |           |          |
| Final Orientation   | RS1        | LB2         | RS2                 |        | LB2         | L           | .B2  | RS1     | RS2       | RS2   |                    |         | LS2       | LB2    |         |           |          |
|                     |            |             | RBI                 |        |             |             |      |         | KB2       | RSI   |                    |         | LBI       |        |         |           |          |
|                     |            |             | KNH                 |        |             |             |      |         |           |       |                    |         |           |        |         |           |          |
| Total =             | 125.77     | 7 kcal/mol  | $\Delta E_{Tot} =$  | -118.8 | 0 kcal/mol  |             |      | 127.71  | kcal/m    | ol    | $\Delta E_{Tot} =$ | -116.87 | 7 kcal/m  | ol     |         |           |          |
| Van der Waals =     | 108.75     | 5 kcal/mol  | $\Delta E_{Vdw} =$  | -12.9  | 5 kcal/mol  |             |      | 112.24  | kcal/m    | ol    | $\Delta E_{Vdw} =$ | -9.47   | 7 kcal/m  | ol     |         |           |          |
| Electrostatic =     | -267.81    | l kcal/mol  | $\Delta E_{Ele} =$  | -107.5 | 7 kcal/mol  |             |      | -267.96 | kcal/m    | ol    | $\Delta E_{Ele} =$ | -107.71 | l kcal/m  | ol     |         |           |          |
|                     |            |             |                     |        |             |             |      |         |           |       |                    |         |           |        |         |           |          |
| Initial Orientation | LS2        |             | LDI                 | RB2    |             |             |      |         |           | DC1   |                    |         | RB1       |        |         | LB2       |          |
| Final Orientation   | 1.82       |             | LBI                 | RS2    |             |             |      |         |           | RSI   |                    |         | KS2       |        |         | 1.82      |          |
|                     |            |             | K32                 |        |             |             |      |         |           |       |                    |         | LDI       |        |         | LD2       |          |
| Total =             | 127.73     | 3 kcal/mol  | $\Delta E_{Tot} =$  | -116.8 | 5 kcal/mol  |             |      | 132.82  | kcal/m    | ol    | $\Delta E_{Tot} =$ | -111.76 | 5 kcal/m  | ol     |         |           |          |
| Van der Waals =     | 109.47     | 7 kcal/mol  | ΔE <sub>Vdw</sub> = | -12.2  | 3 kcal/mol  |             |      | 114.73  | kcal/m    | ol    | $\Delta E_{Vdw} =$ | -6.97   | 7 kcal/m  | ol     |         |           |          |
| Electrostatic =     | -265.92    | 2 kcal/mol  | $\Delta E_{Ele} =$  | -105.6 | 8 kcal/mol  |             |      | -265.21 | kcal/m    | ol    | $\Delta E_{Ele} =$ | -104.97 | 7 kcal/m  | ol     |         |           |          |
|                     |            |             |                     |        |             |             |      |         |           |       |                    |         |           |        |         |           |          |
| Initial Orientation | RS2        |             |                     |        | LB          | 12          |      |         |           | RB2   |                    |         |           | LB1    |         |           |          |
| Final Orientation   | RS1<br>RS2 |             | RS2                 |        | LB          | 32          |      | RB2     | RB2       | RB2   | RNH                |         | LSI       | LB1    |         |           |          |
|                     | RS2        |             |                     |        |             |             |      |         |           |       | RSI                |         | LNH       |        |         |           |          |
|                     |            |             |                     |        |             |             |      |         |           |       |                    |         | RB1       |        |         |           |          |
|                     |            |             |                     |        |             |             |      |         |           |       |                    |         |           |        |         |           |          |
| Total =             | 135.23     | 3 kcal/mol  | $\Delta E_{Tot} =$  | -109.3 | 5 kcal/mol  |             |      | 136.87  | kcal/m    | ol    | $\Delta E_{Tot} =$ | -107.70 | ) kcal/m  | ol     |         |           |          |
| Van der Waals =     | 115.56     | 5 keal/mol  | $\Delta E_{Vdw} =$  | -6.1   | 4 kcal/mol  |             |      | 104.65  | kcal/m    | ol    | $\Delta E_{Vdw} =$ | -17.05  | 5 kcal/m  | ol     |         |           |          |
| Electrostatic =     | -267.74    | 4 kcal/mol  | $\Delta E_{Ele} =$  | -107.5 | 0 kcal/mol  |             |      | -255.22 | kcal/m    | ol    | $\Delta E_{Ele} =$ | -94.98  | 8 kcal/m  | ol     |         |           |          |

|                     | Gly9 Tyr10        | His13 His14                            | Gln15 Lys16 Leu17 | Val18 Phe19 Phe20 | Val12 His13 His14 Gln15              | Lys16 Leu17 Vall | 8 Phe19 Phe20 |
|---------------------|-------------------|----------------------------------------|-------------------|-------------------|--------------------------------------|------------------|---------------|
| Initial Orientation |                   | LS1                                    | RB2               |                   |                                      | CS               | RB2           |
| Final Orientation   |                   | LB2 LB2                                | LB1 RB2           |                   | LS2 LS2                              | LB1 RS2          | RS2 RB2       |
|                     |                   | 151                                    | LNH               |                   | LSI                                  | 1.52             |               |
|                     |                   |                                        | RNH               |                   |                                      |                  |               |
| Total =             | 127.40 kool/mol   | AE -                                   | 107.18 kaal/mal   |                   | 142.08 kaal/mal AE -                 | 102 50 kaal/mal  |               |
| Von der Week =      | 107.18 keel/mol   | $\Delta E_{Tot} =$                     | -107.18 Kcal/mol  |                   | $142.06$ Kcallioi $\Delta E_{Tot} =$ | -102.30 Kcal/mol |               |
| Van der waars =     | 264.72 keel/mol   | $\Delta E_{Vdw} =$                     | -14.52 Kcal/mol   |                   | $\Delta E_{Vdw} =$                   | -14.95 Kcal/mol  |               |
| Electrostatic -     | -204.72 Kcal/IIDI | $\Delta E_{Ele} -$                     | -104.48 Kcal/II01 |                   | -255.05 Kcarmon $\Delta E_{Ele} -$   | -94.81 Kcal/II01 |               |
| Initial Orientation |                   |                                        | RB1               | LB2               | LB2                                  |                  | RB2           |
| Final Orientation   | LS1               | LS1 LB2                                | RB1 LS2           | LB2               | LNH LB2                              | RB1              | RB2           |
|                     |                   | LBI LSI                                | LBI LB2<br>RNH    |                   | LSI<br>LB2                           | LB1              |               |
|                     |                   | LINI                                   | LNH               |                   | 102                                  | 1.02             |               |
| Total =             | 142 47 kcal/mol   | $\Delta E_{Tot} =$                     | -102.11 kcal/mol  |                   | 143 74 kcal/mol $\Delta E_{\pi} =$   | -100 84 kcal/mol |               |
| Van der Waals =     | 105.05 kcal/mol   | $\Delta E_{avbu} =$                    | -16 66 kcal/mol   |                   | 111 76 kcal/mol $\Delta E_{v,kr} =$  | -9 94 kcal/mol   |               |
| Electrostatic =     | -248 71 kcal/mol  | $\Delta E_{raw} =$                     | -88 47 kcal/mol   |                   | -252 84 kcal/mol $\Delta E_{Ele} =$  | -92.60 kcal/mol  |               |
| Electrostate        | 210.71 Kournor    | Ele                                    |                   |                   | 202.01 Real not ElbEle               | 2.00 Kellinor    |               |
| Initial Orientation |                   | CS                                     | LB2               |                   | RS1                                  | LB2              |               |
| Final Orientation   | CS                | LB1                                    | LS1 LB2           | LS2               | RB2<br>BB1                           | RS2 LB2          |               |
|                     |                   | CS                                     |                   |                   | RNH                                  | KBI              |               |
|                     |                   | LS1                                    |                   |                   | RS1                                  |                  |               |
| Total =             | 144.59 kcal/mol   | $\Delta E_{Tot} =$                     | -99.99 kcal/mol   |                   | 145.72 kcal/mol $\Delta E_{Tot} =$   | -98.86 kcal/mol  |               |
| Van der Waals =     | 109.13 kcal/mol   | $\Delta E_{Vdw} =$                     | -12.57 kcal/mol   |                   | 107.64 kcal/mol $\Delta E_{Vdw} =$   | -14.06 kcal/mol  |               |
| Electrostatic =     | -247.97 kcal/mol  | $\Delta E_{Ele} =$                     | -87.73 kcal/mol   |                   | -251.98 kcal/mol $\Delta E_{Ele} =$  | -91.74 kcal/mol  |               |
| Initial Orientation |                   | RB2                                    |                   | LB2               | 1.51                                 | RB1              |               |
| Final Orientation   |                   | RS2                                    | LB1 LB2           | LB2               | LS1                                  | RB1 RS1          |               |
|                     |                   | RB2                                    | RB1 LS1           |                   |                                      | LB1              |               |
|                     |                   |                                        | RS2               |                   |                                      |                  |               |
| Total =             | 146.92 kcal/mol   | $\Delta E_{Tot} =$                     | -97.65 kcal/mol   |                   | 148.25 kcal/mol $\Delta E_{Tot} =$   | -96.33 kcal/mol  |               |
| Van der Waals =     | 110.40 kcal/mol   | $\Delta E_{Vdw} =$                     | -11.31 kcal/mol   |                   | 117.81 kcal/mol $\Delta E_{Vdw} =$   | -3.89 kcal/mol   |               |
| Electrostatic =     | -251.28 kcal/mol  | $\Delta E_{Ele} =$                     | -91.04 kcal/mol   |                   | -258.28 kcal/mol $\Delta E_{Ele} =$  | -98.04 kcal/mol  |               |
| Initial Orientation |                   | RB2                                    | LB2               |                   |                                      | CS RB1           |               |
| Final Orientation   | RB2               | RS1                                    | RS2 LS2           |                   | LS2                                  | LB1 RS1          |               |
|                     |                   | RS2                                    | RB1               |                   |                                      | LS1              |               |
|                     |                   |                                        |                   |                   |                                      | RB1<br>RS1       |               |
| T-+-1               | 149.46 1 1        | ٨E                                     |                   |                   | 149.76 heal/mail +E                  | 05.82 haal/a     |               |
| Von der Weel-       | 148.46 Kcal/mol   | $\Delta E_{Tot} =$                     | -90.12 KCal/mol   |                   | 148./0 Kcal/mol $\Delta E_{Tot} =$   | -95.82 Kcal/mol  |               |
| Electrostatic =     | -257.56 kcal/mol  | $\Delta E_{Vdw} = \Delta E_{E_{10}} =$ | -97.31 kcal/mol   |                   | -252.04 kcal/mol $\Delta E_{Vdw} =$  | -91.80 kcal/mol  |               |
|                     |                   | Lie                                    |                   |                   | - Ele                                |                  |               |
| Initial Orientation |                   | LBI                                    | 1.62              | RB2               |                                      |                  |               |
| 1 and Orientation   |                   | LNH                                    | 1.52              | ND2               |                                      |                  |               |
|                     |                   | LS1                                    |                   |                   |                                      |                  |               |
| Total =             | 152.12 kcal/mol   | $\Delta E_{Tot} =$                     | -92.46 kcal/mol   |                   |                                      |                  |               |
| Van der Waals =     | 106.49 kcal/mol   | $\Delta E_{Vdw} =$                     | -15.22 kcal/mol   |                   |                                      |                  |               |
| Electrostatic =     | -243.86 kcal/mol  | $\Delta E_{Ele} =$                     | -83.62 kcal/mol   |                   |                                      |                  |               |
|                     |                   | LIC                                    |                   |                   |                                      |                  |               |

The gas phase minimization of solapsone with  $\beta$ -amyloid indicated that it was indeed capable of binding to the **HHQK**, LVFF and overlapping regions on the protein in an energetically favourable fashion. The electrostatic energies were much lower than the van der Waals energies.

These systems were selected for optimization in an aqueous environment based on two criteria: they must have the lowest energy possible, and binding interactions must occur with at least two amino acids in the  $A\beta$  region of interest.

## 6.3.3 Results of the Solution Phase Optimization of Solapsone with $\beta$ - Amyloid

Minimization of the solvated systems followed the same process as in section 6.2.3. The energies of the optimized  $\beta$ -amyloid conformers are listed in Appendix 6, and the energies of solapsone upon minimization in a solvated environment (and ignoring the solvent contribution) are summarized in Table 6.43.

|           | Energ     | ies (kca  | l/mol)    |
|-----------|-----------|-----------|-----------|
|           | $E_{tot}$ | $E_{vdw}$ | $E_{ele}$ |
| Solapsone | 93.96     | 46.55     | 21.82     |

 Table 6.43: The solution phase energies of solapsone

The energies were calculated using equations 6.4-6.6 (these were measured ignoring solvent contributions and with constrained protein backbones), both the measured and calculated energies are summarized in the following tables. The amino acids are indicated by their three letter abbreviations, and the initial and final orientations of solapsone are given. Hydrogen bonds are represented in orange, cation- $\pi$  interactions in green, and  $\pi$ - $\pi$  in blue. Purple, lime green, and yellow are used for interactions with the protein backbone, at the C=O. –CH-, and –NH- groups. Potential binding occurring with the –CH<sub>2</sub>- chain of the amino acid side chains is denoted by indigo-coloured cells.

| Little inter                              | His6            | Gly9                 | Tyr10      | His13      | His14 | Gln15 | Lys16      | Leu17 | Phe20      | Ala21 | Lys28 | His6   | Gly9                 | Tyr10    | His13       | His14 | Gln15 | Lys16      | Leu17      | Phe20      |
|-------------------------------------------|-----------------|----------------------|------------|------------|-------|-------|------------|-------|------------|-------|-------|--------|----------------------|----------|-------------|-------|-------|------------|------------|------------|
| Initial Orientation                       | LS2<br>LS1      | LSI                  | LSI        | LB1        | _     |       | RS1<br>RS2 | KSI   | KSI        |       |       | KSI    | KSI                  | KSI      | LB1         |       |       | LSI        | LS2<br>LS1 | LS2<br>LS1 |
|                                           | LB2             |                      |            | LSI        |       |       |            |       |            |       |       |        |                      |          | RNH<br>RS1  |       |       |            | LB1        |            |
| Final Orientation                         | LS2             |                      | LS1        | RB1        |       |       | RS1        | RS1   | RS1        |       |       | RS1    | RS1                  | RS1      | RBI         |       |       | LS1        | LSI        | LS1        |
|                                           |                 |                      |            | LB1        |       |       | RS2        |       |            |       |       |        |                      |          | RS1         |       |       |            | LS2        | LS2        |
|                                           |                 |                      |            | LS1        |       |       |            |       |            |       |       |        |                      |          | RNH<br>I B1 |       |       |            |            |            |
|                                           |                 |                      |            |            |       |       |            |       |            |       |       |        |                      |          |             |       |       |            |            |            |
| Total =<br>Van der Waak =                 | -76.95          | kcal/mol             |            |            |       |       |            |       |            |       |       | -24.6  | 0 kcal/m             | ol       |             |       |       |            |            |            |
| Electrostatic =                           | -314.60         | kcal/mol             |            |            |       |       |            |       |            |       |       | -293.7 | 9 kcal/m             | ol       |             |       |       |            |            |            |
|                                           |                 |                      |            |            |       |       |            |       |            |       |       |        |                      |          |             |       |       |            |            |            |
| $\Delta E_{Tot} =$                        | -178.85         | kcal/mol             |            |            |       |       |            |       |            |       |       | -126.5 | 0 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Vdw} = $<br>$\Delta E_{rdv} =$ | -124 50         | kcal/mol             |            |            |       |       |            |       |            |       |       | -103.6 | 4 kcal/m             | ol       |             |       |       |            |            |            |
| rie                                       |                 |                      |            |            |       | _     |            |       |            |       |       |        |                      |          |             |       |       |            |            |            |
| Initial Orientation                       |                 |                      | LB2        | LB1        | LSI   |       | RS1        | RS1   | RS1        |       |       |        | RS1                  | RS1      | RBI         |       |       | LS1        |            |            |
|                                           |                 |                      |            | LS1<br>LS2 |       |       | R52        | LSI   |            |       |       |        |                      |          | RS2         |       |       | RB1        |            |            |
| P: 10                                     |                 |                      |            |            | 1.01  |       | 200        | D.C.I | DOL        |       |       | D.C.I  | DOL                  | DOL      | RS1         |       |       | CS         |            | 1.03       |
| Final Orientation                         |                 |                      | LS2<br>LB2 | LB1<br>LS1 | LSI   |       | RS2<br>RS1 | LSI   | KSI        |       |       | KSI    | KSI                  | KSI      | CS          |       |       | LSI<br>LS2 |            | 1.52       |
|                                           |                 |                      |            | LS2        |       |       |            |       |            |       |       |        |                      |          | RS1         |       |       |            |            |            |
|                                           |                 |                      |            |            |       |       |            |       |            |       |       |        |                      |          | RS2         |       |       |            |            |            |
| Total =                                   | -55.15          | kcal/mol             |            |            |       |       |            |       |            |       |       | -65.1  | 8 kcal/m             | ol       |             |       |       |            |            |            |
| Van der Waals =<br>Electrostatic =        | -309.14         | kcal/mol<br>kcal/mol |            |            |       |       |            |       |            |       |       | -307.2 | 7 kcal/m<br>0 kcal/m | ol<br>ol |             |       |       |            |            |            |
|                                           |                 |                      |            |            |       |       |            |       |            |       |       |        |                      |          |             |       |       |            |            |            |
| $\Delta E_{Tot} =$                        | -157.06         | kcal/mol             |            |            |       |       |            |       |            |       |       | -167.0 | 8 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Vdw} =$                        | -28.01          | kcal/mol             |            |            |       |       |            |       |            |       |       | -25.4  | 6 kcal/m             | ol       |             |       |       |            |            |            |
| ΔE <sub>Ele</sub> –                       | -119.04         | Kcarmoi              |            |            |       |       |            |       |            |       |       | -11/.1 | 0 KCarin             | 01       |             |       |       |            |            |            |
| Initial Orientation                       |                 |                      | RS1        | LS1        | RS2   |       | LS2        |       | LB2        |       |       |        |                      | RB2      | RS2         |       |       | LS2        | CS         | LB1        |
|                                           |                 |                      | RS2        | RB1<br>RNH |       |       | LSI        |       |            |       |       |        |                      |          | RS1<br>RB1  |       |       | LB2        | LBI        | LNH<br>LS1 |
|                                           |                 |                      |            | RS2        |       |       |            |       |            |       |       |        |                      |          |             |       |       | _          |            | LB2        |
| Final Orientation                         |                 |                      | RS2        | LB1<br>RB1 | RS2   |       | LS2<br>LS1 | RB2   | LB2<br>LS2 |       |       |        |                      |          | RS2<br>RS1  |       |       | LB1<br>LS2 | CS<br>LB1  | LB1<br>INH |
|                                           |                 |                      |            | RS2        |       |       | 1.01       |       | 1.02       |       |       |        |                      |          | RB1         |       |       | LB2        | 2.51       | LSI        |
|                                           |                 |                      |            | RB2        |       |       |            |       |            |       |       |        |                      |          |             |       |       |            |            |            |
| Total =                                   | -60.47          | kcal/mol             |            |            |       |       |            |       |            |       |       | -60.7  | 1 kcal/m             | ol       |             |       |       |            |            |            |
| Van der Waals =                           | 71.39           | kcal/mol             |            |            |       |       |            |       |            |       |       | 71.4   | 8 kcal/m             | ol       |             |       |       |            |            |            |
| Electrostatic -                           | -304.93         | Kcarmoi              |            |            |       |       |            |       |            |       |       | -302.8 | 4 KCalin             | 01       |             |       |       |            |            |            |
| $\Delta E_{Tot} =$                        | -162.37         | kcal/mol             |            |            |       |       |            |       |            |       |       | -162.6 | 2 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Vdw} =$                        | -27.04          | kcal/mol             |            |            |       |       |            |       |            |       |       | -26.9  | 5 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Ele} =$                        | -114.83         | kcal/mol             |            |            |       |       |            |       |            |       |       | -112.7 | 4 kcal/m             | 01       |             |       |       |            |            |            |
| Initial Orientation                       |                 |                      |            | LS1        |       |       | LB1        | RS1   | RB1        |       | RS2   |        |                      | RS2      | LB1         | RB2   |       | LB2        | LS2        | LB2        |
|                                           |                 |                      |            |            |       |       | LS1<br>LS2 |       | RS2<br>RS1 |       |       |        |                      |          | LS2<br>LS1  |       |       | LS2        | LB1        |            |
| Final Orientation                         |                 |                      |            | LS1        |       |       | LB1        | RS1   | CS         | RS1   | RS2   |        |                      | RS2      | LB1         | RB2   |       | LB2        | LS2        | LB2        |
|                                           |                 |                      |            |            |       |       | LS2        |       | RB1<br>RS1 |       |       |        |                      |          | LS2         |       |       | LS2        | RB1        |            |
|                                           |                 |                      |            |            |       |       | 1.51       |       | RS2        |       |       |        |                      |          | 1.51        |       |       |            |            |            |
| Total -                                   | 50.97           | kool/mol             |            |            |       |       |            |       |            |       |       | 22.0   | 2 kool/m             | al       |             |       |       |            |            |            |
| Van der Waals =                           | -50.87<br>74.94 | kcal/mol             |            |            |       |       |            |       |            |       |       | -32.9  | 8 kcal/m             | ol       |             |       |       |            |            |            |
| Electrostatic =                           | -305.18         | kcal/mol             |            |            |       |       |            |       |            |       |       | -308.3 | 0 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Tot} =$                        | -152.77         | kcal/mol             |            |            |       |       |            |       |            |       |       | -134.8 | 3 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Vdw} =$                        | -23.49          | kcal/mol             |            |            |       |       |            |       |            |       |       | -19.1  | 5 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Ele} =$                        | -115.08         | kcal/mol             |            |            |       |       |            |       |            |       |       | -118.2 | 0 kcal/m             | ol       |             |       |       |            |            |            |
| Initial Orientation                       |                 |                      |            | RS2        |       |       | LS2        | RS2   | LB2        |       |       |        |                      | LB2      | LB1         | LS1   |       | RS1        | RB1        | RS1        |
|                                           |                 |                      |            | RS1        |       |       | LS1        |       | LS2        |       |       |        |                      | LS2      | LS1         |       |       |            |            |            |
| Final Orientation                         |                 |                      |            | RS2        |       |       | 1.52       | RS2   | 1.52       |       |       |        |                      | 1.52     | CS<br>RB1   | LS1   |       | RS1        | RBI        | RS1        |
|                                           |                 |                      |            | RS1        |       |       | LS1        | 102   | 2.02       |       |       |        |                      | LB2      | LB1         | 1.01  |       | ROI        | LSI        | 1001       |
|                                           |                 |                      |            |            |       |       |            |       |            |       |       |        |                      |          | LS1         |       |       |            |            |            |
| Total =                                   | -38.65          | kcal/mol             |            |            |       |       |            |       |            |       |       | 24.1   | 0 kcal/m             | ol       |             |       |       |            |            |            |
| Van der Waals =                           | 85.14           | kcal/mol             |            |            |       |       |            |       |            |       |       | 82.8   | 2 kcal/m             | ol       |             |       |       |            |            |            |
| Licenosidue -                             | -300.36         | KCar11101            |            |            |       |       |            |       |            |       |       | -209.3 | i Kcarm              |          |             |       |       |            |            |            |
| $\Delta E_{Tot} =$                        | -140.56         | kcal/mol             |            |            |       |       |            |       |            |       |       | -77.8  | 1 kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Vdw} =$                        | -13.29          | kcal/mol             |            |            |       |       |            |       |            |       |       | -15.6  | l kcal/m             | ol       |             |       |       |            |            |            |
| $\Delta E_{Ele} =$                        | -110.46         | kcal/mol             |            |            |       |       |            |       |            |       |       | -99.2  | 1 kcal/m             | ol       |             |       |       |            |            |            |

|                           | Tyr10 V   | Val12  | His13    | His14 | Gln15 | Lys16      | Leu17 | Val18 | Phe19 | Phe20 | Ala21 | Lys28 | His13      | Lys16    | Leu17 | Val18 Phe19 | Phe20 | Val24 | Lys28 |
|---------------------------|-----------|--------|----------|-------|-------|------------|-------|-------|-------|-------|-------|-------|------------|----------|-------|-------------|-------|-------|-------|
| Initial Orientation       |           | RS1    | LS1      |       | RS1   | RS2        |       |       | RS1   | LB1   |       |       | LS2        | LS1      | LB2   |             | RS2   | RB2   | RS2   |
|                           |           |        |          |       |       | RB1        |       |       | RB1   | LNH   |       |       | LS1        |          |       |             | RB2   |       |       |
|                           |           |        |          |       |       | RS1        |       |       | CS    |       |       |       |            |          |       |             |       |       |       |
|                           |           |        |          |       |       | LB1        |       |       |       |       |       |       |            |          |       |             |       |       |       |
|                           |           |        |          |       |       | LSI        |       |       |       |       |       |       |            |          |       |             |       |       |       |
| Final Orientation         |           | DS1    | 151      |       | DS1   | RS2        |       |       | CS    | INH   |       |       | LB2        | 151      | 182   |             | PS2   | PB2   | PS2   |
| I har orientation         |           | NO1    | LOI      |       | Rot   | LB1        |       |       | RB1   | LB1   |       |       | LD2<br>LS1 | 2.51     | LSI   |             | 102   | RD2   | RB2   |
|                           |           |        |          |       |       | RB1        |       |       | RS1   |       |       |       |            |          |       |             |       |       |       |
|                           |           |        |          |       |       | RS1        |       |       |       |       |       |       |            |          |       |             |       |       |       |
| Total -                   | 52.03 k   | ool/m  | .1       |       |       |            |       |       |       |       |       |       | 25.07      | 7 kool/m | al    |             |       |       |       |
| Van der Waak =            | -32.03 K  | cal/m  | n<br>J   |       |       |            |       |       |       |       |       |       | -33.9      | kcal/m   | ol    |             |       |       |       |
| Electrostatic =           | -292.54 k | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -288.04    | 4 kcal/m | ol    |             |       |       |       |
|                           |           |        |          |       |       |            |       |       |       |       |       |       |            |          |       |             |       |       |       |
| $\Delta E_{Tot} =$        | -153.93 k | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -137.88    | 8 kcal/m | ol    |             |       |       |       |
| $\Delta E_{Vdw} =$        | -26.55 k  | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -26.05     | 5 kcal/m | ol    |             |       |       |       |
| $\Delta E_{Ele} =$        | -102.44 k | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -97.94     | 4 kcal/m | ol    |             |       |       |       |
|                           |           |        |          |       |       |            |       |       |       |       |       |       |            |          |       |             |       |       |       |
|                           |           |        |          |       |       |            |       |       |       |       |       |       |            |          |       |             | ~~    |       |       |
| Initial Orientation       |           |        |          | LB2   |       |            |       |       |       |       |       |       | LS2        | LS2      | LSI   |             | CS    |       | RSI   |
|                           |           |        |          | LB2   |       |            |       |       |       |       |       |       | LSI        | LSI      |       |             | KBI   |       |       |
| Final Orientation         | RB2       |        | LS1      | LB2   |       |            | RB1   |       |       |       | RB2   | RB2   | LS1        | LS2      | LS1   |             | CS    |       | RS1   |
|                           | LS1       |        |          | LB2   |       |            | LB1   |       |       |       |       | RS2   | LS2        | LS1      |       |             | RB1   |       | 2     |
|                           |           |        |          | LS1   |       |            |       |       |       |       |       |       |            | LB1      |       |             |       |       |       |
| <b>T</b> ( )              | 12 (0.1   |        |          |       |       |            |       |       |       |       |       |       | 25.55      |          |       |             |       |       |       |
| Iotal =<br>Von der Week = | -43.69 K  | cal/mc | )I<br>.1 |       |       |            |       |       |       |       |       |       | -35.5      | / kcal/m |       |             |       |       |       |
| Flectrostatic =           | -277 36 k | cal/mc | n<br>d   |       |       |            |       |       |       |       |       |       | -301.03    | 7 kcal/m | ol    |             |       |       |       |
| Liebuosaale               | 277.50 K  | curin  |          |       |       |            |       |       |       |       |       |       | 501.0      | , nour m |       |             |       |       |       |
| $\Delta E_{Tot} =$        | -145.60 k | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -137.47    | 7 kcal/m | ol    |             |       |       |       |
| $\Delta E_{Vdw} =$        | -31.02 k  | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -13.80     | ) kcal/m | ol    |             |       |       |       |
| $\Delta E_{Ele} =$        | -87.26 k  | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -110.93    | 7 kcal/m | ol    |             |       |       |       |
|                           |           |        |          |       |       |            |       |       |       |       |       |       |            |          |       |             |       |       |       |
|                           |           |        |          |       |       |            |       |       |       |       |       |       |            |          |       |             |       |       |       |
| Initial Orientation       |           |        | RS2      |       |       | LS2        | RS2   |       | LB2   | RS2   |       |       |            | RS2      | LB2   |             | LS2   |       | LS1   |
|                           |           |        |          |       |       | LNH        | RB2   |       |       |       |       |       |            |          |       |             | LB1   |       | LS2   |
|                           |           |        |          |       |       | LB1        |       |       |       |       |       |       |            |          |       |             | RB1   |       |       |
|                           |           |        |          |       |       | RS2        |       |       |       |       |       |       |            |          |       |             |       |       |       |
| Final Orientation         |           |        | RB2      |       |       | RS2        | RB2   |       | LB2   | RS2   |       |       |            | RS2      |       |             | LS2   |       | LB1   |
|                           |           |        | RS2      |       |       | LBI        | RS2   |       | LS2   |       |       |       |            |          |       |             | RBI   |       | LSI   |
|                           |           |        |          |       |       | LNH<br>LS2 |       |       |       |       |       |       |            |          |       |             |       |       | LSZ   |
|                           |           |        |          |       |       | 1.52       |       |       |       |       |       |       |            |          |       |             |       |       |       |
| Total =                   | -43.29 k  | cal/m  | ol       |       |       |            |       |       |       |       |       |       | -34.63     | 3 kcal/m | ol    |             |       |       |       |
| Van der Waals =           | 81.90 k   | cal/mo | ol       |       |       |            |       |       |       |       |       |       | 81.57      | 7 kcal/m | ol    |             |       |       |       |
| Electrostatic =           | -290.21 k | cal/mo | ol       |       |       |            |       |       |       |       |       |       | -290.07    | 7 kcal/m | ol    |             |       |       |       |
| $\Delta E_{r} =$          | -145 19 4 | cal/m  | ,        |       |       |            |       |       |       |       |       |       | -136.54    | 1 kcal/m | ol    |             |       |       |       |
| AF =                      | -16 53 k  | cal/m  | ,.<br>.l |       |       |            |       |       |       |       |       |       | -16.84     | 5 kcal/m | ol.   |             |       |       |       |
| AE -                      | -10.33 K  | carine | ,,<br>,1 |       |       |            |       |       |       |       |       |       | -10.8.     | 7 kool/  | al    |             |       |       |       |
| ΔL <sub>Ele</sub> –       | -100.12 K | cavino | л        |       |       |            |       |       |       |       |       |       | -99.9      | / Kcai/m | 01    |             |       |       |       |

|                                    | Glv9 Tv                | vr10           | His13                                    | His14 | Gln15 I | .vs16 | Leu17      | Val18 | Phe19 | Phe20     | Ala21      | Val24 | Glv25 | Lvs28      |
|------------------------------------|------------------------|----------------|------------------------------------------|-------|---------|-------|------------|-------|-------|-----------|------------|-------|-------|------------|
| Initial Orientation                | RS2 R                  | S2             | RB1<br>RS1                               |       |         |       | LB1        |       |       | LS1       |            |       |       | LS2        |
| Final Orientation                  | RS2 R                  | 152            | RS2<br>RB1                               |       |         | RS1   | I B1       |       |       | 151       |            |       |       | 1.52       |
| I hai Orkinaton                    | 102 1                  | 62             | RS1<br>RS2                               |       |         | KOT   | LSI        |       |       | 1.51      |            |       |       | 1.52       |
| T ( )                              | 65.071                 | 1/             | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 |       |         |       |            |       |       |           |            |       |       |            |
| Iotal =<br>Van der Waals =         | -65.97 kc              | al/mo<br>al/mo | ol<br>ol                                 |       |         |       |            |       |       |           |            |       |       |            |
| Electrostatic =                    | -310.62 kc             | al/mo          | l                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Tot} =$                 | -167.88 kc             | al/mo          | 1                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Vdw} =$                 | -29.43 kc              | al/mo          | ol                                       |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Ele} =$                 | -120.52 kc             | al/mo          | ol                                       |       |         |       |            |       |       |           |            |       |       |            |
| Initial Orientation                | RB2                    |                | RB1<br>RB2                               |       |         | RS2   | LS2        |       |       | LS2       | LS2<br>LB2 |       | LB2   | LS1<br>LB2 |
| Final Orientation                  | RB2                    |                | RNH<br>RB1                               |       |         | RS2   | LS2        |       |       | LS2       | LB2        | LS2   | LB2   |            |
|                                    |                        |                | RS2<br>RNH                               |       |         |       | LB1        |       |       |           |            |       |       |            |
|                                    |                        |                | RB2                                      |       |         |       |            |       |       |           |            |       |       |            |
| Total =                            | -31.54 kc              | al/mo          | J                                        |       |         |       |            |       |       |           |            |       |       |            |
| Van der Waals =                    | 88.42 kc               | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| Electrostatic =                    | -302.23 kc             | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Tot} =$                 | -133.45 kc             | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| ΔE <sub>Vdw</sub> =                | -10.01 kc              | al/mo          | 1                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Ele} =$                 | -112.13 kc             | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| Initial Orientation                | т                      | <b>S</b> 1     | 151                                      |       |         |       |            |       |       | RS1       |            |       |       | RS2        |
|                                    | L                      |                | LS1<br>LS2                               |       |         |       |            |       |       | 1001      |            |       |       | RS1        |
| Final Origntation                  |                        |                | 182                                      |       |         |       |            |       |       | DCI       |            |       |       | DC1        |
| r man Orientation                  |                        |                | LS2<br>LS1                               |       |         |       |            |       |       | R31       |            |       |       | RSI        |
|                                    |                        |                | LB1                                      |       |         |       |            |       |       |           |            |       |       |            |
| Total =                            | -34.21 kc              | al/mo          | J                                        |       |         |       |            |       |       |           |            |       |       |            |
| Van der Waals =                    | 74.63 kc               | al/mo          | ol l                                     |       |         |       |            |       |       |           |            |       |       |            |
| Electrostatic =                    | -301.13 kc             | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Tot} =$                 | -136.11 kc             | al/mo          | 1                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Vdw} =$                 | -23.80 kc              | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Ele} =$                 | -111.03 kc             | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| Initial Orientation                | T                      | <b>S</b> 1     | I B1                                     |       |         |       | RB1        |       |       | RS1       | RS1        |       |       | RS1        |
| initian Orientation                | L                      | .51            | LS1                                      |       |         |       | КDТ        |       |       | Roi       | K51        |       |       | RS2        |
| First Originatedian                | т                      | 61             | LS2                                      |       |         |       | DC1        |       |       | DC1       |            |       |       | DCI        |
| r inai Orientation                 | L                      | .51            | LS1                                      |       |         |       | RB1        |       |       | RSI       |            |       |       | RS1<br>RS2 |
|                                    |                        |                | LS2                                      |       |         |       | CS         |       |       |           |            |       |       |            |
| Total =                            | -67.22 kc              | al/mo          | 1                                        |       |         |       |            |       |       |           |            |       |       |            |
| Van der Waals =                    | 78.72 kc               | al/mo          | l                                        |       |         |       |            |       |       |           |            |       |       |            |
| Electrostatic =                    | -305.76 kc             | al/mo          | ol                                       |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Tot} =$                 | -169.13 kc             | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Vdw} =$                 | -19.71 kc              | al/mo          | l                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Ele} =$                 | -115.67 kc             | al/mo          | d                                        |       |         |       |            |       |       |           |            |       |       |            |
| Initial Orientation                | R                      | B2             | RS2                                      | RS2   |         | LS2   | RS2        |       |       | LB1       |            |       |       |            |
|                                    |                        |                | RS1                                      |       |         | LB1   | RB1        |       |       | LS1       |            |       |       |            |
| Final Orientation                  | P                      | B2             | RB1                                      | RS2   | 1       | LNH   | LB1<br>LB1 |       |       | 1.B2      |            |       |       | 152        |
| i illi orientition                 |                        |                | RS1                                      | 102   |         | LB1   | RS2        |       |       | LS1       |            |       |       | 2.02       |
|                                    |                        |                | RS2                                      |       |         |       |            |       |       | LNH       |            |       |       |            |
|                                    |                        |                |                                          |       |         |       |            |       |       | LDI       |            |       |       |            |
| Total =                            | -83.73 kc              | al/mo          | l.                                       |       |         |       |            |       |       |           |            |       |       |            |
| Van der Waals =<br>Electrostatic = | 67.58 kc<br>-319 50 kc | al/mo<br>al/mo | ol<br>ol                                 |       |         |       |            |       |       |           |            |       |       |            |
|                                    |                        |                |                                          |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Tot} =$                 | -185.63 kc             | al/mo          | l .                                      |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Vdw} = \Delta F_{ru} =$ | -30.85 kc              | al/mo<br>al/m⊂ | 1                                        |       |         |       |            |       |       |           |            |       |       |            |
| t:le                               | -127.40 KC             | arii0          |                                          |       |         |       |            |       |       |           |            |       |       |            |
| Initial Orientation                |                        |                | LS1                                      |       |         | LS2   | LS2        |       |       | CS        |            |       |       | RS1        |
|                                    |                        |                | LS2                                      |       |         |       | LSI<br>LBI |       |       | RS2       |            |       |       |            |
| Final Orientation                  |                        |                | LS1                                      |       |         | LS2   | LB1        |       |       | RS2       |            |       |       | RS1        |
|                                    |                        |                | LS2                                      |       |         |       |            |       |       | CS<br>LB1 |            |       |       |            |
|                                    |                        |                |                                          |       |         |       |            |       |       | 1.01      |            |       |       |            |
| Total =<br>Van dar Washer          | -45.36 kc              | al/mo          | ol<br>.i                                 |       |         |       |            |       |       |           |            |       |       |            |
| van der Waals =<br>Electrostatic = | /4.06 kc<br>-302.59 kc | a⊭mo<br>al/mo  | ol.                                      |       |         |       |            |       |       |           |            |       |       |            |
|                                    |                        |                |                                          |       |         |       |            |       |       |           |            |       |       |            |
|                                    |                        |                |                                          |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Tot} =$                 | -147.26 kc             | al/mo          | 1                                        |       |         |       |            |       |       |           |            |       |       |            |
| $\Delta E_{Tot} =$                 | -147.26 kc             | al/mo          | ol 🛛                                     |       |         |       |            |       |       |           |            |       |       |            |

|                                                                | His6 Gly9                                              | Tyr10                            | His13                           | His14 | Gln15 Ly    | /s16 Le                           | eul7              | Val18 Phe  | 19 Phe20   | Ala21 | Val24 | Gly25 Lys28 |
|----------------------------------------------------------------|--------------------------------------------------------|----------------------------------|---------------------------------|-------|-------------|-----------------------------------|-------------------|------------|------------|-------|-------|-------------|
| Initial Orientation                                            |                                                        | LB2                              | LS2                             | LS2   |             | R<br>C<br>L                       | es2<br>CS<br>.B1  |            | RS2        |       | CS    | RS1<br>RS2  |
| inal Orientation                                               |                                                        | LB2                              | LS2                             | LS2   | I           | R                                 | CS<br>1S2<br>1B2  |            | RS2        |       | CS    | RS1<br>RS2  |
| Total =                                                        | -46 50 keal/mal                                        |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| Van der Waals =<br>Electrostatic =                             | -46.50 kcal/mol<br>74.26 kcal/mol<br>-297.53 kcal/mol  |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Tot} =$                                             | -148.41 kcal/mol                                       |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Vdw} =$                                             | -24.17 kcal/mol                                        |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Ele} =$                                             | -107.43 kcal/mol                                       |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| Initial Orientation                                            | LS1                                                    | LS1                              | LB1<br>RB1<br>LB1<br>LNH        |       | L<br>R<br>R | .B2 R<br>851 R<br>NH<br>2B1       | NH<br>B1          |            | RB2<br>RS1 |       |       |             |
| F 101 47                                                       | 100 101                                                | 1.01                             | LS1                             |       |             |                                   |                   |            | 555        |       |       |             |
| Final Orientation                                              | LB2 LS1<br>LS1                                         | LSI                              | LB1<br>LB1<br>LNH<br>LS1        |       | R           | NH R<br>B1                        | NH<br>B1          |            | RB2<br>RS1 |       |       |             |
| Total =                                                        | 16.07 kcal/mol                                         |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| Van der Waals =<br>Electrostatic =                             | 63.83 kcal/mol<br>-287.80 kcal/mol                     |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Tot} =$                                             | -85.84 kcal/mol                                        |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Vdw} = \Delta E_{Ele} =$                            | -34.60 kcal/mol<br>-97.70 kcal/mol                     |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| Initial Orientation                                            |                                                        | RS1<br>RS2                       | RB2<br>RB2<br>RNH               | RS1   | I           | L<br>L                            | .S1<br>.B1        |            | LS1        |       |       | LS2         |
| Final Orientation                                              |                                                        | RS1<br>RS2<br>RB2                | RS1<br>RB2<br>RNH<br>RS1        | RS1   | I           | L<br>L                            | .S1<br>.B1        |            | LS1        |       |       | LS2<br>LB2  |
| Total =<br>Van der Waals =<br>Electrostatic =                  | -57.2<br>69.1<br>-291.8                                | 0 kcal/m<br>7 kcal/m<br>5 kcal/m | ol<br>ol<br>ol                  |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Tot} =$                                             | -159.1                                                 | ) kcal/m                         | ol                              |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Vdw} = \Delta E_{Ele} =$                            | -29.2                                                  | 5 kcal/m<br>5 kcal/m             | ol<br>ol                        |       |             |                                   |                   |            |            |       |       |             |
| Initial Orientation                                            |                                                        |                                  | RB2<br>RS1                      |       | R           | B2 L                              | .S1               |            | LS1<br>LB2 |       |       | LS2         |
| Final Orientation                                              |                                                        |                                  | RB1<br>RB2<br>RB1<br>RNH<br>RS1 |       |             | L<br>R                            | .S1<br>:B2        |            | LS1        |       | LB2   | LB2<br>LS2  |
| Total =<br>Van der Waals =<br>Electrostatic =                  | -33.48 kcal/mol<br>86.33 kcal/mol<br>-289.60 kcal/mol  |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Tot} =$                                             | -135.39 kcal/mol                                       |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Vdw} = \Delta E_{Ele} =$                            | -12.10 kcal/mol<br>-99.50 kcal/mol                     |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| Initial Orientation                                            |                                                        |                                  | LS2<br>LB1                      | RS2   | L<br>L      | .S2 R<br>NH R                     | B1<br>S2          | RS2<br>RB2 |            | RB2   |       |             |
| Final Orientation                                              |                                                        |                                  | LS2<br>LB1                      | RS2   | I<br>I      | .B1 R<br>.S2 R                    | 1B2<br>1S2        | RS2        |            | RB2   |       |             |
| Total =<br>Van der Waals =<br>Electrostatic =                  | 8.63 kcal/mol<br>80.37 kcal/mol<br>-295.43 kcal/mol    |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Tot} =$<br>$\Delta E_{Vdw} =$<br>$\Delta E_{Ele} =$ | -93.28 kcal/mol<br>-18.06 kcal/mol<br>-105.34 kcal/mol |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| Initial Orientation                                            |                                                        |                                  | LS2                             | RS2   | L           | .S2 R                             | B1                | RS2        |            |       |       |             |
| Final Orientation                                              |                                                        |                                  | LB1<br>LS2                      | RS2   | L<br>L<br>L | .B2<br>.B2 L<br>.B2 L<br>.R<br>.R | .B1<br>2B1<br>2S2 | RS2<br>RB2 |            |       |       |             |
| T-t-1-                                                         | 22.251 11 1                                            |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| 1 otal =<br>Van der Waals =<br>Electrostatic =                 | -33.25 kcal/mol<br>79.01 kcal/mol<br>-296.44 kcal/mol  |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Tot} =$                                             | -135.15 kcal/mol                                       |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| ΔE <sub>Vdw</sub> =                                            | -19.42 kcal/mol                                        |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |
| $\Delta E_{Ele} =$                                             | -106.34 kcal/mol                                       |                                  |                                 |       |             |                                   |                   |            |            |       |       |             |

 
 Table 6.46:
 The solution phase results of solapsone interacting with the HHQKLVFF region of the 1AMB conformer of β-amyloid

|                                           | Gly9 Tyr10                         | Val12 His13 His14 | Gh15 Lys16 Leu17 Vall8 | Phe19 Phe20 Ala21 | Val24 Lys2 |
|-------------------------------------------|------------------------------------|-------------------|------------------------|-------------------|------------|
| Initial Orientation                       | X                                  | LB1               | LS2 RS2                | RS2               | RB         |
|                                           |                                    | LS1<br>LS2        | RB1                    |                   |            |
| Final Orientation                         |                                    | LB1               | LS2 RS2                | RB2               | RB         |
|                                           |                                    | LS1               | LB1                    | RS2               |            |
|                                           |                                    | 1.52              |                        |                   |            |
| Total =                                   | -16.42 kcal/mol                    |                   |                        |                   |            |
| Van der Waals =<br>Electrostatic =        | -311.30 kcal/mol                   |                   |                        |                   |            |
|                                           |                                    |                   |                        |                   |            |
| $\Delta E_{Tot} =$                        | -118.33 kcal/mol                   |                   |                        |                   |            |
| $\Delta E_{Vdw} = $<br>$\Delta E_{E1a} =$ | -121 20 kcal/mol                   |                   |                        |                   |            |
| Ele                                       |                                    |                   |                        |                   |            |
| Initial Orientation                       |                                    | RB2<br>PS1        | RS2 RB1                | LS2               | LS         |
|                                           |                                    | RNH               | KBI                    |                   | LS         |
| Final Orientation                         |                                    | RS1               | RS2 LS2                | LS2 LS2           | LS         |
|                                           |                                    | RB2               | RNH                    | CS                | LS         |
|                                           |                                    |                   | RB2                    | RB1               |            |
| Total =                                   | 8.25 kcal/mol                      |                   |                        |                   |            |
| Van der Waals =                           | 77.07 kcal/mol                     |                   |                        |                   |            |
| Electrostatic =                           | -292.22 kcal/mol                   |                   |                        |                   |            |
| $\Delta E_{Tot} =$                        | -93.65 kcal/mol                    |                   |                        |                   |            |
| $\Delta E_{Vdw} =$                        | -21.36 kcal/mol                    |                   |                        |                   |            |
| $\Delta E_{Ele} =$                        | -102.12 kcal/mol                   |                   |                        |                   |            |
| Initial Orientation                       | LB2 LB2                            | LB2               | LB1 RB2                | RS1 RB2           | RS         |
|                                           |                                    | LB1               | LNH                    | RNH               | 2          |
| Final Orientation                         | 1.82 1.82                          | LNH<br>LB2        | LS1<br>LB1 RB2         | RS1               | DS         |
| r inai Orientation                        | LD2 LD2                            | LB2               | LNH KB2                | RNH               | 2          |
|                                           |                                    | LB1               | LS1                    | RB1               |            |
|                                           |                                    | LNH               |                        |                   |            |
| Total =                                   | -57.28 kcal/mol                    |                   |                        |                   |            |
| Van der Waals =<br>Flectrostatic =        | 71.09 kcal/mol<br>-301 47 kcal/mol |                   |                        |                   |            |
| Liebutosane                               | Joint Rearing                      |                   |                        |                   |            |
| $\Delta E_{Tot} =$                        | -159.18 kcal/mol                   |                   |                        |                   |            |
| $\Delta E_{Vdw} =$                        | -27.34 kcal/mol                    |                   |                        |                   |            |
| ALEle -                                   | -111.57 Kcal/mol                   |                   |                        |                   |            |
| Initial Orientation                       |                                    | LS1               | LS2 LS1                | LB1               | RS         |
|                                           |                                    |                   | LS1                    | CS                | RS         |
| Final Orientation                         |                                    | LS1               | LS1 LB1                | LB1               | RS         |
|                                           |                                    |                   | LS2 LS1                | CS<br>I S1        | RS         |
|                                           |                                    |                   |                        | LS2               |            |
| Total =<br>Van der Wask =                 | 25.83 kcal/mol                     |                   |                        |                   |            |
| Electrostatic =                           | -296.88 kcal/mol                   |                   |                        |                   |            |
|                                           |                                    |                   |                        |                   |            |
| $\Delta E_{Tot} =$                        | -76.07 kcal/mol                    |                   |                        |                   |            |
| $\Delta E_{Vdw} =$                        | -106 78 kcal/mol                   |                   |                        |                   |            |
| Ele                                       | 100.70 Rearies                     |                   |                        |                   |            |
| Initial Orientation                       |                                    | RB2               | RS2 LS2                | LS2               | LS         |
|                                           |                                    |                   |                        |                   | La         |
| Final Orientation                         |                                    | RB2               | RS2 LS2                | LS2               | LS         |
|                                           |                                    |                   | RNH                    |                   |            |
|                                           |                                    |                   | RB2                    |                   |            |
| Total -                                   | 40.60 kaal/mal                     |                   |                        |                   |            |
| Van der Waals =                           | 75.85 kcal/mol                     |                   |                        |                   |            |
| Electrostatic =                           | -293.75 kcal/mol                   |                   |                        |                   |            |
| $\Delta E_{Tot} =$                        | -151.51 kcal/mol                   |                   |                        |                   |            |
| $\Delta E_{Vdw} =$                        | -22.58 kcal/mol                    |                   |                        |                   |            |
| $\Delta E_{Ele} =$                        | -103.65 kcal/mol                   |                   |                        |                   |            |
| Initial Orientation                       |                                    | 1.82              | LB1 LB1                | RB2               | RB2        |
|                                           |                                    | LS1               | LS2                    | RS2               | RS2 RI     |
|                                           |                                    |                   |                        | RB1<br>CS         |            |
| Final Orientation                         |                                    | LS2               | LS2 LB1                | RS2               | RB2 RS     |
|                                           |                                    | LS1               | LS1                    | RB1               |            |
|                                           |                                    |                   |                        | CS                |            |
| Total =                                   | -65.55 kcal/mol                    |                   |                        |                   |            |
| Van der Waals =<br>Electrostatic =        | 65.29 kcal/mol                     |                   |                        |                   |            |
| Lacuostatic -                             | = 506.05 KCal/III01                |                   |                        |                   |            |
| $\Delta E_{Tot} =$                        | -167.45 kcal/mol                   |                   |                        |                   |            |
| $\Delta E_{Vdw} =$                        | -33.14 kcal/mol                    |                   |                        |                   |            |
| $\Delta E_{Ele} =$                        | -117.95 kcal/mol                   |                   |                        |                   |            |
|                                          | Gly9 Tyr10                        | Vall2 His13 His14 Gh15 | Lys16 Leu17 Vall8 | Phe19 Phe20 Ala21 Val24 | Lys28 |
|------------------------------------------|-----------------------------------|------------------------|-------------------|-------------------------|-------|
| Initial Orientation                      |                                   | RS1<br>RS2             | RB1<br>RS2        | CS<br>LBI               | LS2   |
|                                          |                                   | R02                    | CS                | LS2                     |       |
|                                          |                                   | D.C.I.                 | RSI               | 1.02                    | 1.00  |
| Final Orientation                        |                                   | RS1<br>RS2             | CS                | LS2<br>LB1              | LS2   |
|                                          |                                   |                        | RS1               | CS                      |       |
| Total =                                  | -36.95 kcal/mol                   |                        |                   |                         |       |
| Van der Waals =                          | 80.72 kcal/mol                    |                        |                   |                         |       |
| Electrostatic -                          | -296.36 Kcarinoi                  |                        |                   |                         |       |
| $\Delta E_{Tot} =$                       | -138.85 kcal/mol                  |                        |                   |                         |       |
| $\Delta E_{Vdw} =$                       | -17.71 kcal/mol                   |                        |                   |                         |       |
| Ele                                      | -100.40 Kearmon                   |                        |                   |                         |       |
| Initial Orientation                      |                                   | LB2                    | LS1 LS1           | CS                      | RS2   |
|                                          |                                   | LS2<br>LS1             | 1.52              |                         | K51   |
| Final Orientation                        |                                   | LB2                    | LS1 LS1           | CS                      | RS2   |
|                                          |                                   |                        | 1.82              |                         | KSI   |
| Total =                                  | -37.01 kcal/mol                   |                        |                   |                         |       |
| Electrostatic =                          | -309.25 kcal/mol                  |                        |                   |                         |       |
|                                          |                                   |                        |                   |                         |       |
| $\Delta E_{Tot} =$<br>$\Delta E_{tot} =$ | -138.92 kcal/mol                  |                        |                   |                         |       |
| $\Delta E_{Ele} =$                       | -119.15 kcal/mol                  |                        |                   |                         |       |
|                                          | 802                               | 882                    | DDI DCI           | 65                      |       |
| Initial Orientation                      | RB2                               | RB2<br>RS1             | KBI KS1<br>LS2    | CS                      |       |
|                                          |                                   |                        | LB1               |                         |       |
| Final Orientation                        | RB2                               | RB2 RB2<br>RS1         | RB1 RS1           | LB1<br>CS               |       |
|                                          |                                   |                        | LB1               | RB1                     |       |
|                                          |                                   |                        | RNH               |                         |       |
| Total =                                  | 4.96 kcal/mol                     |                        |                   |                         |       |
| Van der Waals =<br>Electrostatic =       | 68.20 kcal/mol                    |                        |                   |                         |       |
| Electrostate                             | 207.12 Rearing                    |                        |                   |                         |       |
| $\Delta E_{Tot} =$                       | -96.95 kcal/mol                   |                        |                   |                         |       |
| $\Delta E_{Vdw} = \Delta E_{Fle} =$      | -97.02 kcal/mol                   |                        |                   |                         |       |
| Lic                                      |                                   |                        |                   |                         |       |
| Initial Orientation                      |                                   | RS2 RS2                | LS2 RB2 RB2       | LB2<br>LS2              |       |
|                                          |                                   | CS                     |                   |                         |       |
| Final Orientation                        |                                   | RB1<br>RS2 RS2         | LS2 LS2 RB2       | LB2                     |       |
|                                          |                                   | LB1 RB2                |                   | LS2                     |       |
|                                          |                                   | CS<br>RB1              |                   |                         |       |
|                                          |                                   |                        |                   |                         |       |
| 1 otal =<br>Van der Waals =              | -54.96 kcal/mol<br>75.90 kcal/mol |                        |                   |                         |       |
| Electrostatic =                          | -299.57 kcal/mol                  |                        |                   |                         |       |
| AE <sub>T of</sub> =                     | -156.86 kcal/mol                  |                        |                   |                         |       |
| $\Delta E_{Vdw} =$                       | -22.53 kcal/mol                   |                        |                   |                         |       |
| $\Delta E_{Ele} =$                       | -109.47 kcal/mol                  |                        |                   |                         |       |
| Initial Orientation                      |                                   | RS1                    | RS1 RS1           | LSI                     | LSI   |
|                                          |                                   | RS2                    |                   | LB1                     |       |
| Final Orientation                        |                                   | RS2<br>RS1             | RS1 RS1           | LS1<br>LB1              | LSI   |
|                                          | 24.02                             |                        |                   |                         |       |
| 1 otal =<br>Van der Waals =              | -34.06 kcal/mol<br>80.91 kcal/mol |                        |                   |                         |       |
| Electrostatic =                          | -295.46 kcal/mol                  |                        |                   |                         |       |
| $\Delta E_{Tot} =$                       | -135.96 kcal/mol                  |                        |                   |                         |       |
| ΔE <sub>Vdw</sub> =                      | -17.52 kcal/mol                   |                        |                   |                         |       |
| $\Delta E_{Ele} =$                       | -105.36 kcal/mol                  |                        |                   |                         |       |
| Initial Orientation                      |                                   | RS2                    | RS2 RS2           | LS2                     |       |
|                                          |                                   | RS1                    | LS1               | LB2                     |       |
| Final Orientation                        |                                   | RS1<br>RS1             | LS2 RS2<br>LS1    | LB2<br>LS2              |       |
|                                          |                                   |                        |                   |                         |       |
| Total =<br>Van der Waals =               | -48.63 kcal/mol<br>84.99 kcal/mol |                        |                   |                         |       |
| Electrostatic =                          | -303.59 kcal/mol                  |                        |                   |                         |       |
| ΔE=                                      | =150.53 kcal/mol                  |                        |                   |                         |       |
| $\Delta E_{Vdw} =$                       | -13.44 kcal/mol                   |                        |                   |                         |       |
|                                          |                                   |                        |                   |                         |       |

# Table 6.46:The solution phase results of solapsone interacting with the<br/>HHQKLVFF region of the 1AMB conformer of β-amyloid

|                                    | Ser8 Tyr10 Val12 | His13       | His14 | Gln15 Ly16 | Leu17      | Val18 | Phe20 | Ala21 | Ile31      | Tyr10      | Val12                | His13      | His14      | Gln15 Lys16 | Leu17 | Ile31 |
|------------------------------------|------------------|-------------|-------|------------|------------|-------|-------|-------|------------|------------|----------------------|------------|------------|-------------|-------|-------|
| Initial Orientation                | RS2 LS1          | LS2         | RS2   |            | LS2        |       |       |       | LB2        | RS1        | LS2                  | LB1        | RB2        | LB2         | LS2   | RB2   |
|                                    | LB1              | LS1         | RB2   |            |            |       |       |       | LS2        |            |                      | LS2        |            | LS2         |       |       |
|                                    | CS<br>PB1        |             |       |            |            |       |       |       |            |            |                      | LNH<br>LS2 |            |             |       |       |
| Final Orientation                  | RS2 LS1          | LS2         | RB1   |            | LS2        |       |       |       | LB2        |            | LS2                  | LB1        | RS2        | LB2         | RS2   | RB2   |
|                                    | LB1              | LS1         | RS2   |            |            |       |       |       | LS2        |            |                      | LS2        | RB2        |             |       |       |
|                                    | CS               |             |       |            |            |       |       |       |            |            |                      | RB1        |            |             |       |       |
|                                    | RB1              |             |       |            |            |       |       |       |            |            |                      | RS2        |            |             |       |       |
| <b>T</b> . 1                       | 00.501.1/        |             |       |            |            |       |       |       |            |            |                      | ·.         |            |             |       |       |
| Total =                            | 89.59 kcal/mol   |             |       |            |            |       |       |       |            | 66.7       | 6 kcal/m             | ol<br>-1   |            |             |       |       |
| Van der waars –<br>Electrostatic – | 250 39 kcal/mol  |             |       |            |            |       |       |       |            | 275.0      | 8 keal/m             |            |            |             |       |       |
| Electrostatic -                    | -250.59 Kearmon  |             |       |            |            |       |       |       |            | -275.0     | o Kearin             |            |            |             |       |       |
| $\Delta E_{Tot} =$                 | -158.49 kcal/mol |             |       |            |            |       |       |       |            | -181.3     | 2 kcal/m             | ol         |            |             |       |       |
| $\Delta E_{Vdw} =$                 | -26.89 kcal/mol  |             |       |            |            |       |       |       |            | -20.7      | 7 kcal/m             | ol         |            |             |       |       |
| $\Delta E_{Ela} =$                 | -136.51 kcal/mol |             |       |            |            |       |       |       |            | -161.2     | 0 kcal/m             | ol         |            |             |       |       |
| Lie                                |                  |             |       |            |            |       |       |       |            |            |                      |            |            |             |       |       |
| Initial Orientation                | RS2              | LB1         | RB2   | LB2        | RB1        |       | LB2   |       | RB1        | LB2        | RS2                  | RB1        | LS2        | RS2         | LS2   | LS1   |
|                                    | RB2              | RB1         |       | LS2        | RS1        |       |       |       | RS1        | LS2        | RB2                  | RS2        |            |             |       | LB1   |
|                                    |                  | LS2         |       |            |            |       |       |       |            |            |                      | LS2        |            |             |       |       |
| P. 10 1                            | D.G.2            | DDI         |       |            | DDI        |       |       |       |            |            |                      | LB1        | 1.00       | DGA         |       |       |
| Final Orientation                  | RS2              | RB1         | RB2   | LB2        | RBI        |       | LB2   |       | CS         | LB2        |                      | RB1        | LS2        | RS2         | LS2   | LSI   |
|                                    |                  | KBI<br>I B1 |       | 1.52       | DS1        |       |       |       | RB1<br>PS1 | 1.52       |                      | KBI<br>LS2 |            |             |       | cs    |
|                                    |                  | LDI<br>LS2  |       |            | KSI        |       |       |       | KSI        |            |                      | CS         |            |             |       |       |
|                                    |                  | RS2         |       |            |            |       |       |       |            |            |                      | RNH        |            |             |       |       |
|                                    |                  |             |       |            |            |       |       |       |            |            |                      | RS2        |            |             |       |       |
|                                    |                  |             |       |            |            |       |       |       |            |            |                      |            |            |             |       |       |
| Total =                            | 76.59 kcal/mol   |             |       |            |            |       |       |       |            | 96.4       | 5 kcal/m             | ol         |            |             |       |       |
| Van der Waals =                    | 93.80 kcal/mol   |             |       |            |            |       |       |       |            | 105.9      | 8 kcal/m             | ol         |            |             |       |       |
| Electrostatic =                    | -258.71 kcal/mol |             |       |            |            |       |       |       |            | -265.8     | 1 kcal/m             | ol         |            |             |       |       |
| ΔF =                               | -171.49 kcal/mol |             |       |            |            |       |       |       |            | -151.6     | 3 kcal/m             | 01         |            |             |       |       |
| AE =                               | 33 43 kcal/mol   |             |       |            |            |       |       |       |            | 21.2       | 5 koal/m             | al         |            |             |       |       |
| AE -                               | 144.82 keel/mol  |             |       |            |            |       |       |       |            | -21.2      | 2 kool/m             | o1         |            |             |       |       |
| ZLE <sub>Ele</sub> –               | -144.05 Kearmon  |             |       |            |            |       |       |       |            | -151.9     | 5 Kearin             |            |            |             |       |       |
| Initial Orientation                | LS2 RB2          | LB1         | LS2   | RB2        | LS2        |       |       |       |            | LB2        | RS2                  | RS2        | LB2        | RS2         | LS2   | LS1   |
|                                    | LB2              | LB1         |       | RS2        |            |       |       |       |            | LS2        | RB2                  | LS2        | LS2        |             |       |       |
|                                    |                  | RS2         |       |            |            |       |       |       |            |            |                      | RB1        |            |             |       |       |
|                                    |                  | RB1         |       |            |            |       |       |       |            |            |                      |            |            |             |       |       |
|                                    |                  | LS2         |       |            |            |       |       |       |            |            |                      |            |            |             |       |       |
| Final Orientation                  | LB2 RB2          | LBI         | LS2   | RS2        | LS2        |       |       |       |            | LS2        | RB2                  | LBI        | LS2        | RS2         | LS2   | LSI   |
|                                    | L32<br>I NH      | LBI<br>LS2  |       | KD2        |            |       |       |       |            | LD2        | K32                  | RB1        | LD2        |             |       |       |
|                                    | LB1              | RS2         |       |            |            |       |       |       |            |            |                      | LS2        |            |             |       |       |
|                                    |                  |             |       |            |            |       |       |       |            |            |                      |            |            |             |       |       |
| Total =                            | 120.64 kcal/mol  |             |       |            |            |       |       |       |            | 107.1      | 5 kcal/m             | ol         |            |             |       |       |
| Van der Waals =                    | 119.72 kcal/mol  |             |       |            |            |       |       |       |            | 118.3      | 8 kcal/m             | ol         |            |             |       |       |
| Electrostatic =                    | -255.65 kcal/mol |             |       |            |            |       |       |       |            | -251.6     | 1 kcal/m             | ol         |            |             |       |       |
| AE -                               | 127.44 []        |             |       |            |            |       |       |       |            | 140.0      | 2 11/                | _1         |            |             |       |       |
| $\Delta E_{Tot} =$                 | -127.44 kca/mol  |             |       |            |            |       |       |       |            | -140.9     | 5 Keal/m             | 1          |            |             |       |       |
| $\Delta E_{Vdw} =$                 | - 7.50 kcal/mol  |             |       |            |            |       |       |       |            | -8.8       | 5 kcal/m             | 01         |            |             |       |       |
| $\Delta E_{Ele} =$                 | -141.77 kcal/mol |             |       |            |            |       |       |       |            | -137.7     | 3 kcal/m             | ol         |            |             |       |       |
| Initial Orientation                | RB1              | RB2         | LB1   |            | LB2        | LB2   |       | LB2   |            | RS1        |                      | LS1        | RS1        |             | RS1   | RS2   |
| initial Offentiation               | RNH              | RS2         | LBI   |            | RS2        | 202   |       | LDZ   |            | Rot        |                      | LNH        | RB2        |             | 1001  | 102   |
|                                    | RS1              |             | LB2   |            |            |       |       |       |            |            |                      | LB1        |            |             |       |       |
|                                    | RB2              |             | LNH   |            |            |       |       |       |            |            |                      | RS1        |            |             |       |       |
|                                    |                  |             | RB1   |            |            |       |       |       |            |            |                      |            |            |             |       |       |
| P: 10 1 4 4                        | DOL              |             | RS2   |            |            |       |       |       |            |            |                      |            | Dat        |             | Dat   |       |
| Final Orientation                  | KS1<br>BD2       | RB2<br>DD2  | LBI   |            | LB2<br>DS2 | LB2   |       | LB2   |            | RB1<br>DC1 |                      | LSI        | RS1<br>DD2 |             | KS1   | KS2   |
|                                    | KD2              | RS2         | RB1   |            | K32        |       |       |       |            | Kol        |                      | LNI<br>IBI | KD2        |             |       |       |
|                                    |                  |             | RB1   |            |            |       |       |       |            |            |                      | RS1        |            |             |       |       |
|                                    |                  |             | LB2   |            |            |       |       |       |            |            |                      |            |            |             |       |       |
|                                    |                  |             | RNH   |            |            |       |       |       |            |            |                      |            |            |             |       |       |
|                                    |                  |             | RS2   |            |            |       |       |       |            |            |                      |            |            |             |       |       |
| T-4-1-                             | 114 22 1 1/ 1    |             |       |            |            |       |       |       |            | 100 5      | 7 1 1/               | _1         |            |             |       |       |
| Iotai =<br>Van dar Waala =         | 102.71 keel/mol  |             |       |            |            |       |       |       |            | 109.5      | / kcal/m             | 01<br>01   |            |             |       |       |
| Electrostatic =                    | -247.81 kcal/mol |             |       |            |            |       |       |       |            | -256.6     | o keal/m<br>3 keal/m | ol         |            |             |       |       |
|                                    | 217.01 Keurinoi  |             |       |            |            |       |       |       |            | 250.0      | curili               | ľ          |            |             |       |       |
| $\Delta E_{Tot} =$                 | -133.75 kcal/mol |             |       |            |            |       |       |       |            | -138.5     | 1 kcal/m             | ol         |            |             |       |       |
| $\Delta E_{Vdw} =$                 | -24.52 kcal/mol  |             |       |            |            |       |       |       |            | -4.8       | 7 kcal/m             | ol         |            |             |       |       |
| $\Delta E_{Ele} =$                 | -133.93 kcal/mol |             |       |            |            |       |       |       |            | -142.7     | 5 kcal/m             | ol         |            |             |       |       |
|                                    |                  | 6           |       |            | 1          |       |       |       |            |            |                      |            |            |             |       |       |

# Table 6.47: The solution phase results of solapsone interacting with the HHQK region of the 1AML conformer of β-amyloid

|                     | Tyr10  | Val12     | His13   | His14 | Gln15 Ly1 | Leu17 | Ala30 | Ile31 | Met35 | Tyr10   | His13     | His14    | Gln15 I | .ys16 | Leu17 | Val18 | Ala21 | Ile31 |
|---------------------|--------|-----------|---------|-------|-----------|-------|-------|-------|-------|---------|-----------|----------|---------|-------|-------|-------|-------|-------|
| Initial Orientation | LB1    | RB2       | RS2     | LB2   | RB2       | LS2   |       |       |       | LB1     | LB1       | LS2      | ]       | RB2   | LS2   |       |       | LS1   |
|                     | LNH    | RS2       | RB1     | LS2   | RS2       |       |       |       |       | LS2     | LB1       |          |         | RS2   |       |       |       |       |
|                     |        | RNH       | LB1     |       |           |       |       |       |       | LB2     | RB1       |          |         |       |       |       |       |       |
|                     |        | RB1       | LS2     |       |           |       |       |       |       |         | LS1       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       |         | LS2       |          |         |       |       |       |       |       |
| Final Orientation   | LNH    | RB1       | LS2     | LB2   | RS2       | LS2   |       |       |       | LB2     | LS2       | LS2      |         | RB2   | LS2   |       |       | LS1   |
|                     | LB1    | RS2       | LB1     | LS2   | RB2       |       |       |       |       | LB1     | LB1       |          |         | RS2   |       |       |       |       |
|                     | RB1    | RB2       | RS2     |       |           |       |       |       |       |         | RB1       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       |         | RS2       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       |         |           |          |         |       |       |       |       |       |
| Total =             | 116.2  | 1 kcal/m  | ol      |       |           |       |       |       |       | 109.90  | ) kcal/m  | ol       |         |       |       |       |       |       |
| Van der Waals =     | 103.7  | 6 kcal/m  | ol      |       |           |       |       |       |       | 126.32  | kcal/m    | ol       |         |       |       |       |       |       |
| Electrostatic =     | -234.1 | / kcal/m  | ol      |       |           |       |       |       |       | -258.13 | kcal/m    | ol       |         |       |       |       |       |       |
| $\Delta E_{Tot} =$  | -131.8 | 7 kcal/m  | ol      |       |           |       |       |       |       | -138.18 | kcal/m    | ol       |         |       |       |       |       |       |
| $\Delta E_{Vdw} =$  | -23.4  | 7 kcal/m  | ol      |       |           |       |       |       |       | -0.91   | kcal/m    | ol       |         |       |       |       |       |       |
| $\Delta E_{ru} =$   | -120.2 | 9 kcal/m  | 5       |       |           |       |       |       |       | -144 24 | kcal/m    | -        |         |       |       |       |       |       |
| Ele                 | -120.2 | > Rearing | 1       |       |           |       |       |       |       | -144.2. | , Kearing | 51       |         |       |       |       |       |       |
| Initial Orientation | LS2    |           | RS2     | LB1   |           |       |       | CS    |       | RB1     | RB1       | LS2      |         |       | LS1   |       |       |       |
|                     | RS2    |           |         | LS2   |           |       |       | RB1   |       | CS      | RB1       | LSI      |         |       |       |       |       |       |
|                     | RB2    |           |         | LS1   |           |       |       | RS1   |       | LB1     | RS1       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       | LS1     | RNH       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       |         | LS1       |          |         |       |       |       |       |       |
| Final Orientation   | LS2    |           | RS2     | LB1   |           | RS2   |       | CS    |       | LS2     | RB1       | LS2      |         |       | LS1   |       |       | LS1   |
|                     | RS2    |           |         | LS2   |           |       |       | RB1   |       | LS1     | RB1       | LS1      |         |       |       |       |       |       |
|                     | RB2    |           |         | LS1   |           |       |       | RS1   |       | LB1     | LS1       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       | CS      | LB1       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       | RB1     | RNH       |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       |         | RS1       |          |         |       |       |       |       |       |
| Tetal -             | 01.4   | E 1 1/    | -1      |       |           |       |       |       |       | 01.40   | 1         | -1       |         |       |       |       |       |       |
| Van der Waak =      | 01.4   | 9 keal/m  | JI<br>J |       |           |       |       |       |       | 91.40   | kcal/m    |          |         |       |       |       |       |       |
| Flectrostatic =     | -259.0 | 8 kcal/m  | n<br>N  |       |           |       |       |       |       | -253.51 | kcal/m    | JI<br>JI |         |       |       |       |       |       |
| Exectostate         | -259.0 | o Rearing | 1       |       |           |       |       |       |       | -200.01 | Rearing   | 51       |         |       |       |       |       |       |
| $\Delta E_{Tot} =$  | -166.6 | 3 kcal/m  | ol      |       |           |       |       |       |       | -156.68 | kcal/m    | ol       |         |       |       |       |       |       |
| $\Delta E_{Vdw} =$  | -30.1  | 4 kcal/m  | ol      |       |           |       |       |       |       | -30.72  | kcal/m    | ol       |         |       |       |       |       |       |
| $\Delta E_{Ele} =$  | -145.1 | 9 kcal/m  | ol      |       |           |       |       |       |       | -139.63 | kcal/m    | ol       |         |       |       |       |       |       |
| Initial Orientation | 151    |           | I B1    | DS1   | 1.53      | PB1   |       | CS    | PS2   | 1.51    | 182       | PB1      |         |       | 152   | PS2   | PB2   |       |
| initial Of childron | 1.51   |           | LS2     | Rol   | 1.02      | RSI   |       | RBI   | 102   | 1.01    | LD2       | LS2      |         |       | 1.52  | RB2   | RD2   |       |
|                     |        |           | LSI     |       |           |       |       | RS2   |       |         | 202       | RNH      |         |       |       | 102   |       |       |
|                     |        |           | RB1     |       |           |       |       | 102   |       |         |           | RS2      |         |       |       |       |       |       |
| Final Orientation   | LS1    | LS1       | LB1     | RS1   | LS2       | RB1   | CS    | CS    | RS2   | LS2     | LB2       | RB1      |         |       |       | RS2   | RB2   | LS2   |
|                     |        |           | LS2     |       |           |       |       | RB1   |       | LS1     | LS2       | LS2      |         |       |       | RB2   |       |       |
|                     |        |           | LS1     |       |           |       |       | RS1   |       |         |           | RNH      |         |       |       |       |       |       |
|                     |        |           | RB1     |       |           |       |       | RS2   |       |         |           |          |         |       |       |       |       |       |
|                     |        |           |         |       |           |       |       |       |       |         |           |          |         |       |       |       |       |       |
| Total =             | 88.2   | 8 kcal/m  | ol<br>' |       |           |       |       |       |       | 88.48   | kcal/m    | ol<br>1  |         |       |       |       |       |       |
| Van der Waals =     | 98.3   | 5 kcal/m  |         |       |           |       |       |       |       | 90.49   | kcal/m    |          |         |       |       |       |       |       |
| Electrostatic =     | -253.0 | 3 kcal/m  | 01      |       |           |       |       |       |       | -241.06 | кса!/m    | 01       |         |       |       |       |       |       |
| $\Delta E_{Tot} =$  | -159.8 | 0 kcal/m  | ol      |       |           |       |       |       |       | -159.60 | ) kcal/m  | ol       |         |       |       |       |       |       |
| $\Delta E_{Vdw} =$  | -28.8  | 8 kcal/m  | ol      |       |           |       |       |       |       | -36.73  | kcal/m    | ol       |         |       |       |       |       |       |
| $\Delta E_{Ele} =$  | -139.1 | 5 kcal/m  | ol      |       |           |       |       |       |       | -127.18 | kcal/m    | ol       |         |       |       |       |       |       |

# Table 6.47: The solution phase results of solapsone interacting with the HHQK region of the 1AML conformer of β-amyloid

| r                         |            | C 0       | T 10       | X7.11.0 | IT: 12 | TT: 1.4    | T 1/  | 1 17   | \$7.11.0   | DI 10 | DI 20 | 41.01 | CL 22 | 41.20 | 11.21       |
|---------------------------|------------|-----------|------------|---------|--------|------------|-------|--------|------------|-------|-------|-------|-------|-------|-------------|
|                           | Argo       | Ser8      | Tyr10      | vall2   | HIS13  | HIS14      | Lys16 | Leul / | Vall8      | Phe19 | Phe20 | Ala21 | GIU22 | Ala30 | 11631       |
| Initial Orientation       | KS2        |           | LB2        |         | LB2    | LBI        |       | 1.82   | K52<br>DD2 |       |       |       |       |       |             |
|                           |            |           | 1.52       |         | 1.52   | RB1        |       |        | KD2        |       |       |       |       |       |             |
| Final Orientation         | RS2        |           | IB2        |         | IB2    | I B1       |       | 1.52   | RS2        |       |       | RB2   | RB2   |       | LB1         |
| i indi Orientation        | 1052       |           | LS2        |         | LS2    | LS2        |       | 1.02   | 102        |       |       | RD2   | 1052  |       | LDI         |
|                           |            |           | 102        |         | 1.02   | 102        |       |        |            |       |       |       |       |       |             |
| Total =                   | 117.95     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Van der Waals =           | 101.62     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Electrostatic =           | -244.30    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
|                           |            |           |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Tot} =$        | -130.13    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Vdw} =$        | -25.60     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Ele} =$        | -130.42    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Lie                       |            |           |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Initial Orientation       |            |           |            | LB1     | LB2    |            | LS2   | LB2    |            | RB2   | LS2   |       |       |       |             |
|                           |            |           |            |         | LS1    |            | RB1   |        |            |       |       |       |       |       |             |
|                           |            |           |            |         | LNH    |            | RNH   |        |            |       |       |       |       |       |             |
|                           |            |           |            |         | LB1    |            | RS2   |        |            |       |       |       |       |       |             |
| Final Orientation         |            |           |            | LB1     | LB2    |            | RB1   | LB2    |            |       | LS2   |       |       |       | LB2         |
|                           |            |           |            |         | LNH    |            | LS2   |        |            |       | RB2   |       |       |       |             |
|                           |            |           |            |         |        |            | LB1   |        |            |       |       |       |       |       |             |
|                           |            |           |            |         |        |            | RNH   |        |            |       |       |       |       |       |             |
| T ( )                     | 00.22      | 1 1/ 1    |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Iotal =<br>Von der Week = | 90.23      | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Flectrostatic =           | -265.43    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Lieutostatie              | -205.45    | Rearmon   |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta F_{T-1} =$        | -157.85    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| ΔE =                      | -21.72     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| AE -                      | 151.55     | kool/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Ele} -$        | -131.33    | Real/1101 |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Initial Orientation       |            |           | RS2        |         | I B1   | RB2        | 1.52  | RS2    |            |       |       | IB2   |       |       | RB1         |
|                           |            |           | 102        |         | RB1    | RS2        | 202   | 1.02   |            |       |       | LS2   |       |       | RNH         |
|                           |            |           |            |         | RS2    |            |       |        |            |       |       |       |       |       |             |
| Final Orientation         |            |           |            |         | RB1    | RB2        | LS2   | RS2    |            |       |       | LS2   |       | RB1   | RB1         |
|                           |            |           |            |         | RS2    | RS2        |       |        |            |       |       |       |       |       | RNH         |
|                           |            |           |            |         |        |            |       |        |            |       |       |       |       |       | RB2         |
| Total =                   | 112.44     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Van der Waals =           | 116.00     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Electrostatic =           | -250.68    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| 4.5                       | 125 (4     | 1 1/ 1    |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Tot} =$        | -135.64    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Vdw} =$        | -11.23     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Ele} =$        | -136.80    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Initial Onit of the       | I DA       | LDI       | DD1        |         | 0.02   | DD1        |       | DCO    | 1.02       |       |       |       |       |       | DCO         |
| Initial Orientation       | LB2        | LBI       | RBI        |         | RB2    | KBI<br>LD1 |       | RS2    | LB2        |       |       |       |       |       | RS2         |
| Final Orientation         | LSI        | CS        | RS1<br>PS1 |         | 002    | DD1        |       | RB2    | 1 02       |       |       |       |       |       | KB2<br>DD2  |
| r inai Orientation        | LB2<br>LS1 | LB1       | RB1        |         | KD2    | RB1        |       | KD2    | LD2        |       |       |       |       |       | RS2         |
|                           | LST        | LDI       | КDТ        |         |        | LB1        |       |        |            |       |       |       |       |       | <b>R</b> 52 |
|                           |            |           |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Total =                   | 98.51      | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Van der Waals =           | 93.82      | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| Electrostatic =           | -239.88    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
|                           |            |           |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Tot} =$        | -149.56    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Vdw} =$        | -33.41     | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |
| $\Delta E_{Ele} =$        | -126.00    | kcal/mol  |            |         |        |            |       |        |            |       |       |       |       |       |             |

# Table 6.48: The solution phase results of solapsone interacting with the LVFFregion of the 1AML conformer of β-amyloid

|                                    | Arg5              | Tyr10                | Vall2 | His13      | His14             | Gln15 | Lys16             | Leu17 | Val18      | Phe19 | Phe20 | Glu22 | Gly29 | Ala30 | Ile31 |
|------------------------------------|-------------------|----------------------|-------|------------|-------------------|-------|-------------------|-------|------------|-------|-------|-------|-------|-------|-------|
| Initial Orientation                | LB2<br>LS1        | RS2<br>RB2           |       | RS2        | RB1<br>LB1        |       |                   | RS2   | LB2<br>LS2 |       |       |       |       |       | RS1   |
| Final Orientation                  | LB2               | RS2                  |       | RS2        | RS2<br>RB1        |       |                   | RS2   | LB2        |       |       | LB2   |       |       | RS1   |
|                                    | LS1               |                      |       |            | LB1<br>RNH<br>RS2 |       |                   |       |            |       |       |       |       |       |       |
| Total =                            | 78.37             | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Van der Waals =<br>Electrostatic = | 92.69<br>-262.76  | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
|                                    |                   |                      |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Tot} =$                 | -169.71           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$                 | -34.54            | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Ele} =$                 | -148.88           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Initial Orientation                | RB2               | LB2                  |       | LB2        | LB1               |       |                   | LS2   | RS2        |       |       | RB2   |       |       |       |
|                                    | RS1               | LS2                  |       | LS2        | LS2<br>RB1<br>RS2 |       |                   |       | RB2        |       |       |       |       |       |       |
| Final Orientation                  | RB2               | LB2                  |       | LB2        | LS2               | RS2   |                   | LS2   | RS2        |       |       | RB2   |       |       |       |
|                                    | RS1               | LS2<br>LS1           |       | LS2        | RB1<br>RS2        |       |                   |       | RB2        |       |       |       |       |       |       |
| Total =                            | 72.10             | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Van der Waals =<br>Electrostatic = | 95.92<br>-267.61  | kcal/mol<br>kcal/mol |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Tot} =$                 | -175.97           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$                 | -31.31            | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Ele} =$                 | -153.73           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Initial Orienteties                |                   | DCO                  |       | 165        | 202               |       | I D2              | Bea   |            |       | יםן   |       |       |       | PD1   |
| Initial Orientation                |                   | K52                  |       | LS2<br>LB1 | RS2               |       | LB2<br>LS2        | K52   |            |       | LB2   |       |       |       | RNH   |
|                                    |                   |                      |       | RB1<br>RS2 |                   |       |                   |       |            |       |       |       |       |       |       |
| Final Orientation                  |                   | RS2                  |       | LS2        | RB2               |       | LB2               | RS2   |            |       | LB2   |       |       |       | RB1   |
|                                    |                   |                      |       | LB1        | RS2               |       | LS2               | RB2   |            |       |       |       |       |       | RB2   |
|                                    |                   |                      |       | RS2        |                   |       |                   |       |            |       |       |       |       |       |       |
| Total =                            | 116.12            | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Van der Waals =<br>Electrostatic = | 112.15<br>-233.90 | kcal/mol<br>kcal/mol |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Tot} =$                 | -131.96           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| ΔE <sub>Vdw</sub> =                | -15.07            | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Ele} =$                 | -120.02           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Initial Orientation                |                   |                      | RB2   | RS1        |                   |       | LB1               | RS1   |            | LB2   | LB1   |       |       | RS1   |       |
|                                    |                   |                      |       | RB2        |                   |       | LS2<br>LNH<br>RB1 |       |            | LNH   | RB1   |       |       |       |       |
|                                    |                   |                      |       |            |                   |       | RNH<br>RS1        |       |            |       |       |       |       |       |       |
| Final Orientation                  |                   |                      | 002   | DS1        |                   |       | RB2               | DS1   |            | TDI   | DD1   |       |       | DC1   |       |
| Final Orientation                  |                   |                      | KD2   | RB2        |                   |       | LS1               | K51   |            | LDI   | LB1   |       |       | KSI   |       |
|                                    |                   |                      |       |            |                   |       | RS1               |       |            | LB2   |       |       |       |       |       |
|                                    |                   |                      |       |            |                   |       | RNH<br>RB1<br>LNH |       |            |       |       |       |       |       |       |
| Total =                            | 88 65             | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Van der Waals =<br>Electrostatic = | 100.71            | kcal/mol<br>kcal/mol |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Tot} =$                 | -159.43           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| ΔE <sub>Vdw</sub> =                | -26.52            | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Ele} =$                 | -136.65           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Initial Orientation                |                   |                      |       | RB1        |                   |       | LS2               | RS2   |            |       | RB2   |       | RB2   | RB2   |       |
|                                    |                   |                      |       | RS2<br>RS1 |                   |       | RS2               | RS1   |            |       |       |       |       | RS1   |       |
|                                    |                   |                      |       | LBI        |                   |       | LB2               |       |            |       |       |       |       |       |       |
| Final Orientation                  |                   |                      |       | RB1        |                   |       | LB2               | RS2   |            |       | RB2   |       | RB2   | RS1   |       |
|                                    |                   |                      |       | RS2        |                   |       | RS2               |       |            |       |       |       |       | KB2   |       |
| Total –                            | 05.52             | konl/ma1             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Van der Waals =                    | 95.53<br>109.82   | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| Electrostatic =                    | -271.08           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Tot} =$                 | -152.55           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$                 | -17.41            | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |
| $\Delta E_{Ele} =$                 | -157.20           | kcal/mol             |       |            |                   |       |                   |       |            |       |       |       |       |       |       |

# Table 6.49: The solution phase results of solapsone interacting with the<br/>HHQKLVFF region of the 1AML conformer of β-amyloid

|                         | Arg5 His6 Glul 1                   | Vall2 | His13      | His14 | Gln15 | Lys16      | Leu17 | Val18 | Phe19 | Phe20 | Glu22 | Asp23 | Lys28      | Gly29 | Ile31 |
|-------------------------|------------------------------------|-------|------------|-------|-------|------------|-------|-------|-------|-------|-------|-------|------------|-------|-------|
| Initial Orientation     | -                                  |       | RB2        |       |       | RS1        |       |       |       | CS    |       |       | LB2        |       |       |
| F 10                    |                                    |       | RS2        |       |       | RS2        |       |       |       | LDI   |       |       | LS2        | 1.00  |       |
| Final Orientation       |                                    |       | RB2<br>RS2 |       |       | RS1<br>RS2 |       |       |       | CS    |       |       | LS2<br>LB2 | 1.52  |       |
|                         |                                    |       | 102        |       |       | 102        |       |       |       | 00    |       |       | 202        |       |       |
| Total =                 | 71.99 kcal/mol                     |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Van der Waals =         | 118.68 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Electrostatic -         | -2/9.83 Kcal/II01                  |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Tot} =$      | -176.09 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Vdw} =$      | -8.55 kcal/mol                     |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Ele} =$      | -165.97 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
|                         |                                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Initial Orientation     | 1.82                               |       |            | RB1   |       |            | RS1   | LSI   |       |       | LS1   |       |            |       | RS1   |
|                         | LS1                                |       |            | RS1   |       |            |       |       |       |       |       |       |            |       |       |
|                         |                                    |       |            | RS2   |       |            |       |       |       |       |       |       |            |       |       |
| Final Orientation       | LS2                                |       |            | RB1   |       |            | RS1   | LS1   |       |       | LS1   |       |            |       | RS1   |
|                         | LSI                                |       |            | RS1   |       |            |       |       |       |       |       |       |            |       |       |
|                         |                                    |       |            | RS2   |       |            |       |       |       |       |       |       |            |       |       |
| T-1-1                   | 117.251                            |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Van der Waals =         | 117.55 Kcal/mol<br>107.93 kcal/mol |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Electrostatic =         | -231.10 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
|                         |                                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Tot} =$      | -130.72 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Vdw} =$      | -19.30 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Ele} =$      | -117.22 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Initial Orientation     |                                    | LS2   | LS2        |       |       | LS2        |       |       | RNH   | CS    |       |       |            |       |       |
|                         |                                    |       | LS1        |       |       | LB1        |       |       | RS1   |       |       |       |            |       |       |
|                         |                                    |       |            |       |       | RB1        |       |       |       |       |       |       |            |       |       |
|                         |                                    |       |            |       |       | RNH        |       |       |       |       |       |       |            |       |       |
| Final Orientation       |                                    | LS2   | LS2        |       |       | LBI        |       |       | RS1   | CS    |       | RB2   |            |       |       |
| r nur onenanon          |                                    | LB2   | LS1        |       |       | RS1        |       |       | RNH   | 00    |       | 1002  |            |       |       |
|                         |                                    |       |            |       |       | CS         |       |       | RB1   |       |       |       |            |       |       |
|                         |                                    |       |            |       |       | LS2        |       |       |       |       |       |       |            |       |       |
| Total =                 | 135.62 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Van der Waals =         | 105.56 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Electrostatic =         | -225.33 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| AE =                    | 112.46 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{V_{even}} =$ | -21 67 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Ela} =$      | -111.45 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Lie                     |                                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Initial Orientation     | LB2                                |       | RB2        |       |       | LS2        |       |       | LS1   |       |       |       |            |       |       |
|                         |                                    |       | RS2        |       |       | LNH        |       |       | LNH   |       |       |       |            |       |       |
| Final Orientation       |                                    |       | RB2        |       |       | LS1        |       |       | LB2   |       |       |       |            |       |       |
|                         |                                    |       | RS2        |       |       | LB1        |       |       | LS1   |       |       |       |            |       |       |
|                         |                                    |       |            |       |       | RS2        |       |       | LB1   |       |       |       |            |       |       |
| Total =                 | 133.01 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Van der Waals =         | 119.36 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Electrostatic =         | -233.36 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| AE -                    | 115.07 km-1/1                      |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Tot} =$      | -115.07 Kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{vdw} =$      | -119.48 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Ele                     | 119.10 Rearing                     |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Initial Orientation     | RB1                                | LB1   | LS1        |       |       | LB1        |       |       | RB2   |       |       |       |            |       |       |
|                         |                                    | CS    |            |       |       | RB1        |       |       |       |       |       |       |            |       |       |
| Final Orientation       |                                    | RB1   | LS1        |       |       | RB1        |       |       | RB2   |       |       |       |            |       |       |
|                         |                                    | CS    |            |       |       | RS2        |       |       |       |       |       |       |            |       |       |
|                         |                                    |       |            |       |       | LB1        |       |       |       |       |       |       |            |       |       |
| Total =                 | 106.29 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Van der Waals =         | 106.36 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| Electrostatic =         | -245.49 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| 15                      | 141 70 1 1/ 1                      |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Tot} =$      | -141./9 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Vdw} =$      | -20.86 kcal/mol                    |       |            |       |       |            |       |       |       |       |       |       |            |       |       |
| $\Delta E_{Ele} =$      | -131.01 kcal/mol                   |       |            |       |       |            |       |       |       |       |       |       |            |       |       |

# Table 6.49: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1AML conformer of β-amyloid

|                                               | Arg5                       | Tyr10                      | His13             | His14                    | Gln15 Lys16       | Leu17 | Val18 | Phe19 | Phe20 A | Ala21 | Gly29 | Ala30      | Ile31      | Ile32 | Met35 |
|-----------------------------------------------|----------------------------|----------------------------|-------------------|--------------------------|-------------------|-------|-------|-------|---------|-------|-------|------------|------------|-------|-------|
| Initial Orientation                           |                            | RS1                        | RS2               | LB1<br>RB1               |                   | RS2   |       |       |         | LB2   |       |            | RS2<br>RB2 | LS2   |       |
|                                               |                            |                            |                   | LNH                      |                   |       |       |       |         |       |       |            |            |       |       |
| Final Orientation                             |                            | RS1                        | RS1<br>RS2        | LB1<br>RB1<br>I NH       |                   | RS2   |       |       |         | LB2   |       |            | RS2        | LS2   |       |
|                                               |                            |                            |                   | LIVII                    |                   |       |       |       |         |       |       |            |            |       |       |
| Total =                                       | 109.14                     | kcal/m                     | iol               |                          |                   |       |       |       |         |       |       |            |            |       |       |
| Electrostatic =                               | -252.63                    | kcal/m                     | iol               |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Tot} =$                            | -138.94                    | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Vdw} =$                            | -15.97                     | kcal/m                     | iol               |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Ele} =$                            | -138./3                    | o kcai/m                   | 01                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| Initial Orientation                           | RB2<br>RS2                 | LS2                        | LB2               | RB1<br>LB1               |                   | LS2   | RB2   |       |         |       |       |            | LB1<br>LNH |       |       |
| Final Orientation                             | RS2                        | LS2                        | LB2               | RB1                      |                   | LS2   |       |       |         |       |       |            | LB2<br>LB1 |       |       |
|                                               | RB2                        |                            | LS2               | LB1<br>LS2               |                   |       |       |       |         |       |       |            | LNH<br>LB2 |       |       |
| Total =                                       | 111.37                     | / kcal/m                   | юl                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| Van der Waals =<br>Electrostatic =            | 107.33<br>-245.00          | kcal/m<br>kcal/m           | iol<br>iol        |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Tot} =$                            | -136.71                    | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Vdw} =$                            | -19.89                     | ) kcal/m                   | iol<br>iol        |                          |                   |       |       |       |         |       |       |            |            |       |       |
| ΔE <sub>Ele</sub> –                           | -131.12                    | . Kearin                   | 01                |                          | _                 |       |       |       |         |       |       |            |            |       |       |
| Initial Orientation                           | RB2                        | LB2<br>LS2                 | LB2<br>LS2        | LB1<br>LS2<br>RB1        |                   | LS2   | RB2   |       |         |       |       |            | LB1        |       | CS    |
| F: 10 : 47                                    | 000                        | 1.02                       | 1.02              | RS2                      |                   | 1.02  | 0.02  |       |         |       |       |            | LDI        |       | 66    |
| r inai Orientation                            | KB2                        | LS2<br>LS1                 | LB2<br>LS2        | LS2<br>LS1<br>LB1<br>RB1 |                   | 1.52  | KB2   |       |         |       |       |            | LBI        |       | CS    |
| Total=                                        | 97.41                      | kcal/m                     | ol                | K52                      |                   |       |       |       |         |       |       |            |            |       |       |
| Van der Waals =<br>Electrostatic =            | 104.32<br>-264.29          | kcal/m<br>kcal/m           | iol<br>iol        |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Tot} =$                            | -150.67                    | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Vdw} = \Delta E_{vdw} =$           | -22.91                     | kcal/m                     | iol<br>iol        |                          |                   |       |       |       |         |       |       |            |            |       |       |
| ZLEIe                                         | -150.41                    | Keurin                     | 01                |                          | _                 |       |       |       |         |       |       |            |            |       |       |
| Initial Orientation                           |                            | LB1<br>LNH<br>LS1          | RB1               | LB2<br>LB2               |                   | LS2   |       |       |         |       | RB2   | RB2<br>RS2 | LS2        |       |       |
| Final Orientation                             |                            | LSI                        | RB1<br>LB1        | LB2<br>LS1               |                   | LS2   |       |       | RB2     |       | RB2   | RS2<br>RB2 | LS2        |       |       |
|                                               |                            |                            | RNH               |                          |                   |       |       |       |         |       |       |            |            |       |       |
| Total =<br>Van der Waals =<br>Electrostatic = | 94.41<br>109.97<br>-256.25 | kcal/m<br>kcal/m<br>kcal/m | iol<br>iol<br>iol |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta F_{rred} =$                           | -153.67                    | / kcal/m                   | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Vdw} =$                            | -17.26                     | kcal/m                     | юl                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Ele} =$                            | -142.36                    | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| Initial Orientation                           |                            |                            | LB1               |                          | RB2               | LS1   |       | RB2   | LS1     |       |       |            |            |       |       |
|                                               |                            |                            | LS1<br>LS2        |                          | LB1<br>LNH        |       |       |       |         |       |       |            |            |       |       |
| Final Orientation                             |                            |                            | 1.81              |                          | LS1<br>RB2        | 181   |       | RB2   | 1.51    |       |       | 1.81       |            |       |       |
|                                               |                            |                            | LS1<br>LS2        |                          | LB1<br>LNH<br>LS1 | Loi   |       | 1052  | LOI     |       |       | LUI        |            |       |       |
| Total =                                       | 89.69                      | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| Van der Waals =<br>Electrostatic =            | 87.11<br>-259.20           | kcal/m<br>kcal/m           | iol<br>iol        |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Tot} =$                            | -158.39                    | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Vdw} =$                            | -40.12                     | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |
| $\Delta E_{Ele} =$                            | -145.32                    | kcal/m                     | ol                |                          |                   |       |       |       |         |       |       |            |            |       |       |

# Table 6.49: The solution phase results of solapsone interacting with the<br/>HHQKLVFF region of the 1AML conformer of β-amyloid

|                     | Tyr10   | His13      | His14      | Gln15      | Lys16 | Leu17 | His13      | His14 Gln15 | Lys16 |
|---------------------|---------|------------|------------|------------|-------|-------|------------|-------------|-------|
| Initial Orientation |         | RB1        | LS1        | RS2        |       |       | RS1        | LS2         |       |
|                     |         | RB1        | LS2        |            |       |       | RS2        | LS1         |       |
|                     |         | RS2        |            |            |       |       |            |             |       |
| Einel Onientetion   |         | RSI        | TCI        | DD1        |       |       | DC1        | 1.52        |       |
| Final Orientation   |         | RS2<br>DS1 | LSI<br>PS2 | KB2<br>PS2 |       |       | RS1<br>PS2 | LS2<br>LS1  |       |
|                     |         | RB1        | LS2        | K02        |       |       | K32        | 1.51        |       |
|                     |         |            |            |            |       |       |            |             |       |
| Total =             | 64.47   | kcal/mol   |            |            |       |       | 82.04      | kcal/mol    |       |
| Van der Waals =     | 129.64  | kcal/mol   |            |            |       |       | 130.42     | kcal/mol    |       |
| Electrostatic =     | -303.24 | kcal/mol   |            |            |       |       | -276.42    | kcal/mol    |       |
| AE -                | 157.01  | kaal/mal   |            |            |       |       | 140.22     | kaal/mal    |       |
| AE -                | -137.81 | keal/mol   |            |            |       |       | -140.23    | keal/mol    |       |
| $\Delta E_{Vdw} -$  | 1.04    |            |            |            |       |       | 1.82       |             |       |
| $\Delta E_{Ele} =$  | -155.41 | kcal/mol   |            |            |       |       | -128.59    | kcal/mol    |       |
| Initial Orientation |         | LS2        | LS2        | LB2        |       |       | LB1        | RS1         |       |
|                     |         | RB1        |            |            |       |       | LS2        | RS2         |       |
|                     |         | RNH        |            |            |       |       | LS1        | •           |       |
|                     |         | RB2        |            |            |       |       |            |             |       |
| Final Orientation   | RB2     | RB2        | LS2        |            |       |       | LS2        | RS1         |       |
|                     |         | RNH        | LS2*       |            |       |       | LS1        | RS2         |       |
|                     |         | IS2        | *-NH-      |            |       |       |            |             |       |
|                     |         | 1.02       | 1.51       |            |       |       |            |             |       |
| Total =             | 113.33  | kcal/mol   |            |            |       |       | 73.19      | kcal/mol    |       |
| Van der Waals =     | 119.25  | kcal/mol   |            |            |       |       | 116.74     | kcal/mol    |       |
| Electrostatic =     | -256.84 | kcal/mol   |            |            |       |       | -273.24    | kcal/mol    |       |
| AE -                | 102.05  | kaal/mal   |            |            |       |       | 140.09     | kaal/mal    |       |
| $\Delta E_{Tot} =$  | -108.95 |            |            |            |       |       | -149.00    |             |       |
| $\Delta E_{Vdw} =$  | -9.35   |            |            |            |       |       | -11.86     | kcal/mol    |       |
| $\Delta E_{Ele} =$  | -109.01 | kcal/mol   |            |            |       |       | -125.41    | kcal/mol    |       |
| Initial Orientation |         | LB1        | CS         | CS         |       | RS1   | LB1        | LS2         |       |
|                     |         | LS2        | RB1        |            |       |       | LS2        | LS1         |       |
|                     |         |            | RS1        |            |       |       | LS1        |             |       |
|                     |         |            | RS2        |            |       |       | CS         |             |       |
| Einel Onientetien   |         | 1.52       | CE         | CE         |       |       | RS2        | 1.52        |       |
| r inai Orientation  |         | 1.52       | RB1        | Co         |       |       | RS2        | LS2<br>LS1  |       |
|                     |         |            | RS1        |            |       |       | LB1        | LOT         |       |
|                     |         |            | RS2        |            |       |       | LS2        |             |       |
|                     |         |            |            |            |       |       |            |             |       |
| Total =             | 90.81   | kcal/mol   |            |            |       |       | 93.67      | kcal/mol    |       |
| Van der Waals =     | 11/.58  | kcal/mol   |            |            |       |       | 128.36     | kcal/mol    |       |
| Electrostatic -     | -205.22 | Keaviioi   |            |            |       |       | -275.55    | Kearmon     |       |
| $\Delta E_{Tot} =$  | -131.47 | kcal/mol   |            |            |       |       | -128.61    | kcal/mol    |       |
| $\Delta E_{Vdw} =$  | -11.01  | kcal/mol   |            |            |       |       | -0.24      | kcal/mol    |       |
| $\Delta E_{Ele} =$  | -115.39 | kcal/mol   |            |            |       |       | -127.70    | kcal/mol    |       |
|                     |         |            |            |            |       |       |            |             |       |
| Initial Orientation |         | LS2        | LB1        |            |       | RS1   |            |             |       |
|                     |         |            | LS2        |            |       | RS2   |            |             |       |
|                     |         |            | RBI        |            |       |       |            |             |       |
| Final Orientation   |         | 1.82       | LS2        |            |       | RB1   |            |             |       |
|                     |         | LS1        | RS2        |            |       | RS1   |            |             |       |
|                     |         |            |            |            |       | RS2   |            |             |       |
|                     |         |            |            |            |       |       |            |             |       |
| Total =             | 102.63  | kcal/mol   |            |            |       |       |            |             |       |
| van der Waals =     | -258 49 | kcal/mol   |            |            |       |       |            |             |       |
| Lieu Usiane -       | -236.08 | KCa1/1101  |            |            |       |       |            |             |       |
| $\Delta E_{Tot} =$  | -119.64 | kcal/mol   |            |            |       |       |            |             |       |
| $\Delta E_{Vdw} =$  | -10.85  | kcal/mol   |            |            |       |       |            |             |       |
| $\Delta E_{Ele} =$  | -110.85 | kcal/mol   |            |            |       |       |            |             |       |
| -1.1C               | 110.00  |            |            |            |       | 1     | L          |             |       |

# Table 6.50: The solution phase results of solapsone interacting with the HHQK region of the 1BA4 conformer of β-amyloid

|                     | His14   | Gln15    | Leu17 | Val18 | Phe19 | Phe20 | Ala21 | Val24 | Lys28 | His13   | His14   | Gln15 | Lys16 | Leu17 | Val18 | Phe19 | Phe20      | Ala21 | Val24 | Lys28 |
|---------------------|---------|----------|-------|-------|-------|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|------------|-------|-------|-------|
| Initial Orientation | LS1     |          | LB1   | LB1   |       |       | RB1   | RB2   | RB2   |         | RB1     | RS1   |       | LB1   | RB1   |       |            |       |       |       |
|                     |         |          | LNH   | LB2   |       |       | CS    |       | RS2   |         | RNH     |       |       |       | RS1   |       |            |       |       |       |
|                     |         |          |       |       |       |       | LB1   |       |       |         | RS1     |       |       |       |       |       |            |       |       |       |
| Final Orientation   | LS1     | LB2      | LS1   | LB2   |       |       | RB1   | RNH   | RB2   |         | RNH     | RS1   |       | LB1   | CS    |       |            | LB1   |       |       |
|                     |         |          | LNH   | LB1   |       |       |       | RB2   | RS2   |         | RS1     |       |       |       | RB1   |       |            |       |       |       |
|                     |         |          | LB1   |       |       |       |       |       |       |         | RB2     |       |       |       | RS1   |       |            |       |       |       |
| Total =             | 136 79  | kcal/mol |       |       |       |       |       |       |       | 136.23  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| Van der Waals =     | 127.19  | kcal/mol |       |       |       |       |       |       |       | 112.16  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| Electrostatic =     | -229.63 | kcal/mo  |       |       |       |       |       |       |       | -216.21 | kcal/mo | 1     |       |       |       |       |            |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |         |       |       |       |       |       |            |       |       |       |
| $\Delta E_{Tot} =$  | -85.49  | kcal/mol |       |       |       |       |       |       |       | -86.05  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| $\Delta E_{Vdw} =$  | -1.41   | kcal/mol |       |       |       |       |       |       |       | -16.44  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| $\Delta E_{Ele} =$  | -81.81  | kcal/mol |       |       |       |       |       |       |       | -68.38  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |         |       |       |       |       |       |            |       |       |       |
| Initial Orientation | RS2     |          | RS2   |       |       | LB1   |       |       |       | LB2     |         |       | LB2   | LB2   |       |       | LB1        |       | RS1   | RS1   |
|                     |         |          | RNH   |       |       |       |       |       |       |         |         |       |       |       |       |       | RB1        |       |       |       |
| Einel Online to the | DCO     |          | RBI   |       |       | LDI   |       |       |       | T D 2   | 1.02    |       |       | LDO   |       |       | DDI        |       | DCI   | DC1   |
| Final Orientation   | K52     |          | RBI   |       |       | LBI   |       |       |       | LB2     | LB2     |       |       | LB2   |       |       | KBI<br>LD1 |       | RSI   | KSI   |
|                     |         |          | R32   |       |       | C3    |       |       |       |         |         |       |       |       |       |       | LDI        |       |       |       |
| Total =             | 136.03  | kcal/mol |       |       |       |       |       |       |       | 209.50  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| Van der Waals =     | 113.61  | kcal/mol |       |       |       |       |       |       |       | 109.60  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| Electrostatic =     | -222.88 | kcal/mol |       |       |       |       |       |       |       | -210.14 | kcal/mo | 1     |       |       |       |       |            |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |         |       |       |       |       |       |            |       |       |       |
| $\Delta E_{Tot} =$  | -86.24  | kcal/mol |       |       |       |       |       |       |       | -12.77  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| $\Delta E_{Vdw} =$  | -14.99  | kcal/mol | l     |       |       |       |       |       |       | -19.00  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| $\Delta E_{Ele} =$  | -75.05  | kcal/mol |       |       |       |       |       |       |       | -62.31  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |         |       |       |       |       |       |            |       |       |       |
| Initial Orientation | RS2     |          | RB1   | RS2   |       | LB2   |       |       |       | LS2     | LS2     |       |       | LB1   | RB2   |       |            |       |       |       |
|                     |         |          | -     |       |       | LS2   |       |       |       |         |         |       |       |       | RS2   |       |            |       |       |       |
| Final Orientation   | RS2     |          | RS2   |       |       | LS2   |       |       |       |         | LS2     |       | LB2   | LB2   | RS2   |       |            |       |       |       |
|                     |         |          | LS2   |       |       | LB2   |       |       |       |         |         |       |       | LS2   | RB2   |       |            |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |         |       |       | LDI   |       |       |            |       |       |       |
| Total =             | 161.13  | kcal/mol |       |       |       |       |       |       |       | 147.41  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| Van der Waals =     | 131.97  | kcal/mol | 1     |       |       |       |       |       |       | 123.34  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| Electrostatic =     | -208.03 | kcal/mol |       |       |       |       |       |       |       | -210.45 | kcal/mo | 1     |       |       |       |       |            |       |       |       |
|                     |         |          |       |       |       |       |       |       |       |         |         |       |       |       |       |       |            |       |       |       |
| $\Delta E_{Tot} =$  | -61.14  | kcal/mol |       |       |       |       |       |       |       | -74.87  | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| $\Delta E_{Vdw} =$  | 3.38    | kcal/mol |       |       |       |       |       |       |       | -5.26   | kcal/mo | 1     |       |       |       |       |            |       |       |       |
| $\Delta E_{Ele} =$  | -60.20  | kcal/mol | l     |       |       |       |       |       |       | -62.63  | kcal/mo | 1     |       |       |       |       |            |       |       |       |

# Table 6.51: The solution phase results of solapsone interacting with the LVFF region of the 1BA4 conformer of β-amyloid

|                     | His13   | His14      | Gln15 | Lys16 Leul | Vall8 | Phe19 | Phe20 | His13   | His14     | Gln15 | Lys16 | Leul7 | Vall8 | Phe19 | Phe20 |
|---------------------|---------|------------|-------|------------|-------|-------|-------|---------|-----------|-------|-------|-------|-------|-------|-------|
| Initial Orientation | RS1     | LS2        | RB1   | LS2        | LB1   |       |       | RNH     | LB1       |       |       | LS1   | LS1   |       |       |
|                     | RB2     | LB1        |       | LNH        | CS    |       |       | RS1     | RB1       |       |       |       |       |       |       |
|                     |         | RB1        |       | LB1        |       |       |       | RB2     | LS1       |       |       |       |       |       |       |
|                     |         | RB2        |       |            |       |       |       |         | RNH       |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       |         | RS2       |       |       |       |       |       |       |
| Final Orientation   | RS1     | RS1        | RS2   |            |       |       |       | RB2     | LB1       |       |       | LS1   | LS1   |       |       |
|                     | RS2     | RS2        |       |            |       |       |       | RS1     | RB1       |       |       | LB2   |       |       |       |
|                     |         |            |       |            |       |       |       | RNH     | RS2       |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       |         | LNH       |       |       |       |       |       |       |
| -                   |         |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Total =             | 97.6    | l kcal/mol |       |            |       |       |       | 85.00   | kcal/mol  |       |       |       |       |       |       |
| Van der waais =     | 119.4   | 5 kcal/mol |       |            |       |       |       | 272.12  | kcal/mol  |       |       |       |       |       |       |
| Electrostatic =     | -260.6  | 5 kcal/moi |       |            |       |       |       | -2/3.13 | kcal/moi  |       |       |       |       |       |       |
| 15                  | 124.6   | c 1 1/ 1   |       |            |       |       |       | 127.20  | 1 1/ 1    |       |       |       |       |       |       |
| ΔE <sub>Tot</sub> - | -124.0  |            |       |            |       |       |       | -157.28 | Kcal/IIOI |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$  | -9.1    | 7 kcal/mol |       |            |       |       |       | -15.59  | kcal/mol  |       |       |       |       |       |       |
| $\Delta E_{Ele} =$  | -112.8  | 2 kcal/mol |       |            |       |       |       | -125.30 | kcal/mol  |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Initial Orientation | RS2     | RS2        |       | LS2        |       |       |       | RB1     | LB1       |       | RS1   | RB2   |       |       | RB2   |
|                     | RS1     | RB1        |       | LB2        |       |       |       | LB1     | LB1       |       |       | RS1   |       |       |       |
|                     |         | LS2        |       |            |       |       |       | LSI     | RBI       |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       |         | LNH       |       |       |       |       |       |       |
| Einel Orientation   | DCI     | 1.60       |       | 1.02       |       |       |       | DD1     | LB2       |       | DC1   | 002   |       |       | DD2   |
| Final Orientation   | RSI     | LS2        |       | LB2        |       |       |       | KBI     | LBI       |       | KSI   | KB2   |       |       | KB2   |
|                     | K52     | RDI<br>DS2 |       | 1.52       |       |       |       |         | I D2      |       |       | KINH  |       |       |       |
|                     |         | R.52       |       |            |       |       |       | ISI     | LD2       |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       | 1.51    |           |       |       |       |       |       |       |
| Total =             | 89 3    | 6 kcal/mol |       |            |       |       |       | 120 33  | kcal/mol  |       |       |       |       |       |       |
| Van der Waak =      | 122.7   | l kcal/mol |       |            |       |       |       | 118.50  | kcal/mol  |       |       |       |       |       |       |
| Electrostatic =     | -273 2  | 4 kcal/mol |       |            |       |       |       | -249.36 | kcal/mol  |       |       |       |       |       |       |
|                     | 275.2   |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| $\Delta E_{Tot} =$  | -132 9  | l kcal/mol |       |            |       |       |       | -101.94 | kcal/mol  |       |       |       |       |       |       |
| AE -                | 5.91    | l konl/mol |       |            |       |       |       | 10.00   | konl/mol  |       |       |       |       |       |       |
| AE <sub>Vdw</sub> – | = 5.6   |            |       |            |       |       |       | 101.54  | 11/1      |       |       |       |       |       |       |
| $\Delta E_{Ele} =$  | -125.4  | l kcal/mol |       |            |       |       |       | -101.54 | kcal/mol  |       |       |       |       |       |       |
| Little interior     | 1.02    | 1.01       | 1.01  | DCI        |       |       |       | 1.02    | DDI       |       |       | 002   |       |       |       |
| Initial Orientation | LS2     | LSI        | LSI   | RSI        |       |       |       | LB2     | KB1       |       |       | RB2   |       |       |       |
|                     | LSI     | LBI        |       |            |       |       |       | LS2     | LS2       |       |       |       |       |       |       |
|                     |         | KBI        |       |            |       |       |       | LNH     | LBI       |       |       |       |       |       |       |
| Final Orientation   | 151     | 151        | 151   | RSI        |       |       |       | RB1     | LS2       | 152   |       | RS1   |       |       |       |
| I hai Orienation    | LS1     | LBI        | 1.51  | Roi        |       |       |       | RBI     | 1.52      | 1.52  |       | RNH   |       |       |       |
|                     |         |            |       |            |       |       |       | LB1     |           |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       | LB1     |           |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       | LNH     |           |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       | LS2     |           |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       | LB2     |           |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Total =             | 105.8   | 0 kcal/mol |       |            |       |       |       | 109.39  | kcal/mol  |       |       |       |       |       |       |
| Van der Waals =     | 126.6   | 3 kcal/mol |       |            |       |       |       | 114.73  | kcal/mol  |       |       |       |       |       |       |
| Electrostatic =     | -272.9  | 0 kcal/mol |       |            |       |       |       | -264.01 | kcal/mol  |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| $\Delta E_{Tot} =$  | -116.4  | 8 kcal/mol |       |            |       |       |       | -112.88 | kcal/mol  |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$  | -1.9    | 6 kcal/mol |       |            |       |       |       | -13.87  | kcal/mol  |       |       |       |       |       |       |
| $\Delta E_{Ele} =$  | -125.0  | 7 kcal/mol |       |            |       |       |       | -116.18 | kcal/mol  |       |       |       |       |       |       |
| 1.10                |         |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Initial Orientation | RB1     | RB2        | LS1   | LB2        |       |       |       | RS1     | RB1       |       |       | LS1   |       |       |       |
|                     | RNH     | LS1        |       |            |       |       |       | RS2     | RS1       |       |       |       |       |       |       |
|                     | RS1     |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Final Orientation   | RS1     | RB2        | LS1   | LB2        |       |       |       | RS1     | RB1       |       |       | LS1   |       |       |       |
|                     | RNH     | RB1        | LS1*  |            |       |       |       | RS2     | RNH       |       |       |       |       |       |       |
|                     | RB1     | LS1        | *-NH- |            |       |       |       |         | RS1       |       |       |       |       |       |       |
|                     |         | LB2        |       |            |       |       |       |         |           |       |       |       |       |       |       |
| I .                 |         |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Total =             | 113.3   | l kcal/mol |       |            |       |       |       | 104.07  | kcal/mol  |       |       |       |       |       |       |
| Van der Waals =     | 118.8   | 9 kcal/mol |       |            |       |       |       | 123.77  | kcal/mol  |       |       |       |       |       |       |
| Electrostatic =     | -249.0  | s kcal/mol |       |            |       |       |       | -256.77 | кcal/mol  |       |       |       |       |       |       |
| AE -                | 100.0   | 6 1.001/1  |       |            |       |       |       | 110.01  | heal/?    |       |       |       |       |       |       |
| AET ot =            | -108.9  | o kcal/mol |       |            |       |       |       | -118.21 | kcai/mol  |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$  | -9.7    | i keal/mol |       |            |       |       |       | -4.83   | kcal/mol  |       |       |       |       |       |       |
| $\Delta E_{Ele} =$  | -101.2  | 5 kcal/mol |       |            |       |       |       | -108.95 | kcal/mol  |       |       |       |       |       |       |
|                     |         |            |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Initial Orientation | RB2     | RB1        |       | LS2        |       |       |       | RB2     | LS2       |       |       |       | LS2   |       |       |
|                     | RNH     | RNH        |       | LNH        |       |       |       | RB2     |           |       |       |       | LB2   |       |       |
| F: 10 · · ·         | RS1     | RS2        |       | LB1        |       |       |       | RS2     | 1.07      |       |       |       |       |       |       |
| Final Orientation   | RS1     | RB1        |       | LB1        |       |       |       | RB2     | LS2       |       |       | LS2   | LB2   |       |       |
|                     |         | RS2        |       | LNH        |       |       |       | RS2     |           |       |       |       |       |       |       |
|                     |         | KNH        |       | LS2        |       |       |       |         |           |       |       |       |       |       |       |
|                     |         | LBI        |       |            |       |       |       |         |           |       |       |       |       |       |       |
| Total -             | 01.0    | D kon!/mai |       |            |       |       |       | 110.22  | konl/mar  |       |       |       |       |       |       |
| Van der Weste       | 81.0    | > kcal/mol |       |            |       |       |       | 110.33  | koal/mol  |       |       |       |       |       |       |
| vanuer waars =      | . 262 5 | 4 kcal/mol |       |            |       |       |       | -220.62 | kcal/mol  |       |       |       |       |       |       |
| Liecuostatic -      | -205.54 | + KCaPHOI  |       |            |       |       |       | -239.02 | RearIII01 |       |       |       |       |       |       |
| AE <sub>m</sub> =   | .141.1  | 8 kcal/mol |       |            |       |       |       | _111.05 | kcal/mol  |       |       |       |       |       |       |
| AE -                | -141.1  |            |       |            |       |       |       | 17.5    | heat/?    |       |       |       |       |       |       |
| ΔE <sub>Vdw</sub> = | -24.2   | o kcal/mol |       |            |       |       |       | -17.54  | kcai/mol  |       |       |       |       |       |       |
| $\Delta E_{Ele} =$  | -115.7  | I kcal/mol |       |            |       |       |       | -91.79  | kcal/mol  |       |       |       |       |       |       |

#### Table 6.52: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1BA4 conformer of β-amyloid

|                      | His13      | His14    | Gh15 Lys16 | Leu17 | Val18 | Phe19 | Phe <sub>20</sub> | Val12   | His13      | His14       | Gln15 | Lys16 | Leu17 | Val18 | Phe19 | Phe20 |
|----------------------|------------|----------|------------|-------|-------|-------|-------------------|---------|------------|-------------|-------|-------|-------|-------|-------|-------|
| Initial Orientation  | RB1        | RB1      |            | RB2   |       |       | RB2               |         | LS1        | LB1         | LB2   |       | RB1   |       |       |       |
|                      | LB1        | RNH      |            |       |       |       |                   |         |            | RB1         |       |       |       |       |       |       |
|                      | LNH        | LB1      |            |       |       |       |                   |         |            | RS1         |       |       |       |       |       |       |
|                      | LS1        | LNH      |            |       |       |       |                   |         |            | RNH         |       |       |       |       |       |       |
|                      |            | LB2      |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| Final Orientation    | DD1        | DD1      |            | DD2   |       |       | DD3               | 1.51    | 151        | I D1        | 1.02  |       | DD1   |       |       |       |
| 1 mar Orientation    | LB1        | LB1      |            | KD2   |       |       | KD2               | 1.51    | LNH        | RB1         | LDZ   |       | KDI   |       |       |       |
|                      | LNH        | LB2      |            |       |       |       |                   |         |            | RS1         |       |       |       |       |       |       |
|                      | LS1        |          |            |       |       |       |                   |         |            | RNH         |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| Total =              | 103.24     | kcal/mol |            |       |       |       |                   | 77.5    | e kcal/mol |             |       |       |       |       |       |       |
| Van der Waals =      | 92.63      | kcal/mol |            |       |       |       |                   | 283.2   | s keal/mol |             |       |       |       |       |       |       |
| Licenostatie         | -240.00    | Rearmon  |            |       |       |       |                   | -205.2  | / Kearmon  |             |       |       |       |       |       |       |
| $\Delta E_{Tot} =$   | -119.03    | kcal/mol |            |       |       |       |                   | -144.6  | 8 kcal/mol |             |       |       |       |       |       |       |
| ΔFazdar =            | -35 97     | kcal/mol |            |       |       |       |                   | -6.6    | keal/mol   |             |       |       |       |       |       |       |
| $\Delta E_{r_{1}} =$ | -98 78     | kcal/mol |            |       |       |       |                   | -135.4  | 3 kcal/mol |             |       |       |       |       |       |       |
| Lie                  |            |          |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| Initial Orientation  | LB2        | LB1      |            | LS1   | CS    |       |                   |         | LB2        | LS2         |       |       |       | RB2   |       |       |
|                      | RNH        | RB1      |            | LB1   |       |       |                   |         | LS2        |             |       |       |       |       |       |       |
|                      | RS1        |          |            |       |       |       |                   |         | LS1        |             |       |       |       |       |       |       |
| Final Orientation    | RNH        | LB1      |            | LS1   |       |       |                   |         | LS1        | LB1         |       |       | RB2   | RB2   |       |       |
|                      | RSI        | KBI      |            | LBI   |       |       |                   |         | 1.82       | L82         |       |       |       |       |       |       |
|                      | KD2        |          |            |       |       |       |                   |         | LD2        |             |       |       |       |       |       |       |
| Total =              | 86.21      | kcal/mol |            |       |       |       |                   | 84.8    | 2 kcal/mol |             |       |       |       |       |       |       |
| Van der Waals =      | 124.42     | kcal/mol |            |       |       |       |                   | 113.3   | l kcal/mol |             |       |       |       |       |       |       |
| Electrostatic =      | -271.66    | kcal/mol |            |       |       |       |                   | -277.4  | 8 kcal/mol |             |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| $\Delta E_{Tot} =$   | -136.06    | kcal/mol |            |       |       |       |                   | -137.4  | 5 kcal/mol |             |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$   | -4.17      | kcal/mol |            |       |       |       |                   | -15.2   | kcal/mol   |             |       |       |       |       |       |       |
| $\Delta E_{Ele} =$   | -123.83    | kcal/mol |            |       |       |       |                   | -129.6  | 5 kcal/mol |             |       |       |       |       |       |       |
| Initial Oniontation  | DC1        | 65       | 65         |       | I D1  |       |                   |         | T C 1      | I D1        |       |       | DCO   |       |       |       |
| Initial Orientation  | RS1<br>RS2 | RB1      | CS .       |       | CS    |       |                   |         | LSI        | LBI<br>LS2  |       |       | K52   |       |       |       |
|                      | 1452       | RS1      |            |       | 00    |       |                   |         |            | LS1         |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| Final Orientation    | RS1        | CS       | CS         |       | LB1   |       |                   |         | LS1        | LB1         |       |       | RS2   |       |       |       |
|                      | RS2        | RB1      |            |       | CS    |       |                   |         |            | LS1         |       |       |       |       |       |       |
|                      |            | RSI      |            |       |       |       |                   |         |            | LS2         |       |       |       |       |       |       |
| Total =              | 100.07     | kcal/mol |            |       |       |       |                   | 140.2   | 8 kcal/mol |             |       |       |       |       |       |       |
| Van der Waals =      | 112.26     | kcal/mol |            |       |       |       |                   | 136.0   | 5 kcal/mol |             |       |       |       |       |       |       |
| Electrostatic =      | -260.74    | kcal/mol |            |       |       |       |                   | -250.6  | 4 kcal/mol |             |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| $\Delta E_{Tot} =$   | -122.21    | kcal/mol |            |       |       |       |                   | -82.0   | ) kcal/mol |             |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$   | -16.33     | kcal/mol |            |       |       |       |                   | 7.4     | 5 kcal/mol |             |       |       |       |       |       |       |
| $\Delta E_{Ele} =$   | -112.91    | kcal/mol |            |       |       |       |                   | -102.8  | l kcal/mol |             |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| Initial Orientation  | RS1        | RS1      | CS         |       | LB1   |       |                   | LS1     | LB2        | RB1<br>DD1  |       |       | RS1   |       |       |       |
|                      |            |          |            |       |       |       |                   |         | LB2<br>LS1 | I B1        |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         | LNH        | RNH         |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            | LNH         |       |       |       |       |       |       |
| Final Orientation    | RS1        | RS1      | CS         |       | LB1   |       |                   |         | LB2        | LB1         |       |       | RS1   |       |       |       |
|                      |            | -NH-     | RB1        |       |       |       |                   |         | LS1        | RB1         |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            | RB1         |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            | KNH<br>L NH |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            | LINH        |       |       |       |       |       |       |
| Total =              | 86.61      | kcal/mol |            |       |       |       |                   | 115.2   | ) kcal/mol |             |       |       |       |       |       |       |
| Van der Waals =      | 125.71     | kcal/mol |            |       |       |       |                   | 121.9   | 2 kcal/mol |             |       |       |       |       |       |       |
| Electrostatic =      | -273.54    | kcal/mol |            |       |       |       |                   | -252.02 | 2 kcal/mol |             |       |       |       |       |       |       |
|                      |            |          |            |       |       |       |                   |         |            |             |       |       |       |       |       |       |
| $\Delta E_{Tot} =$   | -135.67    | kcal/mol |            |       |       |       |                   | -107.0  | 7 kcal/mol |             |       |       |       |       |       |       |
| $\Delta E_{Vdw} =$   | -2.88      | kcal/mol |            |       |       |       |                   | -6.6    | 8 kcal/mol |             |       |       |       |       |       |       |
| $\Delta E_{Ele} =$   | -125.71    | kcal/mol |            |       |       |       |                   | -104.2  | ) kcal/mol |             |       |       |       |       |       |       |

# Table 6.52: The solution phase results of solapsone interacting with the<br/>HHQKLVFF region of the 1BA4 conformer of β-amyloid



#### Table 6.53: The solution phase results of solapsone interacting with the HHQK region of the 1IYT conformer of β-amyloid

|                     | Arg5 F     | His6 (  | Gly9   | Tyr10 | Vall2 | His13 | His14 | Gln15 | Lys16      | Leul7 | Gly9    | Tyr10   | His13      | His14       | Gln15 | Lys16 | Leu17 | Phe20 |
|---------------------|------------|---------|--------|-------|-------|-------|-------|-------|------------|-------|---------|---------|------------|-------------|-------|-------|-------|-------|
| Initial Orientation | LS2 I      | LS2 I   | LB1    |       | CS    | RB1   |       |       | RS2        |       |         |         | RB1        | LB2         |       | RS1   | LB2   | RB2   |
|                     | I          | LS1     | CS     |       | RS2   | RS1   |       |       |            |       |         |         | LB1        |             |       |       |       | RS1   |
|                     |            |         |        |       |       | CS    |       |       |            |       |         |         | LB1        |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         | RS1        |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         | LNH        |             |       |       |       |       |
| Final Orientation   | LS2 I      | LS2     | CS     |       | CS    | RB1   |       |       | RS2        |       |         |         | LB1        | LB2         |       | RS1   | RS1   | RB2   |
|                     | I          | LS1     |        |       | RS2   | RS1   |       |       | RB2        |       |         |         | LB1        |             |       |       | RNH   | RS1   |
|                     |            |         |        |       |       | RS2   |       |       |            |       |         |         | RB1        |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         | RS1        |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         | LNH        |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         | LB2        |             |       |       |       |       |
| Total -             | 55 70 ka   | al/mal  |        |       |       |       |       |       |            |       | 05.16   | kaal/ma | 1          |             |       |       |       |       |
| Van der Waals =     | 110.93 kc  | al/mol  |        |       |       |       |       |       |            |       | 107.05  | kcal/mo | 1          |             |       |       |       |       |
| Electrostatic =     | -298 49 kc | al/mol  |        |       |       |       |       |       |            |       | -255.24 | kcal/mo | 1          |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| $\Delta E_{T-1} =$  | -93 44 kc  | al/mol  |        |       |       |       |       |       |            |       | -53.98  | kcal/mo | 1          |             |       |       |       |       |
| ΔE =                | -7.25 kc   | al/mol  |        |       |       |       |       |       |            |       | -11.13  | kcal/mo | 1          |             |       |       |       |       |
| AE -                | -7.25 KC   | aviitoi |        |       |       |       |       |       |            |       | -11.15  | 11/     | 1          |             |       |       |       |       |
| $\Delta E_{Ele} -$  | -99.81 KC  | avmor   |        |       |       |       |       |       |            |       | -30.30  | Kcal/mo | 1          |             |       |       |       |       |
| Initial Orientation |            |         |        | 1 102 | DD1   | DD1   | 1.02  |       | DD3        | 182   | DS2     | DCO     | 182        | DD3         |       | 1.62  |       |       |
| mitial Offentation  |            |         |        | LD2   | KD2   | IS2   | 1.82  |       | RB2<br>RS2 | L32   | R.52    | K32     | LS2<br>LB1 | RB2<br>RS2  |       | 1.52  |       |       |
|                     |            |         |        |       |       | LB1   | 1.52  |       | 1.32       |       |         |         | LDI        | <b>K</b> 32 |       |       |       |       |
|                     |            |         |        |       |       | RNH   |       |       |            |       |         |         |            |             |       |       |       |       |
|                     |            |         |        |       |       | RS2   |       |       |            |       |         |         |            |             |       |       |       |       |
| Final Orientation   |            |         |        | LB2   |       | RB1   | LB2   |       | RB2        |       | RS2     | RS2     | LS2        | RB2         |       | LS2   |       |       |
|                     |            |         |        |       |       | RS2   | LS2   |       | RS2        |       |         | RB2     | LB1        | RS2         |       |       |       |       |
|                     |            |         |        |       |       | LS2   |       |       |            |       |         |         | RB1        |             |       |       |       |       |
|                     |            |         |        |       |       | LB1   |       |       |            |       |         |         | RS2        |             |       |       |       |       |
|                     |            |         |        |       |       | RNH   |       |       |            |       |         |         |            |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| Total =             | 86.78 kc   | al/mol  |        |       |       |       |       |       |            |       | 80.04   | kcal/mo | 1          |             |       |       |       |       |
| Van der Waals =     | 123.63 kc  | al/mol  |        |       |       |       |       |       |            |       | 110.15  | kcal/mo | 1          |             |       |       |       |       |
| Electrostatic =     | -281.33 kc | al/mol  |        |       |       |       |       |       |            |       | -275.89 | kcal/mo | 1          |             |       |       |       |       |
| AE -                | (2.26.1    | - 1/ 1  |        |       |       |       |       |       |            |       | 60.10   | 11/     | 1          |             |       |       |       |       |
| $\Delta E_{Tot} =$  | -02.30 KC  | avnor   |        |       |       |       |       |       |            |       | -69.10  | kcarmo  |            |             |       |       |       |       |
| $\Delta E_{Vdw} =$  | 5.46 kc    | al/mol  |        |       |       |       |       |       |            |       | -8.03   | kcal/mo | 1          |             |       |       |       |       |
| $\Delta E_{Ele} =$  | -82.65 kc  | al/mol  |        |       |       |       |       |       |            |       | -77.21  | kcal/mo | 1          |             |       |       |       |       |
| Initial Oniversity  | T          | 0.01 1  | 0.01   |       | 1.01  | I D1  |       |       | 1.02       |       |         |         | I D1       | DCO         |       | 1.62  |       |       |
| mitial Offentation  | г          | NOI I   | NDI    |       | LSI   | CS    |       |       | 1.52       |       |         |         | LDI        | K32         |       | 1.52  |       |       |
|                     |            |         |        |       |       | 151   |       |       | LOI        |       |         |         | RB1        |             |       |       |       |       |
| Final Orientation   | F          | RS1 F   | RB1    |       | LB1   | LBI   |       |       | 1.82       |       |         | RS2     | LB1        | RS2         |       | LS2   | 1.52  |       |
|                     |            |         | i ub i |       | LSI   | CS    |       |       | LSI        |       |         | 102     | LS2        | 102         |       | 202   | 2.52  |       |
|                     |            |         |        |       |       | LS1   |       |       |            |       |         |         |            |             |       |       |       |       |
|                     |            |         |        |       |       | LS2   |       |       |            |       |         |         |            |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| Total =             | 96.17 kc   | al/mol  |        |       |       |       |       |       |            |       | 90.98   | kcal/mo | 1          |             |       |       |       |       |
| Van der Waals =     | 118.77 kc  | al/mol  |        |       |       |       |       |       |            |       | 107.51  | kcal/mo | 1          |             |       |       |       |       |
| Electrostatic =     | -281.41 kc | al/mol  |        |       |       |       |       |       |            |       | -278.19 | kcal/mo | 1          |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| $\Delta E_{Tot} =$  | -52.97 kc  | al/mol  |        |       |       |       |       |       |            |       | -58.16  | kcal/mo | 1          |             |       |       |       |       |
| $\Delta E_{Vdw} =$  | 0.59 kc    | al/mol  |        |       |       |       |       |       |            |       | -10.67  | kcal/mo | 1          |             |       |       |       |       |
| $\Delta E_{Ele} =$  | -82.73 kc  | al/mol  |        |       |       |       |       |       |            |       | -79.51  | kcal/mo | 1          |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| Initial Orientation |            | I       | LB1    | LS1   |       | RB1   | LB2   |       | RB2        |       |         |         |            |             |       |       |       |       |
|                     |            | I       | LNH    |       |       |       |       |       | RS2        |       |         |         |            |             |       |       |       |       |
|                     |            | 1       | LSI    |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| Final Orientation   |            | 1       | LBI    | LB1   | LNH   | LBI   | LB2   |       | RB2        |       |         |         |            |             |       |       |       |       |
|                     |            |         | LNH    |       |       | LS2   |       |       | RS2        |       |         |         |            |             |       |       |       |       |
|                     |            | 1       | LSI    |       |       | LD2   |       |       |            |       |         |         |            |             |       |       |       |       |
| Total =             | 115 21 40  | al/mol  |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| Van der Waals =     | 129.58 kc  | al/mol  |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| Electrostatic =     | -265.31 kc | al/mol  |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
|                     |            |         |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| $\Delta E_{Tot} =$  | -33.93 kc  | al/mol  |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| $\Delta E_{Vdw} =$  | 11.40 kc   | al/mol  |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |
| $\Delta E_{Ele} =$  | -66.63 kc  | al/mol  |        |       |       |       |       |       |            |       |         |         |            |             |       |       |       |       |

# Table 6.53: The solution phase results of solapsone interacting with the HHQK region of the 1IYT conformer of β-amyloid

|                      | Vall2   | His13       | His14 | Lys16 | Leu17 | Val18 | Phe19 | Phe20 | His13   | His14   | Lys16 | Leu17 | Val18 | Phe19 | Phe20 | Asp23 |
|----------------------|---------|-------------|-------|-------|-------|-------|-------|-------|---------|---------|-------|-------|-------|-------|-------|-------|
| Initial Orientation  | LS1     | LB1         | RS1   | LS2   | CS    |       |       | LS2   | LB1     | RS2     | LS2   | RS2   |       |       | LS2   |       |
|                      |         | LS1         |       | LS1   | RB1   |       |       |       | LS1     |         | LS1   | RB1   |       |       | LB2   |       |
|                      |         | LNH         |       |       |       |       |       |       | CS      |         |       |       |       |       |       |       |
|                      |         | RB1         |       |       |       |       |       |       | LS2     |         |       |       |       |       |       |       |
|                      |         | RS1         |       |       |       |       |       |       |         |         |       |       |       |       |       |       |
| Final Orientation    | LS1     | LB1         | RS1   | LS2   | LB1   |       |       | LS2   | LB1     | RS2     | LS2   | RB1   |       |       | LS2   |       |
|                      |         | LNH         |       | LS1   | CS    |       |       |       | LB1     |         |       | LS2   |       |       | LB2   |       |
|                      |         | RB1         |       |       | RB1   |       |       |       | LS1     |         |       |       |       |       |       |       |
|                      |         | RS1         |       |       |       |       |       |       | RS2     |         |       |       |       |       |       |       |
|                      |         |             |       |       |       |       |       |       | CS      |         |       |       |       |       |       |       |
|                      |         |             |       |       |       |       |       |       | LS2     |         |       |       |       |       |       |       |
| T-4-1-               | 04.44   | 0.11/       | 1     |       |       |       |       |       | 09.72   | 11/     | 1     |       |       |       |       |       |
| Von der Weels =      | 108 6   | 0 kcal/mo   | 1     |       |       |       |       |       | 98.03   | kcal/mo | 1     |       |       |       |       |       |
| Vali del Waals –     | 207.8   | 5 kcal/mo   | 1     |       |       |       |       |       | 250.10  | kca/mo  | 1     |       |       |       |       |       |
| Electrostatic -      | -297.8. | 5 KCal/IIIO | 1     |       |       |       |       |       | -239.19 | KCavino | 91    |       |       |       |       |       |
| $\Delta E_{Tot} =$   | -54.73  | 3 kcal/mo   | 1     |       |       |       |       |       | -50.51  | kcal/mo | 01    |       |       |       |       |       |
| ΔE <sub>AVer</sub> = | -9.58   | 8 kcal/mo   | 1     |       |       |       |       |       | -15 47  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$   | -00.17  | 7 kcal/mo   | 1     |       |       |       |       |       | -60.51  | kcal/mo | .1    |       |       |       |       |       |
| ZLEle -              | -99.1   | / KCal/IIIO | 1     |       |       |       |       |       | -00.51  | KCavino | 1     |       |       |       |       |       |
| Initial Orientation  | 1.82    | 1.82        |       | LS1   | RS2   |       |       | CS    | RS1     |         | LB1   |       |       | 1.82  | CS    | CS    |
|                      | LB2     |             |       | LB1   | RNH   |       |       | LB1   |         |         | LSI   |       |       | LSI   | RB1   |       |
|                      |         |             |       | LNH   | RB1   |       |       |       |         |         | LNH   |       |       | LB1   | RS2   |       |
|                      |         |             |       |       |       |       |       |       |         |         | RB1   |       |       |       |       |       |
|                      |         |             |       |       |       |       |       |       |         |         | RS1   |       |       |       |       |       |
| Final Orientation    | LS2     | LS2         |       | LS1   | RB2   |       |       | LB1   |         |         | LB1   |       |       | LB1   | RS2   | CS    |
|                      | LB2     |             |       | LNH   | RB1   |       |       |       |         |         | RS1   |       |       | LS1   | RB1   |       |
|                      |         |             |       | LB2   |       |       |       |       |         |         | RB1   |       |       |       | CS    |       |
|                      |         |             |       |       |       |       |       |       |         |         | LNH   |       |       |       |       |       |
|                      |         |             |       |       |       |       |       |       |         |         | LS1   |       |       |       |       |       |
| T ( 1                | 104.00  | 0.1 1/ 3    |       |       |       |       |       |       | 100.40  | 1 1/    | 1     |       |       |       |       |       |
| 1  otal =            | 124.3   | s kcal/mo   | 1     |       |       |       |       |       | 100.40  | kcal/mo | 1     |       |       |       |       |       |
| Van der waais =      | 254.6   | 2 kcal/mo   | 1     |       |       |       |       |       | 242.01  | kcal/mo | 1     |       |       |       |       |       |
| Electrostatic -      | -234.02 | 2 KCal/IIIO | 1     |       |       |       |       |       | -245.91 | KCavino | 91    |       |       |       |       |       |
| $\Delta E_{Tat} =$   | -24 70  | 6 kcal/mo   | 1     |       |       |       |       |       | -48 74  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta F_{xyz} =$   | 0.44    | 5 kcal/mo   | 1     |       |       |       |       |       | -16.69  | kcal/mo | 1     |       |       |       |       |       |
| $\Delta E_{vdw} =$   | -55.9/  | 1 kcal/mo   | 1     |       |       |       |       |       | -45.23  | kcal/mo | .1    |       |       |       |       |       |
| <b>D</b> LEIe        | 55.7    | + Kearino   |       |       |       |       |       |       | 45.25   | Rearing |       |       |       |       |       |       |
| Initial Orientation  |         | LB1         |       | CS    | LB1   |       |       | RB1   |         |         |       |       |       |       |       |       |
|                      |         | CS          |       |       |       |       |       |       |         |         |       |       |       |       |       |       |
|                      |         | LS1         |       |       |       |       |       |       |         |         |       |       |       |       |       |       |
| Final Orientation    |         | CS          |       | CS    | LS1   |       |       | RB1   |         |         |       |       |       |       |       |       |
|                      |         |             |       |       | LB1   |       |       | RNH   |         |         |       |       |       |       |       |       |
|                      |         |             |       |       |       |       |       |       |         |         |       |       |       |       |       |       |
| lotal =              | 164.58  | s kcal/mo   | 1     |       |       |       |       |       |         |         |       |       |       |       |       |       |
| van der Waals =      | 125.82  | 2 kcal/mo   | 1     |       |       |       |       |       |         |         |       |       |       |       |       |       |
| Electrostatic =      | -203.80 | 0 kcal/mo   | I     |       |       |       |       |       |         |         |       |       |       |       |       |       |
| $\Delta E_{Tat} =$   | 15.44   | 4 kcal/mo   | 1     |       |       |       |       |       |         |         |       |       |       |       |       |       |
| ΔE <sub>AZAN</sub> = | 7.64    | 5 kcal/mo   | 1     |       |       |       |       |       |         |         |       |       |       |       |       |       |
| $\Delta F_{} =$      | _5.1/   | 2 koal/mo   | 1     |       |       |       |       |       |         |         |       |       |       |       |       |       |
| Ele -                | -3.14   | ~ KCd1/1110 |       |       | 2000  |       |       |       |         |         |       | }     |       |       |       |       |

# Table 6.54: The solution phase results of solapsone interacting with the LVFFregion of the 1IYT conformer of β-amyloid

|                                          | Gly9          | Tyr10                | Val12 | His13      | His14 | Gln15 | Lys16 | Leu17      | Vall 8 | Phe19 | Phe20 | Tyr10           | Val12                | His13      | His14 | Gln15      | Lys16       | Leu17      | Vall8 | Phe19      | Phe20      |
|------------------------------------------|---------------|----------------------|-------|------------|-------|-------|-------|------------|--------|-------|-------|-----------------|----------------------|------------|-------|------------|-------------|------------|-------|------------|------------|
| Initial Orientation                      | LS2           | LS2                  |       | RB1<br>LB1 | LSI   |       | RS2   | LSI        |        |       |       |                 |                      | RS1<br>RS2 |       | LS2<br>LB2 | RS2         |            |       | LS2<br>LB2 | RS2        |
|                                          |               |                      |       | LS2        |       |       |       |            |        |       |       |                 |                      |            |       |            | LS2         |            |       |            |            |
| Final Orientation                        | LS2<br>LB2    | LB2                  |       | RB1<br>LB1 | LS1   |       | RS2   | LS1        |        |       |       |                 |                      | RS1<br>RS2 |       | LS2<br>LB2 | LB1<br>RS2  | RB2<br>RS2 |       | LS2<br>LB2 | RB2<br>RS2 |
|                                          | 1.62          |                      |       | LS2        |       |       |       |            |        |       |       |                 |                      | 102        |       | 1.02       | RB1         | 102        |       | LDZ        | 102        |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      |            |       |            | LS2         |            |       |            |            |
| Total =                                  | 113.62        | kcal/mol             |       |            |       |       |       |            |        |       |       | 96.04           | kcal/mol             |            |       |            |             |            |       |            |            |
| Van der Waals =                          | 121.38        | kcal/mol             |       |            |       |       |       |            |        |       |       | 105.89          | kcal/mol             |            |       |            |             |            |       |            |            |
| Electrostatic =                          | -277.13       | kcai/moi             |       |            |       |       |       |            |        |       |       | -252.91         | kcal/moi             |            |       |            |             |            |       |            |            |
| $\Delta E_{Tot} =$                       | -35.52        | kcal/mol             |       |            |       |       |       |            |        |       |       | -53.10          | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Vdw} =$                       | 3.21          | kcal/mol             |       |            |       |       |       |            |        |       |       | -12.29          | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Ele} =$                       | -78.45        | kcal/mol             |       |            |       |       |       |            |        |       |       | -54.23          | kcal/mol             |            |       |            |             |            |       |            |            |
| Initial Orientation                      |               |                      | LS2   | LS1        |       |       | RB1   |            |        | RB2   |       | RS2             | LS2                  | LB1        | RB2   |            | LB1         | RB1        |       |            |            |
|                                          |               |                      |       | LS2<br>LB2 |       |       | LS1   |            |        |       |       |                 |                      | LS1<br>RS2 | RS2   |            | LS2<br>LB2  |            |       |            |            |
|                                          |               |                      |       | 202        |       |       |       |            |        |       |       |                 |                      | RB1        |       |            | 202         |            |       |            |            |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      | LS2        |       |            |             |            |       |            |            |
| Final Orientation                        |               |                      | LS2   | LS1        |       |       | LB1   |            |        | RB1   |       |                 | LS2                  | LS1        | RB2   |            | LB2         | LB1        |       |            |            |
|                                          |               |                      |       | LS2        |       |       | RB1   |            |        |       |       |                 |                      | LS2        | RS2   |            | LS2         | RB1        |       |            |            |
|                                          |               |                      |       | LB2        |       |       | LOI   |            |        |       |       |                 |                      | RB1        |       |            | LINH<br>LB1 | KINT       |       |            |            |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      | RS2        |       |            |             |            |       |            |            |
| Total =                                  | 65.91         | kcal/mol             |       |            |       |       |       |            |        |       |       | 68.21           | kcal/mol             |            |       |            |             |            |       |            |            |
| Van der Waals =                          | 98.74         | kcal/mol             |       |            |       |       |       |            |        |       |       | 112.63          | kcal/mol             |            |       |            |             |            |       |            |            |
| Electrostatic =                          | -272.65       | kcal/mol             |       |            |       |       |       |            |        |       |       | -183.64         | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Tot} =$                       | -83.22        | kcal/mol             |       |            |       |       |       |            |        |       |       | -80.93          | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Vdw} =$                       | -19.44        | kcal/mol             |       |            |       |       |       |            |        |       |       | -5.54           | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Ele} =$                       | -73.97        | kcal/mol             |       |            |       |       |       |            |        |       |       | 15.04           | kcal/mol             |            |       |            |             |            |       |            |            |
| Initial Orientation                      |               |                      |       | RB1        | LS2   |       | RS2   | CS         |        |       |       |                 |                      | LB1        | RS2   |            | LB2         | RS2        |       |            | LB2        |
|                                          |               |                      |       | LS2        |       |       |       | LS1        |        |       |       |                 |                      | LS1        |       |            | LS2         | RB1        |       |            | LS2        |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      | LS2        |       |            |             |            |       |            |            |
| Final Orientation                        |               |                      |       | RB1        | LS2   |       | RS2   | CS         |        |       |       |                 |                      | LB1        | RS2   |            | LB2         | RB1        |       |            | LB2        |
|                                          |               |                      |       | 1.52       |       |       |       | LB1<br>LS1 |        |       |       |                 |                      | LS2<br>LS1 |       |            | 1.82        |            |       |            | 1.82       |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      | CS         |       |            |             |            |       |            |            |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      | K52        |       |            |             |            |       |            |            |
| Total =                                  | 81.20         | kcal/mol             |       |            |       |       |       |            |        |       |       | 73.74           | kcal/mol             |            |       |            |             |            |       |            |            |
| Van der Waals =<br>Electrostatic =       | -274.88       | kcal/mol<br>kcal/mol |       |            |       |       |       |            |        |       |       | -283.82         | kcal/mol<br>kcal/mol |            |       |            |             |            |       |            |            |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      |            |       |            |             |            |       |            |            |
| $\Delta E_{Tot} =$                       | -67.94        | kcal/mol             |       |            |       |       |       |            |        |       |       | -75.39          | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Vdw} =$<br>$\Delta E_{Ela} =$ | -76.20        | kcal/mol             |       |            |       |       |       |            |        |       |       | -3.96           | kcal/mol             |            |       |            |             |            |       |            |            |
| Elice                                    |               |                      |       |            |       |       |       |            |        |       |       |                 |                      |            |       |            |             |            |       |            |            |
| Initial Orientation                      |               |                      | RB1   | LB2        |       |       | RS2   | LB2        |        | RS2   | LS1   |                 |                      | RB1        |       |            | RS1         | LS1        |       |            |            |
|                                          |               |                      |       | LS2<br>LB1 |       |       | 1.52  | L52        |        |       |       |                 |                      | LB1        |       |            |             |            |       |            |            |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      | LS1        |       |            |             |            |       |            |            |
| Final Orientation                        |               |                      | RB1   | LB1        |       |       | RS2   | LS2        |        | RS2   | LS1   |                 | 1                    | LS1        |       |            | RS1         | LS1        |       |            |            |
|                                          |               |                      |       | LS2        |       |       | LS2   | LB2        |        |       |       |                 |                      | LB1        |       |            |             |            |       |            |            |
|                                          |               |                      |       | LB2        |       |       |       |            |        |       |       |                 |                      | RS2        |       |            |             |            |       |            |            |
|                                          | 00.01         |                      |       |            |       |       |       |            |        |       |       | 100.00          | , .                  |            |       |            |             |            |       |            |            |
| I otal =<br>Van der Waals =              | 92.61         | kcal/mol<br>kcal/mol |       |            |       |       |       |            |        |       |       | 108.00          | kcal/mol<br>kcal/mol |            |       |            |             |            |       |            |            |
| Electrostatic =                          | -265.70       | kcal/mol             |       |            |       |       |       |            |        |       |       | -300.86         | kcal/mol             |            |       |            |             |            |       |            |            |
| ΔE <sub>7</sub> =                        | -56.52        | kcal/mol             |       |            |       |       |       |            |        |       |       | -41.13          | kcal/mol             |            |       |            |             |            |       |            |            |
| ΔE <sub>Vdw</sub> =                      | -2.10         | kcal/mol             |       |            |       |       |       |            |        |       |       | -10.92          | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Ele} =$                       | -67.02        | kcal/mol             |       |            |       |       |       |            |        |       |       | -102.18         | kcal/mol             |            |       |            |             |            |       |            |            |
| Initial Orientation                      |               | RS1                  |       | 152        | RS1   |       | 1.82  | 1.52       |        |       | LB2   |                 | RB1                  | I B1       |       |            | RB2         | 1.51       |       | RS1        | LB2        |
| initian orientation                      |               | 1001                 |       | LS1        | RS2   |       | 1.02  | RS2        |        |       | LS2   |                 | lusi                 | LSI        |       |            | LS1         | 2.51       |       | 101        | 202        |
|                                          |               |                      |       | LB1        |       |       |       |            |        |       |       |                 |                      |            |       |            | LNH<br>LB1  |            |       |            |            |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      |            |       |            | RNH         |            |       |            |            |
|                                          |               |                      |       |            |       |       |       |            |        |       |       |                 |                      |            |       |            | RS1         |            |       |            |            |
| Final Orientation                        |               | RS1                  |       | LB1        | RS1   |       | LS2   | LS2        |        |       | LB2   |                 | RB1                  | LB1        |       |            | RB2         | LS1        |       | RS1        | LB2        |
|                                          |               |                      |       | LS1        |       |       |       |            |        |       | LS2   |                 | LB1                  | LS1        |       |            | RS1         |            |       |            |            |
|                                          |               |                      |       | 1.82       |       |       |       |            |        |       |       |                 |                      |            |       |            | LS1         |            |       |            |            |
| Terel                                    | ····-         | 11/                  |       |            |       |       |       |            |        |       |       | 05.5-           | 112                  |            |       |            |             |            |       |            |            |
| Van der Waals =                          | 111.17 116.32 | kcal/mol             |       |            |       |       |       |            |        |       |       | 85.58<br>107.26 | ксаl/mol<br>kcal/mol |            |       |            |             |            |       |            |            |
| Electrostatic =                          | -251.32       | kcal/mol             |       |            |       |       |       |            |        |       |       | -273.62         | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Tat} =$                       | - 37 96       | kcal/mol             |       |            |       |       |       |            |        |       |       | -63 55          | kcal/mol             |            |       |            |             |            |       |            |            |
| ΔE <sub>vdw</sub> =                      | -1.86         | kcal/mol             |       |            |       |       |       |            |        |       |       | -10.92          | kcal/mol             |            |       |            |             |            |       |            |            |
| $\Delta E_{Ele} =$                       | -52.64        | kcal/mol             |       |            |       |       |       |            |        |       |       | -74.94          | kcal/mol             |            |       |            |             |            |       |            |            |

# Table 6.55: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of β-amyloid



#### Table 6.55: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1IYT conformer of β-amyloid

|                     | Val12   | His13      | His14 | Gln15 | Lys16 | Leu17      | Val18 | Phe19 | Phe20 | His13   | His14    | Gln15 | Lys16      | Leu17 | Val18 | Phe19 | Phe20      |
|---------------------|---------|------------|-------|-------|-------|------------|-------|-------|-------|---------|----------|-------|------------|-------|-------|-------|------------|
| Initial Orientation | RS2     | RB2        |       | LS2   | RB1   |            |       | LB1   |       | RB1     | LS1      |       | RB2        | RS1   |       |       | RS1        |
|                     |         | RS2        |       | LB2   | LB1   |            |       | LNH   |       | RS2     |          |       | RS2        | LB1   |       |       |            |
|                     |         |            |       |       | RS2   |            |       | LS1   |       | RS1     |          |       | RS1        |       |       |       |            |
|                     |         |            |       |       |       |            |       | LB2   |       | CS      |          |       |            |       |       |       |            |
| Final Orientation   | RS2     | RB2        |       | LS2   | RB1   |            |       | LB2   |       | RB1     | LS1      |       | RS1        | RS1   |       |       | RS1        |
|                     |         | RS2        |       | LB2   | LB1   |            |       | LNH   |       | RB1     |          |       | RS2        |       |       |       | RB2        |
|                     |         |            |       |       | R32   |            |       | LDI   |       | RS1     |          |       | KD2        |       |       |       |            |
|                     |         |            |       |       |       |            |       |       |       | RS2     |          |       |            |       |       |       |            |
| Total=              | 95.0    | 8 kcal/mol |       |       |       |            |       |       |       | 152.71  | kcal/mol |       |            |       |       |       |            |
| Van der Waals =     | 99.7    | 0 kcal/mol |       |       |       |            |       |       |       | 126.30  | kcal/mol |       |            |       |       |       |            |
| Electrostatic =     | -262.3  | 9 kcal/mol |       |       |       |            |       |       |       | -235.86 | kcal/mol |       |            |       |       |       |            |
| $\Delta E_{Tot} =$  | -54.0   | 6 kcal/mol |       |       |       |            |       |       |       | 3.57    | kcal/mol |       |            |       |       |       |            |
| $\Delta E_{Vdw} =$  | -18.4   | 8 kcal/mol |       |       |       |            |       |       |       | 8.12    | kcal/mol |       |            |       |       |       |            |
| $\Delta E_{Ele} =$  | -63.7   | 1 kcal/mol |       |       |       |            |       |       |       | -37.18  | kcal/mol |       |            |       |       |       |            |
| Initial Orientation |         | RS2        |       |       | LB1   | RS2        |       |       | RB1   | RS2     |          |       | RB1        |       |       | LS2   | RB2        |
|                     |         | RB2        |       |       | LS2   | RB2        |       |       |       |         |          |       | LS2        |       |       | LB2   |            |
|                     |         |            |       |       | LNH   |            |       |       |       |         |          |       | RS2        |       |       |       |            |
|                     |         |            |       |       | RS2   |            |       |       | 224   | D.C.A   |          |       | 004        |       |       |       |            |
| Final Orientation   |         | RS2        |       |       | LBI   | RB2<br>DS2 |       |       | KBI   | RS2     |          |       | KBI<br>LS2 | RB2   |       | LB2   | RB2<br>DNH |
|                     |         |            |       |       | LNH   | K32        |       |       |       |         |          |       | RS2        |       |       | 1.52  | KINH       |
| Total =             | 104.5   | 5 kcal/mol |       |       |       |            |       |       |       | 87.19   | kcal/mol |       |            |       |       |       |            |
| Van der Waals =     | 114.3   | 4 kcal/mol |       |       |       |            |       |       |       | 117.35  | kcal/mol |       |            |       |       |       |            |
| Electrostatic =     | -240.9  | 9 kcal/mol |       |       |       |            |       |       |       | -272.28 | kcal/mol |       |            |       |       |       |            |
| $\Delta E_{Tot} =$  | -44.5   | 9 kcal/mol |       |       |       |            |       |       |       | -61.94  | kcal/mol |       |            |       |       |       |            |
| $\Delta E_{Vdw} =$  | -3.8    | 3 kcal/mol |       |       |       |            |       |       |       | -0.83   | kcal/mol |       |            |       |       |       |            |
| $\Delta E_{Ele} =$  | -42.3   | 1 kcal/mol |       |       |       |            |       |       |       | -73.60  | kcal/mol |       |            |       |       |       |            |
| Initial Orientation |         | RS2        |       |       | RB1   |            |       | LB2   | RB2   |         |          |       |            |       |       |       |            |
|                     |         |            |       |       | LS2   |            |       | LS2   |       |         |          |       |            |       |       |       |            |
|                     |         |            |       |       | RS2   |            |       |       |       |         |          |       |            |       |       |       |            |
| Final Orientation   |         | RS2        |       |       | RB1   | RB2        |       | LB2   | RB2   |         |          |       |            |       |       |       |            |
|                     |         |            |       |       | RS2   | K52        |       |       | RNH   |         |          |       |            |       |       |       |            |
| Total =             | 70.6    | 9 kcal/mol |       |       |       |            |       |       |       |         |          |       |            |       |       |       |            |
| Van der Waals =     | 103.2   | 2 kcal/mol |       |       |       |            |       |       |       |         |          |       |            |       |       |       |            |
| Electrostatic =     | -265.84 | 4 kcal/mol |       |       |       |            |       |       |       |         |          |       |            |       |       |       |            |
| $\Delta E_{Tot} =$  | -78.4   | 4 kcal/mol |       |       |       |            |       |       |       |         |          |       |            |       |       |       |            |
| ΔE <sub>Vdw</sub> = | -14.9   | 5 kcal/mol |       |       |       |            |       |       |       |         |          |       |            |       |       |       |            |
| $\Delta E_{Ele} =$  | -67.1   | 6 kcal/mol |       |       |       |            |       |       |       |         |          |       |            |       |       |       |            |

# Table 6.55: The solution phase results of solapsone interacting with the<br/>HHQKLVFF region of the 1IYT conformer of β-amyloid

|                                       | Gly9          | Tyr10                    | His13                    | His14      | Gln15 | Lys16             | Leu17 | Val18 | Gly9 T                | Tyr10  | Val12 | His13             | His14             | Gln15 Ly | ys16                    | Leu17 | Val18 | Ala21 |
|---------------------------------------|---------------|--------------------------|--------------------------|------------|-------|-------------------|-------|-------|-----------------------|--------|-------|-------------------|-------------------|----------|-------------------------|-------|-------|-------|
| Initial Orientation                   | CS            | CS                       | LB1<br>LS1               | RS1<br>RS2 |       | LS2               | RS2   | RS2   | CS                    | CS     |       | LB1<br>LS1        | RS2<br>RS1        | I<br>R   | . <mark>S2</mark><br>S2 |       |       |       |
| Final Orientation                     |               | CS                       | LB1<br>CS                | RS1<br>RS2 |       | LS2               | RS2   | RS2   |                       | CS     |       | LS2<br>LS1<br>LS2 | RS1<br>RS2        | L        | .S2                     |       | RS2   |       |
|                                       |               |                          | LS1                      |            |       | RS2               | l .   |       |                       |        |       | LB1               |                   | L        | .B2                     |       |       |       |
| Total =                               | 61.4          | 7 koal/mol               |                          |            |       |                   |       |       | 86.68 kg              | al/mol |       |                   |                   |          |                         |       |       |       |
| Van der Waals =                       | 90.8          | 0 kcal/mol               |                          |            |       |                   |       |       | 107.33 kc             | al/mol |       |                   |                   |          |                         |       |       |       |
| Electrostatic =                       | -295.1        | 5 kcal/mol               |                          |            |       |                   |       |       | -286.32 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
|                                       |               |                          |                          |            |       |                   |       |       |                       |        |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Tot} =$                    | -169.5        | 2 kcal/mol               |                          |            |       |                   |       |       | -144.31 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Vdw} =$<br>$\Delta E_{} =$ | -33.0         | 8 kcal/mol               |                          |            |       |                   |       |       | -10.48 KC             | al/mol |       |                   |                   |          |                         |       |       |       |
| ZL <sub>Ele</sub>                     | -145.7        | o Rearmon                |                          |            |       |                   |       |       | -154.90 KC            | armor  |       |                   |                   |          |                         |       |       |       |
| Initial Orientation                   |               | LS2                      | RS2<br>LS2               | LS2<br>LB2 |       | RB1<br>RS1<br>LS1 | LS1   |       | LS1                   | CS     |       | LB1<br>LS2<br>LS1 | RB1<br>CS<br>RS1  | I<br>I   | .B2<br>.S2              | RS2   | RS2   |       |
| Final Orientation                     | LS2           | LS2                      | RS2                      | LS1        |       | RB1               | LS1   |       |                       | CS     |       | LB1               | RB1               | L        | .B2                     | RB2   | RS2   | RB2   |
|                                       |               |                          | LS2                      | LS2        |       | RS1               | -NH-  |       |                       |        |       | LS1               | RS2               | L        | .S2                     | RS2   |       |       |
|                                       |               |                          |                          | LB2        |       | LB1<br>LS1        |       |       |                       |        |       | LS2               | RS1<br>CS<br>LB1  |          |                         |       |       |       |
| Total =                               | 105.0         | 4 kcal/mol               |                          |            |       |                   |       |       | 89 70 kc              | al/mol |       |                   |                   |          |                         |       |       |       |
| Van der Waals =                       | 115.2         | 6 kcal/mol               |                          |            |       |                   |       |       | 104.70 kc             | al/mol |       |                   |                   |          |                         |       |       |       |
| Electrostatic =                       | -278.2        | 9 kcal/mol               |                          |            |       |                   |       |       | -265.21 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| AE <sub>T of</sub> =                  | -125.9        | 5 kcal/mol               |                          |            |       |                   |       |       | -141 29 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Vdw} =$                    | -8.5          | 5 kcal/mol               |                          |            |       |                   |       |       | -19.11 kc             | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Ele} =$                    | -126.92       | 2 kcal/mol               |                          |            |       |                   |       |       | -113.85 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| Initial Orientation                   | CS            | CS                       | LB1                      | RS2        |       | LS2               |       |       |                       |        |       | RB1               | LS2               | R        | RS1                     |       |       |       |
|                                       |               |                          | LS1<br>LS2               | RS1        |       | RS2               |       |       |                       |        |       | RS1<br>RS2        | LS1               | R        | B1<br>NH                |       |       |       |
| Final Orientation                     | CS            | CS                       | LS1                      | RS1        |       | LS2               | RS2   |       |                       |        |       | RB1               | LS2               | R        | B1                      |       | LS1   |       |
|                                       |               |                          | LB1<br>RS2               | RS2        |       |                   | RB2   |       |                       |        |       | RS1<br>RS2        | LS1               | R<br>R   | NH<br>S1                |       |       |       |
| Total =                               | 78.9          | 8 kcal/mol               |                          |            |       |                   |       |       | 80.91 kc              | al/mol |       |                   |                   |          |                         |       |       |       |
| Van der Waals =                       | 98.3          | 6 kcal/mol               |                          |            |       |                   |       |       | 107.01 kc             | al/mol |       |                   |                   |          |                         |       |       |       |
| Electrostatic =                       | -270.6        | 3 kcal/mol               |                          |            |       |                   |       |       | -286.02 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Tot} =$                    | -152.0        | 1 kcal/mol               |                          |            |       |                   |       |       | -150.08 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Vdw} =$                    | -25.4         | 4 kcal/mol               |                          |            |       |                   |       |       | -16.80 kc             | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Ele} =$                    | -119.2        | 7 kcal/mol               |                          |            |       |                   |       |       | -134.65 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| Initial Orientation                   | RB1           |                          | RB1<br>RNH<br>RS1        | LS2<br>LS1 |       | LS1               |       |       |                       | CS     |       | LS2<br>LS1        | RB1<br>RS1<br>RS2 | L<br>I   | .B2<br>.S2              |       |       |       |
| Final Orientation                     | DD1           | CS                       | RB2                      | 152        |       | 151               |       |       |                       | CS     |       | I D1              | <b>DS</b> 2       | T        | <b>B</b> 2              |       | 052   |       |
| i ilai Oricitation                    | KDI           | 65                       | RS1<br>RNH<br>RB1        | LS1        |       | 1.51              |       |       |                       | 0.5    |       | RS1<br>LS1<br>LS2 | R32               | I        | .82                     |       | K32   |       |
|                                       |               |                          |                          |            |       |                   |       |       |                       |        |       |                   |                   |          |                         |       |       |       |
| i otal =<br>Van der Waals =           | 92.6<br>103 8 | 6 kcal/mol<br>9 kcal/mol |                          |            |       |                   |       |       | 96.34 kc<br>123.05 kc | al/mol |       |                   |                   |          |                         |       |       |       |
| Electrostatic =                       | -274.3        | 9 kcal/mol               |                          |            |       |                   |       |       | -285.13 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| 4.5                                   |               |                          |                          |            |       |                   |       |       | 12                    |        |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Tot} =$                    | -138.3        | 5 kcal/mol               |                          |            |       |                   |       |       | -134.66 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Vdw} = \Delta E_{Elo} =$   | -19.9         | 3 kcal/mol               |                          |            |       |                   |       |       | -0.76 kc              | al/mol |       |                   |                   |          |                         |       |       |       |
| EIC                                   |               |                          |                          |            |       |                   |       |       | 120.70 K              |        |       |                   |                   |          |                         |       |       |       |
| Initial Orientation                   | LB1           | LS1<br>LNH<br>LB1        | LB1<br>RB1<br>RB1<br>LNH | LB2<br>LS1 |       | RS2<br>RB1        |       |       |                       |        |       | LS2<br>LS1        | RB2               | I        | .\$2                    |       | RB2   |       |
| Final Orientation                     | LB1           | LB1                      | RNH<br>LB1               | LB2        |       | RS2               | LB2   | LB2   |                       |        | LS2   | LS2               | RS2               | Ι        | .\$2                    |       | RB2   |       |
|                                       |               | LSI                      | KBI                      | 1.51       |       | кВI               |       |       |                       |        |       | LSI               |                   | L        | .62                     |       |       |       |
| Total =                               | 77.7          | 1 kcal/mol               |                          |            |       |                   |       |       | 99.54 kc              | al/mol |       |                   |                   |          |                         |       |       |       |
| Van der Waals =                       | 106.9         | 7 kcal/mol               |                          |            |       |                   |       |       | 112.06 kc             | al/mol |       |                   |                   |          |                         |       |       |       |
| Electrostatic =                       | -284.2        | 1 kcal/mol               |                          |            |       |                   |       |       | -269.73 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Tot} =$                    | -153.2        | 9 kcal/mol               |                          |            |       |                   |       |       | -131.45 kc            | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Vdw} =$                    | -16.8         | 3 kcal/mol               |                          |            |       |                   |       |       | -11.74 kc             | al/mol |       |                   |                   |          |                         |       |       |       |
| $\Delta E_{Ele} =$                    | -132.8        | 5 kcal/mol               |                          |            |       |                   |       |       | -118.37 kc            | al/mol |       |                   |                   |          |                         |       |       |       |

# Table 6.56: The solution phase results of solapsone interacting with the HHQK region of the 1Z0Q conformer of β-amyloid

|                      | Gly9 Tyr10       | His13 | His14       | Gln15 Lys16 | Leu17 | Val18 | Gly9 Tyr10        | His13 | His14 | Gln15 Lys16 | Leu17 | Val18 | Ala21 | Glu22 |
|----------------------|------------------|-------|-------------|-------------|-------|-------|-------------------|-------|-------|-------------|-------|-------|-------|-------|
| Initial Orientation  | CS               | LS1   | RB1         | LB1         |       |       | RS2               | RS2   | LS1   | RS1         |       |       |       |       |
|                      |                  | CS    | RS2         | LS2         |       |       |                   | RS1   | LS2   |             |       |       |       |       |
|                      |                  |       | CS          | LS1         |       |       |                   |       |       |             |       |       |       |       |
|                      |                  |       | RS1         |             |       |       |                   |       |       |             |       |       |       |       |
| Final Orientation    | CS               | LS1   | RB1         | LS2         |       |       | RS2 CS            | RS2   | LS1   | RS1         |       | LS1   |       |       |
|                      |                  |       | RB1         |             |       |       |                   | RS1   | RS1   |             |       |       |       |       |
|                      |                  |       | RS2         | LS1         |       |       |                   |       | LB1   |             |       |       |       |       |
|                      |                  |       | CS          |             |       |       |                   |       | LS2   |             |       |       |       |       |
|                      |                  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| Total =              | 81.46 kcal/mol   |       |             |             |       |       | 87.11 kcal/mol    |       |       |             |       |       |       |       |
| Van der Waals =      | 98.03 kcal/mol   |       |             |             |       |       | 95.49 kcal/mol    |       |       |             |       |       |       |       |
| Electrostatic -      | -294.07 Kcal/II0 |       |             |             |       |       | -291.00 KCal/IIDI |       |       |             |       |       |       |       |
| AE -                 | 140.52 kool/mol  |       |             |             |       |       | 142.88 kaal/mal   |       |       |             |       |       |       |       |
| $\Delta L_{Tot} =$   | -149.33 Kcal/II0 |       |             |             |       |       | -143.88 Keavinor  |       |       |             |       |       |       |       |
| $\Delta E_{Vdw} =$   | -25./8 kcal/mol  |       |             |             |       |       | -28.32 kcal/mol   |       |       |             |       |       |       |       |
| $\Delta E_{Ele} =$   | -143.30 kcal/mol | 1     |             |             |       |       | -140.30 kcal/mol  |       |       |             |       |       |       |       |
|                      |                  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| Initial Orientation  | LS2              | RS2   | LS1         | RS2         |       |       |                   | RB2   | LNH   | RS2         |       | LB2   | LB2   |       |
|                      |                  | CS    | CS          | RS1         |       |       |                   | RS1   | LS1   | RB1         |       |       |       |       |
|                      |                  |       |             | CS          |       |       |                   | RNH   |       |             |       |       |       |       |
| Einel Oniverte time  | 1.00             | DGO   | 1.01        | DC1         |       |       |                   | KB1   | 1.01  | DCO         | 1.02  | I D2  | I DO  | I D2  |
| Final Orientation    | L82              | KS2   | LSI         | RSI         |       |       |                   | RBI   | LSI   | KS2         | LS2   | LB2   | LB2   | LB2   |
|                      |                  | C5    | CS          | CS          |       |       |                   | DC1   | LINI  |             | LDI   |       |       |       |
|                      |                  |       |             | Co          |       |       |                   | RB1   |       |             |       |       |       |       |
|                      |                  |       |             |             |       |       |                   | KD2   |       |             |       |       |       |       |
| Total =              | 95.97 kcal/mol   |       |             |             |       |       | 65.78 kcal/mol    |       |       |             |       |       |       |       |
| Van der Waals =      | 106.83 kcal/mol  |       |             |             |       |       | 105.04 kcal/mol   |       |       |             |       |       |       |       |
| Electrostatic =      | -279.21 kcal/mol | 1     |             |             |       |       | -285.56 kcal/mol  |       |       |             |       |       |       |       |
|                      |                  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| $\Delta E_{Tot} =$   | -135.02 kcal/mol |       |             |             |       |       | -165.21 kcal/mol  |       |       |             |       |       |       |       |
| $\Delta E_{Vdw} =$   | -16.98 kcal/mol  |       |             |             |       |       | -18.76 kcal/mol   |       |       |             |       |       |       |       |
| $\Delta F_{ni} =$    | -127.84 kcal/mol |       |             |             |       |       | -134.19 kcal/mol  |       |       |             |       |       |       |       |
| AL <sub>Ele</sub>    | -127.04 Rearmon  |       |             |             |       |       | -154.17 Kearmon   |       |       |             |       |       |       |       |
| Initial Orientation  |                  | RS2   | LB1         | RS1         | CS    |       |                   | RB2   | LS2   | RS1         | CS    |       |       |       |
| initial officiation  |                  | 102   | LS1         | CS          | 0.5   |       |                   | RS2   | 101   | RS2         | 0.5   |       |       |       |
|                      |                  |       | CS          |             |       |       |                   |       |       | RB1         |       |       |       |       |
|                      |                  |       |             |             |       |       |                   |       |       | CS          |       |       |       |       |
| Final Orientation    | RS2              | RS2   | LB1         | RS1         | CS    | CS    |                   | RB2   | CS    | RS1         | CS    |       |       |       |
|                      |                  | RB1   | LS1         |             |       |       |                   | RS2   | LS2   | CS          |       |       |       |       |
|                      |                  |       | CS          |             |       |       |                   |       |       |             |       |       |       |       |
|                      |                  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| Total =              | 135.81 kcal/mol  | l     |             |             |       |       | 88.89 kcal/mol    |       |       |             |       |       |       |       |
| Van der Waals =      | 98.88 kcal/mol   |       |             |             |       |       | 100.60 kcal/mol   |       |       |             |       |       |       |       |
| Electrostatic =      | -286.81 kcal/mol |       |             |             |       |       | -279.59 kcal/mol  |       |       |             |       |       |       |       |
|                      |                  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| $\Delta E_{Tot} =$   | -95.18 kcal/mol  |       |             |             |       |       | -142.10 kcal/mol  |       |       |             |       |       |       |       |
| $\Delta E_{Vdw} =$   | -24.92 kcal/mol  | 1     |             |             |       |       | -23.21 kcal/mol   |       |       |             |       |       |       |       |
| $\Delta E_{Ele} =$   | -135.45 kcal/mol | 1     |             |             |       |       | -128.23 kcal/mol  |       |       |             |       |       |       |       |
|                      |                  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| Initial Orientation  |                  | RB2   | LB2         | RS2         | CS    | LB2   |                   |       |       |             |       |       |       |       |
|                      |                  | RS1   | LNH         | CS          |       |       |                   |       |       |             |       |       |       |       |
|                      |                  |       | 1.0.4       | RB1         | 1.54  |       |                   |       |       |             |       |       |       |       |
| Final Orientation    |                  | RB2   | LB2         | RS2         | LB1   | LB2   |                   |       |       |             |       |       |       |       |
|                      |                  | RSI   | LSI         | CS          | CS    |       |                   |       |       |             |       |       |       |       |
|                      |                  |       | LNH<br>I D1 | KBI         |       |       |                   |       |       |             |       |       |       |       |
|                      |                  |       | LDI         |             |       |       |                   |       |       |             |       |       |       |       |
| Total =              | 99 07 koal/mal   |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| Van der Waak =       | 101.42 kcal/mol  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| Electrostatic =      | -260 23 kcal/mol |       |             |             |       |       |                   |       |       |             |       |       |       |       |
|                      | Kearmon          |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| $\Delta E_{Tot} =$   | -131.07 kcal/mol |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| ΔE =                 | -22.39 kcal/mol  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| AE -                 | 102.59 Kearlind  |       |             |             |       |       |                   |       |       |             |       |       |       |       |
| Δic <sub>Ele</sub> – | -108.86 Kcal/mol | -     |             |             |       |       |                   |       |       |             |       |       |       |       |

# Table 6.56: The solution phase results of solapsone interacting with the HHQK region of the 1Z0Q conformer of β-amyloid

|                     | His14 Lys16     | Leu17 | Val18 | Phe19 | Phe20 | Ala21 | Glu22 | Asp23 | Val24 | Lys28 | Val12   | His14     | Gln15  | Lys16      | Leu17 | Val18 | Phe19 | Phe20 | Val24 | Lys28   |
|---------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-----------|--------|------------|-------|-------|-------|-------|-------|---------|
| Initial Orientation | LB2 RS1         | RB1   | LB2   |       |       |       |       | -1 -  |       |       |         | RB2       |        | LS2        | LB1   | RB2   |       |       |       | <u></u> |
|                     | LS1 RNH         | LB1   |       |       |       |       |       |       |       |       |         | RS2       |        | LB1        | RB1   |       |       |       |       |         |
| Final Orientation   | LB2 RS1         | LB1   | LB2   |       |       | LB2   |       |       |       |       |         | RB2       |        | LS2        | LB1   | RB2   |       |       |       |         |
|                     | LS1 RNH         | RB1   |       |       |       |       |       |       |       |       |         | RS2       |        | LB1        | RB1   |       |       |       |       |         |
| Total =             | 123 99 kcal/mo  | 1     |       |       |       |       |       |       |       |       | 157.95  | keal/m    | 1      |            |       |       |       |       |       |         |
| Van der Waak =      | 91.09 kcal/mo   | 1     |       |       |       |       |       |       |       |       | 74.05   | kcal/m    | ,<br>J |            |       |       |       |       |       |         |
| Flectrostatic =     | -239.26 kcal/mo | 1     |       |       |       |       |       |       |       |       | -246.76 | keal/m    | ,<br>J |            |       |       |       |       |       |         |
| Liceuostatic        | -257.20 Kearino |       |       |       |       |       |       |       |       |       | -240.70 | , Kearing | ,,     |            |       |       |       |       |       |         |
| $\Delta E_{Tot} =$  | -107.00 kcal/mo | 1     |       |       |       |       |       |       |       |       | -73.04  | kcal/m    | ol     |            |       |       |       |       |       |         |
| $\Delta E_{Vdw} =$  | -32.71 kcal/mo  | 1     |       |       |       |       |       |       |       |       | -49.76  | kcal/m    | ol     |            |       |       |       |       |       |         |
| $\Delta E_{Ele} =$  | -87.90 kcal/mo  | 1     |       |       |       |       |       |       |       |       | -95.40  | kcal/m    | ol     |            |       |       |       |       |       |         |
| 12101.02            |                 | 1.01  | 1.00  |       | DGO   | 1.00  | T DO  |       |       |       | DDO     |           | DDA    | DDI        | 1.00  |       | DDI   | 1.00  |       |         |
| Initial Orientation | LB2 LS1         | LSI   | LB2   |       | K52   | LB2   | LB2   |       |       |       | KB2     |           | KB2    | RBI        | LB2   |       | RBI   | LSZ   |       |         |
|                     | 1.52            | LNH   |       |       | KB2   | LBI   |       |       |       |       |         |           |        | KB2        | LS2   |       | K52   |       |       |         |
| Einal Orientation   | LSI             | LBI   | I D2  |       | DCO   | I D2  | I D2  |       |       |       | DD1     |           | DD1    | DD1        | 1.62  |       | DCO   | CE    |       |         |
| I hai Oricitation   | 1.02            | LDI   | LDZ   |       | K32   | LDZ   | LD2   |       |       |       | KD2     |           | KD2    | RD1<br>PP2 | 1.02  |       | DD1   | C3    |       |         |
|                     | LDZ             | LSI   |       |       |       |       |       |       |       |       |         |           |        | LB1        | LD2   |       | KDI   |       |       |         |
|                     |                 | 201   |       |       |       |       |       |       |       |       |         |           |        | LDI        |       |       |       |       |       |         |
| Total =             | 140.06 kcal/mo  | 1     |       |       |       |       |       |       |       |       | 180.86  | kcal/m    | ol     |            |       |       |       |       |       |         |
| Van der Waals =     | 89.57 kcal/mo   | 1     |       |       |       |       |       |       |       |       | 100.81  | kcal/mo   | ol     |            |       |       |       |       |       |         |
| Electrostatic =     | -216.73 kcal/mo | 1     |       |       |       |       |       |       |       |       | -245.74 | kcal/m    | ol     |            |       |       |       |       |       |         |
| $\Delta E_{Tot} =$  | -90.93 kcal/mo  | 1     |       |       |       |       |       |       |       |       | -50.13  | kcal/m    | ol     |            |       |       |       |       |       |         |
| $\Delta E_{V+m} =$  | -34 24 kcal/mo  | 1     |       |       |       |       |       |       |       |       | -22.99  | kcal/m    | -<br>- |            |       |       |       |       |       |         |
|                     | 65.26 kool/mo   | 1     |       |       |       |       |       |       |       |       | 04.29   | kool/m    | -1     |            |       |       |       |       |       |         |
| ADEle -             | -05.50 Kcarino  | 1     |       |       |       |       |       |       |       |       | -94.38  | KCallin   | 51     |            |       |       |       |       |       |         |
| Initial Orientation | LB2             | LB2   |       |       | RB1   |       |       |       |       | RS1   |         |           |        |            |       |       | RS1   | LB1   | LS1   | LS1     |
|                     |                 |       |       |       | LB1   |       |       |       |       | RNH   |         |           |        |            |       |       |       | RB1   |       | LNH     |
| Final Orientation   | LB2             | LNH   |       |       | RB1   |       |       |       | RNH   | RS1   |         |           |        |            |       |       | RNH   | LB1   | LS1   | LS1     |
|                     |                 | LB2   |       |       | LBI   |       |       |       |       | RNH   |         |           |        |            |       |       |       | CS    |       | LNH     |
|                     |                 |       |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       | KBI   |       |         |
| Total =             | 123.37 kcal/mo  | 1     |       |       |       |       |       |       |       |       | 159.14  | kcal/m    | ol     |            |       |       |       |       |       |         |
| Van der Waals =     | 103.45 kcal/mo  | 1     |       |       |       |       |       |       |       |       | 126.30  | kcal/m    | ol     |            |       |       |       |       |       |         |
| Electrostatic =     | -246.04 kcal/mo | 1     |       |       |       |       |       |       |       |       | -222.41 | kcal/m    | ol     |            |       |       |       |       |       |         |
|                     |                 |       |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| $\Delta E_{Tot} =$  | -107.62 kcal/mo | 1     |       |       |       |       |       |       |       |       | -71.85  | kcal/m    | ol     |            |       |       |       |       |       |         |
| $\Delta E_{Vdw} =$  | -20.35 Kcal/mo  | 1     |       |       |       |       |       |       |       |       | 2.49    | kcal/m    | 51     |            |       |       |       |       |       |         |
| $\Delta E_{Ele} =$  | -94.67 kcal/mo  | 1     |       |       |       |       |       |       |       |       | -71.05  | kcal/m    | ol     |            |       |       |       |       |       |         |
| Initial Orientation |                 | LS2   |       |       | RB2   |       |       | RB2   | RS2   | RS2   |         |           |        |            |       |       |       |       |       |         |
|                     |                 |       |       |       | RS2   |       |       |       |       | RB2   |         |           |        |            |       |       |       |       |       |         |
|                     |                 |       |       |       | RB1   |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
|                     |                 |       |       |       | CS    |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
|                     |                 |       |       |       | LS2   |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| Final Orientation   |                 | LB2   |       | RB2   | LS2   |       |       | RB2   | RS2   | RS2   |         |           |        |            |       |       |       |       |       |         |
|                     |                 | LS2   |       |       | RB1   |       |       |       |       | RB2   |         |           |        |            |       |       |       |       |       |         |
|                     |                 |       |       |       | RS2   |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
|                     |                 |       |       |       | RB2   |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| Total =             | 165.22 kcal/mo  | 1     |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| Van der Waals =     | 107.33 kcal/mo  | 1     |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| Electrostatic =     | -204.46 kcal/mo | 1     |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
|                     |                 |       |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| $\Delta E_{T ot} =$ | -65.77 kcal/mo  | 1     |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| $\Delta E_{Vdw} =$  | -16.48 kcal/mo  | 1     |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |
| $\Delta E_{Ele} =$  | -53.10 kcal/mo  | 1     |       |       |       |       |       |       |       |       |         |           |        |            |       |       |       |       |       |         |

# Table 6.57: The solution phase results of solapsone interacting with the LVFFregion of the 1Z0Q conformer of β-amyloid



#### Table 6.58: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1Z0Q conformer of β-amyloid



#### Table 6.58: The solution phase results of solapsone interacting with the HHQKLVFF region of the 1Z0Q conformer of β-amyloid

The addition of water molecules into the solapsone-A $\beta$  systems has minimal effect on the binding interactions that occur. Overall the electrostatic energies tend to be significantly more favourable than the van der Waals energies in the binding interactions. Solapsone is capable of forming multiple binding interactions within the **HHQK** and LVFF regions, as well as overlapping both regions. An example of binding occurring with the **HHQK** region can be seen in Figure 6.7.



Figure 6.7: Solapsone interacting with  $\beta$ -amyloid after solution phase optimization. Water molecules have been removed for clarity. Dashed green lines indicate cation- $\pi$  interactions between the aromatic rings and Lys16. The dashed blue line indicates an electrostatic type interaction between one of the sulfonate groups and His13.

#### 6.4 BIOLOGICAL VALIDATION OF SOLAPSONE-GD<sup>3+</sup> AS AN IMAGING AGENT

Given the positive *in silico* results of solapsone-Gd<sup>3+</sup> interacting with  $\beta$ -amyloid, as well as solapsone binding to A $\beta$ , it was determined that solapsone should be tested for its *in vitro* capacity to bind to the protein.

As solapsone is no longer commercially available, the compound had to be synthesized and then complexed with gadolinium in a 1:1 and 2:1 ratio of solapsone to metal ion (*in silico* studies showed that gadolinium could chelate with two solapsone molecules simultaneously). Solapsone was synthesized (by Dr. Arun Yadav) via the following scheme in Figure 6.5.

A thioflavin-T assay was performed by Rose Chen to compare the antiaggregation ability of solapsone and solapsone-Gd<sup>3+</sup>. The results are given in Figure 6.9.



Reagent and Conditions: a. 10°C to rt b. NaHSO<sub>3</sub>/H<sub>2</sub>O,70°C, 90 min. Figure 6.8: Synthesis of solapsone

A thioflavin-T assay was performed by Rose Chen to compare the anti-

aggregation ability of solapsone and solapsone-Gd<sup>3+</sup>. The results are given in Figure 6.9.



Figure 6.9: Thioflavin T assay of solapsone and solapsone-Gd<sup>3+</sup>

The results of the ThT assay show that solapsone is capable of binding to  $A\beta$  to prevent aggregation from occurring. A 1:1 complex of solapsone-Gd<sup>3+</sup> decreases aggregation significantly, meaning that it can bind to the smaller soluble forms of  $\beta$ amyloid. The 2:1 complex binds even more strongly to  $A\beta$  than the 1:1 complex. Interestingly, gadolinium on its own demonstrates a capacity to inhibit amyloid aggregation; however, the goal is to cure AD, not kill the patient in the process, as would occur with giving patients a heavy metal such as gadolinium. Only miniscule amounts of gadolinium would be required to complex with solapsone to make a viable imaging agent, and thus would be well tolerated (given gadolinium is used in current MRI agents).

Furthermore, an animal study is underway to test the efficacy of solapsone-Gd<sup>3+</sup> as an imaging agent for MRI. This study involves the use of an APP/PS1 doubly transgenic mouse model of AD. At six months of age, the mice will be injected with the solapsone-Gd<sup>3+</sup> complex at a single dose of 25 mg/kg. MRI images will be captured at 15, 30 and 60 minutes after injection to determine how well the imaging agent performs.

#### 6.5 CONCLUSIONS ON SOLAPSONE AS A DIAGNOSTIC IMAGING AGENT FOR ALZHEIMER'S DISEASE

The *in silico* and *in vitro* studies of solapsone- $Gd^{3+}$  as a diagnostic agent are quite favourable. The molecular modelling suggests that solapsone is more than capable of binding to  $\beta$ -amyloid while also chelating a paramagnetic ion such as gadolinium. This is further supported by *in vitro* testing showing a decrease in amyloid aggregation. This truly is a novel diagnostic agent, as all of the currently available imaging agents for AD being developed are being analogued from molecules used to bind to the aggregated forms of  $\beta$ -amyloid, and they only bind to the plaques. Solapsone has already been used in humans, and thus would be more market ready, and given that it binds to the soluble forms of A $\beta$  that are responsible for the disease, it would allow for earlier diagnosis of the disease. The fact that solapsone-Gd<sup>3+</sup> could be used in MRI imaging is also a boon, as most all hospitals have a MRI machine (this is not the case for PET imaging).

454

Overall solapsone presents itself as an excellent potential imaging agent for Alzheimer's disease, and a provisional patent for the solapsone-Gd<sup>3+</sup> complex (which also includes a novel synthetic route for solapsone) has been filed.

#### **6.6 INTERPRETATION**

The *in silico* optimization of solapsone- $Gd^{3+}$  with different conformations of  $\beta$ amyloid suggests that the complex can bind to monomeric forms in order to allow for their identification. Solapsone can chelate gadolinium with a binding energy similar to those of known chelators, indicating that the metal-ligand interactions are fairly strong. Binding interactions within the LVFF region sometimes overlapped into the **HHQK** region, and vice versa. For some conformations, the solapsone- $Gd^{3+}$  complex did bind outside the **HHQK** region, but it can be seen that this is a result of the complex surrounding the amyloid peptide.

The *in vitro* results support the *in silico* evidence that solapsone-Gd<sup>3+</sup> can bind to  $A\beta$  in a monomeric or at least in the soluble forms, as aggregation was inhibited. As the blood vessels in the region of A $\beta$  aggregation become damaged in the disease process, and given the evidence that solapsone can cross the blood-brain barrier, it is entirely possible that this complex will be able to enter the brain and bind to the soluble forms of A $\beta$ , and potentially the plaques as well.

The *in vitro* results also show that a complex ratio of two solapsone molecules to one gadolinium ion can bind to  $\beta$ -amyloid more effectively. *In silico* studies suggest that a variety of orientations are possible for this complex, and it may be that with the 2:1 complex, two or more separate monomers of A $\beta$  could be bound. The decreased

aggregation observed relative to the 1:1 ratio suggests a similar action may be occurring *in vitro*.

The mouse model will allow for *in vivo* verification of this hypothesis, and if it should prove successful will present a readily accessible MRI contrast agent to allow for earlier diagnosis of AD than compounds that are currently available. This is also a favourable complex of interest, as solapsone has a very low toxicity, and chelated gadolinium also has reduced toxicity. The potential side-effects of the administration of this complex may therefore be minimal.

The *in silico* studies also suggest that solapsone can bind to different conformations of  $\beta$ -amyloid on its own. The molecule can interact with both the **HHQK** and LVFF regions, as well as overlapping the two. This is possible as the larger size of solapsone allows it to wrap itself around the amyloid protein to prevent conformational conversion. The binding energies of these systems are also favourable, and multiple binding interactions can form between the protein and small molecule. Although its activity *in vitro* is less than that of complexed solapsone-Gd<sup>3+</sup>, it does show some capacity to inhibit A $\beta$  aggregation which is a beneficial outcome. Thus a known drug can be repurposed to target other diseases in need of new therapeutic approaches.

456

#### **CHAPTER 7: CONCLUSIONS**

Through the course of this research computational methods have been used to identify endogenous molecules within the human brain that have the potential to bind to  $\beta$ -amyloid to prevent neurotoxic aggregation from occurring, and the results have potential significance.

#### **7.1 PHOSPHOSERINE**

Phosphoserine has demonstrated by *in silico* and *in vitro* means that it is capable of binding to the monomeric form of  $\beta$ -amyloid to prevent aggregation. Phosphoserine can also bind to other proteins involved in AD bearing a common **BBXB** motif. In fact, it binds well to these proteins and demonstrated itself as more energetically favourable in binding to them relative to other species that were investigated. Thus phosphoserine may act in a multi-faceted approach, to not only prevent A $\beta$  aggregation, but inhibit the damaging inflammatory responses that occur.

Further research of phosphoserine as an anti-AD drug is warranted. As the pathways involved in the synthesis and degradation of the molecule are known, drugs could be designed to increase the concentration of phosphoserine in the brain. Phosphoserine could also be used as a lead molecule to develop analogues with even more efficacy.

#### 7.2 HHQK AS A TARGET FOR ANTI-ALZHEIMER'S DRUGS

The research presented demonstrates that the **HHQK** region of  $A\beta$ , which plays an important role in the misfolding, is a viable target for anti-AD drugs. The indentified endogenous molecules, such as phenylalanine, dopamine, and 3-hydroxyanthranilic acid, were all capable of binding to **HHQK**, and are of interest for further development. The positive computational results, supported by *in vitro* assays, led to the development of a novel series of analogues of 3HAA, and the activity of these new analogues has been increased. Further QSARs will be performed to continue to improve the efficacy of these drugs.

#### 7.3 BBXB AND THE "PROMISCUOUS DRUG" CONCEPT

The molecular mechanics studies of a series of synthetic molecules interacting with the **BBXB** motif on multiple proteins support the concept of a "promiscuous drug". All five compounds were capable of binding to the concentrated region of basic amino acids on multiple proteins involved in Alzheimer's disease. Certain compounds were more efficacious at forming these binding interactions; however, they were all able to target **BBXB**. This supports the concept that a single drug could target multiple proteins involved in the disease process.

One particular compound of interest, NCE-0217, was "analogued" further and a QSAR was performed to provide direction on which compounds should be synthesized next. This process will be repeated as necessary to improve the activity of the molecules.

#### 7.4 EVHHQK AS A TARGET FOR ANTI-ALZHEIMER'S DRUGS

Studies on the interactions between both endogenous and synthetic molecules with the EVHHQK region of  $\beta$ -amyloid support its potential for another binding target to

prevent aggregation. Therefore, small molecules containing both anionic and cationic moieties could interact with EVHHQK in a preventative manner.

The results indicate that the anionic groups on these molecules play a role in the strength of binding interactions, where  $SO_3^- > PO_3^- > CO_2^-$ . This indicates that a search for molecules with sulfonate groups would yield compounds with a greater chance of positive binding interactions than those with carboxylate groups. The size of the molecule is also a factor in its ability to bind to  $\beta$ -amyloid, as  $\beta$ -alanine was not as capable as GABA for forming interactions with the protein.

#### 7.5 LVFF AS A TARGET FOR ANTI-ALZHEIMER'S DRUGS

The *in silico* studies of small molecules comparing the binding strength of the **HHQK** region to the LVFF region of  $\beta$ -amyloid demonstrate the viability of LVFF as another drug target. Compounds with aromatic rings are capable of targeting both **HHQK** and LVFF, and may bind even more strongly to the LVFF region of A $\beta$ . Thus, we can design and develop drug molecules capable of targeting both regions of the protein to better promote stability in the monomeric form.

#### 7.6 SOLAPSONE AS AN IMAGING AGENT FOR ALZHEIMER'S DISEASE

The results of the minimization of solapsone chelating gadolinium with  $\beta$ -amyloid are favourable for its use as a diagnostic agent. Optimizations in both the gas phase and solution phase demonstrated multiple interactions formed between solapsone-Gd<sup>3+</sup> and the **HHQK** and LVFF regions of A $\beta$ , which was further supported by *in vitro* results. The next phase of this project will be to obtain the results of animal study in order to proceed with its development.

Solapsone may also be capable of acting as an amyloid anti-aggregant. The *in silico* studies showed that it would form many binding interactions, not only with **HHQK** or LVFF, but overlapping both regions. It should be quite capable of keeping  $\beta$ -amyloid in its non-toxic form by binding around these regions.

#### 7.7 GENERAL CONCLUSIONS

The use of computational techniques has facilitated the identification, design and development of novel therapeutics for Alzheimer's disease. The identification of endogenous molecules of the brain as anti-Alzheimer's drugs is an approach that has not previously been postulated. These identified compounds have shown great promise as leads in the development of putative anti-AD drugs. Computational methods were also of use in the design and development of novel molecules for inhibiting amyloid aggregation, as they allowed for more focused research and positive results to be obtained with less synthetic cost.

Furthermore, through the use of these computational techniques, the idea of "physinformatics" was developed, this would allow for the discovery of potentially useful molecules based on specific functional groups and electronic arrangements in order to better target an identified region. Drugs may also be repurposed through these means of discovery, as with the identification of solapsone (formerly used to treat leprosy), and its subsequent development as a diagnostic imaging agent for Alzheimer's disease.

460

#### References

- [1] Parihar, M. S., Hemnani, T. J. Clin. Neurosci. 2004, 11, 456-467.
- [2] Grossberg, G. T. J Clin Pyschiatry. 2003, 64 (suppl 9), 3-6.
- [3] Brookmeyer, R., Johnson, E., Zeigler-Graham, K., Arrighi, H. M. Alzheimer's & Dementia. 2007, 3, 186-191.
- [4] Easwaramoorthy, B., Pichika, R., Collins, D., Potkin, S.G., Leslie, F.M., Mukherjee, J. Synapse. 2007, 61, 29-36.
- [5] Wenk, G. L. J Clin Psychiatry, 2003, 64 (suppl 9), 7-10.
- [6] Purves, D. & Williams, S.M. *Neuroscience*, 3<sup>rd</sup> ed; Sinauer Associates: Sunderland, MA, 2004.
- [7] Nestler, E.J., Hyman, S.E. & Malenka, R.C. *Molecular Neuropharmacology: A Foundation for Clinical Neuroscience*. The McGraw-Hill Companies, Inc.: Toronto, ON 2001.
- [8] Lahiri, D. K., Greig, N. H. Neurobiol. Aging. 2004, 25, 581-587.
- [9] Walsh, D. M., Selkoe, D. J. J. Neurochem. 2007, 101, 1172-1184.
- [10] Maltseva, E., Kerth, A., Blume, A., Mohwald, H., Brezesinski, G. *ChemBioChem.* 2005, 6, 1817-1824.
- [11] Verdile, G., Fuller, S., Atwood, C. S., Laws, S. M., Gandy, S. E., Martins, R. N. *Pharmacol. Res.* 2004, 50, 397-409.
- [12] Gandy, S. J. Clin. Invest. 2005, 115, 1121-1129.
- [13] Buchet, R., Pikula, S. Acta Biochim. Pol. 2000, 47, 725-733.
- [14] LaFeria, F. M., Green, K. N., Oddo, S. Nat. Rev. Neurosci. 2007, 8, 499-508.
- [15] Gouras, G. K., Almeida, C. G., Takahashi, R. H. Neurobiol. Aging. 2005, 26, 1235-1244.
- [16] Morita, M., Vestergaard, M., Hamada, T., Takagi, M. Biophys. Chem. 2010, 147, 81-86.
- [17] Yoda, M., Miura, T., Takeuchi, H. Biochem. Bioph. Res. Co. 2008, 376, 56-59.
- [18] Fändrich, M., Schmidt, M., Grigorieff, N. Trends Biochem. Sci. 2011, 36, 338-345.

- [19] Oddo, S., Caccamo, A., Tran, L., Lambert, M. P., Glabe, C. G., Klein, W. L., LaFeria, F. M. J. Biol. Chem. 2006, 281, 1599-1604.
- [20] Minati, L., Edginton, T., Bruzzone, M. G., Giaccone, G. Am J Alzheimers Dis. 2009, 24, 95-121.
- [21] Vijayan, S., El-Akkad, E., Grundke-Iqbal, I., Iqbal, K. FEBS Lett. 2001, 507, 375-381.
- [22] Karp, G. Cell and Molecular Biology: Concepts and Experiment,. 3<sup>rd</sup> ed.; John Wiley & Sons, Inc.: Hoboken, NJ 2003.
- [23] Butterfield, D. A., Bush, A. I. Neurobiol. Aging. 2004, 25, 563-568.
- [24] World Alzheimer Report. Alzheimer's Disease International: London 2009.
- [25] Diamond, J. "A Report of Alzheimer's Disease and Current Research." Alzheimer Society. Toronto, ON, 2006.
- [26] Alzheimer Treatment: Drug Treatments. *Alzheimer Society of Canada*. **2007**. <a href="http://www.alzheimer.ca/english/treatment/treatments-into.htm">http://www.alzheimer.ca/english/treatment/treatments-into.htm</a> 21 Dec. 2007.
- [27] Robinson, D. M., Keating, G. M. Drugs. 2006, 66, 1515-1534.
- [28] Sugimoto, H., Yamanishi, Y., Iimura, Y. & Kawakami, Y. Curr. Med. Chem. 2000,7, 303-339.
- [29] Bar-On, P., Millard, C.B., Harel, M., Dvir, H., Enz, A., Sussman, J.L., Silman, I. *Biochemistry.* 2002, 41, 3555-3564.
- [30] Pilger, C., Bartolucci, C., Lamba, D., Tropsha, A., Fels, G. J. Mol. Graphics Modell. 2001, 19, 288-296.
- [31] Mangialasche, F., Solomon, A., Winblad, B., Mecocci, P, Kivipelto, M. Lancet Neurol. 2010, 9, 702-716.
- [32] Adlard, P.A., Cherny, R. A., Finkelstein, D. I., Gautier, E., Robb, E., Coretes, M., Volitakis, I., Liu, X., Smith, J. P., Perez, K., Laughton, K., Li, Q-X., Charman, S. A., Nicolazzo, J. A., Wilkins, S., Deleva, K., Lynch, T., Barnham, K. J., Bush, A. I. *Neuron.* 2008, *59*, 43-55.
- [33] Salloway, S., Sperling, R., Keren, R., Porsteinsson, A. P., van Dyck, C. H., Tariot, P. N., Gilman, S., Arnold, D., Abushakra, S., Hernandez, C., Crans, G., Liang, E., Quinn, G., Bairu, M., Pastrak, A., Cedarbaum, J. M. *Neurology*. 2011, 77, 1253-1262.

- [34] Townsend, M. J. Alzheimer's Dis. 2011, 24, 43-52.
- [35] Humpel. C. Trends Biotechnol. 2011, 29, 26-32.
- [36] Hampel, H., Frank, R., Brioch, K., Teipel, S. J., Katz, R. G., Hardy, J., Herholz, K., Bokde, A. L. W., Jessen, F., Hoessler, Y. C., Sanhai, W. R., Zetterberg, H., Woodcock, J., Blennow, K. *Nat. Rev. Drug Discov.* 2010, 9, 560-574.
- [37] Lin, K.-J., Hsu, W.-C., Hsiao, I.-T., Wey, S.-P., Jin, L.-W., Skovronsky, D., Wai, Y.-Y., Chang, H.-P., Lo, C.-W., Yao, C. H., Yen, T.-C., Kung, M.-P. *Nucl. Med. Biol.* 2010, *37*, 497-508.
- [38] Ono, M., Saji, H. Int. J. Mol. Imaging. 2011, 1-12.
- [39] Nogrady, T., Weaver D. F. *Medicinal Chemistry: A Molecular and Biochemical Approach*. 3<sup>rd</sup> ed.; Oxford University Press, Inc.: Toronto, ON **2005**.
- [40] Lipinski, C. A., Lombardo, F., Dominy, B. W., Feeny, P. J. Adv. Drug Deliv. Rev. 2001, 46, 3-26.
- [41] Stephenson, V. C., Heyding, R. A., Weaver, D. F. FEBS Lett. 2005, 579, 1338-1342.
- [42] Leach, A. R. Molecular Modelling: Principles and Applications. 2nd Ed. Toronto : Pearson Educated Limited, 2001.
- [43] Mayo, S. L., Olafson, B. D., Goaddard III, W. A. J. Phys. Chem. 1990, 94, 8897-8909.
- [44] Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., Sates, D. J., Swaminathan, S., Karplus, M. J. Comput. Chem. 1983, 4, 187-217.
- [45] *Cerius*<sup>2</sup>. Version 4.10. Accelrys Inc., **2005**.
- [46] QUANTA2005. Version 05.0417. Accelrys Software Inc., 2006.
- [47] *Molecular Operating Environment*. Version 2008.10. Chemical Computing Group Inc., **2009**.
- [48] MacKerell Jr., A. D., Basford, D., Bellott, M., Dunbrack Jr., R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuezera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher III, W. E., Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiórkiewicz-Kuczera, J., Yin, D., Karpus, M. J Phys Chem B. 1998, 102, 3586-3616.

- [49] QUANTA 2005 Basic Operations. 2005. San Diego : Accelrys Inc.
- [50] "CHARMM: The Energy Function and Its Parameterization." *Encyclopedia of Computational Chemistry*. John Wiley and Sons Ltd.: Chichester, New York 1998, 271-277.
- [51] *Molecular Operating Environment*. Chemical Computing Group Inc.: Montreal, Quebec **2009**.
- [52] Cerius<sup>2</sup>4.10L Forcefield-Based Simulations. Accelrys Software Inc.: San Diego 2005.
- [53] Labute, P. JCCG. 1995.
- [54] Carbó-Dorca, R., Robert, D., Amat, Ll., Gironés, X., Besalú, E. *Molecular Quantum Similarity in QSAR and Drug Design*. Springer-Verlag: Berlin **2000**.
- [55] Mannhold, R. Molecular Drug Properties: Measurement and Prediction. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim 2008.
- [56] *Cerius<sup>2</sup> Version 4.10 QSAR*. Accelrys Software Inc.: San Diego **2005**.
- [57] Labute, P. Pacific Symposium on Biocomputing. 1999, 4, 444-455.
- [58] Cohen, J. Educ. Psychol. Meas. 1960, 20, 37-46.
- [59] Szegedi, V., Juhász, G., Rózsa, E., Juhász-Vedres, G., Datki, Z., Fülöp, L., Bozsó, Z., Lakatos, A., Laczkó, I., Farkas, T., Kis, Z., Tóth, G., Soós, K., Zarándi, M., Budai, D., Toldi, J., Penke, B. *FASEB J.* 2006, 20, E324-333.
- [60] Klunk, W. E., McClure, R. J., Richard, J., Pettegrew, J. W. Mol. Chem. Neuropathol. 1991, 15, 51-73.
- [61] Mason, R. P., Trumbore, M. W., Pettegrew, J. W. Neurobiol. Aging. 1995, 16, 531-539.
- [62] Molina, J. A., Jiménez-Jiménez, F. J., Vargas, C., Gómez, P., de Bustos, F., Ortí-Pareja, M., Tallón-Barranco, A., Benito-León, J., Arenas, J., Enríquez-de-Salamanca, R. J. Neural Transm. 1998, 105, 279-286.
- [63] Klunk, W. E., McClure, R. J., Pettegrew, J. W. J. Neurochem. 1991, 56, 1997-2003.
- [64] Mason, R. P., Trumbore, M. W., Pettegrew, J. W. Ann. NY Acad, Sci. 1996, 17, 368-373.
- [65] Wu, S-Z., Bodles, A. M., Porter, M. M., Griffin, W. S. T., Basile, A. S., Barger, S. W. J. Neuroninflamm. 2004, 1.
- [66] Wood, P. L., Hawkinson, J. E., Goodnough, D. B. J. Neurochem. 1996, 67, 1485-1490.
- [67] Berman, H. M., Westbrook, J., Feng, Z., Gililand, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. *Nucleic Acids Res.* 200, 28, 235-242.
- [68] McGrath, M. E., Vasquez, J. R., Craik, C. S., Yang, A. S., Honig, B., Fletterick, R. J. Biochemistry, 1992, 31, 3059-3064.
- [69] Talafous, J., Marcinowski, K. J., Klopman, G., Zagorski, M. G. *Biochemistry*, **1994**, *33*, 7788-7796.
- [70] Sticht, H., Bayer, P., Willbold, D., Dames, S., Hilbich, C., Beyreuther K., Frank, R. W., Rosch, P. *Eur. J. Biochem.* 1995, 233, 293-298.
- [71] Coles, M., Bicknell, W., Watson, A. A., Fairlie, D. P., Craik, D. J. *Biochemistry*. 1998, 37, 11064-11077.
- [72] Crescenzi, O., Tomaselli, S., Guerrini, R., Salvadori, S., D'Ursi, A. M., Temussi, P. A., Picone, D. *Eur. J. Biochem.* 2002, 269, 5642-5648.
- [73] Zirah, S., Kozin, S. A., Mazur, A. K., Blond, A., Cheminant, M., Segalas-Milazzo, I., Debey, P., Rebuffat, S. J. Biol. Chem. 2006, 281, 2151-2161.
- [74] Gasteiger, J., Marsili, M. *Tetrahedron*. **1980**, *36*, 3219-3288.
- [75] Kraich, M., Klein, M., Patiño, E., Harrer, H., Nickel, J., Sebald, W., Mueller, T. D. BMC Biol. 2006, 4:13.
- [76] Yoon, C., Johnston, S. C., Tang, J., Stahl, M., Tobin, J. F., Somers, W. S. *EMBO J.* **2000**, *19*, 3530-3541.
- [77] LaPorte, S. L., Juo, Z. S., Vaclavikova, J., Colf, L. A., Qi, X., Heller, N. M., Keegan, A. D., Garcia, K. C. *Cell.* 2008, 132, 259-272.
- [78] Smith, S. P., Shaw, G. S. Structure. **1998**, *8*, 211-222.
- [79] Chung, C., Cooke, R. M., Proudfoot, A. E. I., Wells, T. N. C. *Biochemistry*. 1995, 34, 9307-9314.

- [80] Bella, J., Kolatkar, P. R., Marlor, C. W., Greve, J. M., Rossman, M. G. Proc. Natl. Acad. Sci. 1998, 95, 4140-4145.
- [81] Atwood, C. S., Martins, R. N., Smith, M. A., Perry, G., Peptides. 2002, 23, 1343-1350.
- [82] Liu, R., McAllister, C., Lyubchenko, Y., Sierks, M. R. J. Neurosci. Res. 2004, 75, 162-171.
- [83] Tomaselli, S., Esposito, V., Vangone, P., van Nuland, N.A., Bonvin, A.M., Guerrini, R., Tancredi, T., Temussi, P.A., Picone, D. *ChemBioChem.* 2006, 7, 257-267.
- [84] Fonteh, A. N., Harrington, R. J., Tsai, A., Liao, P., Harrington, M. G. Amino Acids. 2007, 32, 213-224.
- [85] Yates, C. M., Allison, Y., Simpson, J., Maloney, A. F. J., Gordon, A. Lancet. 1979, 2, 851-852.
- [86] Richard, D. M., Dawes, M. A., Mathias, C. W., Acherson, A., Hill-Kapturczak, N., Dougherty, D. M. *IJTR*. 2009, 2, 45-60.
- [87] *Molecular Operating Environment*. Version 2009.10. Chemical Computing Group Inc., **2009**.
- [88] *Molecular Operating Environment*. Version 2010.10. Chemical Computing Group Inc., **2010**.
- [89] Krause, D., Suh, H.-S., Tarassishin, L., Cui, Q. L., Durafourt, B. A., Choi, N., Bauman, A., Cosenza-Nashat, M., Antel, J. P., Zhao, M.-L., Lee, S. C. Am. J. Pathol. 2011, 179, 1330-1372.
- [90] Patani, G. A., LaVoie, E. J. Chem. Rev. 1996, 96, 3147-3176.
- [91] Lima, L. M., Barreiro, E. J. Curr. Med. Chem. 2005, 12, 23-49.
- [92] Gooptu, B., Hazes, B., Chang, W.-S., W., Dafforn, T. R., Carrell, R. W., Read, R. J., Lomas, D., A. PNAS. 2000, 97, 62-72.
- [93] Harrel, M., Sussman, J. L. 2J3D. 2009.
- [94] Mahley, R. W., Weisgraber, K. H., Huang, Y. PNAS. 2006, 103, 5644-5654.
- [95] Verderame, J. R., Kantardjieff, K., Segelke, B., Weisgraber, K., Rupp, N. 1GS9. 2009.

- [96] Ikemizu, S., Gilbert, R. J. C., Fennelly, J. A., Collins, A. V., Harlos, K., Davis, S. J. *Immunity*. 2000, 12, 51-60.
- [97] Evans, J. C., Huddler, D. P., Jiracek, J., Castro, C., Millian, N. S., Garrow, T. A., Ludwig, M. L. Structure. 2002, 10, 1159-1171.
- [98] Païdassi, H., Tacnet-Delorme, P., Garlatti, V., Darnault, C., Ghebrehiwet, B., Gaboriauld, C., Arlaud, G. J., Frachet, P. J. Immunol. 2008, 180, 2329-2338.
- [99] Landar, A., Curry, B., Parker, M. H., DiGiacomo, R., Indelicato, S. R., Nagabhushan, T. L., Rizzi, G., Walter, M. R. J. Mol. Biol. 2000, 299, 169-179.
- [100] Wilson, K. P., Black, J.-A. F., Thomson, J. A., Kim, E. E., Griffith, J. P., Navla, M. A., Murcko, M. A., Chambers, S. P., Aldape, R. A., Raybuck, S. A., Livingston, D. J. *Nature*. **1994**, *370*, 270-274.
- [101] Ren, M., Guo, Q., Guo, L., Lenz, M., Qian, F., Koenen, R. R., Xu, H., Schilling, A. B., Weber, C., Ye, R. D., Dinner, A. R., Tang, W.-J. *EMBO J.* 2010, 29, 3952-3966.
- [102] Glossop, M. S., Bazin, R. J., Dack, K. N., Fox, D. N. A., MacDonald, G. A., Mills, M., Owen, D. R., Phillips, C., Reeves, K. A., Ringer, T. J., Strang, R. S., Watson, C. A. L. *Bioorg. Med. Chem. Lett.* 2011, 21, 3404-3406.
- [103] Crump, M. P., Gong, J.-H., Loetscher, P., Rajarathnam, K., Amara, A., Arenzana-Seisdedos, F., Virelizier, J.-L., Baggiolini, M., Sykes, B. D., Clark-Lewis, I. *EMBO J.* 1997, 16, 6996-7007.
- [104] Eckenroth, B. E., Steere, A. N., Chasteen, D., Everse, S. J., Mason, A. B. PNAS. 2011, 108, 13089-13094.
- [105] Gervais, F., Paquette, J., Morissette, C., Kryzwkowski, P., Yu, M., Azzi, M., Lacombe, D., Kong, X., Aman, A., Laurin, J., Szarek, W. A., Tremblay, P. *Neurobiol. Aging.* 2007, 28, 537-547.
- [106] Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., Stewart, J. J. P. J. Am. Chem. Soc. 1985, 107, 3902-3909.
- [107] Gaussian 09W. Version 7.0. Gaussian, Inc. 2009.
- [108] Carr, D. H., Brown, J., Bydder, G. M., Weinmann, H.J., Speck, U., Thomas, D. J., Young, I. R. *Lancet.* **1984**, *323*, 484-486.
- [109] Jopling, W. H. Postgrad Med. J. 1960, 36, 634-637.
- [110] Brownlee, G., Green, A. F., Woodbine, M. Brit. J. Pharmacol. 1948, 3, 15-28.

- [111] Brownlee, G. Lancet. 1948, 252, 131-134.
- [112] Runge, V. M. J. Magn. Reson. Imaging. 2000, 12, 205-213.
- [113] Tirkkonen, B., Aukrust, A., Couture, E., Grace, D., Haile, Y., Holm, K. M, Hope, H., Larsen, å., Sivertsen Lunde, H, Sjøgren, C. E. *Acta Radiol.* 1997, 38, 780-789.

## Appendix 1: The Library of Endogenous Molecules of the Brain

| (S)13-hydroxyoctadecadienoic acid                     | 12-hydroxyeicosatetraenoic acid         |
|-------------------------------------------------------|-----------------------------------------|
| (S)1-benzyl-1,2,3,4-TIQ                               | 14-desmethyllanosterol                  |
| (S)1-phenyl-1,2,3,4-TIQ                               | 15-hydroxyeicosatetraenoic acid         |
| (S)1-phenyl-N-methyl-1,2,3,4-TIQ                      | 16alpha-hydroxydehydroepiandrosterone   |
| (S)-norcoclaurine                                     | 16alpha-hydroxyestrone                  |
| (S)-reticuline                                        | 17alpha-21-didyhroxy-5beta-pregnane-    |
| (S)-salsoline                                         | 3,11,20-trione                          |
| (S)-salsolinol                                        | 17alpha-hydroxypregnenolone             |
| (S)-tetrahydropapayeroline                            | 17alpha-hydroxyprogesterone             |
| 1 2 3 4-TIO                                           | 18-hydroxycorticosterone                |
| 1.2-dimethyl-6.7-dihydroxyisoquinolinium              | 19-hydroxyandrost-4-ene-3,17-dione      |
| 1.2 N dimethyl 1.2.2 C                                | 19-hydroxy-PGA1                         |
| tetrahydroisoquinoline                                | 19-hydroxy-PGA2                         |
| 1,3-butadiene                                         | 19-hydroxy-PGB1                         |
| 1,3-P-D-glycerate                                     | 19-hydroxy-PGB2                         |
| 10-formyITHF                                          | 19-hydroxytestosterone                  |
| 11beta-17alpha-21-trihydroxy-5beta-                   | 1-carboxy(S)salsolinol                  |
| pregnane-3,20-dione                                   | 1D-myo-inositol,1,4,5-P3                |
| 11beta-21-dihydroxy-3,20-oxo-5beta-<br>pregnan- 18-al | 1L-myo-inositol-1-P                     |
| 11beta-hydroxy-4-androstene-3,17-dione                | 1-lysolecithin                          |
| 11-cis-retinal                                        | 1-lysophosphatidylethanolamine          |
| 11-deoxycortisol                                      | 1-methyl-1,2,3,4-THBC                   |
| 11-hydroxyeicosatetraenoic acid                       | 1-methyl-1,2,3,4-THBC-3-carboxylic acid |

| 1-methylimidazole-4-acetic acid       | 2-amino-3-carboxymuconatesemialdehyde |
|---------------------------------------|---------------------------------------|
| 1-monoacylglycerol                    | 2-amino-3-oxadipate                   |
| 1-phosphatidyl-1D-myo-inositol        | 2-aminomuconate                       |
| 1-phosphatidyl-1D-myo-inositol-3,4-P2 | 2-aminomuconatesemialdehyde           |
| 1-phosphatidyl-1D-myo-inositol-3P     | 2-arachidonylglycerol                 |
| 1-phosphatidyl-1D-myo-inositol-4,5-P2 | 2-dehydro-3-deoxy-6-P-gluconate       |
| 1-phosphatidyl-1D-myo-inositol-4P     | 2-dehydro-L-gulonolactone             |
| 1-pyrroline2-carboxylate              | 2-deoxyadenosine                      |
| 1-pyrroline-4-hydroxy-2-carboxylate   | 2-deoxyadenosine-5-diphosphate        |
| 2(N)-methyl-1,2,3,4-TIQ               | 2-deoxyadenosine-5-phosphate          |
| 2(N)-methyl-norsalsolinol             | 2-deoxyadenosine-5-triphosphate       |
| 2,3-dioxo-L-gulonate                  | 2-deoxycytidine                       |
| 2,3-P-D-glycerate                     | 2-deoxycytidine-5-diphosphate         |
| 2,5-dihydroxypyridine                 | 2-deoxycytidine-5-phosphate           |
| 2,9-dimethyl-beta-carbolinium         | 2-deoxycytidine-5-triphosphate        |
| 2,9-dimethyl-harmanium                | 2-deoxy-D-glucose                     |
| 20-alpha-22-beta-dihydroxycholesterol | 2-deoxyguanosine                      |
| 20-carboxy-LTB4                       | 2-deoxyguanosine-5-diphosphate        |
| 20-hydroxy-LTB4                       | 2-deoxyguanosine-5-phosphate          |
| 22beta-hydroxycholesterol             | 2-deoxyguanosine-5-triphosphate       |
| 23P-D-glycerateb                      | 2-deoxyinosine                        |
| 24(S)-hydroxycholesterol              | 2-deoxyribose                         |
| 2-alpha-hydroxyethyl-ThPP             | 2-deoxythymidine                      |
| 2-alpha-lactoyl-ThPP-r                | 2-deoxythymidine-5-diphosphate        |
| 2-alpha-lactoyl-ThPP-s                | 2-deoxythymidine-5-phosphate          |

| 2-deoxythymidine-5-triphosphate | 2-oxo-3-methylvalerate                    |
|---------------------------------|-------------------------------------------|
| 2-deoxyuridine                  | 2-oxo-5-aminovalerate                     |
| 2-deoxyuridine-5-diphosphate    | 2-oxoadipate                              |
| 2-deoxyuridine-5-phosphate      | 2-oxobutyrate                             |
| 2-deoxyuridine-5-triphosphate   | 2-oxoglutaramate                          |
| 2-hydroxy-3-ketoadipate         | 2-oxoglutarate                            |
| 2-hydroxy-3-oxoadipate          | 2-oxoisocaproate                          |
| 2-hydroxyestradiol-17b          | 2-oxoisovalerate                          |
| 2-hydroxyestrone                | 2-P-D-glycerate                           |
| 2-hydroxyglutarate              | 3,3,5-triiodothyronine                    |
| 2-hydroxyputrescine             | 3,3-diiodothyronine                       |
| 2-hydroxystearic acid           | 3,4,5-trihydroxy-2-oxo-L-valeraldehyde    |
| 2-lysolecithin                  | 3,4-dihydroxy-5-decaprenylbenzoate        |
| 2-lysophosphatidylethanolamine  | 3,4-dihydroxy-5-heptaprenylbenzoate       |
| 2-methoxyestradiol-17b          | 3,4-dihydroxy-5-hexaprenylbenzoate        |
| 2-methoxyestrone                | 3,4-dihydroxy-5-nonaprenylbenzoate        |
| 2-methyl-3-hydroxybutyryl CoA   | 3,4-dihydroxy-5-octaprenylbenzoate        |
| 2-methylacetoacetyl CoA         | 3,4-Dihydroxyphenylglycol                 |
| 2-methyl-beta-carbolinium       | 3,5,3-triiodothyronine                    |
| 2-methylbutyryl CoA             | 3,5-diiodothyronine                       |
| 2-methyl-harmanium              | 3alpha-11beta-21-trihydroxy-20-oxo-5beta- |
| 2-methylheptanone               | pregnan-18-al                             |
| 2-methyl-THBC                   | 3alpha-17beta-dihydroxyandrostane         |
| 2-monoacylglycerol              | 3alpha-hydroxy-5beta-pregnan-20-one       |
| 2-octyl-gamma-bromoacetoacetate | 3beta-17beta-dihydroxy-5-androstene       |
|                                 | 3beta-dimethylallylalcohol                |

| 3-dehydro-L-gulonate                     | 3-methylcrotonate                   |
|------------------------------------------|-------------------------------------|
| 3-dehydrosphinganine                     | 3-methylcrotonyl CoA                |
| 3-dehydrothreonate                       | 3-O-acetyl-sphingosine              |
| 3-hydroxyanthranilate                    | 3-O-methyl-sphingosine              |
| 3-hydroxyisobutyrate                     | 3-O-sulfoglucuronic acid            |
| 3-hydroxy-L-kynurenine                   | 3-P-D-glycerate                     |
| 3-hydroxypyruvate                        | 3-phosphatidylethanolamine          |
| 3-hydroxytrimethyllysine                 | 3-phosphatidyl-L-glycerol-1P        |
| 3-iodothyronine                          | 3-P-hydroxypyruvate                 |
| 3-isopropylmalate                        | 3-P-serine                          |
| 3-mercaptopyruvate                       | 3-sulfinoalanine                    |
| 3-methoxy-4-hydroxy-5-                   | 3-sulfinylpyruvate                  |
| decaprenylbenzoate                       | 3-ureidoisobutyrate                 |
| 3-methoxy-4-hydroxy-5-                   | 3-ureidopropionate                  |
| heptaprenylbenzoate                      |                                     |
| 3-methoxy-4-hydroxy-5-                   | 4,7,10,13,16,19-docosahexenoic acid |
| hexaprenylbenzoate                       | 4-aminobutyraldehyde                |
| 3-methoxy-4-hydroxy-5-                   | 4-aminobutyrate                     |
| nonaprenylbenzoate                       | 4-androstene-3.17-dione             |
| 3-methoxy-4-hydroxy-5-octaprenylbenzoate |                                     |
| 3-methoxy-4-hydroxymandelaldehyde        | 4-aspartyl-P                        |
| 3-methoxy-4-hydroxymandelate             | 4-fumarylacetoacetate               |
|                                          | 4-hydroxy-3-decaprenylbenzoate      |
| 3-methoxy-4-                             | 4-hvdroxy-3-hentanrenylbenzoate     |
| nyuroxyphenyletnylenegiycolsullate       |                                     |
| 3-methoxy-4-hydroxyphenylglycol          | 4-hydroxy-3-hexaprenylbenzoate      |
| 3-methoxy-DOPA                           | 4-hydroxy-3-methoxyphenylalanine    |
| 3-methoxytyramine                        | 4-hydroxy-3-nonaprenylbenzoate      |

| 4-hydroxy-3-octaprenylbenzoate          | 5-formaminoimidazole-4-carboxamide           |
|-----------------------------------------|----------------------------------------------|
| 4-hydroxynonenal                        |                                              |
| 4-hydroxyphenylpyruvate                 | 5-formyl THF                                 |
| 4-hydroxytrimethyllysine                | 5-hete                                       |
| 4-imidazolone-5-propionate              | 5-hpete                                      |
| 4-malevlacetoacetate                    | 5-hydroxyindoleacetaldehyde                  |
| ,<br>4-nvridovate                       | 5-hydroxyindoleacetate                       |
| E 10 methonyl THE                       | 5-hydroxytryptophan                          |
|                                         | 5-hydroxytryptophol                          |
| 5,10-methylene-IHF                      | 5-methoxy-N,N-dimethyltryptamine             |
| 5,6-dihetre                             | 5-methyl THF                                 |
| 5,6-dihydrouracil                       | E mothylautosino                             |
| 5,6-epetre                              |                                              |
| 5,7-cholestadien-3-ol                   | 5-methyltetrahydrofolate                     |
| 5alpha-androstane-3,17-dione            | 5-oxoproline                                 |
| 5alpha-androstane-3alpha-7beta-diol     | 5-P-B-D-ribosylamine                         |
| 5alpha-dihvdrotestosterone              | 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid |
| Salpha-pregnan-3alpha-ol-20-one         | 5-S-cysteinyl-3,4-dihydroxyphenylalanine     |
|                                         | 5-S-cysteinyldopamine                        |
| Salpha-pregnane-3,20-dione              | 6-acetylmorphine                             |
| 5-aminoimidazole ribotide               | 6-amino-2-oxohexanoate                       |
| 5-aminoimidazole-4-carboxamide ribotide | 6-bydrovymelatonin                           |
| 5-aminoimidazole-4-                     |                                              |
| Nsuccinylocarboxamide ribotide          | 6-hydroxymelatonin sulfate                   |
| 5-amino-levulinate                      | 6-hydroxynicotinate                          |
| 5beta-androstane-3,17-dione             | 6-ketoprostaglandin,F2alpha                  |
| 5beta-pregnane-3,20-dione               | 6-methoxy-2-decaprenylphenol                 |
|                                         | 6-methoxy-2-heptaprenylphenol                |

| 6-methoxy-2-hexaprenylphenol    | adenosine-5-phosphosulfate |
|---------------------------------|----------------------------|
| 6-methoxy-2-nonaprenylphenol    | adenylosuccinate           |
| 6-methoxy-2-octaprenylphenol    | ADP                        |
| 6-methoxytryptoline             | ADP-glucose                |
| 6-R-5,6,7,8-tetrahydrobiopterin | Adrenic acid               |
| 6-R-pyruvoylterahydropterin     | adrenosterone              |
| 6-S-acetyl-dihydrolipoamide     | alcylglycerone-P           |
| 7,8-diaminononanoate            | aldimine                   |
| 7,8-dihydrofolate               | aldosterone                |
| 7-dehydrocholesterol            | aldosterone-hemiacetal-R   |
| 8-amino-7-oxononanoate          | aldosterone-hemiacetal-S   |
| 9-hydroxyoctadecadienoic acid   | alkylacylglycerol          |
| acetaldehyde                    | alkylglycerol-3P           |
| acetate                         | alkylglycerone-P           |
| acetoacetate                    | all-trans retinal          |
| acetoacetylCoA                  | allo-4-hydroxy-D-proline   |
| acetyl-CoA                      | alpha-aminobutyric acid    |
| acetylcholine                   | alpha-carotene             |
| acetylcholine-solv              | alpha-D-fucose             |
| acetyl-L-carnitine              | alpha-D-galactose          |
| acetylputrescine                | alpha-D-galactose-1-P      |
| aconitate                       | alpha-D-GalNAc             |
| adenine                         | alpha-D-GlcNAc             |
| adenosine                       | alpha-D-glucosamine        |
| adenosine-5-phosphate           | alpha-D-glucose-1-6P       |

| alpha-D-glucose-1P         | anthranilate             |
|----------------------------|--------------------------|
| alpha-D-glucose-6P         | APS                      |
| alpha-D-glucuronate        | Arachidic acid           |
| alpha-D-glucuronate-f      | Arachidonic acid         |
| alpha-D-mannose            | ARA-S                    |
| alpha-D-mannose-6P         | АТР                      |
| alpha-D-mannose-6-P        | auxin                    |
| alpha-D-ribose-1-phosphate | behenic acid             |
| alpha-D-ribose5-P          | beta-alanine             |
| alpha-glycero-P            | beta-aminoisobutyrate    |
| alpha-ketoadipate          | beta-carotene            |
| alpha-L-fucose             | beta-D-fructose-1-6P     |
| alpha-tocopherol           | beta-D-fructose-1P       |
| alpha-tocopherol-quinone   | beta-D-fructose-6P       |
| alph-hydroxy-nervonic acid | beta-D-fucose            |
| aminoacrylate              | beta-D-GalNAc            |
| aminobutanesulfonic acid   | beta-D-GlcNAc            |
| aminomethanesulfonic acid  | beta-D-glucosamine       |
| aminopentanesulfonic acid  | beta-D-glucuronate       |
| ammonia                    | beta-D-glucuronate-f     |
| anandamide                 | beta-estradiol           |
| androst-4-enedione         | beta-hydroxybutyric acid |
| androstenediol             | betaine                  |
| androstenedione            | betaine aldehyde         |
| androsterone               | beta-L-fucose            |

| beta-N-acetylgalactosamine     | cerebronic acid-S             |
|--------------------------------|-------------------------------|
| beta-phenylethylamine          | cerebroside                   |
| beta-sulfopyruvate             | cGMP                          |
| bicarbonate                    | cholesterol                   |
| bilirubin                      | choline                       |
| biliverdin IXa                 | cisaconitate                  |
| bilrubin-B-diglucuronide       | cis-vaccenic acid             |
| biotin                         | citrate                       |
| c18-sphingosine                | CMP-N-acetylneuraminate       |
| calcitriol                     | CoA-SH                        |
| cAMP                           | coproporphyrinogen III        |
| campesterol                    | cortexone                     |
| carbamate                      | corticosterone                |
| Carbamoly-P                    | cortisol                      |
| carbamoyl-P                    | cortisone                     |
| carbon dioxide                 | cortol                        |
| carboxyaminoimidazole ribotide | cortolone                     |
| carnitine                      | creatine                      |
| carnosine                      | creatinine                    |
| CDP-1,2-diacyl-glycerol        | crotonyl-CoA                  |
| CDP-choline                    | cyclohexa-2,5-diene-1,4-dione |
| CDP-ethanolamine               | cyclo-L-His-L-Pro             |
| ceramide-C18                   | cyclo-L-Gly-L-Pro             |
| cerebrodiene                   | cytidine                      |
| cerebronic acid-R              | cytidinediphosphate choline   |

| cytidine-5-diphosphate         | D-gluconate                 |
|--------------------------------|-----------------------------|
| cytidine-5-phosphate           | D-glucono-1,5-lactone       |
| cytidine-5-triphosphate        | D-glucosamine-6-P           |
| cytochromes-a                  | D-glucose                   |
| cytosine                       | D-glucuronate               |
| D-3-hydroxybutyrate            | D-glucuronate-1-P           |
| d3-isopentenyl-PP              | D-glucuronolactone          |
| D-4-hydroxy-2-oxoglutarate     | D-glyceraldehyde            |
| d5,7,24-cholestadien-3beta-ol  | D-glyceraldehyde-3-P        |
| D-6-P-gluconate                | D-glyceraldehyde-3P         |
| D-6-P-glucono-1,5-lactone      | D-glycerate                 |
| d7,24-cholestadien-3beta-ol    | DHA                         |
| deamino-NAD+                   | DHF                         |
| dehydroascorbate               | diacylglycerol              |
| dehydroepiandrosterone         | dihomo-gamma-linolenic acid |
| dehydroepiandrosterone sulfate | dihydroceramide             |
| dephosphoCoA-SH                | dihydrolipoamide            |
| D-erythrose-4P                 | dihydroneopterin            |
| desmosterol                    | dihydroneopterin-P3         |
| dethiobiotin                   | dihydrosphingosine-1-P      |
| dexamthasone                   | dihydrothymine              |
| D-fructose                     | dihydrouracil               |
| D-fructose2-6P                 | dihydroxyacetone-P          |
| D-GalNAcol                     | dihydroxyphenylacetate      |
| D-glucarate                    | diiodo-L-tyrosine           |

| dimethylglycine        | D-xylulose                  |
|------------------------|-----------------------------|
| dimethylallyl-PP       | D-xylulose-5-P              |
| dimethylcitraconate    | D-xylulose-a                |
| diphosphate            | D-xylulose-b                |
| diphosphatidylglycerol | Eicosapentaenoic acid       |
| D-lactate              | Eicosatrienoic acid         |
| DL-dipalmitoyllecithin | enoloxaloacetate            |
| D-mannose              | epinephrine                 |
| Docosahexaenoic acid   | estradiol                   |
| Dopa                   | estriol                     |
| dopamine               | estrone                     |
| Dopaquin               | ethanol                     |
| D-pantothenic acid     | ethanolamine                |
| D-proline              | ethanolamine-P              |
| D-ribitol              | etiocholan-3alpha-ol-17-one |
| D-ribose               | FAD                         |
| D-ribose-5-P           | FADH2                       |
| D-ribulose             | f-aminoevulinic acid        |
| D-ribulose-5-P         | fatty acid C16              |
| D-ribulose-a           | fatty acid C18              |
| D-ribulose-b           | fatty acid C20              |
| D-sedoheptulose-7-P    | fatty acid C22              |
| D-serine               | fatty acid C23              |
| D-sorbitol             | fatty acid C24              |
| D-xylose               | fatty acid C25              |

| fatty acid D11-C20-1            | GDP-alpha-L-fucose             |
|---------------------------------|--------------------------------|
| fatty acid D13-C22-1            | GDP-D-mannose                  |
| fatty acid D6,9-C18-2           | geranyl-PP                     |
| fatty acid D8,11-C20-2          | globotriaosylceramide          |
| fluorocitrate                   | glucosylceramide               |
| FMN                             | glutaconyl-CoA                 |
| folic acid                      | glutamate                      |
| formic acid                     | glutaryl-CoA                   |
| formimglutglutamate             | glyceraldehyde-P               |
| formylglycinamide ribotide      | glycero-3-phosphoethanolamine  |
| formylglycinamidine ribotide    | glycero-3-phospoethanolamine   |
| fumarate                        | glycerol                       |
| GABA                            | glycerol-3P                    |
| galabiosylceramide              | glycerol-3-phosphoethanolamine |
| galactitol                      | glycerone-P                    |
| galactosylceramide              | GlyceroneP                     |
| galactosylceramide              | glycerophosphoethanolamine     |
| galactosylceramide sulfate      | glycinamide ribotide           |
| galactosylsphingosine           | glycine                        |
| gamma-butyrobetaine             | glycogen                       |
| gamma-hydroxybutyric acid       | glycolate                      |
| gangliotriaosylceramide         | glyoxylate                     |
| GDP                             | GSH                            |
| GDP-4-dehydro-6-deoxy-D-mannose | GSSG                           |
| GDP-4-dehydro-L-fucose          | GTP                            |

| guanine                | inosine-5-phosphate          |
|------------------------|------------------------------|
| guanosine              | inositol-1,3,4,5,6-P5        |
| guanosine-5-phosphate  | inositol-1,3,4,5-P4          |
| harman                 | inositol-1,3,4,6-P4          |
| histamine              | inositol-1,3,4-P3            |
| homogentisate          | inositol-1,3-P2              |
| homotaurine            | inositol-1,4,5,6-P4          |
| homovanillate          | inositol-1,4,5-P3            |
| hydantoin propionate   | inositol-1,4-P2              |
| hydrogen phosphate     | inositol-1-P                 |
| hydrogen sulfide       | inositol-3,4,5,6-P4          |
| hydroperoxide          | inositol-3,4-P2              |
| hydroxymethylbilane    | inositol-3-P                 |
| hydroxypyruvate        | inositol-4-P                 |
| hypochlorite           | isobutyryl CoA               |
| hypotaurine            | isocaproic aldehyde          |
| hypoxanthine           | isocitrate                   |
| imidazole acetaldehyde | isoethionic acid             |
| imidazole acetate      | isoleucine                   |
| indole-3-acetic acid   | isovaleric acid              |
| Indole-5,6-Quinone     | isovaleryl CoA               |
| indoleacetaldehyde     | itaconate                    |
| indolelactate          | ketamine                     |
| indolepyruvate         | kynurenate                   |
| inosine                | L-1-glycero-3-phosphocholine |

| L-1-pyrroline-2-carboxylate           | lecithin                      |
|---------------------------------------|-------------------------------|
| L-1-pyrroline-3-hydroxy-5-carboxylate | L-erythro-4-hydroxyglutamate  |
| L-1-pyrroline-5-carboxylate           | L-erythro-ascorbate           |
| L-2-aminoacetoacetate                 | leu enkephalin                |
| L-2-aminoadipate                      | leucine                       |
| L-4-hydroxyproline                    | leukotriene B4                |
| L-5-hydroxylysine                     | leukotriene C4                |
| laciotriaosulceramide                 | leukotriene D4                |
| lactosylceramide                      | leukotriene E4                |
| L-alanine                             | L-gamma-carboxyglutamate      |
| lanosterol                            | L-gamma-glutamylalanine       |
| L-arabinose                           | L-gamma-glutamylarginine      |
| L-arginine                            | L-gamma-glutamylasparagine    |
| L-argininosuccinate                   | L-gamma-glutamylaspartate     |
| L-ascorbate                           | L-gamma-glutamylcysteine      |
| L-asparagine                          | L-gamma-glutamylglutamate     |
| L-aspartate                           | L-gamma-glutamylglutamine     |
| lathosterol                           | L-gamma-glutamylglycine       |
| lauric acid                           | L-gamma-glutamylhistidine     |
| L-citrulline                          | L-gamma-glutamylisoleucine    |
| L-cystathionine                       | L-gamma-glutamylleucine       |
| L-cysteate                            | L-gamma-glutamyllycine        |
| L-cysteine                            | L-gamma-glutamylmethionine    |
| L-cysteinylglycine                    | L-gamma-glutamylphenylalanine |
| L-DOPA                                | L-gamma-glutamylproline       |

| L-gamma-glutamylserine     | L-proline                |
|----------------------------|--------------------------|
| L-gamma-glutamylthreonine  | L-ribulose-5-P           |
| L-gamma-glutamyltryptophan | L-selenocysteine         |
| L-gamma-glutamyltyrosine   | L-serine                 |
| L-gamma-glutamylvaline     | L-threonate              |
| L-glutamate                | L-thyroxine              |
| L-glutamate-5-semialdehyde | L-tryptophan             |
| L-glutamine                | lysophosphatidate        |
| L-glutamyl-5P              | malate                   |
| L-glutamyl-5-P             | maleamate                |
| L-gulonate                 | maleate                  |
| L-gulonolactone            | malonate                 |
| L-histidine                | malondialdehyde          |
| L-homocysteine             | malonylCoA               |
| L-iduronic acid            | mannose-1-P              |
| lignoceric acid            | mannosylglucosylceramide |
| linoleamide                | melatonin                |
| linoleic acid              | met enkephalin           |
| linolenic acid             | metanephrine             |
| L-kynurenine               | methacrylyl CoA          |
| L-lactate                  | methanol                 |
| L-lysine                   | methionine               |
| L-ornithine                | methionine sulfone       |
| L-oxosuccinamate           | methtryptoline           |
| L-phosphatidate            | mevalonate               |

| mevalonate-5P                 | N-acetyl-aspartate         |
|-------------------------------|----------------------------|
| mevalonate-5PP                | N-acetylaspartatic acid    |
| MoCo-dimer                    | N-acetyl-D-glucosamine     |
| MoCo-dimer-ADP                | N-acetyl-D-glucosamine-1-P |
| MoCo-dimer-ADPx2              | N-acetyl-D-glucosamine-6-P |
| MoCo-dimer-CDP                | N-acetyl-D-mannosamine     |
| MoCo-dimer-CDPx2              | N-acetyl-D-mannosamine-6-P |
| MoCo-dimer-GDP                | N-acetyl-L-lysine          |
| MoCo-dimer-GDPx2              | N-acetylneuraminate        |
| MoCo-dimer-hypoxanthineDP     | N-acetylneuraminate-9-P    |
| MoCo-dimer-hypoxanthineDPx2   | N-acetyl-spermidine        |
| MoCo-O                        | N-acetyl-spermine          |
| MoCo-O-ADP                    | NAD+                       |
| MoCo-O-CDP                    | NADH                       |
| MoCo-O-GDP                    | NADP+                      |
| MoCo-O-hypoxanthineDP         | NADPH                      |
| monoiodo-L-tyrosine           | N-carbamoyl-L-aspartate    |
| МРТ                           | nervonic acid              |
| myo-inositol                  | N-formylkynurenine         |
| myo-inositol-hexakisphosphate | nicotinamide               |
| myo-inositol-1,2-cyclic-P     | nicotinamide nucleotide    |
| myo-inositol-5-phosphate      | nicotinate                 |
| myristic acid                 | nicotinate nucleotide      |
| N,N-dimethyltryptamine        | nitric oxide               |
| N-acetyl-5-hydroxytryptamine  | N-methylhistamine          |

| N-methyl-norsalsolinol         | palmitoleic acid                 |
|--------------------------------|----------------------------------|
| N-oleoylethanolamine           | palmitoylCoA                     |
| norepinephrine                 | pantetheine                      |
| norharman                      | РАР                              |
| normetanephrine                | PAPS                             |
| N-palmitoylethanolamine        | P-creatine                       |
| N-stearoylethanolamine         | PEP                              |
| Nw-hydroxyarginine             | phenylalanine                    |
| o-acetylcholine                | phenyllactate                    |
| oleamide                       | Phenyl-Pyruvate                  |
| oleic aicd                     | phosphatidylethanolamine         |
| oleylCoA                       | phosphatidylinositol             |
| o-phosphocholine               | phosphatidylserine               |
| o-phospho-ethanolamine         | phosphatidylserine-dioleic       |
| orotate                        | phosphatidylserine-distearic     |
| orotidine-5-phosphate          | phosphatidylserine-oleic-stearic |
| O-succinyl-acetyl-L-homoserine | phosphatidylserine-stearic-oleic |
| oxalate                        | phosphocholine                   |
| oxaloacetate                   | phosphorylethanolamine           |
| oxalocrotonate                 | phtanic acid-R                   |
| oxalosuccinate                 | phtanic acid-S                   |
| oxidized alpha-lipoic acid     | phytanic acid                    |
| oxytocin                       | phytate                          |
| PAF                            | picolinate                       |
| palmitic acid                  | pipecolic acid                   |

| plasmalogen                    | protoheme                   |
|--------------------------------|-----------------------------|
| plasmanylcholine               | protoporphyrin IXmsf        |
| plasmanylethanolamine          | protoporphyrinogen IX       |
| porphobilinogen                | PRPP                        |
| porphobilinogen derivative     | pseudouridine               |
| precursor-z                    | psychosine                  |
| pregnanediol                   | pterin-4alpha-carbinolamine |
| pregnenolone                   | pterine-6-carboxylate       |
| pregnenolone sulfate           | putrescine                  |
| previtamin D3                  | pyridoxal                   |
| procollagen-5-hydroxy-L-lysine | pyridoxal-P                 |
| progesterone                   | pyridoxamine                |
| propionyl-CoA                  | pyridoxamine-5-P            |
| prostaglandin A1               | pyridoxamine-P              |
| prostaglandin A2               | pyridoxine                  |
| prostaglandin B1               | pyridoxine-P                |
| prostaglandin B2               | pyruvate                    |
| prostaglandin D2               | quinoid                     |
| prostaglandin E1               | quinolate                   |
| prostaglandin E2               | quinolinate                 |
| prostaglandin E3               | quinolinate nucleotide      |
| prostaglandin F1a              | r-3-aminoisobutyrate        |
| prostaglandin F2alpha          | r-4P-N-pantothenoylcysteine |
| prostaglandin G2               | r-4P-pantetheine            |
| prostaglandin I2               | r-4P-pantothenate           |

| retinoate                        | sphingomyelin-C16           |
|----------------------------------|-----------------------------|
| r-methylmalonyl-CoA              | sphingomyelin-C17           |
| r-pantothenate                   | sphingomyelin-C19           |
| r-pantothenol                    | sphingomyelin-C20           |
| s-3-aminoisobutyrate             | sphingomyelin-C21           |
| s-3-hydroxy-3-methylglutaryl CoA | sphingomyelin-C22           |
| s-3-hydroxy isobuty rate         | sphingomyelin-C22-1         |
| s-3-hydroxyisobutyryl CoA        | sphingomyelin-C23           |
| s-4,5-dihydro-orotate            | sphingomyelin-C23-1         |
| s-adenosyl-L-homocysteine        | sphingomyelin-C24           |
| s-adenosyl-L-methionine          | sphingomyelin-C25           |
| sarcosine                        | sphingomyelin-C25-1         |
| serotonin                        | sphingomyelin-C26           |
| sialolactosylceramide            | sphingomyelin-C26-1         |
| s-malate                         | sphingomyelin-nervonic acid |
| s-methylmalonate semialdehyde    | sphingomyelin-stearic acid  |
| s-methylmalonyl-CoA              | sphingosine                 |
| sn-glycerol3P                    | sphingosine-1-P             |
| sn-glycerol-3P                   | sphingosylphosphorylcholine |
| spermidine                       | spiro-intermediate          |
| spermine                         | squalene                    |
| sphinganine                      | s-squalene-2,3-epoxide      |
| sphinganine                      | stearic acid                |
| sphingomyelin                    | stearoylCoA                 |
| sphingomyelin-C14                | stigmasterol                |

| succinate                         | trans-3-methylglutaconyl CoA             |  |  |  |
|-----------------------------------|------------------------------------------|--|--|--|
| succinate semialdehyde            | TRH                                      |  |  |  |
| succinylCoA                       | triacylglyceride                         |  |  |  |
| sulfate                           | trimethyllysine                          |  |  |  |
| sulfatide                         | triphosophate                            |  |  |  |
| sulfite                           | triphosphoinositide-arachidonic-         |  |  |  |
| taurine                           | elcosatrienoic                           |  |  |  |
| testosterone                      | triphosphoinositide-diarachidonic        |  |  |  |
| thebaine                          | triphosphoinositide-diC16                |  |  |  |
| THF                               | triphosphoinositide-dieicosapentaenoic   |  |  |  |
| thiamine                          | triphosphoinositide-dieicosatrienoic     |  |  |  |
| thiamine pyrophosphate            | triphosphoinositide-dioleic              |  |  |  |
| thiamine-P                        | triphosphoinositide-distearic            |  |  |  |
| thiocyanic acid                   | triphosphoinositide-eicosapentaenoic-C16 |  |  |  |
| thiocysteine                      | triphosphoinositide-oleic-stearic        |  |  |  |
| threonine                         | tryptamine                               |  |  |  |
| thromboxane A2                    | tryptoline                               |  |  |  |
| thromboxane B2                    | tryptophol                               |  |  |  |
| thymidine                         | tyramine                                 |  |  |  |
| ,<br>thymidylic acid              | tyrosine                                 |  |  |  |
| thymine                           | ubiquinol-10                             |  |  |  |
| tiglyl CoA                        | ubiquinol-6                              |  |  |  |
| trans-trans-cis-geranylgeranyl-PP | ubiquinol-7                              |  |  |  |
| trans trans farnosol              | ubiquinol-8                              |  |  |  |
|                                   | ubiquinol-9                              |  |  |  |
| u ans-u ans-ianesyi-rr            | ubiquinone-10                            |  |  |  |

| ubiquinone-6                                                                                                                                                                | vitamin D2                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ubiquinone-7                                                                                                                                                                | vitamin D3                                                                                                                                                                                                                                                                                                    |
| ubiquinone-8                                                                                                                                                                | vitamin E                                                                                                                                                                                                                                                                                                     |
| ubiquinone-9                                                                                                                                                                | vitamin K hydroquinone                                                                                                                                                                                                                                                                                        |
| UDP-D-glucuronate                                                                                                                                                           | vitamin K quinone                                                                                                                                                                                                                                                                                             |
| UDP-glucose                                                                                                                                                                 | vitamin K quinone epoxide                                                                                                                                                                                                                                                                                     |
| UDP-G-glucuronate                                                                                                                                                           | xanthine                                                                                                                                                                                                                                                                                                      |
| UDP-L-iduronate                                                                                                                                                             | xanthosine                                                                                                                                                                                                                                                                                                    |
| UDP-N-acetyl-D-glucosamine                                                                                                                                                  | xanthosine-5-phosphate                                                                                                                                                                                                                                                                                        |
| UDP-N-acetyl-galactosamine                                                                                                                                                  | xanthurenate                                                                                                                                                                                                                                                                                                  |
| uracil                                                                                                                                                                      | zymosterol                                                                                                                                                                                                                                                                                                    |
| urate                                                                                                                                                                       | (peptide/AminoAcid)=AA                                                                                                                                                                                                                                                                                        |
| urate enolate                                                                                                                                                               | (peptide/AminoAcid)=AAKKAAI                                                                                                                                                                                                                                                                                   |
| uridine                                                                                                                                                                     | (peptide/AminoAcid)=Ac-alpha-DE, "NAAG"                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                               |
| uridine-5-diphosphate                                                                                                                                                       | (peptide/AminoAcid)=Ac-DQYG-NH2                                                                                                                                                                                                                                                                               |
| uridine-5-diphosphate<br>uridine-5-phosphate                                                                                                                                | (peptide/AminoAcid)=Ac-DQYG-NH2<br>(peptide/AminoAcid)=AGPE                                                                                                                                                                                                                                                   |
| uridine-5-diphosphate<br>uridine-5-phosphate<br>uridine-5-triphosphate                                                                                                      | (peptide/AminoAcid)=Ac-DQYG-NH2<br>(peptide/AminoAcid)=AGPE<br>(peptide/AminoAcid)=AL                                                                                                                                                                                                                         |
| uridine-5-diphosphate<br>uridine-5-phosphate<br>uridine-5-triphosphate<br>urocanoate                                                                                        | (peptide/AminoAcid)=Ac-DQYG-NH2<br>(peptide/AminoAcid)=AGPE<br>(peptide/AminoAcid)=AL<br>(peptide/AminoAcid)=alpha-DA                                                                                                                                                                                         |
| uridine-5-diphosphate<br>uridine-5-phosphate<br>uridine-5-triphosphate<br>urocanoate<br>urocortisol                                                                         | (peptide/AminoAcid)=Ac-DQYG-NH2<br>(peptide/AminoAcid)=AGPE<br>(peptide/AminoAcid)=AL<br>(peptide/AminoAcid)=alpha-DA<br>(peptide/AminoAcid)=ANKFNKEQ                                                                                                                                                         |
| uridine-5-diphosphate<br>uridine-5-phosphate<br>uridine-5-triphosphate<br>urocanoate<br>urocortisol<br>urocortisone                                                         | (peptide/AminoAcid)=Ac-DQYG-NH2<br>(peptide/AminoAcid)=AGPE<br>(peptide/AminoAcid)=AL<br>(peptide/AminoAcid)=alpha-DA<br>(peptide/AminoAcid)=ANKFNKEQ<br>(peptide/AminoAcid)=AVL                                                                                                                              |
| uridine-5-diphosphate<br>uridine-5-phosphate<br>uridine-5-triphosphate<br>urocanoate<br>urocortisol<br>urocortisone<br>uroporphyrinogen I                                   | <pre>(peptide/AminoAcid)=Ac-DQYG-NH2<br/>(peptide/AminoAcid)=AGPE<br/>(peptide/AminoAcid)=AL<br/>(peptide/AminoAcid)=alpha-DA<br/>(peptide/AminoAcid)=ANKFNKEQ<br/>(peptide/AminoAcid)=AVL<br/>(peptide/AminoAcid)=AYYF</pre>                                                                                 |
| uridine-5-diphosphate<br>uridine-5-phosphate<br>uridine-5-triphosphate<br>urocanoate<br>urocortisol<br>urocortisone<br>uroporphyrinogen II                                  | <pre>(peptide/AminoAcid)=Ac-DQYG-NH2<br/>(peptide/AminoAcid)=AGPE<br/>(peptide/AminoAcid)=AL<br/>(peptide/AminoAcid)=alpha-DA<br/>(peptide/AminoAcid)=ANKFNKEQ<br/>(peptide/AminoAcid)=AVL<br/>(peptide/AminoAcid)=AYYF<br/>(peptide/AminoAcid)=beta-A-alpha-hyp</pre>                                        |
| uridine-5-diphosphateuridine-5-phosphateuridine-5-triphosphateurocanoateurocortisolurocortisoneuroporphyrinogen Iuroporphyrinogen IIIvaline                                 | <pre>(peptide/AminoAcid)=Ac-DQYG-NH2<br/>(peptide/AminoAcid)=AGPE<br/>(peptide/AminoAcid)=AL<br/>(peptide/AminoAcid)=alpha-DA<br/>(peptide/AminoAcid)=ANKFNKEQ<br/>(peptide/AminoAcid)=AVL<br/>(peptide/AminoAcid)=AYYF<br/>(peptide/AminoAcid)=beta-A-alpha-hyp<br/>(peptide/AminoAcid)=beta-A-alpha-K</pre> |
| uridine-5-diphosphate<br>uridine-5-phosphate<br>uridine-5-triphosphate<br>urocanoate<br>urocortisol<br>urocortisone<br>uroporphyrinogen I<br>uroporphyrinogen III<br>valine | <pre>(peptide/AminoAcid)=Ac-DQYG-NH2<br/>(peptide/AminoAcid)=AGPE<br/>(peptide/AminoAcid)=AL<br/>(peptide/AminoAcid)=alpha-DA<br/>(peptide/AminoAcid)=ANKFNKEQ<br/>(peptide/AminoAcid)=AVL<br/>(peptide/AminoAcid)=AYYF<br/>(peptide/AminoAcid)=beta-A-alpha-hyp<br/>(peptide/AminoAcid)=beta-A-alpha-K</pre> |

(peptide/AminoAcid)=beta-D-Taurine

(peptide/AminoAcid)=beta-DG

(peptide/AminoAcid)=CG

(peptide/AminoAcid)=cyclo-PG

(peptide/AminoAcid)=DA

(peptide/AminoAcid)=DKGNV, "alphaglobin6-10"

(peptide/AminoAcid)=EEP

(peptide/AminoAcid)=EFP-NH2, "Phe2TRH"

(peptide/AminoAcid)=EGEPNL

(peptide/AminoAcid)=EHP, "TRHdeamidated-non-pyro"

(peptide/AminoAcid)=EHP-NH2, "TRH"

(peptide/AminoAcid)=EHPG, "TRH-Gly"

(peptide/AminoAcid)=ELFNPY, "chroogranin-B-precursor520-526"

(peptide/AminoAcid)=ELP-NH2, "Leu2-TRH"

(peptide/AminoAcid)=ETP-NH2, "Thr2-TRH"

(peptide/AminoAcid)=EV

(peptide/AminoAcid)=EVGGEAL, "betaglobin21-27"

(peptide/AminoAcid)=EVGGEALG, "betaglobin21-28"

(peptide/AminoAcid)=EVP-NH2, "Val2-TRH"

(peptide/AminoAcid)=EYP-NH2, "Tyr2-TRH"

(peptide/AminoAcid)=FGFQKVP

(peptide/AminoAcid)=FISNHAY

(peptide/AminoAcid)=FIVH, "GTP-aseactivator304-307"

(peptide/AminoAcid)=FL

(peptide/AminoAcid)=FLPGH

(peptide/AminoAcid)=FPNEPM

(peptide/AminoAcid)=FRNPLAK

(peptide/AminoAcid)=Gaba-hypusine

(peptide/AminoAcid)=Gaba-K

(peptide/AminoAcid)=Gaba-L-methyl-H, "homoanserine"

(peptide/AminoAcid)=Gaba-H, "Homocarnosine"

(peptide/AminoAcid)=gamma-E-beta-Aib

(peptide/AminoAcid)=gamma-E-cysteate-G

(peptide/AminoAcid)=gamma-E-Gaba

(peptide/AminoAcid)=gamma-E-Taurine

(peptide/AminoAcid)=gamma-QE

(peptide/AminoAcid)=gamma-ECG, "glutathione, GSH"

(peptide/AminoAcid)=GG

(peptide/AminoAcid)=GGE, "beta-globin23-25"

(peptide/AminoAcid)=GKNVP, "cytochromec-oxidase-precursor-chain-VIIA32-40"

(peptide/AminoAcid)=GQ

(peptide/AminoAcid)=GQFFE

(peptide/AminoAcid)=GVFTPP

(peptide/AminoAcid)=GWMDF-NH2, "CCK-5"

(peptide/AminoAcid)=HP-DKP, "HP-Diketopiperazine=TRH-metab"

(peptide/AminoAcid)=IEG

(peptide/AminoAcid)=IEWNPS, "cytochrome-c-oxidase-VIIB70-75"

(peptide/AminoAcid)=INLFFIVL

(peptide/AminoAcid)=INNPFIL

(peptide/AminoAcid)=KIPYIL, "Neuromedin-N"

(peptide/AminoAcid)=KV

(peptide/AminoAcid)=KVNPD, "betaglobin16-20"

(peptide/AminoAcid)=LEPPP

(peptide/AminoAcid)=LG

(peptide/AminoAcid)=LL

(peptide/AminoAcid)=LMYP

(peptide/AminoAcid)=LS

(peptide/AminoAcid)=LSAL, "5-HTmoduline"

(peptide/AminoAcid)=LSHSL, "alphaglobin101-105"

(peptide/AminoAcid)=LVLFPGK

(peptide/AminoAcid)=LVVYP, "betaglobin31-35"

(peptide/AminoAcid)=LVVYPW, "betaglobin32-37" (peptide/AminoAcid)=LVVYPWT, "betaglobin32-38"

(peptide/AminoAcid)=LVVYPWTQ, "betaglobin32-39"

(peptide/AminoAcid)=MLT, "beta-globin1-3"

(peptide/AminoAcid)=MLTAEEKA, "betaglobin1-8"

(peptide/AminoAcid)=NKVP, "cytochromec-oxidase-VIIA12-15"

(peptide/AminoAcid)=pEHP, "TRHdeamidated"

(peptide/AminoAcid)=pEHP-NH2, "TRH"

(peptide/AminoAcid)=pEHPG, "TRH-Gly"

(peptide/AminoAcid)=PLFP

(peptide/AminoAcid)=PLG-NH2, "MIF-1"

(peptide/AminoAcid)=PVDNSSP

(peptide/AminoAcid)=S-methyl-gamma-ECG, "S-methylglutathione"

(peptide/AminoAcid)=SRDKR-NH2

(peptide/AminoAcid)=SV

(peptide/AminoAcid)=SVQCPFGG, "aldehyde-dehydrogenase461-468"

(peptide/AminoAcid)=TQLPAEEI

(peptide/AminoAcid)=TSKY, "alphaglobins137-140, neokyotorphin1-4"

(peptide/AminoAcid)=TSKY, "alphaglobins137-141, neokyotorphin"

(peptide/AminoAcid)=TVLTSKY

(peptide/AminoAcid)=TVLTSKYR

(peptide/AminoAcid)=VAYKN

(peptide/AminoAcid)=VE

(peptide/AminoAcid)=VHLTDAEK

(peptide/AminoAcid)=VLGQV

(peptide/AminoAcid)=VLNP

(peptide/AminoAcid)=VLS

(peptide/AminoAcid)=VS

(peptide/AminoAcid)=VVGQV

(peptide/AminoAcid)=VVVL

(peptide/AminoAcid)=VVYP

(peptide/AminoAcid)=VVYPW

(peptide/AminoAcid)=VVYPWT

(peptide/AminoAcid)=VVYPWTQ

(peptide/AminoAcid)=VYPWT

(peptide/AminoAcid)=VYPWTQ

(peptide/AminoAcid)=VYYFPG

(peptide/AminoAcid)=WMDF-NH2

(peptide/AminoAcid)=WVAMQT

(peptide/AminoAcid)=YAYYY

(peptide/AminoAcid)=YEAVAL

(peptide/AminoAcid)=YEQLSGK

(peptide/AminoAcid)=YG

(peptide/AminoAcid)=YGG

(peptide/AminoAcid)=YGGFL, "leuenkephalin" (peptide/AminoAcid)=YGGFM, "Metenkephalin"

(peptide/AminoAcid)=YGGFMRF, "metenkephalin-arg6-phe7"

(peptide/AminoAcid)=YGGFMRGL, "Met-Enk-arg-gly-leu"

(peptide/AminoAcid)=YGGFMRRV-NH2, "metorphamide"

(peptide/AminoAcid)=YKVIPKS

(peptide/AminoAcid)=YLE

(peptide/AminoAcid)=YPFF-NH2, "endomorphin-2"

(peptide/AminoAcid)=YPKG-NH2

(peptide/AminoAcid)=YPLG-NH2, "Tyr-MIF-1"

(peptide/AminoAcid)=YPWF-NH2, endomorphon-1"

(peptide/AminoAcid)=YPWG-NH2

(peptide/AminoAcid)=YR, "kyotorphin"

## Appendix 2: Method for Uniting Two 30 Å Water Boxes in QUANTA

- Step 1: Turn capture commands on (save as .inp file).
- Step 2: Under solvate structure, select the 30 Å length (water) box and place it on an atom in the system.
- Step 3: Turn capture commands off.
- Step 4: Open the saved input file captured in steps 1-3 using an available editing program (in this thesis vi was used). See Appendix 3 for a sample file.
- Step 5: Note the atom number in SET 2 for future reference.
- Step 6: Select the text from READ COOR CARD FREE to the end of the atoms involved in the system (not including water molecules) and copy into a new .txt file.
- Step 7: Using the file outlined in Appendix 4, delete lines between READ COOR CARD FREE and COOR ORIE NOROT SELE BYNUM @2 end.
- Step 8: Read the .txt from step 6 into the space created by the deletion in step 7.
- Step 9: Set the number in SET 2 to the number recorded from SET 2 in the initially captured file.
- Step 10: Set 3 to an appropriate atomic number from the system being studied.
- Step 11: Save the resulting file in .STR format.
- Step 12: Stream the .STR file into QUANTA using the stream CHARMm file option (the system must be free from solvent before this can occur).
- Step 13: Adjust the number in SET 3 as necessary to minimize overlap of the two united water boxes.
- Step 14: If the overlap is minimal and is deemed acceptable, delete overlapping water bonds or water molecule fragments as necessary to produce proper water molecules.

## Appendix 3: Sample Initial File for Solvation in QUANTA Using United Water Boxes

Text immediately preceding and following the section used in the .txt file for input into the CHARMm streaming file has been included as reference.

\* Script file produced by QUANTA \* Script to read parameter, psf, and ic files reset open read unit 21 card name \$CHM\_DATA/MASSES.RTF read rtf unit 21 card close unit 20 open read unit 20 card name ".charmmprm" read param unit 20 card close unit 20 open read unit 20 card name ".charmmpsf" read psf unit 20 card close unit 20 open read unit 20 card name ".charmmic" ic read unit 20 card close unit 20 ! Script for reading RTF OPEN READ UNIT 77 CARD NAME -"TIP3.RTF" **READ RTF CARD UNIT 77 APPEND** CLOSE UNIT 77 !set some variables L SET 11 SET 2 24

! QUANTA coordinates included in script file

## READ COOR CARD FREE

\* current QUANTA coordinates written for free read

464

| 1  | 1 | MINI CA  | -7.308962 | 10.064661 | -2.405315 MINI | 1   | 0.0 |
|----|---|----------|-----------|-----------|----------------|-----|-----|
| 2  | 1 | MINI HA  | -7.914192 | 10.877570 | -2.004334 MINI | 1   | 0.0 |
| 3  | 1 | MINI CB  | -7.960489 | 9.491540  | -3.668795 MINI | 1 ( | 0.0 |
| 4  | 1 | MINI HB1 | -8.944982 | 9.085988  | -3.430853 MINI | 1   | 0.0 |
| 5  | 1 | MINI HB2 | -8.122888 | 10.289052 | -4.394613 MINI | 1   | 0.0 |
| 6  | 1 | MINI CG  | -7.112230 | 8.420467  | -4.302016 MINI | 1   | 0.0 |
| 7  | 1 | MINI CD1 | -6.058426 | 8.760720  | -5.145370 MINI | 1   | 0.0 |
| 8  | 1 | MINI HD1 | -5.840714 | 9.799349  | -5.347174 MINI | 1   | 0.0 |
| 9  | 1 | MINI CD2 | -7.368808 | 7.075675  | -4.053276 MINI | 1   | 0.0 |
| 10 | 1 | MINI HD2 | -8.179193 | 6.793570  | -3.399433 MINI | 1   | 0.0 |
| 11 | 1 | MINI CE1 | -5.278129 | 7.772991  | -5.731510 MINI | 1   | 0.0 |
| 12 | 1 | MINI O1  | -4.224179 | 8.117190  | -6.552227 MINI | 1   | 0.0 |

| 13 | 1 | MINI | CE2 | -6.593439 6.086135 -4.641974 MINI 1 0.0  |   |
|----|---|------|-----|------------------------------------------|---|
| 14 | 1 | MINI | HE2 | -6.803187 5.046315 -4.441598 MINI 1 0.0  |   |
| 15 | 1 | MINI | CZ  | -5.551493 6.434802 -5.488376 MINI 1 0.0  |   |
| 16 | 1 | MINI | O2  | -4.791917 5.456796 -6.096515 MINI 1 0.0  |   |
| 17 | 1 | MINI | H1  | -6.322476 10.471231 -2.628883 MINI 1 0.0 |   |
| 18 | 1 | MINI | N1  | -7.149965 9.078195 -1.343117 MINI 1 0.0  |   |
| 19 | 1 | MINI | H2  | -3.587694 7.411913 -6.542690 MINI 1 0.0  |   |
| 20 | 1 | MINI | H3  | -4.312234 5.841283 -6.818595 MINI 1 0.0  |   |
| 21 | 1 | MINI | H4  | -6.695127 9.530078 -0.524174 MINI 1 0.0  |   |
| 22 | 1 | MINI | H5  | -6.559151 8.293039 -1.684175 MINI 1 0.0  |   |
| 23 | 1 | MINI | H6  | -8.087923 8.723651 -1.071054 MINI 1 0.0  |   |
| 24 | 2 | ASP  | N   | 19.777775 -0.609759 1.064205 AAMB 1 0.0  |   |
| 25 | 2 | ASP  | CA  | 19.041170 0.412852 1.823377 AAMB 1 0.0   |   |
| 26 | 2 | ASP  | C   | 17.933453 0.933095 1.021516 AAMB 1 0.0   |   |
| 27 | 2 | ASP  | Õ   | 16.766161 0.674886 1.402760 AAMB 1 0.0   |   |
| 28 | 2 | ASP  | ČВ  | 19.930069 1.538161 2.379704 AAMB 1 0.0   |   |
| 29 | 2 | ASP  | ĊĠ  | 19.108906 2.493291 3.266880 AAMB 1 0.0   |   |
| 30 | 2 | ASP  | OD1 | 18.637297 2.057324 4.315971 AAMB 1 0.0   | ) |
| 31 | 2 | ASP  | 002 | 18 937716 3 650251 2 886323 AAMB 1 0 0   | ) |
| 32 | 2 | ASP  | H1  | 19.122427 -1.356153 0.755510 AAMB 1 0.0  |   |
| 33 | 2 | ASP  | H2  | 20.217154 -0.167099 0.231754 AAMB 1 0.0  |   |
| 34 | 2 | ASP  | H3  | 20 517815 -1 020694 1 667922 AAMB 1 0 0  |   |
| 35 | 2 | ASP  | HA  | 18.610788 -0.162236 2.653509 AAMB 1 0.0  |   |
| 36 | 2 | ASP  | HB1 | 20 734478 1 116608 2 983014 AAMB 1 0.0   | ) |
| 37 | 2 | ASP  | HB2 | 20 404535 2 098895 1 572696 AAMB 1 0 0   | ) |
| 38 | 3 | ALA  | N   | 18.160498 1.642654 -0.100774 AAMB 1 0.0  |   |
| 39 | 3 | ALA  | CA  | 17.094845 2.143059 -0.915015 AAMB 1 0.0  |   |
| 40 | 3 | ALA  | C   | 16.254911 1.052349 -1.423196 AAMB 1 0.0  |   |
| 41 | 3 | ALA  | õ   | 15.054347 1.068294 -1.075329 AAMB 1 0.0  |   |
| 42 | 3 | ALA  | ČВ  | 17.693850 2.943579 -2.079667 AAMB 1 0.0  |   |
| 43 | 3 | ALA  | HN  | 19.074314 1.839025 -0.364898 AAMB 1 0.0  |   |
| 44 | 3 | ALA  | HA  | 16.493011 2.824638 -0.300168 AAMB 1 0.0  |   |
| 45 | 3 | ALA  | HB1 | 18.346439 2.330746 -2.702714 AAMB 1 0.0  |   |
| 46 | 3 | ALA  | HB2 | 16.912722 3.358833 -2.718083 AAMB 1 0.0  |   |
| 47 | 3 | ALA  | HB3 | 18.287046 3.778799 -1.706802 AAMB 1 0.0  |   |
| 48 | 4 | GLU  | N   | 16.766771 0.108776 -2.238868 AAMB 1 0.0  |   |
| 49 | 4 | GLU  | CA  | 15.982441 -0.984445 -2.721450 AAMB 1 0.0 |   |
| 50 | 4 | GLU  | C   | 15.336887 -1.714932 -1.622579 AAMB 1 0.0 |   |
| 51 | 4 | GLU  | Õ   | 14.235341 -2.266397 -1.856518 AAMB 1 0.0 |   |
| 52 | 4 | GLU  | CB  | 16.917519 -1.940748 -3.488229 AAMB 1 0.0 |   |
| 53 | 4 | GLU  | CG  | 18.039606 -2.571616 -2.637842 AAMB 1 0.0 | ) |
| 54 | 4 | GLU  | CD  | 19.012463 -3.366955 -3.521243 AAMB 1 0.0 |   |
| 55 | 4 | GLU  | OE1 | 18.620823 -4.416527 -4.029042 AAMB 1 0.0 | ) |
| 56 | 4 | GLU  | OE2 | 20.149826 -2.927709 -3.691912 AAMB 1 0.0 | ) |
| 57 | 4 | GLU  | HN  | 17.696264 0.177130 -2.510961 AAMB 1 0.0  |   |
| 58 | 4 | GLU  | HA  | 15.271745 -0.619510 -3.458186 AAMB 1 0.0 |   |
| 59 | 4 | GLU  | HB1 | 16.324903 -2.733285 -3.949845 AAMB 1 0.0 | ) |
| 60 | 4 | GLU  | HB2 | 17.364010 -1.387508 -4.315942 AAMB 1 0.0 | ) |
| 61 | 4 | GLU  | HG1 | 18.596556 -1.806110 -2.096667 AAMB 1 0.0 | D |
| 62 | 4 | GLU  | HG2 | 17.629417 -3.252203 -1.891811 AAMB 1 0.0 | Ď |
| 63 | 5 | PHE  | N   | 15.919147 -1.782670 -0.408540 AAMB 1 0.0 |   |
| 64 | 5 | PHE  | CA  | 15.307195 -2.459879 0.694823 AAMB 1 0.0  |   |
| 65 | 5 | PHE  | С   | 14.023937 -1.843083 1.055299 AAMB 1 0.0  |   |
| 66 | 5 | PHE  | 0   | 12.972171 -2.524466 0.949426 AAMB 1 0.0  |   |
| 67 | 5 | PHE  | CB  | 16.279289 -2.527469 1.885281 AAMB 1 0.0  |   |
| 68 | 5 | PHE  | CG  | 15.739032 -3.373315 3.008089 AAMB 1 0.0  |   |
|    |   |      |     |                                          |   |

| 69  | 5 | PHE | CD1 | 15.829038    | -4.760987  | 2.951096           | AAMB   | 1   | 0.0   |
|-----|---|-----|-----|--------------|------------|--------------------|--------|-----|-------|
| 70  | 5 | PHE | CD2 | 15.136943    | -2.778950  | 4.113894           | AAMB   | 1   | 0.0   |
| 71  | 5 | PHE | CE1 | 15.324374    | -5.542925  | 3.981631           | AAMB   | 1   | 0.0   |
| 72  | 5 | PHE | CE2 | 14.630987    | -3.558754  | 5.144966           | AAMB   | 1   | 0.0   |
| 73  | 5 | PHE | CZ  | 14.724332 -  | -4.941813  | 5.079098 A         | AMB    | 1   | 0.0   |
| 74  | 5 | PHE | ΗN  | 16.751390    | -1.312392  | -0.272539          | AMB    | 1   | 0.0   |
| 75  | 5 | PHE | HA  | 15.091137    | -3.477376  | 0.342844 A         | AMB    | 1   | 0.0   |
| 76  | 5 | PHE | HB1 | 17.229969    | -2.950082  | 1.559053           | AAMB   | 1   | 0.0   |
| 77  | 5 | PHE | HB2 | 16.505520    | -1.533824  | 2.267890           | AAMB   | 1   | 0.0   |
| 78  | 5 | PHE | HD1 | 16.292446    | -5.239335  | 2.100450           | AAMB   | 1   | 0.0   |
| 79  | 5 | PHE | HD2 | 15.058798    | -1.702938  | 4.175553           | AAMB   | 1   | 0.0   |
| 80  | 5 | PHE | HE1 | 15.400675    | -6.619709  | 3.932070           | AAMB   | 1   | 0.0   |
| 81  | 5 | PHE | HE2 | 14.167374    | -3.089276  | 6.000203           | AAMB   | 1   | 0.0   |
| 82  | 5 | PHE | ΗZ  | 14.334185    | -5.549905  | 5.882122 A         | AMB    | 1   | 0.0   |
| 83  | 6 | ARG | Ν   | 13.973029 -  | 0.583468   | 1.540645 A         | AMB    | 1   | 0.0   |
| 84  | 6 | ARG | CA  | 12.735288    | 0.057283   | 1.876006           | AMB    | 1   | 0.0   |
| 85  | 6 | ARG | С   | 11.947042    | 0.320672   | 0.666657 A         | AMB    | 1   | 0.0   |
| 86  | 6 | ARG | 0   | 10.776729    | 0.746743   | 0.824206 A         | AMB    | 1   | 0.0   |
| 87  | 6 | ARG | СВ  | 13.092020    | 1.395360   | 2.551799 A         | AMB    | 1   | 0.0   |
| 88  | 6 | ARG | CG  | 14.014983    | 1.223515   | 3.7694097          | ۹AMB   | 1   | 0.0   |
| 89  | 6 | ARG | CD  | 14.358479    | 2.554219   | 4.443905           | \AMB   | 1   | 0.0   |
| 90  | 6 | ARG | NE  | 15.328096    | 2.312673   | 5.503546 A         | AMB    | 1   | 0.0   |
| 91  | 6 | ARG | CZ  | 15.798455    | 3.294541   | 6.300189 A         | AMB    | 1   | 0.0   |
| 92  | 6 | ARG | NH1 | 15.372872    | 4.548343   | 6.182192           | AAMB   | 1   | 0.0   |
| 93  | 6 | ARG | NH2 | 16.707289    | 3.000172   | 7.220729           | AAMB   | 1   | 0.0   |
| 94  | 6 | ARG | ΗN  | 14.801904    | -0.091048  | 1.579415           | AAMB   | 1   | 0.0   |
| 95  | 6 | ARG | HA  | 12.176013    | -0.551757  | 2.589055           | \AMB   | 1   | 0.0   |
| 96  | 6 | ARG | HB1 | 13.585172    | 2.054682   | 1.834535           | AAMB   | 1   | 0.0   |
| 97  | 6 | ARG | HB2 | 12.179491    | 1.906087   | 2.863252           | AAMB   | 1   | 0.0   |
| 98  | 6 | ARG | HG1 | 13.546998    | 0.556514   | 4.493953           | AAMB   | 1   | 0.0   |
| 99  | 6 | ARG | HG2 | 14.948694    | 0.747324   | 3.468746           | AAMB   | 1   | 0.0   |
| 100 | 6 | ARG | HD1 | 14.815233    | 3.249584   | 3.737501           | AAMB   | 1   | 0.0   |
| 101 | 6 | ARG | HD2 | 13.476509    | 3.018210   | 4.888027           | AAMB   | 1   | 0.0   |
| 102 | 6 | ARG | ΗE  | 15.684490    | 1.386206   | 5.624157           | AAMB   | 1   | 0.0   |
| 103 | 6 | ARG | HH1 | 1 14.686085  | 4.78260    | 7 5.494776         | 5 AAME | 3   | 1 0.0 |
| 104 | 6 | ARG | HH1 | 2 15.737885  | 5.26052    | 6 6.782176         | 6 AAME | 3   | 1 0.0 |
| 105 | 6 | ARG | HH2 | 17.045107    | 2.063514   | 4 7.31126 <i>°</i> | I AAME | 3   | 1 0.0 |
| 106 | 6 | ARG | HH2 | 2 17.058128  | 3.715544   | 4 7.825210         | ) aame | 3   | 1 0.0 |
| 107 | 7 | HIS | Ν   | 12.477256 0  | ).090535 - | 0.550493 A         | AMB    | 1 ( | 0.0   |
| 108 | 7 | HIS | CA  | 11.744717    | 0.312759   | -1.758953 A        | AMB    | 1   | 0.0   |
| 109 | 7 | HIS | С   | 10.796138 -( | 0.782060 - | -1.978250 A        | AMB    | 1 ( | 0.0   |
| 110 | 7 | HIS | 0   | 9.589708 -0  | .479645 -  | 1.876704 AA        | MB     | 1 C | 0.0   |
| 111 | 7 | HIS | CB  | 12.670664    | 0.470988   | -2.976635 A        | AMB    | 1   | 0.0   |
| 112 | 7 | HIS | CG  | 11.853472    | 0.800605   | -4.207127 A        | AMB    | 1   | 0.0   |
| 113 | 7 | HIS | ND1 | 11.174619    | 1.956473   | -4.369656          | AAMB   | 1   | 0.0   |
| 114 | 7 | HIS | CD2 | 11.632096    | -0.006237  | -5.336245          | AAMB   | 1   | 0.0   |
| 115 | 7 | HIS | CE1 | 10.558787    | 1.856300   | -5.559719          | ۹AMB   | 1   | 0.0   |
| 116 | 7 | HIS | NE2 | 10.815231    | 0.683228   | -6.165370          | ۹AMB   | 1   | 0.0   |
| 117 | 7 | HIS | ΗN  | 13.376023 ·  | -0.258575  | -0.621651 /        | AMB    | 1   | 0.0   |
| 118 | 7 | HIS | HA  | 11.189747    | 1.253068   | -1.633207 A        | AMB    | 1   | 0.0   |
| 119 | 7 | HIS | HB1 | 13.391198    | 1.271157   | -2.816208          | ۹AMB   | 1   | 0.0   |
| 120 | 7 | HIS | HB2 | 13.221879    | -0.444952  | -3.165380          | AAMB   | 1   | 0.0   |
| 121 | 7 | HIS | HD1 | 11.136872    | 2.709538   | -3.744411          | AAMB   | 1   | 0.0   |
| 122 | 7 | HIS | HD2 | 12.032319    | -0.994756  | -5.506828          | AAMB   | 1   | 0.0   |
| 123 | 7 | HIS | HE1 | 9.930161     | 2.626813   | -5.980333 A        | AMB    | 1   | 0.0   |
| 124 | 7 | HIS | H1  | 10.482866    | 0.387524   | -7.037562 A        | AMB    | 1   | 0.0   |

| 125 | 8  | ASP | Ν   | 11.233445 -2.023194 -2.281511 AAMB 1 0                                   | 0.0 |
|-----|----|-----|-----|--------------------------------------------------------------------------|-----|
| 126 | 8  | ASP | CA  | 10.336828 -3.122818 -2.458477 AAMB 1                                     | 0.0 |
| 127 | 8  | ASP | С   | 9.481910 -3.294824 -1.276572 AAMB 1 0.                                   | .0  |
| 128 | 8  | ASP | 0   | 8.295098 -3.664217 -1.457893 AAMB 1 0                                    | .0  |
| 129 | 8  | ASP | СВ  | 11.157777 -4.409196 -2.672501 AAMB 1                                     | 0.0 |
| 130 | 8  | ASP | CG  | 11.973235 -4.345119 -3.976825 AAMB 1                                     | 0.0 |
| 131 | 8  | ASP | OD1 | 11.374281 -4.144149 -5.033825 AAMB 1                                     | 0.0 |
| 132 | 8  | ASP | OD2 | 13.194413 -4.495240 -3.924402 AAMB 1                                     | 0.0 |
| 133 | 8  | ASP | HN  | 12.188498 -2.180787 -2.348245 AAMB 1                                     | 0.0 |
| 134 | 8  | ASP | HA  | 9.733404 -2.936532 -3.343399 AAMB 1 (                                    | 0.0 |
| 135 | 8  | ASP | HB1 | 11.833135 -4.579036 -1.831377 AAMB 1                                     | 0.0 |
| 136 | 8  | ASP | HB2 | 10.502279 -5.279665 -2.734753 AAMB 1                                     | 0.0 |
| 137 | 9  | SER | Ν   | 9.988587 -3.138769 -0.034572 AAMB 1 0                                    | .0  |
| 138 | 9  | SER | CA  | 9.176601 -3.262035 1.137976 AAMB 1 0                                     | 0.0 |
| 139 | 9  | SER | С   | 8.022375 -2.358343 1.073562 AAMB 1 0.                                    | .0  |
| 140 | 9  | SER | 0   | 6.868747 -2.855776 1.073585 AAMB 1 0                                     | .0  |
| 141 | 9  | SER | CB  | 10.068615 -2.965061 2.355839 AAMB 1                                      | 0.0 |
| 142 | 9  | SER | OG  | 9.355240 -3.135004 3.573644 AAMB 1                                       | 0.0 |
| 143 | 9  | SER | HN  | 10.925159 -2.918284 0.068418 AAMB 1                                      | 0.0 |
| 144 | 9  | SER | HA  | 8.817378 -4.297300 1.180070 AAMB 1 0                                     | 0.0 |
| 145 | 9  | SER | HB1 | 10.930118 -3.641708 2.333718 AAMB 1                                      | 0.0 |
| 146 | 9  | SER | HB2 | 10.455923 -1.943617 2.286220 AAMB 1                                      | 0.0 |
| 147 | 9  | SER | HG  | 9.915859 -2.967490 4.327736 AAMB 1 (                                     | 0.0 |
| 148 | 10 | GLY | N   | 8.198386 -1.021602 1.008988 AAMB 1 0                                     | 0.0 |
| 149 | 10 | GLY | CA  | 7 094239 -0 121842 0 900155 AAMB 1                                       | 0.0 |
| 150 | 10 | GLY | C   | 6.454493 -0.233650 -0.411757 AAMB 1 0                                    | 0.0 |
| 151 | 10 | GLY | õ   | 5 464347 0 490092 -0 620506 AAMB 1 0                                     | 0   |
| 152 | 10 | GLY | ΗN  | 9 096245 -0 652911 0 994446 AAMB 1                                       | 0.0 |
| 153 | 10 | GLY | HA1 | 6.379829 -0.274391 1.706055 AAMB 1                                       | 0.0 |
| 154 | 10 | GLY | HA2 | 7 484860 0 892686 0 999122 AAMB 1                                        | 0.0 |
| 155 | 11 | TYR | N   | 6 983341 -1 033271 -1 360520 ΔΔMB 1 0                                    | 0.0 |
| 156 | 11 |     |     | 6 388818 _1 100031 _2 650550 AAMB 1                                      | 0.0 |
| 157 | 11 | TYR | C   | 5 169522 -2 002688 -2 575299 ΔΔMB 1 0                                    | 0.0 |
| 158 | 11 | TYR | õ   | 4 083508 -1 530204 -2 994898 AAMB 1 0                                    | 0.0 |
| 150 | 11 | TYR | CB  | 7 350282 -1 753478 -3 713031 ΔΔMB 1                                      | 0.0 |
| 160 | 11 | TYR | CG  | 6 796342 -1 622310 -5 108879 ΔΔMB 1                                      | 0.0 |
| 161 | 11 | TVP |     | 6 9/6820 _0 /33880 _5 81718/ ΔΔMB 1                                      | 0.0 |
| 162 | 11 | TVD | CD1 | 6 123273 2 683400 5 708284 AAMB 1                                        | 0.0 |
| 162 | 11 | TVD |     | 6 430060 0 306070 7 100461 AAMB 1                                        | 0.0 |
| 164 | 11 |     |     | 5 607652 2 560803 6 002030 AAMP 1                                        | 0.0 |
| 165 | 11 |     |     | 5.007052 -2.500095 -0.992050 AAMB 1<br>5.761763 1.260484 7.601057 AAMB 1 | 0.0 |
| 105 | 11 |     |     | 5.701705 -1.309404 -7.091957 AAMB 1                                      | 0.0 |
| 167 | 11 |     |     | 7 757517 1 570596 1 156051 AAMD 1                                        | 0.0 |
| 107 | 11 |     |     | 6.006004 0.195557 2.071601 AAMD 1                                        | 0.0 |
| 100 | 11 |     |     | 0.090994 -0.100007 -2.971001 AAMD 1                                      | 0.0 |
| 109 | 11 |     |     | 0.295371 -1.210045 -3.000034 AAMD 1                                      | 0.0 |
| 170 | 11 |     | HB2 | 7.509117 -2.803098 -3.529725 AAMB 1                                      | 0.0 |
| 171 | 11 |     |     | 7.407752 U.399982 -5.309175 AAIVIB 1                                     | 0.0 |
| 172 | 11 |     |     | 5.990994 -3.012091 -5.173003 AAMB 1                                      | 0.0 |
| 173 | 11 |     | HEI | 6.549152 U.62U338 -7.642U38 AAMB 1                                       | 0.0 |
| 174 | 11 |     | HE2 | 5.083165 -3.399038 -7.427675 AAMB 1                                      | 0.0 |
| 1/5 | 11 | IYK | HH  | 5.439033 -1.998519 -9.487761 AAMB 1                                      | 0.0 |
| 1/6 | 12 | GLU | N   | 5.214782 -3.259125 -2.090118 AAMB 1 (                                    | 0.0 |
| 1// | 12 | GLU | CA  | 4.044102 -4.064106 -1.9/05/0 AAMB 1                                      | 0.0 |
| 1/8 | 12 | GLU | C   | 3.232/5/ -3.556814 -0.869093 AAMB 1 (                                    | 0.0 |
| 1/9 | 12 | GLU | 0   | 1.983533 -3.602206 -0.998179 AAMB 1 (                                    | J.U |
| 180 | 12 | GLU | CB  | 4.517496 -5.503375 -1.724126 AAMB 1                                      | 0.0 |

| 181 | 12 | GLU | CG   | 5.322128 -6.050351 -2.920312 AAMB 1 0.0    | )      |
|-----|----|-----|------|--------------------------------------------|--------|
| 182 | 12 | GLU | CD   | 6.149025 -7.281702 -2.523667 AAMB 1 0.0    | )      |
| 183 | 12 | GLU | OE1  | 7.378289 -7.199483 -2.546176 AAMB 1 0.     | 0      |
| 184 | 12 | GLU | OE2  | 5.553935 -8.305547 -2.195225 AAMB 1 0.     | 0      |
| 185 | 12 | GLU | ΗN   | 6.073738 -3.598763 -1.784515 AAMB 1 0.0    | )      |
| 186 | 12 | GLU | HA   | 3.471385 -4.003354 -2.898062 AAMB 1 0.0    | )      |
| 187 | 12 | GLU | HB1  | 5.134706 -5.521853 -0.823157 AAMB 1 0.0    | 0      |
| 188 | 12 | GLU | HB2  | 3.667104 -6.158360 -1.528040 AAMB 1 0.0    | 0      |
| 189 | 12 | GLU | HG1  | 4.651354 -6.317287 -3.737273 AAMB 1 0.     | 0      |
| 190 | 12 | GLU | HG2  | 6.007466 -5.301211 -3.317899 AAMB 1 0.     | 0      |
| 191 | 13 | VAL | Ν    | 3.814550 -3.109827 0.251651 AAMB 1 0.0     |        |
| 192 | 13 | VAL | CA   | 3.053213 -2.556596 1.319859 AAMB 1 0.0     |        |
| 193 | 13 | VAL | С    | 2.326123 -1.396080 0.844176 AAMB 1 0.0     |        |
| 194 | 13 | VAL | 0    | 1.248710 -1.084186 1.408288 AAMB 1 0.0     |        |
| 195 | 13 | VAL | СВ   | 3.977241 -2.253151 2.518477 AAMB 1 0.0     |        |
| 196 | 13 | VAL | CG1  | 3.262727 -1.508710 3.659647 AAMB 1 0.0     | )      |
| 197 | 13 | VAL | CG2  | 4.608006 -3.544752 3.065091 AAMB 1 0.0     | )      |
| 198 | 13 | VAL | HN   | 4.783776 -3.122324 0.330963 AAMB 1 0.0     |        |
| 199 | 13 | VAL | HA   | 2.343054 -3.321087 1.616117 AAMB 1 0.0     |        |
| 200 | 13 | VAL | HB   | 4.783395 -1.613705 2.166303 AAMB 1 0.0     |        |
| 201 | 13 | VAL | HG11 | 1 2.396917 -2.068810 4.013923 AAMB 1 0.    | 0      |
| 202 | 13 | VAL | HG12 | 2 3.933859 -1.357831 4.505430 AAMB 1 0.    | 0      |
| 203 | 13 | VAL | HG13 | 3 2.919914 -0.523229 3.344039 AAMB 1 0.    | 0      |
| 204 | 13 | VAL | HG21 | 1 5.136044 -4.104921 2.294390 AAMB 1 0.    | 0      |
| 205 | 13 | VAI | HG22 | 2 5 326916 -3 323920 3 854645 AAMB 1 0     | 0      |
| 206 | 13 | VAL | HG23 | 3 3.846898 -4.204151 3.482245 AAMB 1 0.    | Õ      |
| 207 | 14 | HIS | N    | 2 870301 -0 601688 -0 085326 AAMB 1 0 0    | Ŭ      |
| 208 | 14 | HIS | CA   | 2 147757 0 486269 -0 649232 AAMB 1 0 0     |        |
| 209 | 14 | HIS | C    | 0.906444 -0.041158 -1.187686 AAMB 1 0.0    |        |
| 210 | 14 | HIS | 0.   | -0 162553 0 551120 -0 892737 AAMB 1 0 0    |        |
| 211 | 14 | HIS | СВ   | 2 936666 1 288229 -1 707480 AAMB 1 0.0     |        |
| 212 | 14 | HIS | CG   | 2 015913 2 187256 -2 510916 AAMB 1 0.0     |        |
| 213 | 14 | HIS | ND1  | 1 357392 3 253081 -2 004886 AAMB 1 0.0     |        |
| 214 | 14 | HIS | CD2  | 1 667202 2 053854 -3 865278 AAMB 1 0.0     |        |
| 215 | 14 | HIS | CF1  | 0.631821 3.749829 -3.021202 AAMB 1.0.0     |        |
| 216 | 14 | HIS | NE2  | 0 797974 3 046414 -4 154242 AAMB 1 0.0     |        |
| 217 | 14 | HIS | HN   | 3 751224 -0 804321 -0 429730 AAMB 1 0.0    |        |
| 218 | 14 | HIS | HΔ   | 1 901805 1 165849 0 177339 AAMB 1 0.0      |        |
| 210 | 14 | HIS | HR1  | 3 682687 1 917218 -1 224643 AAMB 1 0.0     |        |
| 220 | 11 | ніs | HB2  | 3 462702 0 633453 -2 396213 AAMB 1 0.0     |        |
| 220 | 14 | ніs |      | 1 30/027 3 5801/0 -1 085307 ΔΔMB 1 0.0     | 1      |
| 221 | 1/ | ціс |      | 2 023841 1 204254 4 545117 AMB 1 0.0       | Ì      |
| 222 | 1/ | ціс |      | 0.010105 / 613501 2.042300 AMB 1.0.0       |        |
| 223 | 14 | ціс |      | -0.010105 4.015591 -2.942599 AAMB 1 0.0    |        |
| 224 | 14 | ше  | N N  | 0.370479 3.221000 -3.010197 AAMB 1 0.0     |        |
| 220 | 15 |     |      | 0.940030 -1.033730 -2.092377 AAMB 1 0.0    |        |
| 220 | 10 |     | CA   | -0.230/31 -1.044230 -2.013004 AAIVID 1 0.0 |        |
| 221 | 15 |     | 0    | -1.127244 -2.033749 -1.310003 AAWD 1 0.0   |        |
| 220 | 10 |     |      | -2.353407 -2.050632 -1.743600 AAIMB 1 0.0  |        |
| 229 | 15 |     | CB   | 0.025579 -2.709509 -3.709244 AAMB 1 0.0    |        |
| 230 | 15 | пі5 |      | 0.080974 -4.150737 -3.231872 AAMB 1 0.0    |        |
| 231 | 15 |     |      | 1.1/0403 -4.9323/2 -3.311204 AAND 1 0.0    | )<br>\ |
| 232 | 15 |     |      | -U.904000 -4.924392 -2.0/059/ AAMB 1 U.U   | ,      |
| 233 | 15 | HIS |      | U.824723 -0.131931 -2.821561 AAMB 1 U.0    | 1      |
| 234 | 15 | HIS | NE2  | -U.401154 -0.157293 -2.429128 AAMB 1 U.U   | J      |
| 235 | 15 | HIS | HN   | T.815019 -1.381073 -2.354747 AAMB 1 0.0    |        |
| 236 | 15 | HIS | HA   | -0.745348 -0.819196 -3.128792 AAMB 1 0.0   |        |

| 237        | 15       | HIS  | HB1       | -0.783553              | -2.658721 | -4.438816 AAMB   | 1        | 0.0   |
|------------|----------|------|-----------|------------------------|-----------|------------------|----------|-------|
| 238        | 15       | HIS  | HB2       | 0.938850               | -2.468493 | -4.254772 AAMB   | 1        | 0.0   |
| 239        | 15       | HIS  | HD1       | 2.053021               | -4.682819 | -3.671699 AAMB   | 1        | 0.0   |
| 240        | 15       | HIS  | HD2       | -1.965244              | -4.600068 | -2.481699 AAMB   | 1        | 0.0   |
| 241        | 15       | HIS  | HE1       | 1.495636               | -6.975162 | -2.752990 AAMB   | 1        | 0.0   |
| 242        | 15       | HIS  | H1        | -0.940965              | -6.918912 | -2.043189 AAMB   | 1        | 0.0   |
| 243        | 16       | GLN  | Ν         | -0.618183              | -2.353164 | -0.307480 AAMB   | 1        | 0.0   |
| 244        | 16       | GLN  | CA        | -1.446121              | -2.722356 | 0.796756 AAMB    | 1        | 0.0   |
| 245        | 16       | GLN  | Ċ         | -2.285527              | -1.597471 | 1.225606 AAMB    | 1        | 0.0   |
| 246        | 16       | GLN  | Õ         | -3 507591              | -1 806687 | 1 390926 AAMB    | 1        | 0.0   |
| 247        | 16       | GLN  | ČВ        | -0 645303              | -3 321538 | 1 967379 AAMB    | .1       | 0.0   |
| 248        | 16       | GLN  | CG        | -1 523450              | -4 059809 | 2 993394 AAMB    |          | 0.0   |
| 249        | 16       | GLN  | CD        | -2 214256              | -5 289377 | 2 386834 AAMB    | 1        | 0.0   |
| 250        | 16       | GLN  | OF1       | -3 431685              | -5 356618 | 2 278814 AAMR    | . 1      | 0.0   |
| 251        | 16       |      | NE2       | _1 358061              | -6 255718 | 2 000510 AAMR    | 1        | 0.0   |
| 257        | 16       |      |           | 0 340554               | 2 227272  | 0 101350 AAMB    | 1        | 0.0   |
| 252        | 16       |      |           | 2 112500               | 2.557575  | 0 416272 AAMP    | 1        | 0.0   |
| 200        | 10       |      |           | -2.113390              | -3.500227 | 1 575402 AAMD    | 1        | 0.0   |
| 204        | 10       | GLIN |           | 0.112909               | -3.999000 | 1.37 3492 AAIVID | 1        | 0.0   |
| 200        | 10       | GLIN |           | -0.100093              | -2.344037 | 2.300401 AAMD    | ן<br>ז ( |       |
| 200        | 10       | GLIN |           | -0.910009              | -4.30/0/2 | 3.030/99 AAIVIE  | )  <br>  |       |
| 257        | 10       | GLN  | HGZ       | -2.289382              | -3.394150 |                  | ו ג<br>- |       |
| 258        | 16       | GLN  | HE2       | 1 -1.720738            |           | 0 1.631888 AAME  | 5        | 1 0.0 |
| 259        | 16       | GLN  | HE22      | 2 -0.368933            | 6.149203  | 2.098950 AAME    | 3        | 1 0.0 |
| 260        | 17       | LYS  | N         | -1./4669/              | -0.373374 | 1.393378 AAMB    | 1        | 0.0   |
| 261        | 17       | LYS  | CA        | -2.527025              | 0.763398  | 1.782422 AAMB    | 1        | 0.0   |
| 262        | 17       | LYS  | С         | -3.514591              | 1.121618  | 0.760728 AAMB    | 1        | 0.0   |
| 263        | 17       | LYS  | 0         | -4.674531              | 1.411898  | 1.132969 AAMB    | 1        | 0.0   |
| 264        | 17       | LYS  | СВ        | -1.530368              | 1.907630  | 2.045236 AAMB    | 1        | 0.0   |
| 265        | 17       | LYS  | CG        | -2.140560              | 3.293662  | 2.336305 AAMB    | 1        | 0.0   |
| 266        | 17       | LYS  | CD        | -2.438395              | 4.155569  | 1.093334 AAMB    | 1        | 0.0   |
| 267        | 17       | LYS  | CE        | -1.220231              | 4.337471  | 0.175319 AAMB    | 1        | 0.0   |
| 268        | 17       | LYS  | NZ        | -1.398108              | 5.389336  | -0.817685 AAMB   | 1        | 0.0   |
| 269        | 17       | LYS  | ΗN        | -0.792302              | -0.283311 | 1.248828 AAMB    | 1        | 0.0   |
| 270        | 17       | LYS  | HA        | -3.048416              | 0.512863  | 2.714864 AAMB    | 1        | 0.0   |
| 271        | 17       | LYS  | HB1       | -0.936101              | 1.616875  | 2.911986 AAMB    | 1        | 0.0   |
| 272        | 17       | LYS  | HB2       | -0.810949              | 1.972501  | 1.230316 AAMB    | 1        | 0.0   |
| 273        | 17       | LYS  | HG1       | -3.041641              | 3.182692  | 2.940636 AAMB    | 1        | 0.0   |
| 274        | 17       | LYS  | HG2       | -1.433862              | 3.847651  | 2.955751 AAMB    | 1        | 0.0   |
| 275        | 17       | LYS  | HD1       | -3.271389              | 3.749475  | 0.521260 AAMB    | 1        | 0.0   |
| 276        | 17       | LYS  | HD2       | -2.771108              | 5.136537  | 1.434701 AAMB    | 1        | 0.0   |
| 277        | 17       | LYS  | HE1       | -0.335867              | 4.594476  | 0.758380 AAMB    | 1        | 0.0   |
| 278        | 17       | LYS  | HE2       | -1.003431              | 3.418928  | -0.369616 AAMB   | 1        | 0.0   |
| 279        | 17       | LYS  | HZ1       | -1.586084              | 6.290607  | -0.333286 AAMB   | 1        | 0.0   |
| 280        | 17       | LYS  | HZ2       | -0.537215              | 5.471690  | -1.396080 AAMB   | 1        | 0.0   |
| 281        | 17       | IYS  | HZ3       | -2 210231              | 5 150732  | -1 423035 AAMB   | 1        | 0.0   |
| 282        | 18       | LEU  | N         | -3 174159              | 1 156810  | -0 543538 AAMB   | 1        | 0.0   |
| 283        | 18       | LEU  | CA        | -4 113560              | 1 484990  | -1 567282 AAMB   | .1       | 0.0   |
| 284        | 18       | LEU  | C.        | -5 176423              | 0 471401  | -1 659226 AAMR   | 1        | 0.0   |
| 285        | 18       |      | 0         | -6 32050/              | 0.471401  | -1 99/066 AAMB   | 1        | 0.0   |
| 286        | 18       |      | CB        | -3.3125/1              | 1 501564  | -2 885684 AAMB   | 1        | 0.0   |
| 200        | 12       |      | СС<br>00  | -3 76/121              | 2 712226  | -3 836073 A AMP  | 1        | 0.0   |
| 201        | 10       |      |           | 5 220062               | 2.1 12220 | -0.000070 AAND   | 1        | 0.0   |
| 200<br>200 | 10<br>19 |      | 001       | -0.200000              | 2.000021  | 3 2/202001 AAMD  | 1        | 0.0   |
| 209        | 10       |      |           | -0.40001  <br>0.060550 | 7.033211  | -J.Z+0003 AAND   | 1        | 0.0   |
| ∠ອ∪<br>201 | 10       |      |           | -2.202000              | 0.334033  | 1 295406 AAND    | 1        | 0.0   |
| 291<br>202 | 10       |      | ⊓A<br>⊔⊡4 | -4.011081              | 2.404090  | -1.200490 AAIVIB | ן<br>א   | 0.0   |
| 292        | 10       | LEU  | UD I      | -2.201303              | 1.113138  | -2.004001 AAMB   | - 1      | 0.0   |

| 293 | 18 | LEU  | HB2  | -3.309213   | 0.635576   | -3.413471 AAMB  | 1   | 0.0 |
|-----|----|------|------|-------------|------------|-----------------|-----|-----|
| 294 | 18 | LEU  | HG   | -3.158692   | 2.615662   | -4.738280 AAMB  | 1   | 0.0 |
| 295 | 18 | LEU  | HD11 | -5.449493   | 1.549911   | -4.582293 AAME  | 3 1 | 0.0 |
| 296 | 18 | LEU  | HD12 | 5.907969    | 2.822372   | -3.447451 AAME  | 3 1 | 0.0 |
| 297 | 18 | LEU  | HD13 | -5.459674   | 3.227573   | -5.097718 AAME  | 3 1 | 0.0 |
| 298 | 18 | LEU  | HD21 | -2.419458   | 4.179615   | -2.959273 AAME  | 3 1 | 0.0 |
| 299 | 18 | LEU  | HD22 | -3.660022   | 4,886509   | -3.973520 AAME  | 3 1 | 0.0 |
| 300 | 18 | I FU | HD23 | -4 074741   | 4 306821   | -2 367718 AAME  | 1   | 0.0 |
| 301 | 19 | VAI  | N .  | 4 932119    | 0.810388 - | -1 315467 AAMB  | 1   | 0 0 |
| 302 | 10 |      | CA   | -5 943285   | -1 823956  | -1 356185 AAMR  | 1   | 0.0 |
| 302 | 10 |      | C .  | -6.797062   | 1 714142   | 0 169165 AAMB   | 1   | 0.0 |
| 304 | 10 |      | 0    | -8 010448   | 1 001033   | -0.202257 AAMB  | 1   | 0.0 |
| 304 | 10 |      | CP   | 5 292901    | 2 21/007   | 1 505604 AAMP   | 1   | 0.0 |
| 305 | 10 |      |      | 6 2162/2    | -3.214997  | 1 1/6017 AAMD   | 1   | 0.0 |
| 207 | 10 |      | 001  | -0.210343   | -4.300701  | -1.140017 AAND  | 1   | 0.0 |
| 307 | 19 | VAL  |      | -4.700979   | -3.403367  | -2.94 1930 AAND | 1   | 0.0 |
| 308 | 19 | VAL  |      | -4.041923   | -1.008045  | -1.045009 AAMB  | 1   | 0.0 |
| 309 | 19 | VAL  | HA   | -6.592118   | -1.648055  | -2.224685 AAMB  | 1   | 0.0 |
| 310 | 19 | VAL  | HB   | -4.431998   | -3.263937  | -0.825355 AAMB  | 1   | 0.0 |
| 311 | 19 | VAL  | HG11 | -7.127732   | -4.364471  | -1.745230 AAME  | 3 1 | 0.0 |
| 312 | 19 | VAL  | HG12 | -5.724566   | -5.343723  | -1.322303 AAME  | 3 1 | 0.0 |
| 313 | 19 | VAL  | HG13 | -6.505972   | -4.365598  | -0.095801 AAME  | 3 1 | 0.0 |
| 314 | 19 | VAL  | HG21 | -4.124856   | -2.585130  | -3.260045 AAME  | 3 1 | 0.0 |
| 315 | 19 | VAL  | HG22 | 2 -4.201437 | -4.328980  | -3.037664 AAME  | 3 1 | 0.0 |
| 316 | 19 | VAL  | HG23 | -5.598280   | -3.450290  | -3.648001 AAME  | 3 1 | 0.0 |
| 317 | 20 | PHE  | Ν    | -6.305319   | -1.202374  | 0.975365 AAMB   | 1   | 0.0 |
| 318 | 20 | PHE  | CA   | -7.101325   | -1.045330  | 2.153176 AAMB   | 1   | 0.0 |
| 319 | 20 | PHE  | С    | -8.025386   | 0.078303   | 1.983149 AAMB   | 1   | 0.0 |
| 320 | 20 | PHE  | 0    | -9.174790   | 0.006741   | 2.481483 AAMB   | 1   | 0.0 |
| 321 | 20 | PHE  | CB   | -6.164958   | -0.817445  | 3.353059 AAMB   | 1   | 0.0 |
| 322 | 20 | PHE  | CG   | -6.918325   | -0.599432  | 4.640983 AAMB   | 1   | 0.0 |
| 323 | 20 | PHE  | CD1  | -7.091969   | 0.686183   | 5.147894 AAMB   | 1   | 0.0 |
| 324 | 20 | PHE  | CD2  | -7.463361   | -1.676588  | 5.333272 AAMB   | 1   | 0.0 |
| 325 | 20 | PHE  | CE1  | -7.800352   | 0.892975   | 6.324309 AAMB   | 1   | 0.0 |
| 326 | 20 | PHE  | CE2  | -8.171719   | -1.472138  | 6.510238 AAMB   | 1   | 0.0 |
| 327 | 20 | PHE  | CZ   | -8.340724   | -0.187380  | 7.006686 AAMB   | 1   | 0.0 |
| 328 | 20 | PHE  | HN   | -5.371571   | -0.965666  | 1.007602 AAMB   | 1   | 0.0 |
| 329 | 20 | PHF  | HA   | -7 680093   | -1 966908  | 2 294902 AAMB   | 1   | 0.0 |
| 330 | 20 | PHE  | HB1  | -5 506618   | -1 678745  | 3 471618 AAMB   | 1   | 0.0 |
| 331 | 20 | PHE  | HB2  | -5 513167   | 0.037280   | 3 168236 AAMB   | 1   | 0.0 |
| 332 | 20 | PHE  | HD1  | -6 681209   | 1 534905   | 4 620530 AAMB   |     | 0.0 |
| 333 | 20 | PHE  | HD2  | -7 345307   | -2 681495  | 4 954969 AAMR   | 1   | 0.0 |
| 334 | 20 | PHE  | HE1  | -7 933961   | 1 804438   | 6 706670 AAMB   | 1   | 0.0 |
| 335 | 20 |      |      | 8 506700    | 2 313201   | 7 038013 AAMB   | 1   | 0.0 |
| 336 | 20 |      |      | 8 803806    | -2.313231  | 7 021301 AAMR   | 1   | 0.0 |
| 330 | 20 |      | N    | 7 672174    | 1 122707   | 1 221271 AAMD   | 1   | 0.0 |
| 221 | 21 |      |      | -1.013114   | 1.132/9/   |                 | 1   | 0.0 |
| 338 | 21 | PHE  | CA   | -8.544904   | 2.242817   |                 | 1   | 0.0 |
| 339 | 21 | PHE  |      | -9.594489   | 1.882055   |                 | 1   | 0.0 |
| 340 | 21 | PHE  | 0 -  | -10.734620  | 2.340141   | 0.209890 AAMB   | 1   | 0.0 |
| 341 | 21 | PHE  | CB   | -7.630144   | 3.339085   | 0.406048 AAMB   | 1   | 0.0 |
| 342 | 21 | PHE  | CG   | -8.279858   | 4.689785   | 0.243046 AAMB   | 1   | 0.0 |
| 343 | 21 | PHE  | CD1  | -9.033857   | 4.982680   | -0.889980 AAMB  | 1   | 0.0 |
| 344 | 21 | PHE  | CD2  | -8.114664   | 5.673143   | 1.214872 AAMB   | 1   | 0.0 |
| 345 | 21 | PHE  | CE1  | -9.610301   | 6.235482   | -1.050958 AAMB  | 1   | 0.0 |
| 346 | 21 | PHE  | CE2  | -8.682891   | 6.930295   | 1.052681 AAMB   | 1   | 0.0 |
| 347 | 21 | PHE  | CZ   | -9.431198   | 7.211647   | -0.081760 AAMB  | 1   | 0.0 |
| 348 | 21 | PHE  | ΗN   | -6.783930   | 1.133674   | 0.845026 AAMB   | 1   | 0.0 |

| 350       21       PHE       HB1       -6.758051       3.460793       1.050660 AAMB       1       0.0         351       21       PHE       HD1       -9.7229529       3.023388       -0.559345 AAMB       1       0.0         352       21       PHE       HD1       -7.524697       5.461709       2.101659 AAMB       1       0.0         355       21       PHE       HE1       -10.201106       6.449576       -1.929776 AAMB       1       0.0         356       21       PHE       HE2       -8.543750       7.689849       1.808443 AAMB       1       0.0         356       22       ALA       C       -10.350311       0.737008       -1.961846 AAMB       1       0.0         356       22       ALA       C       -11.245373       -0.25703       -1.362418 AAMB       1       0.0         361       22       ALA       HB       -9.07014       0.152686       -3.661141 AAMB       1       0.0         362       2       ALA       HB1       -9.004342       0.886258       -3.661141 AAMB       1       0.0         362       ALA       HB2       -9.070167       -0.724432       -9.95770 AAMB       1 <th>349</th> <th>21</th> <th>PHE</th> <th>HA -8.990414 2.589137 1.936806 AAMB 1 0.0</th>                                                                           | 349 | 21              | PHE | HA -8.990414 2.589137 1.936806 AAMB 1 0.0     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------|-----|-----------------------------------------------|
| 351       21       PHE       HB2       -7.229529       3.023388       -0.559345       AMB       1       0.0         352       21       PHE       HD2       -7.534697       5.461709       2.101659       AAMB       1       0.0         354       21       PHE       HE2       -8.543750       7.689849       1.808443       AAMB       1       0.0         355       21       PHE       HE2       -9.876211       8.187594       -0.210358       AAMB       1       0.0         356       22       ALA       N       -9.328560       1.117209       -1.35776       AAMB       1       0.0         357       22       ALA       C       -11.245373       -0.265703       -1.365418       AAMB       1       0.0         360       22       ALA       HN       -8.420064       0.809104       -1.179925       AAMB       1       0.0         361       22       ALA       HB       -0.072423       -2.957659       AAMB       1       0.0         362       2       ALA       HB3       -10.041347       -0.141039       -3.960057       AAMB       1       0.0         362       ALA                                                                                                                                                                                                    | 350 | 21              | PHE | HB1 -6.758051 3.460793 1.050660 AAMB 1 0.0    |
| 352       21       PHE       HD1       -9.172157       4.231207       -1.654119       AAMB       1       0.0         353       21       PHE       HE1       -10.201106       6.449776       -1.929776       AAMB       1       0.0         355       21       PHE       HE1       -10.201106       6.449776       -1.929776       AAMB       1       0.0         356       21       PHE       HZ       -9.876211       8.187594       -0.210358       AAMB       1       0.0         357       22       ALA       C       -11.245373       -0.265703       -1.365418       AAMB       1       0.0         360       22       ALA       C       -11.245373       -0.265703       -1.365418       AAMB       1       0.0         361       24       ALA       HN       -8.42064       0.809104       -1.17925 AAMB       1       0.0         362       24       ALA       HB       -9.070167       -0.724423       -2.957659       AAMB       1       0.0         362       2       ALA       HB2       -9.070167       -0.724423       -2.957659       AAMB       1       0.0         373       <                                                                                                                                                                                        | 351 | 21              | PHE | HB2 -7.229529 3.023388 -0.559345 AAMB 1 0.0   |
| 353       21       PHE       HU2       -7.534697       5.461709       2.101659 AAMB       1       0.0         354       21       PHE       HE1       -10.201106       6.449576       -1.929776 AAMB       1       0.0         355       21       PHE       HZ       -8.8543750       7.689849       1.808443 AAMB       1       0.0         356       22       ALA       N       -9.328560       1.117209       -1.035786 AAMB       1       0.0         357       22       ALA       C       -11.245373       -0.265703       -1.365418 AAMB       1       0.0         360       22       ALA       C       -11.245373       -0.265703       -1.365418 AAMB       1       0.0         361       22       ALA       HN       -8.420064       0.809104       -1.179925 AAMB       1       0.0         362       22       ALA       HB       -9.070167       -0.724423       -2.957659 AAMB       1       0.0         366       23       GLU       CA       -11.671812       -2.020930       0.266841 AAMB       1       0.0         361       0.0       CA       -11.671812       -2.020930       0.266841 AAMB       1<                                                                                                                                                                 | 352 | 21              | PHE | HD1 -9.172157 4.231207 -1.654119 AAMB 1 0.0   |
| 354         21         PHE         HE1         -10.201106         6.449576         -1.929776         AAMB         1         0.0           355         21         PHE         HE2         -9.876211         8.187594         -0.210358         AAMB         1         0.0           357         22         ALA         N         -9.328560         1.117209         -1.035766         AAMB         1         0.0           358         22         ALA         C         -11.245373         -0.26703         -1.36644         AAMB         1         0.0           350         22         ALA         C         -12.307265         -0.557771         -1.942278         AAMB         1         0.0           361         22         ALA         HA         -10.940668         1.615099         -2.245142         AAMB         1         0.0           361         2         ALA         HB1         -9.070167         -0.724423         -2.957659         AAMB         1         0.0           361         2.0         ALA         HB2         -9.07167         -1.752651         1.18333         AAMB         1         0.0           373         GLU         C         -12.599527 <td>353</td> <td>21</td> <td>PHE</td> <td>HD2 -7.534697 5.461709 2.101659 AAMB 1 0.0</td>              | 353 | 21              | PHE | HD2 -7.534697 5.461709 2.101659 AAMB 1 0.0    |
| 355         21         PHE         HE2         -8.543750         7.689849         1.808443 AAMB         1         0.0           356         21         PHE         HZ         -9.328560         1.117209         -1.03578 AAMB         1         0.0           358         22         ALA         CA         -10.350311         0.737008         -1.961846 AAMB         1         0.0           359         22         ALA         C         -11.245373         -0.265703         -1.961846 AAMB         1         0.0           360         22         ALA         C         -12.307265         -0.557771         -1.942278 AAMB         1         0.0           361         22         ALA         HN         -8.42064         0.809104         -1.179252 AAMB         1         0.0           362         2         ALA         HB1         -9.004342         0.886258         -3.61141 AAMB         1         0.0           364         22         ALA         HB2         -9.070167         -0.724423         -2.95767 AAMB         1         0.0           3610         CA         -11.671812         -2.020930         0.266841 AAMB         1         0.0           372         GLU <td>354</td> <td>21</td> <td>PHE</td> <td>HE1 -10.201106 6.449576 -1.929776 AAMB 1 0.0</td> | 354 | 21              | PHE | HE1 -10.201106 6.449576 -1.929776 AAMB 1 0.0  |
| 356         21         PHE         HZ         -9.376211         8.187594         -0.210358 AAMB         1         0.0           357         22         ALA         N         -9.328501         1.117209         -1.035786         AAMB         1         0.0           358         22         ALA         C         -11.245373         -0.265703         -1.365418         AAMB         1         0.0           360         22         ALA         O         -12.307265         -0.557771         -1.942278         AAMB         1         0.0           361         22         ALA         HA         -10.940668         1.615099         -2.245142         AAMB         1         0.0           365         22         ALA         HB1         -9.004342         0.886258         -3.661141         AAMB         1         0.0           366         22         ALA         HB2         -9.07167         -0.724423         -2.957659         AAMB         1         0.0           366         23         GLU         C         -12.59527         -1.352089         1.179854         AAMB         1         0.0           371         23         GLU         C         -10.07260 <td>355</td> <td>21</td> <td>PHE</td> <td>HE2 -8.543750 7.689849 1.808443 AAMB 1 0.0</td>             | 355 | 21              | PHE | HE2 -8.543750 7.689849 1.808443 AAMB 1 0.0    |
| 357       22       ALA       N       -9.328560       1.117209       -1.035786       AAMB       1       0.0         358       22       ALA       CA       -10.350311       0.737008       -1.961846       AAMB       1       0.0         359       22       ALA       O       -12.307265       -0.557771       -1.942278       AAMB       1       0.0         361       22       ALA       CB       -9.670074       0.152686       -3.205822       AAMB       1       0.0         362       22       ALA       HA       -10.940668       1.615099       -2.245142       AAMB       1       0.0         364       22       ALA       HB2       -9.070167       -0.724423       -2.957659       AAMB       1       0.0         366       23       ALU       N       -10.821669       -10.54320       -0.35770       AAMB       1       0.0         371       23       GLU       CA       -11.671812       -2.020930       0.266841       AAMB       1       0.0         372       GLU       CB       -10.72260       -4.031264       0.157045       AAMB       1       0.0         373       23                                                                                                                                                                                            | 356 | 21              | PHE | HZ -9.876211 8.187594 -0.210358 AAMB 1 0.0    |
| 358         22         ALA         CA         -10.350311         0.737008         -1.961846 AAMB         1         0.0           359         22         ALA         C         -11.245373         -0.265703         -1.365418 AAMB         1         0.0           360         22         ALA         CB         -9.670074         0.152686         -3.205822 AAMB         1         0.0           361         22         ALA         HN         -8.420064         0.809104         -1.179925 AAMB         1         0.0           364         22         ALA         HB         -9.007167         -0.724423         -2.957659 AAMB         1         0.0           366         22         ALA         HB2         -9.070167         -0.724423         -3.960057 AAMB         1         0.0           367         23         GLU         CA         -11.671812         -2.020930         0.266841 AAMB         1         0.0           370         23         GLU         CB         -10.72601         -1.352081         1.19383 AAMB         1         0.0           371         23         GLU         CD         -11.02459         -5.190736         -0.227515 AAMB         1         0.0                                                                                             | 357 | 22              | ALA | N -9.328560 1.117209 -1.035786 AAMB 1 0.0     |
| 359       22       ALA       C       -11.245373       -0.265703       -1.365418 AAMB       1       0.0         360       22       ALA       O       -12.307265       -0.557771       -1.942278 AAMB       1       0.0         361       22       ALA       HN       -8.420064       0.809104       -1.179925 AAMB       1       0.0         363       22       ALA       HN       -8.420064       0.809104       -1.179925 AAMB       1       0.0         364       22       ALA       HB1       -9.004342       0.886258       -3.661141 AAMB       1       0.0         365       22       ALA       HB2       -9.070167       -7.24423       -2.957659 AAMB       1       0.0         366       23       GLU       C       -11.671812       -2.020930       0.266841 AAMB       1       0.0         371       23       GLU       C       -11.725051       1.183833 AAMB       1       0.0         372       GLU       CB       -10.772260       -4.031264       0.157045 AAMB       1       0.0         373       23       GLU       CD       -11.003459       -5.190736       -0.227515 AAMB       1       0.0                                                                                                                                                                       | 358 | 22              | ALA | CA -10.350311 0.737008 -1.961846 AAMB 1 0.0   |
| 360         22         ALA         O         -12.307265         -0.557771         -1.942278 AAMB         1         0.0           361         22         ALA         CB         -9.670074         0.152686         -3.205822 AAMB         1         0.0           362         22         ALA         HA         -10.940668         1.615099         -2.245142 AAMB         1         0.0           364         22         ALA         HB1         -9.004342         0.886258         -3.661141 AAMB         1         0.0           365         22         ALA         HB2         -9.070167         -0.724423         -2.957659 AAMB         1         0.0           366         23         GLU         C         -11.671812         -2.02030         0.266841 AAMB         1         0.0           367         23         GLU         C         -12.599577         -1.352089         1.179564 AAMB         1         0.0           370         23         GLU         CB         -10.786191         -3.005298         1.059646 AAMB         1         0.0           371         23         GLU         CB         -11.03459         -5.190736         -0.227515 AAMB         1         0.0                                                                                             | 359 | 22              | ALA | C -11.245373 -0.265703 -1.365418 AAMB 1 0.0   |
| 361         22         ALA         CB         -9.670074         0.152686         -3.205822 AAMB         1         0.0           362         22         ALA         HN         -8.420064         0.809104         -1.179925 AAMB         1         0.0           364         22         ALA         HB1         -9.004342         0.886258         -3.661141 AAMB         1         0.0           365         22         ALA         HB2         -9.070167         -0.724423         -2.957659 AAMB         1         0.0           366         22         ALA         HB3         -10.401347         -0.141039         -3.960057 AAMB         1         0.0           367         23         GLU         C         -12.599527         -1.352089         1.179854 AAMB         1         0.0           370         23         GLU         C         -10.7260         -4.031264         0.157045 AAMB         1         0.0           371         23         GLU         OE         -11.03459         -5.190736         -0.227515 AAMB         1         0.0           372         3         GLU         OE         -11.254838         -0.03553 AAMB         1         0.0           373                                                                                                  | 360 | 22              | ALA | O -12.307265 -0.557771 -1.942278 AAMB 1 0.0   |
| 362         22         ALA         HN         -8.420064         0.809104         -1.179925 AAMB         1         0.0           363         22         ALA         HB         -9.004342         0.886258         -3.661141 AAMB         1         0.0           365         22         ALA         HB2         -9.070167         -0.724423         -2.957659 AAMB         1         0.0           366         22         ALA         HB3         -10.401347         -0.141039         -3.960057 AAMB         1         0.0           367         23         GLU         N         -10.821669         -1.054320         -0.355770 AAMB         1         0.0           369         23         GLU         C         -12.599527         -1.352089         1.179854 AAMB         1         0.0           371         23         GLU         CB         -10.786191         -3.005298         1.055466 AAMB         1         0.0           372         23         GLU         CD         -11.003459         -5.190736         -0.227515 AAMB         1         0.0           373         23         GLU         CD         -11.409094         -5.23024         -1.365911 AAMB         1         0.0                                                                                         | 361 | 22              | ALA | CB -9.670074 0.152686 -3.205822 AAMB 1 0.0    |
| 363         22         ALA         HA         -10.940668         1.615099         -2.245142 AAMB         1         0.0           364         22         ALA         HB1         -9.004342         0.886258         -3.661141 AAMB         1         0.0           366         22         ALA         HB3         -10.401347         -0.141039         -3.960057 AAMB         1         0.0           367         23         GLU         C         -11.671812         -2.020930         0.266841 AAMB         1         0.0           368         23         GLU         C         -11.571812         -2.020930         0.266841 AAMB         1         0.0           370         23         GLU         C         -12.599527         -1.352089         1.078646 AAMB         1         0.0           371         23         GLU         CB         -10.07260         -4.031264         0.157045 AAMB         1         0.0           374         23         GLU         OE1         -11.25438         -6.04932         0.618023 AAMB         1         0.0           375         23         GLU         HA         -12.248537         -2.56955         -0.489512 AAMB         1         0.0                                                                                             | 362 | 22              | ALA | HN -8.420064 0.809104 -1.179925 AAMB 1 0.0    |
| 364         22         ALA         HB1         -9.070167         -0.724423         -2.957659         AAMB         1         0.0           365         22         ALA         HB3         -10.401347         -0.141039         -3.960057         AAMB         1         0.0           366         22         ALA         HB3         -10.401347         -0.141039         -3.960057         AAMB         1         0.0           367         23         GLU         C         -12.5299527         -1.352089         1.179854         AAMB         1         0.0           370         23         GLU         C         -13.772074         -1.752651         1.183833         AAMB         1         0.0           371         23         GLU         CG         -10.07260         -4.031264         0.157045         AAMB         1         0.0           371         23         GLU         OE         -11.1254838         -6.049382         0.618023         AAMB         1         0.0           375         23         GLU         DE         -11.254838         -6.049382         0.618053         AAMB         1         0.0           375         23         GLU         HA <td>363</td> <td>22</td> <td>ALA</td> <td>HA -10.940668 1.615099 -2.245142 AAMB 1 0.0</td>            | 363 | 22              | ALA | HA -10.940668 1.615099 -2.245142 AAMB 1 0.0   |
| 365         22         ALA         HB2         -9.070167         -0.724423         -2.957659         AAMB         1         0.0           366         22         ALA         HB3         -10.401347         -0.141039         -3.960057         AAMB         1         0.0           368         23         GLU         N         -10.821669         -1.054320         -0.355770         AAMB         1         0.0           368         23         GLU         CA         -11.671812         -2.020930         0.266841         AAMB         1         0.0           370         23         GLU         CA         -11.771747         -1.752651         1.183833         AAMB         1         0.0           371         23         GLU         CB         -10.772674         -1.752651         1.183833         AAMB         1         0.0           372         3         GLU         CD         -11.003459         -5.190736         -0.27515         AAMB         1         0.0           375         23         GLU         DE1         -10.248537         -2.569595         -0.489512         AAMB         1         0.0           377         23         GLU         HB1 </td <td>364</td> <td>22</td> <td>ALA</td> <td>HB1 -9.004342 0.886258 -3.661141 AAMB 1 0.0</td>      | 364 | 22              | ALA | HB1 -9.004342 0.886258 -3.661141 AAMB 1 0.0   |
| 366         22         ALA         HB3         -10.401347         -0.141039         -3.960057         AAMB         1         0.0           367         23         GLU         N         -10.821669         -1.054320         -0.355770         AAMB         1         0.0           369         23         GLU         CA         -11.671812         -2.020930         0.266841         AAMB         1         0.0           370         23         GLU         CB         -10.786191         -3.05298         1.075466         AAMB         1         0.0           371         23         GLU         CB         -10.786191         -3.05298         1.055466         AAMB         1         0.0           372         23         GLU         CE         -11.03459         -5.190736         -0.227515         AAMB         1         0.0           374         23         GLU         HN         -9.929513         -0.930140         -0.03553         AAMB         1         0.0           377         23         GLU         HB1         -10.038554         -2.439721         1.613465         AAMB         1         0.0           378         GLU         HB2         -11.3673                                                                                                    | 365 | 22              | ALA | HB2 -9.070167 -0.724423 -2.957659 AAMB 1 0.0  |
| 367         23         GLU         N         -10.821669         -1.054320         -0.355770         AAMB         1         0.0           368         23         GLU         CA         -11.671812         -2.020930         0.266841         AAMB         1         0.0           370         23         GLU         C         -12.599527         -1.352089         1.179854         AAMB         1         0.0           371         23         GLU         CB         -10.7260         -4.031264         0.157045         AAMB         1         0.0           372         23         GLU         CD         -11.003459         -5.190736         -0.227515         AAMB         1         0.0           375         23         GLU         DE1         -11.254838         -6.049382         0.618023         AAMB         1         0.0           375         23         GLU         HN         -9.929513         -0.930140         -0.03553         AAMB         1         0.0           377         23         GLU         HB1         -10.03854         -2.439721         1.613465         AAMB         1         0.0           380         24         ASP         A                                                                                                              | 366 | 22              | ALA | HB3 -10.401347 -0.141039 -3.960057 AAMB 1 0.0 |
| 368         23         GLU         CA         -11.671812         -2.020930         0.266841 AAMB         1         0.0           369         23         GLU         C         -12.599527         -1.352089         1.179854 AAMB         1         0.0           370         23         GLU         CB         -10.786191         -3.05298         1.055466 AAMB         1         0.0           371         23         GLU         CB         -10.07260         -4.031264         0.157045 AAMB         1         0.0           372         23         GLU         CD         -11.03459         -5.190736         -0.227515 AAMB         1         0.0           374         23         GLU         OE1         -11.254838         -6.049382         0.618023 AAMB         1         0.0           375         23         GLU         HA         -12.248537         -2.569555         -0.489512 AAMB         1         0.0           376         23         GLU         HB1         -10.038554         -2.439721         1.613465 AAMB         1         0.0           377         23         GLU         HB2         -13.7330         -0.35748         1.811626 AAMB         1         0.0                                                                                            | 367 | 23              | GLU | N -10.821669 -1.054320 -0.355770 AAMB 1 0.0   |
| 369         23         GLU         C         -12.599527         -1.352089         1.179854 AAMB         1         0.0           370         23         GLU         O         -13.772074         -1.752651         1.183833 AAMB         1         0.0           371         23         GLU         CB         -10.786191         -3.005298         1.055466 AAMB         1         0.0           372         23         GLU         CD         -11.003459         -5.190736         -0.227515 AAMB         1         0.0           374         23         GLU         OE1         -11.254838         -6.049382         0.618023 AAMB         1         0.0           375         23         GLU         HN         -9.929513         -0.930140         -0.03553 AAMB         1         0.0           376         23         GLU         HN         -12.248537         -2.56955         -0.489512 AAMB         1         0.0           377         23         GLU         HB1         -10.038554         -2.439721         1.613465 AAMB         1         0.0           380         23         GLU         HB2         -11.367321         -3.567060         -0.754756 AAMB         1         0.0                                                                                        | 368 | 23              | GLU | CA -11.671812 -2.020930 0.266841 AAMB 1 0.0   |
| 370       23       GLU       O       -13.772074       -1.752651       1.183833 AAMB       1       0.0         371       23       GLU       CB       -10.786191       -3.005298       1.055466 AAMB       1       0.0         372       23       GLU       CG       -10.072260       -4.031264       0.157045 AAMB       1       0.0         374       23       GLU       OD       -11.003459       -5.190736       -0.227515 AAMB       1       0.0         374       23       GLU       OD       -11.254838       -6.049382       0.618023 AAMB       1       0.0         375       23       GLU       HN       -9.929513       -0.930140       -0.003553 AAMB       1       0.0         376       23       GLU       HA       -12.248537       -2.56955       -0.489512 AAMB       1       0.0         378       23       GLU       HB1       -10.038554       -2.439721       1.613465 AAMB       1       0.0         380       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         381       23       GLU       HG2       -9.208701       -3.4445973       0.67760                                                                                                                                                                 | 369 | 23              | GLU | C -12.599527 -1.352089 1.179854 AAMB 1 0.0    |
| 371       23       GLU       CB       -10.786191       -3.005298       1.055466 AAMB       1       0.0         372       23       GLU       CG       -10.072260       -4.031264       0.157045 AAMB       1       0.0         374       23       GLU       CD       -11.003459       -5.190736       -0.227515 AAMB       1       0.0         374       23       GLU       OE1       -11.254838       -6.049382       0.618023 AAMB       1       0.0         375       23       GLU       HN       -9.929513       -0.930140       -0.003553 AAMB       1       0.0         376       23       GLU       HA       -12.248537       -2.569595       -0.489512 AAMB       1       0.0         378       23       GLU       HB1       -10.038554       -2.439721       1.613465 AAMB       1       0.0         380       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         382       24       ASP       C       -13.743554       1.391010       2.052543 AAMB       1       0.0         384       24       ASP       CG       -11.773894       -0.060520       4.99517                                                                                                                                                                 | 370 | 23              | GLU | O -13.772074 -1.752651 1.183833 AAMB 1 0.0    |
| 372       23       GLU       CG       -10.072260       -4.031264       0.157045       AAMB       1       0.0         373       23       GLU       CD       -11.003459       -5.190736       -0.227515       AAMB       1       0.0         374       23       GLU       OE1       -11.254838       -6.049382       0.618023       AAMB       1       0.0         375       23       GLU       HN       -9.929513       -0.90140       -0.003553       AAMB       1       0.0         377       23       GLU       HA       -12.248537       -2.569595       -0.489512       AAMB       1       0.0         378       23       GLU       HB1       -10.038554       -2.439721       1.613465       AAMB       1       0.0         379       23       GLU       HG2       -9.208701       -4.445973       0.677601       AAMB       1       0.0         381       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         382       24       ASP       C       -11.773894       -0.060520       4.995178       AAMB       1       0.0 <td< td=""><td>371</td><td>23</td><td>GLU</td><td>CB -10.786191 -3.005298 1.055466 AAMB 1 0.0</td></td<>                                                                                           | 371 | 23              | GLU | CB -10.786191 -3.005298 1.055466 AAMB 1 0.0   |
| 373       23       GLU       CD       -11.003459       -5.190736       -0.227515 AAMB       1       0.0         374       23       GLU       OE1       -11.254838       -6.049382       0.618023 AAMB       1       0.0         375       23       GLU       OE2       -11.469094       -5.230234       -1.365911 AAMB       1       0.0         376       23       GLU       HN       -9.929513       -0.930140       -0.03553 AAMB       1       0.0         377       23       GLU       HA       -12.248537       -2.569595       -0.489512 AAMB       1       0.0         379       23       GLU       HB1       -10.038554       -2.439721       1.613465 AAMB       1       0.0         380       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         381       24       ASP       C       -13.743554       1.391010       2.052543 AAMB       1       0.0         382       24       ASP       C       -13.743554       1.391010       2.052543 AAMB       1       0.0         385       24       ASP       O       -14.992313       1.328216       1.946455 A                                                                                                                                                                 | 372 | 23              | GLU | CG -10.072260 -4.031264 0.157045 AAMB 1 0.0   |
| 374       23       GLU       OE1       -11.254838       -6.049382       0.618023       AAMB       1       0.0         375       23       GLU       OE2       -11.469094       -5.230234       -1.365911       AAMB       1       0.0         376       23       GLU       HN       -9.929513       -0.930140       -0.003553       AAMB       1       0.0         377       23       GLU       HA       -12.248537       -2.569595       -0.489512       AAMB       1       0.0         378       23       GLU       HB2       -11.367321       -3.537548       1.811626       AAMB       1       0.0         380       23       GLU       HG2       -9.208701       -4.445973       0.677601       AAMB       1       0.0         381       24       ASP       CA       -13.065334       0.361538       2.837221       AAMB       1       0.0         382       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         382       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         <                                                                                                                                                                                        | 373 | 23              | GLU | CD -11.003459 -5.190736 -0.227515 AAMB 1 0.0  |
| 375       23       GLU       OE2       -11.469094       -5.230234       -1.365911 AAMB       1       0.0         376       23       GLU       HN       -9.929513       -0.930140       -0.003553 AAMB       1       0.0         377       23       GLU       HA       -12.248537       -2.569595       -0.489512 AAMB       1       0.0         378       23       GLU       HB1       -10.038554       -2.439721       1.613465 AAMB       1       0.0         379       23       GLU       HB2       -11.367321       -3.537548       1.811626 AAMB       1       0.0         380       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         381       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         382       24       ASP       C       -13.743554       1.391010       2.052543 AAMB       1       0.0         384       24       ASP       C       -11.773894       -0.060520       4.995178 AAMB       1       0.0         387       24       ASP       OD1       -12.179153       0.006625       6.15544                                                                                                                                                                 | 374 | 23              | GLU | OE1 -11.254838 -6.049382 0.618023 AAMB 1 0.0  |
| 376       23       GLU       HN       -9.929513       -0.930140       -0.003553 AAMB       1       0.0         377       23       GLU       HA       -12.248537       -2.569595       -0.489512 AAMB       1       0.0         378       23       GLU       HB1       -10.038554       -2.439721       1.613465 AAMB       1       0.0         379       23       GLU       HB2       -11.367321       -3.537548       1.811626 AAMB       1       0.0         380       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         381       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         382       4       ASP       CA       -13.065334       0.361538       2.837221 AAMB       1       0.0         384       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         385       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         389       24       ASP       OD2       -10.99251       -0.93                                                                                                                                                                          | 375 | 23              | GLU | OE2 -11.469094 -5.230234 -1.365911 AAMB 1 0.0 |
| 377       23       GLU       HA       -12.248537       -2.569595       -0.489512       AAMB       1       0.0         378       23       GLU       HB1       -10.038554       -2.439721       1.613465       AAMB       1       0.0         379       23       GLU       HB2       -11.367321       -3.537548       1.811626       AAMB       1       0.0         380       23       GLU       HG2       -9.208701       -4.445973       0.677601       AAMB       1       0.0         381       23       GLU       HG2       -9.208701       -4.445973       0.677601       AAMB       1       0.0         382       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         384       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         385       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         386       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         38                                                                                                                                                                                            | 376 | 23              | GLU | HN -9.929513 -0.930140 -0.003553 AAMB 1 0.0   |
| 378       23       GLU       HB1       -10.038554       -2.439721       1.613465 AAMB       1       0.0         379       23       GLU       HB2       -11.367321       -3.537548       1.811626 AAMB       1       0.0         380       23       GLU       HG1       -9.698793       -3.567060       -0.754756 AAMB       1       0.0         381       23       GLU       HG2       -9.208701       -4.445973       0.677601 AAMB       1       0.0         382       24       ASP       N       -12.177330       -0.354410       1.977433 AAMB       1       0.0         383       24       ASP       C       -13.743554       1.391010       2.052543 AAMB       1       0.0         384       24       ASP       C       -13.743554       1.391010       2.052543 AAMB       1       0.0         385       24       ASP       CG       -11.773894       -0.060520       4.995178 AAMB       1       0.0         387       24       ASP       OD2       -10.999251       -0.938578       4.617404 AAMB       1       0.0         390       24       ASP       HA       -13.825746       -0.321635       3.237243 A                                                                                                                                                                 | 377 | 23              | GLU | HA -12.248537 -2.569595 -0.489512 AAMB 1 0.0  |
| 379       23       GLU       HB2       -11.367321       -3.537548       1.811626       AAMB       1       0.0         380       23       GLU       HG1       -9.698793       -3.567060       -0.754756       AAMB       1       0.0         381       23       GLU       HG2       -9.208701       -4.445973       0.677601       AAMB       1       0.0         382       24       ASP       N       -12.177330       -0.354410       1.977433       AAMB       1       0.0         383       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         384       24       ASP       C       -11.773894       -0.060520       4.995178       AAMB       1       0.0         385       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         388       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0                                                                                                                                                                                                     | 378 | 23              | GLU | HB1 -10.038554 -2.439721 1.613465 AAMB 1 0.0  |
| 380       23       GLU       HG1       -9.698793       -3.567060       -0.754756       AAMB       1       0.0         381       23       GLU       HG2       -9.208701       -4.445973       0.677601       AAMB       1       0.0         382       24       ASP       N       -12.177330       -0.354410       1.977433       AAMB       1       0.0         383       24       ASP       CA       -13.065334       0.361538       2.837221       AAMB       1       0.0         384       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         385       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         386       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         389       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         391                                                                                                                                                                                            | 379 | 23              | GLU | HB2 -11.367321 -3.537548 1.811626 AAMB 1 0.0  |
| 381       23       GLU       HG2       -9.208701       -4.445973       0.677601       AAMB       1       0.0         382       24       ASP       N       -12.177330       -0.354410       1.977433       AAMB       1       0.0         383       24       ASP       CA       -13.065334       0.361538       2.837221       AAMB       1       0.0         384       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         385       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         386       24       ASP       CB       -12.257605       0.997838       3.984617       AAMB       1       0.0         387       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         389       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         390       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392 <td>380</td> <td>23</td> <td>GLU</td> <td>HG1 -9.698793 -3.567060 -0.754756 AAMB 1 0.0</td>                                                                                                   | 380 | 23              | GLU | HG1 -9.698793 -3.567060 -0.754756 AAMB 1 0.0  |
| 382       24       ASP       N       -12.177330       -0.354410       1.977433       AAMB       1       0.0         383       24       ASP       CA       -13.065334       0.361538       2.837221       AAMB       1       0.0         384       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         385       24       ASP       O       -14.992313       1.328216       1.946455       AAMB       1       0.0         386       24       ASP       CB       -12.257605       0.997838       3.984617       AAMB       1       0.0         387       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         388       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         390       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392 </td <td>381</td> <td>23</td> <td>GLU</td> <td>HG2 -9.208701 -4.445973 0.677601 AAMB 1 0.0</td>                                                                                              | 381 | 23              | GLU | HG2 -9.208701 -4.445973 0.677601 AAMB 1 0.0   |
| 383       24       ASP       CA       -13.065334       0.361538       2.837221 AAMB       1       0.0         384       24       ASP       C       -13.743554       1.391010       2.052543 AAMB       1       0.0         385       24       ASP       O       -14.992313       1.328216       1.946455 AAMB       1       0.0         386       24       ASP       CB       -12.257605       0.997838       3.984617 AAMB       1       0.0         387       24       ASP       CG       -11.773894       -0.060520       4.995178 AAMB       1       0.0         388       24       ASP       OD1       -12.179153       0.006625       6.155449 AAMB       1       0.0         389       24       ASP       OD2       -10.999251       -0.938578       4.617404 AAMB       1       0.0         390       24       ASP       HN       -11.239460       -0.117474       1.970835 AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243 AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510 AAMB<                                                                                                                                                                 | 382 | 24              | ASP | N -12.177330 -0.354410 1.977433 AAMB 1 0.0    |
| 384       24       ASP       C       -13.743554       1.391010       2.052543       AAMB       1       0.0         385       24       ASP       O       -14.992313       1.328216       1.946455       AAMB       1       0.0         386       24       ASP       CB       -12.257605       0.997838       3.984617       AAMB       1       0.0         387       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         388       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         389       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HN       -11.239460       -0.117474       1.970835       AAMB       1       0.0         391       24       ASP       HB       -11.387917       1.532624       3.599510       AAMB       1       0.0         392       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394<                                                                                                                                                                                            | 383 | 24              | ASP | CA -13.065334 0.361538 2.837221 AAMB 1 0.0    |
| 385       24       ASP       O       -14.992313       1.328216       1.946455       AAMB       1       0.0         386       24       ASP       CB       -12.257605       0.997838       3.984617       AAMB       1       0.0         387       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         388       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         389       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HN       -11.239460       -0.117474       1.970835       AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         3                                                                                                                                                                                            | 384 | 24              | ASP | C -13.743554 1.391010 2.052543 AAMB 1 0.0     |
| 386       24       ASP       CB       -12.257605       0.997838       3.984617       AAMB       1       0.0         387       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         388       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         389       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HN       -11.239460       -0.117474       1.970835       AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0                                                                                                                                                                                                     | 385 | 24              | ASP | O -14.992313 1.328216 1.946455 AAMB 1 0.0     |
| 387       24       ASP       CG       -11.773894       -0.060520       4.995178       AAMB       1       0.0         388       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         389       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HN       -11.239460       -0.117474       1.970835       AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       N       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         3                                                                                                                                                                                            | 386 | 24              | ASP | CB -12.257605 0.997838 3.984617 AAMB 1 0.0    |
| 388       24       ASP       OD1       -12.179153       0.006625       6.155449       AAMB       1       0.0         389       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HN       -11.239460       -0.117474       1.970835       AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         392       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       C       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         3                                                                                                                                                                                            | 387 | 24              | ASP | CG -11.773894 -0.060520 4.995178 AAMB 1 0.0   |
| 389       24       ASP       OD2       -10.999251       -0.938578       4.617404       AAMB       1       0.0         390       24       ASP       HN       -11.239460       -0.117474       1.970835       AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       N       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       CA       -13.627054       3.411602       0.703844       AAMB       1       0.0         396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         398                                                                                                                                                                                            | 388 | 24              | ASP | OD1 -12.179153 0.006625 6.155449 AAMB 1 0.0   |
| 390       24       ASP       HN       -11.239460       -0.117474       1.970835       AAMB       1       0.0         391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       N       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       CA       -13.627054       3.411602       0.703844       AAMB       1       0.0         396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       C       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400                                                                                                                                                                                            | 389 | 24              | ASP | OD2 -10.999251 -0.938578 4.617404 AAMB 1 0.0  |
| 391       24       ASP       HA       -13.825746       -0.321635       3.237243       AAMB       1       0.0         392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       N       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       CA       -13.627054       3.411602       0.703844       AAMB       1       0.0         396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       C       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         401<                                                                                                                                                                                            | 390 | 24              | ASP | HN -11.239460 -0.117474 1.970835 AAMB 1 0.0   |
| 392       24       ASP       HB1       -11.387917       1.532624       3.599510       AAMB       1       0.0         393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       N       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       C       -13.627054       3.411602       0.703844       AAMB       1       0.0         396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       O       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401 </td <td>391</td> <td>24</td> <td>ASP</td> <td>HA -13.825746 -0.321635 3.237243 AAMB 1 0.0</td>                                                                                              | 391 | 24              | ASP | HA -13.825746 -0.321635 3.237243 AAMB 1 0.0   |
| 393       24       ASP       HB2       -12.866926       1.730987       4.517014       AAMB       1       0.0         394       25       VAL       N       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       CA       -13.627054       3.411602       0.703844       AAMB       1       0.0         396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       O       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402 </td <td>392</td> <td>24</td> <td>ASP</td> <td>HB1 -11.387917 1.532624 3.599510 AAMB 1 0.0</td>                                                                                              | 392 | 24              | ASP | HB1 -11.387917 1.532624 3.599510 AAMB 1 0.0   |
| 394       25       VAL       N       -13.033711       2.400514       1.517171       AAMB       1       0.0         395       25       VAL       CA       -13.627054       3.411602       0.703844       AAMB       1       0.0         396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       O       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403 <td>393</td> <td>24</td> <td>ASP</td> <td>HB2 -12.866926 1.730987 4.517014 AAMB 1 0.0</td>                                                                                                    | 393 | 24              | ASP | HB2 -12.866926 1.730987 4.517014 AAMB 1 0.0   |
| 395       25       VAL       CA       -13.627054       3.411602       0.703844       AAMB       1       0.0         396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       O       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404<                                                                                                                                                                                            | 394 | 25              | VAL | N -13.033711 2.400514 1.517171 AAMB 1 0.0     |
| 396       25       VAL       C       -14.398943       2.830595       -0.395773       AAMB       1       0.0         397       25       VAL       O       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404       25       VAL       HG11       -13.847574       5.406779       -1.306554       AAMB       1       0.0                                                                                                                                                                                                      | 395 | 25              | VAL | CA -13.627054 3.411602 0.703844 AAMB 1 0.0    |
| 397       25       VAL       O       -15.560534       3.262855       -0.588836       AAMB       1       0.0         398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404       25       VAL       HG11       -13.847574       5.406779       -1.306554       AAMB       1       0.0                                                                                                                                                                                                                                                                                                                          | 396 | 25              | VAL | C -14.398943 2.830595 -0.395773 AAMB 1 0.0    |
| 398       25       VAL       CB       -12.657796       4.541532       0.304691       AAMB       1       0.0         399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404       25       VAL       HG11       -13.847574       5.406779       -1.306554       AAMB       1       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                              | 397 | 25              | VAI | O -15 560534 3 262855 -0 588836 AAMB 1 0.0    |
| 399       25       VAL       CG1       -13.392541       5.713545       -0.365649       AAMB       1       0.0         400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404       25       VAL       HG11       -13.847574       5.406779       -1.306554       AAMB       1       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 398 | $\frac{10}{25}$ | VAI | CB -12.657796 4.541532 0.304691 AAMB 1 0.0    |
| 400       25       VAL       CG2       -11.899372       5.035639       1.547065       AAMB       1       0.0         401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404       25       VAL       HG11       -13.847574       5.406779       -1.306554       AAMB       1       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 399 | 25              | VAI | CG1 -13.392541 5.713545 -0.365649 AAMB 1 0.0  |
| 401       25       VAL       HN       -12.081930       2.420543       1.672284       AAMB       1       0.0         402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404       25       VAL       HG11       -13.847574       5.406779       -1.306554       AAMB       1       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400 | 25              | VAI | CG2 -11 899372 5 035639 1 547065 AAMB 1 0.0   |
| 402       25       VAL       HA       -14.366833       3.867602       1.376663       AAMB       1       0.0         403       25       VAL       HB       -11.940532       4.177545       -0.427518       AAMB       1       0.0         404       25       VAL       HG11       -13.847574       5.406779       -1.306554       AAMB       1       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 401 | 25              | VAI | HN -12 081930 2 420543 1 672284 AAMB 1 0.0    |
| 403 25 VAL HB -11.940532 4.177545 -0.427518 AAMB 1 0.0<br>404 25 VAL HG11 -13.847574 5.406779 -1.306554 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 402 | 25              | VAI | HA -14 366833 3 867602 1 376663 AAMR 1 0.0    |
| 404 25 VAL HG11 -13.847574 5.406779 -1.306554 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 403 | 25              | VAL | HB -11 940532 4 177545 -0 427518 AAMB 1 0.0   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 404 | 25              | VAL | HG11 -13.847574 5.406779 -1.306554 AAMB 1 0.0 |
| 405          | 25 | VAL | HG12 -14.181201 6.107159 0.276092 AAMB 1 0.0                    |
|--------------|----|-----|-----------------------------------------------------------------|
| 406          | 25 | VAL | HG13 -12.705975 6.529413 -0.591897 AAMB 1 0.0                   |
| 407          | 25 | VAL | HG21 -12.588413 5.275250 2.357176 AAMB 1 0.0                    |
| 408          | 25 | VAL | HG22 -11.195408 4.289235 1.915162 AAMB 1 0.0                    |
| 409          | 25 | VAL | HG23 -11.335196 5.938540 1.333591 AAMB 1 0.0                    |
| 410          | 26 | GLY | N -13.897909 1.806942 -1.109662 AAMB 1 0.0                      |
| 411          | 26 | GLY | CA -14.634172 1.199144 -2.163104 AAMB 1 0.0                     |
| 412          | 26 | GLY | C -15.754764 0.428300 -1.636873 AAMB 1 0.0                      |
| 413          | 26 | GLY | O -16.810810 0.459768 -2.314776 AAMB 1 0.0                      |
| 414          | 26 | GLY | HN -13.017754 1.473277 -0.889328 AAMB 1.0.0                     |
| 415          | 26 | GLY | HA1 -14 927588 1 958454 -2 865408 AAMB 1 0.0                    |
| 416          | 26 |     | $H_{A2} = 14.053854 = 0.540123 = 2.786183 \text{ AAMB} = 1.0.0$ |
| 417          | 27 | SER | N _15 607442 _0 352578 _0 547584 AAMB 1 0.0                     |
| -11/<br>//18 | 27 | SER | $C\Delta = 16.715082 = 1.0651/1 = 0.047304 AAMB = 1.0.0$        |
| 110          | 27 | SED | C 17 005237 0 211181 0 102507 AAMB 1 0.0                        |
| 420          | 27 |     | O = 17.303237 = 0.211101 = 0.102307 AAMD = 1 = 0.0              |
| 420          | 27 |     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$            |
| 421          | 27 |     | CB -10.459150 -1.007217 1.412520 AAMB 1 0.0                     |
| 422          | 27 | SER | UG -17.027197 -2.027390 2.144411 AAMB 1 0.0                     |
| 423          | 27 | SER | HN -14.748532 -0.419415 -0.115161 AAMB 1 0.0                    |
| 424          | 21 | SER | HA -10.934277 -1.808150 -0.093759 AAMB 1 0.0                    |
| 425          | 21 | SER | HB1 -15.859401 -2.595108 1.317549 AAMB 1 0.0                    |
| 426          | 21 | SER | HBZ -15.903035 -0.987941 2.035828 AAMB 1 0.0                    |
| 427          | 21 | SER | HG -18.252108 -2.452096 1.564978 AAMB 1 0.0                     |
| 428          | 28 | ASN | N -17.828413 1.017654 0.655349 AAMB 1 0.0                       |
| 429          | 28 | ASN | CA -18.949/13 1.90239/ 0.7460/7 AAMB 1 0.0                      |
| 430          | 28 | ASN | C -18.805429 3.008193 -0.214104 AAMB 1 0.0                      |
| 431          | 28 | ASN | O -18.979372 4.178142 0.210553 AAMB 1 0.0                       |
| 432          | 28 | ASN | CB -19.186373 2.356376 2.203287 AAMB 1 0.0                      |
| 433          | 28 | ASN | CG -17.994606 3.060821 2.876493 AAMB 1 0.0                      |
| 434          | 28 | ASN | OD1 -17.876747 4.279554 2.875591 AAMB 1 0.0                     |
| 435          | 28 | ASN | ND2 -17.159494 2.222300 3.510754 AAMB 1 0.0                     |
| 436          | 28 | ASN | HN -16.969990 1.309415 1.001629 AAMB 1 0.0                      |
| 437          | 28 | ASN | HA -19.878851 1.413835 0.435057 AAMB 1 0.0                      |
| 438          | 28 | ASN | HB1 -20.043367 3.028956 2.253181 AAMB 1 0.0                     |
| 439          | 28 | ASN | HB2 -19.452908 1.489117 2.807838 AAMB 1 0.0                     |
| 440          | 28 | ASN | HD21 -16.399454 2.589891 4.044052 AAMB 1 0.0                    |
| 441          | 28 | ASN | HD22 -17.275978 1.231059 3.450246 AAMB 1 0.0                    |
| 442          | 29 | LYS | N -18.527422 2.773166 -1.515061 AAMB 1 0.0                      |
| 443          | 29 | LYS | CA -18.354721 3.826449 -2.471390 AAMB 1 0.0                     |
| 444          | 29 | LYS | C -19.492424 3.881565 -3.367871 AAMB 1 0.0                      |
| 445          | 29 | LYS | O -19.854271 2.898005 -4.056283 AAMB 1 0.0                      |
| 446          | 29 | LYS | CB -17.088192 3.650053 -3.327225 AAMB 1 0.0                     |
| 447          | 29 | LYS | CG -16.037207 4.749557 -3.110100 AAMB 1 0.0                     |
| 448          | 29 | LYS | CD -16.355852 6.036693 -3.877877 AAMB 1 0.0                     |
| 449          | 29 | LYS | CE -15.298275 7.119374 -3.638209 AAMB 1 0.0                     |
| 450          | 29 | LYS | NZ -15.605159 8.364956 -4.330549 AAMB 1 0.0                     |
| 451          | 29 | LYS | OXT -20.106014 4.955043 -3.577588 AAMB 1 0.0                    |
| 452          | 29 | LYS | HN -18.407160 1.860785 -1.813810 AAMB 1 0.0                     |
| 453          | 29 | LYS | HA -18.309614 4.804605 -1.985870 AAMB 1 0.0                     |
| 454          | 29 | LYS | HB1 -16.700270 2.679095 -3.084668 AAMB 1 0.0                    |
| 455          | 29 | LYS | HB2 -17.287268 3.583776 -4.399544 AAMB 1 0.0                    |
| 456          | 29 | LYS | HG1 -15.960933 4.994623 -2.053224 AAMB 1 0.0                    |
| 457          | 29 | LYS | HG2 -15.058952 4.379163 -3.417967 AAMB 1 0.0                    |
| 458          | 29 | LYS | HD1 -16.424520 5.823281 -4.945067 AAMB 1 0.0                    |
| 459          | 29 | LYS | HD2 -17.333387 6.411322 -3.572547 AAMB 1 0.0                    |
| 460          | 29 | LYS | HE1 -15.215751 7.347436 -2.575213 AAMB 1 0.0                    |

46129LYSHE2-14.3192186.783948-3.980606AAMB10.046229LYSHZ1-16.5164418.733411-3.990545AAMB10.046329LYSHZ2-14.8544399.058959-4.139287AAMB10.046429LYSHZ3-15.6610068.185925-5.353293AAMB10.0

! ...

! Copyright (c) 1986, 1987, 1988, 1989, 1990, 1991 Polygen Corporation
! Confidential and Proprietary: All Rights Reserved
! ...
! ...
!

if 1 eq 0 COOR ORIE NOROT if 1 eq 1 COOR ORIE NOROT SELE BYNUM @2 end

# Appendix 4: CHARMM .STR File for Uniting Two 30 Å Water Boxes for Solvating Larger Systems

Water molecules have been removed, with .... used to indicate that there are more molecules included in the system than shown.

\* Script file produced by QUANTA ! Startup script for CHARMm UPPER ! case for files to write open write card unit 7 name CHARMM.LOG outu 7 banner bomblevel -2 wrnlev 0 prnlev 5 \* Script to read parameter, psf, and ic files reset open read unit 21 card name \$CHM DATA/MASSES.RTF read rtf unit 21 card close unit 20 open read unit 20 card name ".charmmprm" read param unit 20 card close unit 20 open read unit 20 card name ".charmmpsf" read psf unit 20 card close unit 20 open read unit 20 card name ".charmmic" ic read unit 20 card close unit 20 ! Script for reading RTF I OPEN READ UNIT 77 CARD NAME -"TIP3.RTF" **READ RTF CARD UNIT 77 APPEND CLOSE UNIT 77** !set some variables I **SET 1 1 SET 2 1** SET 3 367 ! QUANTA coordinates included in script file

! Copyright (c) 1986, 1987, 1988, 1989, 1990, 1991 Polygen Corporation
! Confidential and Proprietary: All Rights Reserved
! ...
! ...
READ COOR CARD FREE
\* current QUANTA coordinates written for free read

| 1  | 1      | ASP | Ν          | 19.777775 -0.609759 1.064205 AAMB 1 0.0   |
|----|--------|-----|------------|-------------------------------------------|
| 2  | 1      | ASP | CA         | 19.041170 0.412852 1.823377 AAMB 1 0.0    |
| 3  | 1      | ASP | С          | 17.933453 0.933095 1.021516 AAMB 1 0.0    |
| 4  | 1      | ASP | 0          | 16.766161 0.674886 1.402760 AAMB 1 0.0    |
| 5  | 1      | ASP | СВ         | 19.933836 1.535490 2.379036 AAMB 1 0.0    |
| 6  | 1      | ASP | CG         | 19.121866 2.487353 3.277849 AAMB 1 0.0    |
| 7  | 1      | ASP | OD1        | 18.632879 2.039340 4.313909 AAMB 1 0.0    |
| 8  | 1      | ASP | 002        | 18 976418 3 655082 2 920227 AAMB 1 0 0    |
| 9  | 1      | ASP | H1         | 19 121496 -1 354191 0 752547 AAMB 1 0 0   |
| 10 | 1      | ASP | H2         | 20 220243 -0 166533 0 233697 AAMB 1 0.0   |
| 11 | 1      |     | н <u>г</u> | 20.515404 -1.023449 1.668909 AAMB 1.0.0   |
| 12 | 1      |     | ЦЛ         | 18 610788 0 162236 2 653500 AMB 1 0.0     |
| 12 | 1      |     |            | 20 742023 1 110273 2 074636 AAMP 1 0.0    |
| 10 | 1      | AOF |            | 20.742023 1.110273 2.974030 AAMD 1 0.0    |
| 14 | ו<br>ר | ASP |            | 20.403439 2.099329 1.57 1339 AAMD 1 0.0   |
| 15 | 2      |     |            | 18.160498 1.642654 -0.100774 AAIVIB 1 0.0 |
| 16 | 2      | ALA | CA         | 17.094845 2.143059 -0.915015 AAMB 1 0.0   |
| 1/ | 2      | ALA | C          | 16.254911 1.052349 -1.423196 AAMB 1 0.0   |
| 18 | 2      | ALA | 0          | 15.054347 1.068294 -1.075329 AAMB 1 0.0   |
| 19 | 2      | ALA | СВ         | 17.694002 2.943519 -2.079650 AAMB 1 0.0   |
| 20 | 2      | ALA | HN         | 19.074314 1.839025 -0.364898 AAMB 1 0.0   |
| 21 | 2      | ALA | HA         | 16.493011 2.824638 -0.300168 AAMB 1 0.0   |
| 22 | 2      | ALA | HB1        | 18.346489 2.330650 -2.702799 AAMB 1 0.0   |
| 23 | 2      | ALA | HB2        | 16.912779 3.358901 -2.717892 AAMB 1 0.0   |
| 24 | 2      | ALA | HB3        | 18.287169 3.778764 -1.706802 AAMB 1 0.0   |
| 25 | 3      | GLU | Ν          | 16.766771 0.108776 -2.238868 AAMB 1 0.0   |
| 26 | 3      | GLU | CA         | 15.982441 -0.984445 -2.721450 AAMB 1 0.0  |
| 27 | 3      | GLU | С          | 15.336887 -1.714932 -1.622579 AAMB 1 0.0  |
| 28 | 3      | GLU | 0          | 14.235341 -2.266397 -1.856518 AAMB 1 0.0  |
| 29 | 3      | GLU | СВ         | 16.912476 -1.943119 -3.491119 AAMB 1 0.0  |
| 30 | 3      | GLU | CG         | 18.027748 -2.588000 -2.643043 AAMB 1 0.0  |
| 31 | 3      | GLU | CD         | 18.976223 -3.410681 -3.527524 AAMB 1 0.0  |
| 32 | 3      | GLU | OE1        | 18.561335 -4.460563 -4.015923 AAMB 1 0.0  |
| 33 | 3      | GLU | 0E2        | 20 118059 -2 992227 -3 718383 AAMB 1 0.0  |
| 34 | 3      | GLU | HN         | 17 696264 0 177130 -2 510961 AAMB 1 0.0   |
| 35 | 3<br>3 | GLU | НΔ         | 15 271745 -0 619510 -3 458186 AAMB 1 0.0  |
| 36 | 3      | CLU |            | 16 313803 2 728753 3 056718 AAMR 1 0.0    |
| 37 | 2      | GLU |            | 17 364645 1 300374 4 316061 AAMP 1 0.0    |
| 20 | ა<br>ა | GLU |            | 10 602020 1 020216 2 112001 AAMD 1 0.0    |
| 20 | ა<br>ა | GLU |            | 17,610020 2,255042 1,989542 AAMD 1 0.0    |
| 39 | 3      |     |            | 17.010920 -3.233042 -1.000343 AAMD 1 0.0  |
| 40 | 4      |     |            | 15.919147 -1.702070 -0.400340 AANIB 1 0.0 |
| 41 | 4      | PHE | CA         | 15.30/195 -2.4598/9 0.694823 AAMB 1 0.0   |
| 42 | 4      | PHE | C          | 14.023937 -1.843083 1.055299 AAMB 1 0.0   |
| 43 | 4      | PHE | 0          | 12.972171 -2.524466 0.949426 AAMB 1 0.0   |
| 44 | 4      | PHE | CB         | 16.279325 -2.527560 1.885257 AAMB 1 0.0   |
| 45 | 4      | PHE | CG         | 15.739339 -3.373469 3.008183 AAMB 1 0.0   |
| 46 | 4      | PHE | CD1        | 15.827451 -4.761220 2.950030 AAMB 1 0.0   |
| 47 | 4      | PHE | CD2        | 15.139515 -2.779069 4.115228 AAMB 1 0.0   |
| 48 | 4      | PHE | CE1        | 15.323042 -5.543265 3.980633 AAMB 1 0.0   |
| 49 | 4      | PHE | CE2        | 14.634054 -3.558976 5.146505 AAMB 1 0.0   |
| 50 | 4      | PHE | CZ         | 14.725373 -4.942125 5.079395 AAMB 1 0.0   |
| 51 | 4      | PHE | ΗN         | 16.751390 -1.312392 -0.272539 AAMB 1 0.0  |
| 52 | 4      | PHE | HA         | 15.091137 -3.477376 0.342844 AAMB 1 0.0   |
| 53 | 4      | PHF | HB1        | 17.229939 -2.950183 1.558902 AAMB 1.0.0   |
| 54 | 4      | PHE | HB2        | 16.505716 -1.533943 2.267781 AAMB 1 0.0   |

\* 

| 55  | 4        | PHE | HD1              | 16.289227    | -5.239542  | 2.098484 AAMB 1 0.0    |
|-----|----------|-----|------------------|--------------|------------|------------------------|
| 56  | 4        | PHE | HD2              | 15.062601    | -1.703010  | 4.177594 AAMB 1 0.0    |
| 57  | 4        | PHE | HE1              | 15.397733    | -6.620112  | 3.930117 AAMB 1 0.0    |
| 58  | 4        | PHE | HE2              | 14.172368    | -3.089531  | 6.002832 AAMB 1 0.0    |
| 59  | 4        | PHE | ΗZ               | 14.335523 -  | 5.550326   | 5.882483 AAMB 1 0.0    |
| 60  | 5        | ARG | Ν                | 13.973029 -  | 0.583468   | 1.540645 AAMB 1 0.0    |
| 61  | 5        | ARG | CA               | 12.735288    | 0.057283   | 1.876006 AAMB 1 0.0    |
| 62  | 5        | ARG | С                | 11.947042    | 0.320672   | 0.666657 AAMB 1 0.0    |
| 63  | 5        | ARG | 0                | 10.776729    | 0.746743   | 0.824206 AAMB 1 0.0    |
| 64  | 5        | ARG | СВ               | 13.090855    | 1.396300   | 2.549845 AAMB 1 0.0    |
| 65  | 5        | ARG | CG               | 14.012118    | 1.225855   | 3.768469 AAMB 1 0.0    |
| 66  | 5        | ARG | CD               | 14.358644    | 2.557881   | 4.438255 AAMB 1 0.0    |
| 67  | 5        | ARG | NE               | 15.332176    | 2.317842   | 5.494621 AAMB 1 0.0    |
| 68  | 5        | ARG | CZ               | 15.810915    | 3.302024   | 6.283080 AAMB 1 0.0    |
| 69  | 5        | ARG | NH1              | 15.389730    | 4.556768   | 6.160191 AAMB 1 0.0    |
| 70  | 5        | ARG | NH2              | 16.723600    | 3.009213   | 7.200159 AAMB 1 0.0    |
| 71  | 5        | ARG | ΗN               | 14.801904    | -0.091048  | 1.579415 AAMB 1 0.0    |
| 72  | 5        | ARG | HA               | 12.176013    | -0.551757  | 2.589055 AAMB 1 0.0    |
| 73  | 5        | ARG | HB1              | 13.585042    | 2.054208   | 1.831977 AAMB 1 0.0    |
| 74  | 5        | ARG | HB2              | 12.177840    | 1.907795   | 2.858794 AAMB 1 0.0    |
| 75  | 5        | ARG | HG1              | 13.541816    | 0.562265   | 4.494619 AAMB 1 0.0    |
| 76  | 5        | ARG | HG2              | 14.944643    | 0.746375   | 3.469539 AAMB 1 0.0    |
| 77  | 5        | ARG | HD1              | 14.812840    | 3.250935   | 3.727876 AAMB 1 0.0    |
| 78  | 5        | ARG | HD2              | 13.478590    | 3.023529   | 4.884431 AAMB 1 0.0    |
| 79  | 5        | ARG | HE               | 15.685361    | 1.390481   | 5.618040 AAMB 1 0.0    |
| 80  | 5        | ARG | HH1 <sup>-</sup> | 1 14.699955  | 4.790350   | 5.475661 AAMB 1 0.0    |
| 81  | 5        | ARG | HH12             | 2 15.761321  | 5.270680   | 6.754082 AAMB 1 0.0    |
| 82  | 5        | ARG | HH2 <sup>·</sup> | 1 17.058340  | 2.071859   | 7.294514 AAMB 1 0.0    |
| 83  | 5        | ARG | HH22             | 2 17.080513  | 3.726822   | 2 7.798309 AAMB 1 0.0  |
| 84  | 6        | HIS | N 1              | 2.477256 0   | .090535 -0 | 0.550493 AAMB 1 0.0    |
| 85  | 6        | HIS | CA               | 11.744717 (  | ).312759 · | -1.758953 AAMB 1 0.0   |
| 86  | 6        | HIS | C 1              | 0.796138 -0  | .782060 -  | 1.978250 AAMB 1 0.0    |
| 87  | 6        | HIS | 0                | 9.589708 -0. | 479645 -1  | 1.876704 AAMB 1 0.0    |
| 88  | 6        | HIS | CB               | 12.669912 (  | 0.466814 - | -2.978475 AAMB 1 0.0   |
| 89  | 6        | HIS | CG               | 11.850272    | 0.746600   | -4.220493 AAMB 1 0.0   |
| 90  | 6        | HIS | ND1              | 11.024459    | 1.806971   | -4.352235 AAMB 1 0.0   |
| 91  | 6        | HIS | CD2              | 11.767838 -  | 0.026044   | -5.391406 AAMB 1 0.0   |
| 92  | 6        | HIS | CE1              | 10.456316    | 1.683361   | -5.563576 AAMB 1 0.0   |
| 93  | 6        | HIS | NE2              | 10.884850    | 0.586773   | -6.213204 AAMB 1 0.0   |
| 94  | 6        | HIS | HN               | 13.376023 -( | 0.258575   | -0.621651 AAMB 1 0.0   |
| 95  | 6        | HIS | HA               | 11.189747    | 1.253068 - | -1.633207 AAMB 1 0.0   |
| 96  | 6        | HIS | HB1              | 13.376599    | 1.282532   | -2.833537 AAMB 1 0.0   |
| 97  | 6        | HIS | HB2              | 13.235850 -  | 0.443755   | -3.144358 AAMB 1 0.0   |
| 98  | 6        | HIS | HD1              | 10.866956    | 2.516039   | -3.694793 AAMB 1 0.0   |
| 99  | 6        | HIS | HD2              | 12.302275 -  | 0.942279   | -5.594612 AAMB 1 0.0   |
| 100 | 6        | HIS | HE1              | 9.738291     | 2.381361   | -5.967376 AAMB 1 0.0   |
| 101 | 6        | HIS | H1               | 10.618958    | 0.291678   | -7.108222 AAMB 1 0.0   |
| 102 | <u>′</u> | ASP | N                | 11.233445 -  | 2.023194   | -2.281511 AAMB 1 0.0   |
| 103 | 7        | ASP | CA               | 10.336828    | -3.122818  | -2.4584// AAMB 1 0.0   |
| 104 | /        | ASP | C                | 9.481910 -3  | 3.294824   | -1.2/05/2 AAMB 1 0.0   |
| 105 | 7        | ASP | U                | 8.295098 -   | 3.664217   | -1.457893 AAMB 1 0.0   |
| 106 | 7        | ASP | CB               | 11.158020    | -4.409654  | -2.672259 AAMB 1 0.0   |
| 107 | /        | ASP | CG               | 12.009846    | -4.344454  | -3.95444/ AAMB 1 0.0   |
| 108 | 1        | ASP |                  | 11.486812    | -3.933098  | 6 -4.991384 AAMB 1 0.0 |
| 109 | (        | ASP | 002              | 13.186305    | -4./0/085  | -3.903346 AAMB 1 0.0   |
| 110 | 1        | ASP | HN               | 12.188498    | -2.180787  | -2.348245 AAMB 1 0.0   |

| 111  | 7  | ASP | HA  | 9.733404 -2.936532 -3.343399 AAMB 1 0.0  |
|------|----|-----|-----|------------------------------------------|
| 112  | 7  | ASP | HB1 | 11.812886 -4.589718 -1.817311 AAMB 1 0.0 |
| 113  | 7  | ASP | HB2 | 10.499928 -5.275890 -2.757493 AAMB 1 0.0 |
| 114  | 8  | SER | Ν   | 9.988587 -3.138769 -0.034572 AAMB 1 0.0  |
| 115  | 8  | SER | CA  | 9.176601 -3.262035 1.137976 AAMB 1 0.0   |
| 116  | 8  | SER | C   | 8 022375 -2 358343 1 073562 AAMB 1 0 0   |
| 117  | g  | SER | õ   | 6 868747 -2 855776 1 073585 AAMB 1 0.0   |
| 112  | g  | SED | CB  | 10.068766 2.062020 2.355100 AAMB 1.0.0   |
| 110  | 0  |     |     | 0.357747 2.133504 3.574400 AMP 1.0.0     |
| 119  | 0  |     |     | 9.557747 -5.155594 5.574400 AAMB 1 0.0   |
| 120  | 0  | SER |     | 10.925159 -2.916264 0.006416 AAMD 1 0.0  |
| 121  | ð  | SER |     | 8.817378 -4.297300 1.180070 AAMB 1 0.0   |
| 122  | 8  | SER | HBI | 10.931597 -3.637786 2.332720 AAMB 1 0.0  |
| 123  | 8  | SER | HB2 | 10.454106 -1.940798 2.283954 AAMB 1 0.0  |
| 124  | 8  | SER | HG  | 9.918180 -2.960077 4.327270 AAMB 1 0.0   |
| 125  | 9  | GLY | Ν   | 8.198386 -1.021602 1.008988 AAMB 1 0.0   |
| 126  | 9  | GLY | CA  | 7.094239 -0.121842 0.900155 AAMB 1 0.0   |
| 127  | 9  | GLY | С   | 6.454493 -0.233650 -0.411757 AAMB 1 0.0  |
| 128  | 9  | GLY | 0   | 5.464347 0.490092 -0.620506 AAMB 1 0.0   |
| 129  | 9  | GLY | ΗN  | 9.096245 -0.652911 0.994446 AAMB 1 0.0   |
| 130  | 9  | GLY | HA1 | 6.379829 -0.274391 1.706055 AAMB 1 0.0   |
| 131  | 9  | GLY | HA2 | 7.484860 0.892686 0.999122 AAMB 1 0.0    |
| 132  | 10 | TYR | Ν   | 6.983341 -1.033271 -1.360520 AAMB 1 0.0  |
| 133  | 10 | TYR | CA  | 6.388818 -1.190931 -2.650550 AAMB 1 0.0  |
| 134  | 10 | TYR | С   | 5.169522 -2.002688 -2.575299 AAMB 1 0.0  |
| 135  | 10 | TYR | 0   | 4.083598 -1.530204 -2.994898 AAMB 1 0.0  |
| 136  | 10 | TYR | СВ  | 7.345534 -1.742988 -3.722003 AAMB 1 0.0  |
| 137  | 10 | TYR | ĊG  | 6.780235 -1.568047 -5.108628 AAMB 1 0.0  |
| 138  | 10 | TYR | CD1 | 6.875566 -0.338809 -5.754462 AAMB 1 0.0  |
| 139  | 10 | TYR | CD2 | 6.144049 -2.622742 -5.757461 AAMB 1 0.0  |
| 140  | 10 | TYR | CF1 | 6 336807 -0 163243 -7 022114 AAMB 1 0.0  |
| 141  | 10 | TYR | CE2 | 5 606416 -2 451428 -7 026970 AAMB 1 0.0  |
| 1/12 | 10 | TVP | C7  | 5 700393 -1 217822 -7 661///5 AAMB 1 0.0 |
| 1/13 | 10 | TVP |     | 5 164546 -1 024396 -8 020258 AAMB 1 0.0  |
| 143  | 10 |     |     | 7 757517 1 570596 1 156051 AAMP 1 0.0    |
| 144  | 10 |     |     | 6.006004 0.195557 2.071601 AAMP 1.0.0    |
| 140  | 10 |     |     | 0.090994 -0.100007 -2.971001 AAMB 1 0.0  |
| 140  | 10 |     | HBI | 8.294446 -1.213179 -3.691091 AAMB 1 0.0  |
| 147  | 10 |     | HB2 | 7.558067 -2.797953 -3.559109 AAMB 1 0.0  |
| 148  | 10 |     | HD1 | 7.367125 0.491326 -5.267713 AAMB 1 0.0   |
| 149  | 10 | IYR | HD2 | 6.056268 -3.584122 -5.272258 AAMB 1 0.0  |
| 150  | 10 | IYR | HE1 | 6.410582 0.796421 -7.512625 AAMB 1 0.0   |
| 151  | 10 | IYR | HE2 | 5.111298 -3.284590 -7.504464 AAMB 1 0.0  |
| 152  | 10 | IYR | HH  | 5.410977 -1.736432 -9.496549 AAMB 1 0.0  |
| 153  | 11 | GLU | Ν   | 5.214782 -3.259125 -2.090118 AAMB 1 0.0  |
| 154  | 11 | GLU | CA  | 4.044102 -4.064106 -1.970570 AAMB 1 0.0  |
| 155  | 11 | GLU | С   | 3.232757 -3.556814 -0.869093 AAMB 1 0.0  |
| 156  | 11 | GLU | 0   | 1.983533 -3.602206 -0.998179 AAMB 1 0.0  |
| 157  | 11 | GLU | СВ  | 4.508585 -5.504136 -1.700698 AAMB 1 0.0  |
| 158  | 11 | GLU | CG  | 5.352304 -6.073346 -2.858341 AAMB 1 0.0  |
| 159  | 11 | GLU | CD  | 6.046267 -7.385198 -2.456297 AAMB 1 0.0  |
| 160  | 11 | GLU | OE1 | 7.271055 -7.465412 -2.563812 AAMB 1 0.0  |
| 161  | 11 | GLU | OE2 | 5.353405 -8.310934 -2.037041 AAMB 1 0.0  |
| 162  | 11 | GLU | ΗN  | 6.073738 -3.598763 -1.784515 AAMB 1 0.0  |
| 163  | 11 | GLU | HA  | 3.471385 -4.003354 -2.898062 AAMB 1 0.0  |
| 164  | 11 | GLU | HB1 | 5.097457 -5.521979 -0.780948 AAMB 1 0.0  |
| 165  | 11 | GLU | HR2 | 3.647953 -6.151681 -1.525591 AAMB 1 0.0  |
| 166  | 11 | GLU | HG1 | 4.723450 -6.259685 -3.729042 AAMB 1 0.0  |
|      |    | 220 |     |                                          |

| 11 | GLU                                    | HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.119726 -5.364998 -3.172588 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12 | VAL                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.814550 -3.109827 0.251651 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.053213 -2.556596 1.319859 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.326123 -1.396080 0.844176 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.248710 -1.084186 1.408288 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | СВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.977703 -2.252757 2.517904 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | CG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.264524 -1.506013 3.658383 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | CG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.606677 -3.544638 3.065645 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | ΗN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.783776 -3.122324 0.330963 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.343054 -3.321087 1.616117 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | ΗВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.785039 -1.615181 2.165269 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12 | VAL                                    | HG1 <sup>·</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 2.397423 -2.064084 4.012671 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 | VAL                                    | HG12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 3.935966 -1.356168 4.504056 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 | VAL                                    | HG1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 2.923978 -0.519927 3.342626 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 | VAL                                    | HG2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 5.134048 -4.105847 2.295260 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 | VAL                                    | HG22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 5.325817 -3.323709 3.854879 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 | VAL                                    | HG23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 3.844441 -4.202545 3.482995 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13 | HIS                                    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.870301 -0.601688 -0.085326 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13 | HIS                                    | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.147757 0.486269 -0.649232 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.906444 -0.041158 -1.187686 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13 | HIS                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.162553 0.551120 -0.892737 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13 | HIS                                    | СВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.931556 1.290516 -1.710533 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.001103 2.197772 -2.492605 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | ND1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.418068 3.307247 -1.989043 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.562221 2.028737 -3.816505 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.647256 3.795218 -2.975793 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | NE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.714894 3.044284 -4.088673 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.751224 -0.804321 -0.429730 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13 | HIS                                    | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.901805 1.165849 0.177339 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13 | HIS                                    | HB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.685525 1.914498 -1.233498 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.446121 0.639142 -2.411343 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | HD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.526666 3.676201 -1.087930 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.846090 1.232338 -4.488090 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 13 | HIS                                    | HE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.047480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13 | HIS                                    | H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.240240 3.206418 -4.930442 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14 | HIS                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.946838 -1.035730 -2.092577 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.236731 -1.644258 -2.613684 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -1.127244 -2.033749 -1.516683 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.353407 -2.056832 -1.743800 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | СВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.008137 -2.701402 -3.719336 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | CG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.135380 -4.139705 -3.249672 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | ND1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.244685 -4.886912 -3.421677 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | CD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.829846 -4.945433 -2.617420 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | CE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.966844 -6.097539 -2.913075 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | NE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.281356 -6.164334 -2.418308 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | HN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.815019 -1.381073 -2.354747 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.745348 -0.819196 -3.128792 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | HB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.834490 -2.677860 -4.411414 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.887401 -2.429862 -4.304904 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | HD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.081094 -4.607575 -3.845982 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | HD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.832204 -4.653473 -2.341948 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14 | HIS                                    | HE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.665944 -6.920380 -2.903794 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14 | HIS                                    | H1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.705399 -6.941513 -1.999400 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15 | GLN                                    | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.618183 -2.353164 -0.307480 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15 | GLN                                    | CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1.446121 -2.722356 0.796756 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15 | GLN                                    | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -2.285527 -1.597471 1.225606 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | 11222222222222222222222222222222222222 | 11       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       12       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13 <td< td=""><td>11       GLU       HG2         12       VAL       CA         12       VAL       C         12       VAL       CB         12       VAL       CB         12       VAL       CB         12       VAL       CG1         12       VAL       CG2         12       VAL       CG2         12       VAL       HB         12       VAL       HB         12       VAL       HG1         12       VAL       HG2         12       VAL       HG2         12       VAL       HG2         13       HIS       CA         13       HIS       CB         13       HIS       CB         13       HIS       ND1         13       HIS       HB1         13       HIS       CB         14       HIS       CB         14&lt;</td></td<> | 11       GLU       HG2         12       VAL       CA         12       VAL       C         12       VAL       CB         12       VAL       CB         12       VAL       CB         12       VAL       CG1         12       VAL       CG2         12       VAL       CG2         12       VAL       HB         12       VAL       HB         12       VAL       HG1         12       VAL       HG2         12       VAL       HG2         12       VAL       HG2         13       HIS       CA         13       HIS       CB         13       HIS       CB         13       HIS       ND1         13       HIS       HB1         13       HIS       CB         14       HIS       CB         14< |

| 223 | 15 | GLN | O -3.507591 -1.806687 1.390926 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 224 | 15 | GLN | CB -0.646446 -3.324816 1.966519 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 225 | 15 | GLN | CG -1.525218 -4.062795 2.993101 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 226 | 15 | GLN | CD -2.235078 -5.284182 2.389935 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 227 | 15 | GLN | OE1 -3.455738 -5.372842 2.365419 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 228 | 15 | GLN | NE2 -1.392638 -6.222067 1.922573 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 229 | 15 | GLN | HN 0.340554 -2.337373 -0.191350 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 230 | 15 | GLN | HA -2.113590 -3.506227 0.416273 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 231 | 15 | GLN | HB1 0.110819 -4.003546 1.573723 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 232 | 15 | GLN | HB2 -0.107666 -2.549977 2.505945 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 233 | 15 | GLN | HG1 -0.917151 -4.400835 3.832102 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 234 | 15 | GLN | HG2 -2.281023 -3.391980 3.402313 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 235 | 15 | GLN | HE21 -1.763429 -7.075501 1.554611 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 236 | 15 | GLN | HE22 -0.401695 -6.089486 1.933481 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 237 | 16 | LYS | N -1.746697 -0.373374 1.393378 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 238 | 16 | LYS | CA -2.527025 0.763398 1.782422 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 239 | 16 | LYS | C -3.514591 1.121618 0.760728 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 240 | 16 | LYS | O -4.674531 1.411898 1.132969 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 241 | 16 | LYS | CB -1.529032 1.904917 2.049959 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 242 | 16 | LYS | CG -2.139030 3.286984 2.356941 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 243 | 16 | LYS | CD -2.452783 4.154167 1.122408 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 244 | 16 | LYS | CE -1.242841 4.352679 0.197316 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 245 | 16 | LYS | NZ -1.453694 5.393516 -0.798794 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 246 | 16 | LYS | HN -0.792302 -0.283311 1.248828 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 247 | 16 | IYS | HA -3.048416 0.512863 2.714864 AAMB 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 248 | 16 | IYS | HB1 -0.930709 1.606689 2.911505 AAMB 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 249 | 16 | IYS | HB2 -0.813467 1.977020 1.232241 AAMB 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 250 | 16 | IYS | HG1 -3 033640 3 169272 2 969662 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 251 | 16 | IYS | HG2 -1 427783 3 839292 2 972631 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 252 | 16 | IYS | HD1 -3 286161 3 744693 0 553417 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 253 | 16 | IYS | HD2 -2 791710 5 129979 1 472394 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 254 | 16 | IYS | HE1 -0.360971 4.633786 0.772934 AAMB 1.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 255 | 16 | LYS | HE2 -1 009074 3 436814 -0 344935 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 256 | 16 | IVS | HZ1 -1 675055 6 288345 -0 316544 ΔΔMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 257 | 16 | IVS | $HZ^{-1} = 1.075035 = 0.200043 = 0.010344 AAMB = 1 0.000344 AAMB = 1 0.0003444 AAMB = 1 0.000344 AAMB = 1 0.000344 AAMB$ |
| 258 | 16 | IVS | HZ2 = 0.000000 + 0.000000 + 1.070210 AAMB + 0.00000 + 1.070210 AAMB + 0.00000000 + 1.070210 AAMB + 0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 250 | 17 |     | $N = 3.174150 + 1.56810 = 0.543538 \Delta \Delta MR + 1.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 209 | 17 |     | -0.043330 AMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 200 | 17 |     | C 5 176423 0 471401 1 650226 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 201 | 17 |     | O = 6.220504 = 0.940865 = 1.004066 AAMP = 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 202 | 17 |     | CP 3 325990 1 610595 2 902667 AMP 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 203 | 17 |     | CC 2 705712 2 747661 2 924522 AAMD 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 204 | 17 |     | CD1 5 271026 2 654504 4 105402 AAMP 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200 | 17 |     | CD1 -5.271030 2.054594 -4.195492 AAMP 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 200 | 17 |     | UN 2 262552 0.024802 0.775000 AAMD 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 207 | 17 |     | HIN -2.202000 0.904090 -0.770909 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 208 | 17 | LEU | HA -4.5//59/ 2.434090 -1.285490 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 269 | 17 | LEU | HB1 -2.271438 1.785138 -2.070000 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 270 | 17 | LEU | HB2 -3.333622 U.662522 -3.434430 AAMB 1 U.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 271 | 17 | LEU | HG -3.218442 2.637896 -4.749746 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 212 | 17 |     | HUT1 -3.526294 1.658127 -4.556837 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2/3 | 17 | LEU | HU12 -5.908995 2.880983 -3.34154/ AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2/4 | 17 | LEU | HD13 -5.520473 3.365987 -4.982799 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2/5 | 17 | LEU | HD21 -2.36/505 4.209018 -3.054261 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2/6 | 17 | LEU | HD22 -3.696604 4.920219 -3.958532 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 277 | 17 | LEU | HD23 -3.965827 4.328816 -2.322925 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 278 | 18 | VAL | N -4.932119 -0.810388 -1.315467 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 279 | 18 | VAL | CA -5.943285 -1.823956 -1.356185 AAMB 1 0. | 0       |
|-----|----|-----|--------------------------------------------|---------|
| 280 | 18 | VAL | C -6.797062 -1.714142 -0.169165 AAMB 1 0.0 | )       |
| 281 | 18 | VAL | O -8.010448 -1.991933 -0.292257 AAMB 1 0.0 | )       |
| 282 | 18 | VAL | CB -5.279749 -3.213930 -1.499511 AAMB 1 0. | 0       |
| 283 | 18 | VAL | CG1 -6.213015 -4.387560 -1.148586 AAMB 1 0 | 0.0     |
| 284 | 18 | VAL | CG2 -4.746875 -3.403572 -2.929430 AAMB 1 0 | 0.0     |
| 285 | 18 | VAL | HN -4.041923 -1.068045 -1.045009 AAMB 1 0. | .0      |
| 286 | 18 | VAL | HA -6.592118 -1.648055 -2.224685 AAMB 1 0. | 0       |
| 287 | 18 | VAL | HB -4.434917 -3.259472 -0.810178 AAMB 1 0. | 0       |
| 288 | 18 | VAL | HG11 -7.118831 -4.366127 -1.755462 AAMB 1  | 0.0     |
| 289 | 18 | VAL | HG12 -5.718055 -5.343682 -1.319533 AAMB 1  | 0.0     |
| 290 | 18 | VAL | HG13 -6.512504 -4.366134 -0.100362 AAMB 1  | 0.0     |
| 291 | 18 | VAL | HG21 -4.128042 -2.568224 -3.253778 AAMB 1  | 0.0     |
| 292 | 18 | VAL | HG22 -4.146474 -4.310209 -3.007163 AAMB 1  | 0.0     |
| 293 | 18 | VAL | HG23 -5.568073 -3.486960 -3.641508 AAMB 1  | 0.0     |
| 294 | 19 | PHE | N -6.305319 -1.202374 0.975365 AAMB 1 0.0  | 0       |
| 295 | 19 | PHE | CA -7.101325 -1.045330 2.153176 AAMB 1 0   | .0      |
| 296 | 19 | PHE | C -8.025386 0.078303 1.983149 AAMB 1 0.0   | )       |
| 297 | 19 | PHF | O -9 174790 0 006741 2 481483 AAMB 1 0 0   | )       |
| 298 | 19 | PHE | CB -6.161346 -0.814749 3.349294 AAMB 1 0   | .0      |
| 299 | 19 | PHE | CG -6.910186 -0.615058 4.642385 AAMB 1 0   | .0      |
| 300 | 19 | PHF | CD1 -7 101917 0 664793 5 157448 AAMB 1 0   | 0 (     |
| 301 | 19 | PHE | CD2 -7.431925 -1.705304 5.332189 AAMB 1 (  | ).0     |
| 302 | 19 | PHF | CE1 -7 804758 0 852190 6 340706 AAMB 1 0   | 0 (     |
| 303 | 19 | PHF | CE2 -8 134746 -1 520186 6 515602 AAMB 1 (  | 0 (     |
| 304 | 19 | PHE | CZ -8.321570 -0.241290 7.020770 AAMB 1 0.  | .0      |
| 305 | 19 | PHF | HN -5 371571 -0 965666 1 007602 AAMB 1 0   | 0       |
| 306 | 19 | PHE | HA -7 680093 -1 966908 2 294902 AAMB 1 0   | 0       |
| 307 | 19 | PHF | HB1 -5 492814 -1 669469 3 458332 AAMB 1 (  | 0 (     |
| 308 | 19 | PHF | HB2 -5 519492 0 048129 3 166873 AAMB 1 0   | 0.0     |
| 309 | 19 | PHE | HD1 -6 709713 1 523271 4 631473 AAMB 1 (   | 0 0     |
| 310 | 19 | PHE | HD2 -7 299407 -2 705380 4 946207 AAMB 1 (  | 0.0     |
| 311 | 19 | PHF | HE1 -7 953233 1 847965 6 732335 AAMB 1 0   | 0 (     |
| 312 | 19 | PHE | HE2 -8 541384 -2 371681 7 041228 AAMB 1 (  | 0.0     |
| 313 | 19 | PHF | HZ -8 870526 -0 098073 7 940141 AAMB 1 0   | 0       |
| 314 | 20 | PHF | N -7 673174 1 132797 1 221871 AAMB 1 0 (   | )       |
| 315 | 20 | PHE | CA -8 544904 2 242817 0 996134 AAMB 1 0    | 0       |
| 316 | 20 | PHE | C -9 594489 1 882055 0 039219 AAMB 1 0 0   |         |
| 317 | 20 | PHE | O -10 734620 2 340141 0 209890 AAMB 1 0    | 0       |
| 318 | 20 | PHE | CB -7 618481 3 328862 0 405096 AAMB 1 0    | 0       |
| 319 | 20 | PHF | CG -8 251472 4 681148 0 196232 AAMB 1 0    | 0       |
| 320 | 20 | PHF | CD1 -8 960198 4 960293 -0 969232 AAMB 1 (  | 0 (     |
| 321 | 20 | PHE | CD2 -8 106814 5 682682 1 152657 AAMB 1 (   | 0 (     |
| 322 | 20 | PHF | CE1 -9 504410 6 220169 -1 181649 AAMB 1 (  | 0.0     |
| 323 | 20 | PHE | CE2 -8 644730 6 945993 0 940669 AAMB 1 0   | 0.0     |
| 324 | 20 | PHE | C7 -9 341792 7 216188 -0 228950 AAMB 1 0   | 0       |
| 325 | 20 | PHE | HN -6 783930 1 133674 0 845026 AAMB 1 0    | 0       |
| 326 | 20 | PHE | HΔ _8 990414 2 589137 1 936806 ΔΔMB 1 0    | .0<br>0 |
| 327 | 20 | PHE | HB1 _6 758616 3 459482 1 064263 AAMB 1 0   |         |
| 328 | 20 | PHE | HB2 -7 198933 2 992059 -0 544946 AAMB 1 (  | 0.0     |
| 329 | 20 | PHF | HD1 -9 085909 4 193028 -1 719779 AAMR 1 (  | ) ()    |
| 330 | 20 | PHF | HD2 -7 564674 5 481259 2 065264 AAMR 1 0   | 0.0     |
| 331 | 20 | PHF | HF1 -10 057606 6 423938 -2 087032 AAMB 1   | <br>0 0 |
| 332 | 20 | PHF | HE2 -8 521981 7 719291 1 685306 AAMR 1 0   | 0.0     |
| 333 | 20 | PHF | H7 -9 762511 8 197178 -0 395628 AAMR 1 0   | 0       |
| 334 | 21 | ALA | N -9.328560 1.117209 -1.035786 AAMB 1 0.0  | )       |

| 21 | ALA                                                                  | CA -10.350311 0.737008 -1.961846 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21 | ALA                                                                  | C -11.245373 -0.265703 -1.365418 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21 | ALA                                                                  | O -12.307265 -0.557771 -1.942278 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21 | ALA                                                                  | CB -9.669854 0.152794 -3.205755 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21 | ALA                                                                  | HN -8.420064 0.809104 -1.179925 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21 | ALA                                                                  | HA -10.940668 1.615099 -2.245142 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21 | ALA                                                                  | HB1 -9.003704 0.886374 -3.660519 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21 | ALA                                                                  | HB2 -9.070508 -0.724749 -2.957741 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21 | ALA                                                                  | HB3 -10.401311 -0.140363 -3.960104 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22 | GLU                                                                  | N -10.821669 -1.054320 -0.355770 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22 | GLU                                                                  | CA -11.671812 -2.020930 0.266841 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22 | GLU                                                                  | C -12.599527 -1.352089 1.179854 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 22 | GLU                                                                  | O -13.772074 -1.752651 1.183833 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 22 | GLU                                                                  | CB -10.790043 -3.008301 1.056825 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22 | GLU                                                                  | CG -10.069926 -4.032821 0.161508 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22 | GLU                                                                  | CD -11.000795 -5.181879 -0.253294 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 | GLU                                                                  | OE1 -11.283941 -6.042099 0.580723 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 | GLU                                                                  | OE2 -11.432377 -5.211642 -1.405437 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22 | GLU                                                                  | HN -9.929513 -0.930140 -0.003553 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22 | GLU                                                                  | HA -12.248537 -2.569595 -0.489512 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 | GLU                                                                  | HB1 -10.046156 -2.444288 1.621465 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 | GLU                                                                  | HB2 -11.376102 -3.543640 1.807014 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 | GLU                                                                  | HG1 -9.678091 -3.563277 -0.739589 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22 | GLU                                                                  | HG2 -9.218993 -4.459637 0.693020 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23 | ASP                                                                  | N -12.177330 -0.354410 1.977433 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23 | ASP                                                                  | CA -13.065334 0.361538 2.837221 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23 | ASP                                                                  | C -13.743554 1.391010 2.052543 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23 | ASP                                                                  | O -14.992313 1.328216 1.946455 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23 | ASP                                                                  | CB -12.266554 0.983707 3.997362 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 23 | ASP                                                                  | CG -11.808397 -0.095633 4.997859 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23 | ASP                                                                  | OD1 -12.314987 -0.112497 6.120143 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 23 | ASP                                                                  | OD2 -10.953807 -0.908598 4.648471 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 23 | ASP                                                                  | HN -11.239460 -0.117474 1.970835 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23 | ASP                                                                  | HA -13.825746 -0.321635 3.237243 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23 | ASP                                                                  | HB1 -11.389018 1.516296 3.627135 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23 | ASP                                                                  | HB2 -12.876906 1.714050 4.532335 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24 | VAL                                                                  | N -13.033711 2.400514 1.517171 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 24 | VAL                                                                  | CA -13.627054 3.411602 0.703844 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24 | VAL                                                                  | C -14.398943 2.830595 -0.395773 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24 | VAL                                                                  | O -15.560534 3.262855 -0.588836 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24 | VAL                                                                  | CB -12.652191 4.532939 0.287577 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24 | VAL                                                                  | CG1 -13.384815 5.709221 -0.377373 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24 | VAL                                                                  | CG2 -11.863484 5.030176 1.509347 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24 | VAL                                                                  | HN -12.081930 2.420543 1.672284 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24 | VAL                                                                  | HA -14.366833 3.867602 1.376663 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24 | VAL                                                                  | HB -11.950670 4.158913 -0.455073 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24 | VAL                                                                  | HG11 -13.856360 5.403377 -1.310308 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24 | VAL                                                                  | HG12 -14.159917 6.113651 0.274056 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24 | VAL                                                                  | HG13 -12.693000 6.516822 -0.617229 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 24 | VAL                                                                  | HG21 -12.535227 5.315455 2.319210 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24 | VAL                                                                  | HG22 -11.182512 4.269599 1.890988 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 24 | VAL                                                                  | HG23 -11.267399 5.904689 1.262430 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 25 | GLY                                                                  | N -13.897909 1.806942 -1.109662 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25 | GLY                                                                  | CA -14.634172 1.199144 -2.163104 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25 | GLY                                                                  | C -15.754764 0.428300 -1.636873 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 25 | GLY                                                                  | O -16.810810 0.459768 -2.314776 AAMB 1 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | $\begin{array}{c} 21\\ 21\\ 21\\ 21\\ 21\\ 21\\ 22\\ 22\\ 22\\ 22\\$ | 21       ALA         22       GLU         22       GLU         23       GLU         24       GLU         23       ASP         23       ASP <td< td=""></td<> |

| 391 | 25 | GLY  | HN -13.017754 1.473277 -0.889328 AAMB 1 0.0  |
|-----|----|------|----------------------------------------------|
| 392 | 25 | GLY  | HA1 -14.927588 1.958454 -2.865408 AAMB 1 0.0 |
| 393 | 25 | GLY  | HA2 -14.053854 0.540123 -2.786183 AAMB 1 0.0 |
| 394 | 26 | SER  | N -15.607442 -0.352578 -0.547584 AAMB 1 0.0  |
| 395 | 26 | SER  | CA -16.715082 -1.065141 0.019772 AAMB 1 0.0  |
| 396 | 26 | SER  | C -17.905237 -0.211181 0.102507 AAMB 1 0.0   |
| 397 | 26 | SER  | O -18.980049 -0.652926 -0.379306 AAMB 1 0.0  |
| 398 | 26 | SER  | CB -16.458445 -1.687199 1.412190 AAMB 1 0.0  |
| 399 | 26 | SER  | OG -17.626175 -2.028486 2.144185 AAMB 1 0.0  |
| 400 | 26 | SER  | HN -14.748532 -0.419415 -0.115161 AAMB 1 0.0 |
| 401 | 26 | SER  | HA -16.934277 -1.868156 -0.693759 AAMB 1 0.0 |
| 402 | 26 | SFR  | HB1 -15 858155 -2 594639 1 316521 AAMB 1 0.0 |
| 403 | 26 | SFR  | HB2 -15 902379 -0 987645 2 035284 AAMB 1 0 0 |
| 404 | 26 | SER  | HG -18.251007 -2.453056 1.564705 AAMB 1 0.0  |
| 405 | 27 | ASN  | N -17 828413 1 017654 0 655349 AAMB 1 0.0    |
| 406 | 27 | ASN  | CA -18.949713 1.902397 0.746077 AAMB 1.0.0   |
| 407 | 27 | ASN  | C -18 805429 3 008193 -0 214104 AAMB 1 0.0   |
| 408 | 27 | ASN  | O -18.979372 4.178142 0.210553 AAMB 1 0.0    |
| 409 | 27 | ASN  | CB -19 194557 2 352446 2 203225 AAMB 1 0.0   |
| 410 | 27 | ASN  | CG -18.020664 3.081731 2.880505 AAMB 1 0.0   |
| 411 | 27 | ASN  | OD1 -17.948967 4.303613 2.911146 AAMB 1 0.0  |
| 412 | 27 | ASN  | ND2 -17.149233 2.259248 3.485601 AAMB 1 0.0  |
| 413 | 27 | ASN  | HN -16.969990 1.309415 1.001629 AAMB 1 0.0   |
| 414 | 27 | ASN  | HA -19.878851 1.413835 0.435057 AAMB 1 0.0   |
| 415 | 27 | ASN  | HB1 -20.064405 3.008574 2.250322 AAMB 1 0.0  |
| 416 | 27 | ASN  | HB2 -19.445787 1.480943 2.808213 AAMB 1 0.0  |
| 417 | 27 | ASN  | HD21 -16.398821 2.643177 4.021193 AAMB 1 0.0 |
| 418 | 27 | ASN  | HD22 -17.225565 1.266129 3.398957 AAMB 1 0.0 |
| 419 | 28 | LYS  | N -18.527422 2.773166 -1.515061 AAMB 1 0.0   |
| 420 | 28 | LYS  | CA -18.354721 3.826449 -2.471390 AAMB 1 0.0  |
| 421 | 28 | LYS  | C -19.492424 3.881565 -3.367871 AAMB 1 0.0   |
| 422 | 28 | LYS  | O -19.854271 2.898005 -4.056283 AAMB 1 0.0   |
| 423 | 28 | LYS  | CB -17.088057 3.649163 -3.326386 AAMB 1 0.0  |
| 424 | 28 | LYS  | CG -16.039965 4.752141 -3.114206 AAMB 1 0.0  |
| 425 | 28 | LYS  | CD -16.363916 6.034773 -3.887490 AAMB 1 0.0  |
| 426 | 28 | LYS  | CE -15.312076 7.123820 -3.652524 AAMB 1 0.0  |
| 427 | 28 | LYS  | NZ -15.622320 8.362862 -4.355102 AAMB 1 0.0  |
| 428 | 28 | LYS  | OXT -20.106014 4.955043 -3.577588 AAMB 1 0.0 |
| 429 | 28 | LYS  | HN -18.407160 1.860785 -1.813810 AAMB 1 0.0  |
| 430 | 28 | LYS  | HA -18.309614 4.804605 -1.985870 AAMB 1 0.0  |
| 431 | 28 | LYS  | HB1 -16.697926 2.681018 -3.077460 AAMB 1 0.0 |
| 432 | 28 | LYS  | HB2 -17.286669 3.576143 -4.398309 AAMB 1 0.0 |
| 433 | 28 | LYS  | HG1 -15.963959 5.000231 -2.057859 AAMB 1 0.0 |
| 434 | 28 | LYS  | HG2 -15.060901 4.383323 -3.421366 AAMB 1 0.0 |
| 435 | 28 | LYS  | HD1 -16.431326 5.816101 -4.953671 AAMB 1 0.0 |
| 436 | 28 | LYS  | HD2 -17.343597 6.406069 -3.584526 AAMB 1 0.0 |
| 437 | 28 | LYS  | HE1 -15.234143 7.359888 -2.590948 AAMB 1 0.0 |
| 438 | 28 | LYS  | HE2 -14.330296 6.790445 -3.989171 AAMB 1 0.0 |
| 439 | 28 | LYS  | HZ1 -16.537807 8.727137 -4.022856 AAMB 1 0.0 |
| 440 | 28 | LYS  | HZ2 -14.878768 9.064148 -4.163210 AAMB 1 0.0 |
| 441 | 28 | LYS  | HZ3 -15.671393 8.177383 -5.377058 AAMB 1 0.0 |
| 442 | 29 | MINI | CA 0.801935 7.774904 -1.808129 MINI 1 0.0    |
| 443 | 29 | MINI | HA 0.566938 8.545598 -1.074308 MINI 1 0.0    |
| 444 | 29 | MINI | CB 1.945340 8.232927 -2.719579 MINI 1 0.0    |
| 445 | 29 | MINI | HB1 1.666320 9.148425 -3.242029 MINI 1 0.0   |
| 446 | 29 | MINI | HB2 2.825317 8.470255 -2.121215 MINI 1 0.0   |

| 447 | 29 | MINI | CG  | 2.299530  | 7.168966 | -3.721584 MINI | 1 | 0.0 |
|-----|----|------|-----|-----------|----------|----------------|---|-----|
| 448 | 29 | MINI | CD1 | 3.194309  | 6.160393 | -3.383742 MINI | 1 | 0.0 |
| 449 | 29 | MINI | HD1 | 3.653621  | 6.151380 | -2.406369 MINI | 1 | 0.0 |
| 450 | 29 | MINI | CD2 | 1.725775  | 7.168845 | -4.989739 MINI | 1 | 0.0 |
| 451 | 29 | MINI | HD2 | 1.031304  | 7.948564 | -5.267232 MINI | 1 | 0.0 |
| 452 | 29 | MINI | CE1 | 3.495388  | 5.156970 | -4.292325 MINI | 1 | 0.0 |
| 453 | 29 | MINI | 01  | 4.362177  | 4.143554 | -3.942663 MINI | 1 | 0.0 |
| 454 | 29 | MINI | CE2 | 2.031391  | 6.170089 | -5.905367 MINI | 1 | 0.0 |
| 455 | 29 | MINI | HE2 | 1.561771  | 6.200259 | -6.877861 MINI | 1 | 0.0 |
| 456 | 29 | MINI | CZ  | 2.916948  | 5.156667 | -5.552899 MINI | 1 | 0.0 |
| 457 | 29 | MINI | O2  | 3.233977  | 4.132008 | -6.425073 MINI | 1 | 0.0 |
| 458 | 29 | MINI | H1  | 1.076688  | 6.872482 | -1.261128 MINI | 1 | 0.0 |
| 459 | 29 | MINI | N1  | -0.420729 | 7.485872 | -2.547294 MINI | 1 | 0.0 |
| 460 | 29 | MINI | H2  | 4.387321  | 3.503186 | -4.644748 MINI | 1 | 0.0 |
| 461 | 29 | MINI | H3  | 3.209215  | 4.441852 | -7.321945 MINI | 1 | 0.0 |
| 462 | 29 | MINI | H4  | -1.167603 | 7.194327 | -1.884370 MINI | 1 | 0.0 |
| 463 | 29 | MINI | H5  | -0.241900 | 6.719477 | -3.227988 MINI | 1 | 0.0 |
| 464 | 29 | MINI | H6  | -0.725669 | 8.339811 | -3.056801 MINI | 1 | 0.0 |
| !   |    |      |     |           |          |                |   |     |

COOR ORIE NOROT SELE BYNUM @2 end

READ SEQU TIP3 1000 GENE SOLV SETU NOANGLE NODIHE READ COOR CARD APPE \*1000 water molecules in 30 angstrom cube

3000

1 1 TIP3 OH2 10.72971 13.82612 -4.91916 SEG1 1 0.00000 2 1 TIP3 H1 9.79544 13.62522 -4.97383 SEG1 1 0.00000 3 1 TIP3 H2 10.91210 13.86591 -3.98035 SEG1 1 0.00000 2998 1000 TIP3 OH2 -2.08570 -3.85276 11.60936 SEG8 1000 0.00000 2999 1000 TIP3 H1 -1.37778 -3.80913 10.96658 SEG8 1000 0.00000 3000 1000 TIP3 H2 -2.68185 -3.14730 11.35804 SEG8 1000 0.00000 COOR ORIE NOROT SELE BYNUM @3 end READ SEQU TIP3 1000 GENE SOLW SETU NOANGLE NODIHE READ COOR CARD APPE \*1000 water molecules in 30 angstrom cube 3000 1 TIP3 OH2 10.72971 13.82612 -4.91916 SEG1 1 0.00000 1 2 1 TIP3 H1 9.79544 13.62522 -4.97383 SEG1 1 0.00000 1 TIP3 H2 10.91210 13.86591 -3.98035 SEG1 1 3 0.00000

2998 1000 TIP3 OH2 -2.08570 -3.85276 11.60936 SEG8 1000 0.00000 2999 1000 TIP3 H1 -1.37778 -3.80913 10.96658 SEG8 1000 0.00000 3000 1000 TIP3 H2 -2.68185 -3.14730 11.35804 SEG8 1000 0.00000 DELE ATOM SELE ( .BYRES. ( (SEGID SOLV .OR. SEGID SOLW) .AND. TYPE OH2 .AND. -(( .NOT. SEGID SOLW .AND. .NOT. SEGID SOLV .AND. .NOT. HYDROGEN ) -.AROUND. 2.80 ) ) ) END

RETURN STOP

.

#### Appendix 5: Methodology of Biological Assays

**Materials for** *In Vitro* **Assays.** A $\beta_{40}$  and A $\beta_{42}$  (AnaSpec, San Jose, CA, >95%) were stored at -80 °C until used. Tau441 was provided by Oligomerix Inc. (New York, NY) as frozen aliquots (8.3 mg/mL, 60 µL) in Tris-HCl (50 mM, pH 7.4). 1,1,1,3,3,3-Hexafluoroisopropanol (HFIP), and other reagents were obtained from Aldrich (St. Louis, MO) and were of the highest grade. All water used in the *in vitro* studies was micropore filtered and deionized.

A $\beta_{40}$  Stock Solutions. A $\beta_{40}$  (1.0 mg) was pre-treated in a 1.5 mL microfuge tube with HFIP (1 mL) and sonicated for 20 min. to disassemble any pre-formed A $\beta$  aggregates. The HFIP was removed with a stream of argon and the A $\beta$  dissolved in Tris base (5.8 mL, 20 mM, pH ~10). The pH was adjusted to 7.4 with concentrated HCl (~ 10 µL) and the solution filtered using a syringe filter (0.2 µm) before being used. Similar procedures were used for A $\beta_{42}$ .

**ThT Aβ Aggregation Assay.** The kinetic ThT assay for Aβ aggregation was done as follows. Briefly, pre-treated Aβ1-40 (40 µM in 20 mM Tris, pH 7.4), was diluted with an equal volume of 8 µM ThT in Tris (20 mM, pH 7.4, 300 mM NaCl). Aliquots of Aβ/ThT (200 µL) were added to wells of a black polystyrene 96-well plate, followed by 2µL of a test compound in DMSO (of variable concentration), or DMSO alone (controls). Incubations were performed in triplicate and contained 20 µM Aβ and various concentration of compound in 20mM Tris, pH 7.4, 150 mM NaCl, 1% DMSO. Plates were covered with clear polystyrene lids and incubated at 37°C in a Tecan Genios microplate reader. Fluorescence readings ( $\lambda_{ex} = 450$  nm,  $\lambda_{em} = 480$  nm) were taken every 15 min., after first shaking at high intensity for 15 sec. and allowing to settle for 10 sec. before each reading. Active compounds attenuated the increase in fluorescence over time that occurred in controls.

**ThS Tau Aggregation Assay.** Frozen aliquots of tau441 were allowed to thaw at room temperature (RT) before being diluted with Tris-HCl (2.64 mL, 50 mM, pH 7.4) containing dithiothreitol (DTT, 1 mM) to prevent disulfide bonds. After allowing to stand at RT for 1 h, Thioflavin S (ThS) was added (2.5  $\mu$ L, 10.8 mM), followed by the aggregation inducer heparin (20  $\mu$ L, 1.08 g/mL). Aggregation was then monitored in a plate reader in the same manner as in the A $\beta$ /ThT assay.

**Circular Dichroism (CD).** Aliquots (220  $\mu$ L) of HFIP-pretreated A $\beta$  (40  $\mu$ M in 20 mM Tris, pH 7.4) were added directly to 1 mm quartz CD cells, followed by 2.2  $\mu$ L compound (variable concentration) in methanol or methanol alone (controls). Solutions were incubated at 37°C for up to 6 days. CD scans were performed on a Jasco J-810 spectropolarimeter between 190 and 250 nm, with a resolution of 0.1 nm and bandwidth of 1 nm. Ten scans were obtained for each reading. Active compounds were those that inhibited the random-coil to  $\beta$ -sheet transition.

**Transmission Electron Microscopy (TEM).** A $\beta_{42}$  stock solution (40  $\mu$ M in 20 mM Tris, pH 7.4) was incubated (37°C) in the absence and presence of the test compound

(100  $\mu$ M). After 3 days, solutions were analyzed following the procedure of Cohen et al. (*Biochemistry* 2006, **45**: 4727-35) for TEM analysis. Briefly, a 10  $\mu$ L sample was placed on a 400 mesh copper grid covered by carbon-stabilized Formvar film and allowed to stand for 1.5 min. Excess fluid was then removed and the grids negatively stained for 2 min with uranyl acetate (10  $\mu$ L, 2% solution). Excess fluid was again removed and the samples viewed using an electron microscope operating at 80 kV.

#### Appendix 6: Protein Energies of Aβ

The gas phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in QUANTA using the CHARMM22 force field are summarized as follows and calculated with a constrained protein backbone:

|           | Energies (kcal/mol) |           |           |  |  |
|-----------|---------------------|-----------|-----------|--|--|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |  |  |
| 1AMB      | -125.85             | -62.91    | -118.83   |  |  |
| 1AMC      | -124.84             | -66.16    | -117.54   |  |  |
| 1AML      | -152.79             | -54.14    | -169.05   |  |  |
| 1BA4      | -186.59             | -65.48    | -181.57   |  |  |
| 1IYT      | -188.37             | -83.14    | -176.62   |  |  |
| 1Z0Q      | -134.31             | -64.92    | -171.67   |  |  |

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in QUANTA using the CHARMM22 force field are summarized as follows, and were calculated with the solvent removed:

|           | Energies (kcal/mol) |           |           |  |  |
|-----------|---------------------|-----------|-----------|--|--|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |  |  |
| 1AMB      | -314.52             | -270.43   | -132.28   |  |  |
| 1AMC      | -314.53             | -280.48   | -160.67   |  |  |
| 1AML      | -404.92             | -346.18   | -212.50   |  |  |
| 1BA4      | -420.10             | -369.83   | -206.17   |  |  |
| 1IYT      | -530.26             | -404.59   | -240.00   |  |  |
| 1Z0Q      | -448.37             | -366.93   | -237.08   |  |  |

The gas phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of  $A\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone:

|           | Energies (kcal/mol) |           |                  |
|-----------|---------------------|-----------|------------------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | E <sub>vdw</sub> |
| 1AMB      | -0.79               | 53.93     | -209.47          |
| 1AMC      | -11.92              | 55.13     | -233.99          |
| 1AML      | 142.72              | 92.67     | -172.78          |
| 1BA4      | 91.73               | 61.10     | -169.48          |
| 1IYT      | 52.92               | 55.64     | -200.21          |
| 1Z0Q      | 167.87              | 86.20     | -187.97          |

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows (Used for Tryptophan and 3HAA):

|           | Energies (kcal/mol) |           |           |
|-----------|---------------------|-----------|-----------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |
| 1AMB      | -1.65               | 46.77     | -198.00   |
| 1AMC      | -27.22              | 45.27     | -220.50   |
| 1AML      | 126.29              | 67.92     | -159.13   |
| 1BA4      | 141.41              | 91.81     | -169.50   |
| 1IYT      | 76.65               | 88.19     | -216.55   |
| 1Z0Q      | 121.78              | 72.47     | -185.37   |

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows (Used for Tryptamine):

|           | Energies (kcal/mol) |           |           |
|-----------|---------------------|-----------|-----------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |
| 1AMB      | -0.43               | 46.82     | -206.95   |
| 1AMC      | -19.95              | 52.82     | -226.14   |
| 1AML      | 132.19              | 63.10     | -155.00   |
| 1BA4      | 112.06              | 66.31     | -181.81   |
| 1IYT      | 94.26               | 65.26     | -199.04   |
| 1Z0Q      | 141.51              | 86.36     | -190.99   |

The gas phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of  $A\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 4 and Chapter 5 calculations):

|           | Energies (kcal/mol) |           |           |
|-----------|---------------------|-----------|-----------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |
| 1AMB      | -11.92              | 51.40     | -217.02   |
| 1AMC      | -11.92              | 55.13     | -233.99   |
| 1AML      | 142.72              | 92.67     | -172.78   |
| 1BA4      | 91.73               | 61.10     | -169.48   |
| 1IYT      | 52.92               | 55.64     | -200.21   |
| 1Z0Q      | 167.87              | 86.19     | -187.97   |

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 4 calculations):

|           | Energies (kcal/mol) |           |           |
|-----------|---------------------|-----------|-----------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |
| 1AMB      | 14.39               | 48.15     | -194.23   |
| 1AMC      | -30.43              | 35.97     | -229.64   |
| 1AML      | 119.31              | 69.45     | -171.10   |
| 1BA4      | 126.85              | 71.13     | -163.32   |
| 1IYT      | 149.83              | 76.11     | -207.04   |
| 1Z0Q      | 136.73              | 81.21     | -181.63   |

The gas phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as calculated in Gaussian 09W using the AM1 level of theory (For Chapter 4 and Chapter 5 calculations):

| Conformer |                           |                      |
|-----------|---------------------------|----------------------|
| 1AMB      | -1.074072433<br>-673.990  | Hartree<br>kcal/mol  |
| 1AMC      | -1.082807729<br>-679.472  | Hartrees<br>kcal/mol |
| 1AML      | -1.436624016<br>-901.494  | Hartrees<br>kcal/mol |
| 1BA4      | -1.64754945<br>-1033.852  | Hartrees<br>kcal/mol |
| 1IYT      | -2.174795784<br>-1364.704 | Hartrees<br>kcal/mol |
| 1Z0Q      | -1.286585655<br>-807.344  | Hartrees<br>kcal/mol |

|           | HHQK                |                  |                  |
|-----------|---------------------|------------------|------------------|
|           | Energies (kcal/mol) |                  |                  |
| Conformer | E <sub>tot</sub>    | E <sub>ele</sub> | E <sub>vdw</sub> |
| 1AMB      | 91.02               | 37.71            | -43.34           |
| 1AMC      | 61.45               | 40.54            | -49.48           |
| 1AML      | 109.55              | 40.95            | -7.18            |
| 1BA4      | 86.87               | 34.28            | -29.80           |
| 1IYT      | 58.56               | 28.34            | -28.12           |
| 1Z0Q      | 78.88               | 34.77            | -28.44           |
|           |                     | LVFF             |                  |
|           | Ener                | gies (kcal/      | mol)             |
| Conformer | E <sub>tot</sub>    | E <sub>ele</sub> | E <sub>vdw</sub> |
| 1AMB      | 101.13              | 19.04            | 8.05             |
| 1AMC      | 109.87              | 26.88            | 2.98             |
| 1AML      | 106.79              | 30.38            | 3.68             |
| 1BA4      | 86.30               | 19.00            | -8.86            |
| 1IYT      | 89.33               | 20.41            | 2.77             |
| 1Z0Q      | 142.12              | 30.61            | 26.10            |

The gas phase energies of the isolated LVFF and HHQK regions of A $\beta$  used for calculations in Chapter 5:

|           | HHQK             |             |           |
|-----------|------------------|-------------|-----------|
|           | Ener             | gies (kcal/ | mol)      |
| Conformer | E <sub>tot</sub> | $E_{ele}$   | $E_{vdw}$ |
| 1AMB      | 91.02            | 37.71       | -43.34    |
| 1AMC      | 61.45            | 40.54       | -49.48    |
| 1AML      | 109.55           | 40.95       | -7.18     |
| 1BA4      | 86.87            | 34.28       | -29.80    |
| 1IYT      | 58.56            | 28.34       | -28.12    |
| 1Z0Q      | 78.88            | 34.77       | -28.44    |

The solution phase energies of the isolated LVFF and HHQK regions of A $\beta$  used for calculations in Chapter 5:

|           | LVFF             |              |                  |
|-----------|------------------|--------------|------------------|
|           | Ener             | gies (kcal/ı | mol)             |
| Conformer | E <sub>tot</sub> | $E_{ele}$    | E <sub>vdw</sub> |
| 1AMB      | 101.13           | 19.04        | 8.05             |
| 1AMC      | 109.87           | 26.88        | 2.98             |
| 1AML      | 106.79           | 30.38        | 3.68             |
| 1BA4      | 86.30            | 19.00        | -8.86            |
| 1IYT      | 89.33            | 20.41        | 2.77             |
| 1Z0Q      | 142.12           | 30.61        | 26.10            |

The gas phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone-Gd<sup>3+</sup> calculations):

|           | Energies (kcal/mol) |           |                  |
|-----------|---------------------|-----------|------------------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | E <sub>vdw</sub> |
| 1AMB      | -8.68               | 51.70     | -211.55          |
| 1AMC      | 2.50                | 62.41     | -225.21          |
| 1AML      | 185.65              | 91.31     | -130.54          |
| 1BA4      | 91.71               | 61.14     | -169.55          |
| 1IYT      | 52.92               | 55.72     | -200.26          |
| 1Z0Q      | 163.45              | 81.15     | -171.67          |

The solution phase energies of the 1AMB, 1AMC, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone-Gd<sup>3+</sup> calculations):

|           | Energies (kcal/mol) |           |                  |
|-----------|---------------------|-----------|------------------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | E <sub>vdw</sub> |
| 1AMB      | 7.95                | 51.88     | -211.92          |
| 1AMC      | 10.31               | 64.67     | -204.04          |
| 1AML      | 154.12              | 80.68     | -135.70          |
| 1BA4      | 128.32              | 82.05     | -169.65          |
| 1IYT      | 55.18               | 71.63     | -220.50          |
| 1Z0Q      | 137.04              | 77.26     | -173.19          |

The gas phase energies of the 1AMB, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of A $\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone-A $\beta$  calculations):

|           | Energies (kcal/mol) |           |                  |
|-----------|---------------------|-----------|------------------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | E <sub>vdw</sub> |
| 1AMB      | -11.78              | 55.28     | -211.70          |
| 1AML      | 185.65              | 91.31     | -130.54          |
| 1BA4      | 91.71               | 61.14     | -169.55          |
| 1IYT      | 52.92               | 55.72     | -200.26          |
| 1Z0Q      | 163.45              | 81.15     | -181.05          |

The solution phase energies of the 1AMB, 1AML, 1BA4, 1IYT, and 1Z0Q conformers of  $A\beta$  as optimized in MOE using the CHARMM22 force field are summarized as follows and were measured with a constrained protein backbone (For Chapter 6 solapsone calculations):

|           | Energies (kcal/mol) |           |           |
|-----------|---------------------|-----------|-----------|
| Conformer | E <sub>tot</sub>    | $E_{ele}$ | $E_{vdw}$ |
| 1AMB      | 7.95                | 51.88     | -211.92   |
| 1AML      | 154.12              | 80.68     | -135.70   |
| 1BA4      | 128.32              | 82.05     | -169.65   |
| 1IYT      | 55.18               | 71.63     | -220.50   |
| 1Z0Q      | 137.04              | 77.26     | -173.19   |

### Appendix 7: Analogues of 3-Hydroxyanthranilic Acid

Test-08

3-hydroxy-2-

(methylamino)benzoic

acid

NHMe

OH

Test-12

соон

Test-03

2-amino-3-mercaptobenzoic acid



Test-11

2-amino-3-(1Htetrazol-5-yl)phenol

NH

Test-16

2-amino-3-

 $NH_2$ 

OН

hydroxybenzenesulfonic acid hydroxyphenylphosphonic

N=N

N.





Test-17 2-amino-3-

acid

PO<sub>3</sub>H<sub>2</sub>

NH<sub>2</sub>

OH

Test-09 3-hydroxy-2-(phenylamino)benzoic acid



Test-14 2-amino-3hydroxybenzamide



Test-18

2-amino-3',5'-difluorobiphenyl-3,4'-diol





2-amino-3-chlorophenol

Test-10

2-(benzylamino)-3hydroxybenzoic acid



Test-15

2-amino-3hydroxybenzenesulfonamide



Test-19

2'-amino-2,4-difluorobiphenyl-3,3'-diol

 $H_2N$ 

OH



Test-20

2-amino-3-(2,2,2-trifluoro-1hydroxyethyl)phenol

Test-21 2-amino-3-fluorophenol



Test-23 2-amino-3-hydroxybenzonitrile



Test-24 3-methylbenzene-1,2-diol





Test-26 3-methyl-2-(methylamino)phenol





Test-27 3-methyl-2-(phenylamino)phenol



 $NH_2$ OH

Test-28

2-(benzylamino)-3methylphenol



Test-29 Test-30 Test-31 Test-32 2-chloro-6-methylaniline N-(2-amino-3-2-amino-3-3-methylbenzene-1,2methylphenyl)methan methylbenzenethiol diamine esulfonamide  $NH_2$ NH<sub>2</sub>  $NH_2$  $NH_2$ NH  $NH_2$ SH CI C Test-33 Test-34 Test-35 Test-36 1-(2-amino-3-N<sup>1</sup>, N<sup>2</sup>, 3-trimethylbenzene-N<sup>1</sup>,6-dimethylbenzene-3-fluorobenzene-1,2methylphenyl)urea 1,2-diamine diamine 1,2-diamine  $NH_2$ NHMe NHMe NH<sub>2</sub> ЧИ NH<sub>2</sub> NHMe  $NH_2$  $NH_2$ O Test-40 Test-37 Test-38 Test-39 3-fluoro-2-4-methyl-2-5-methyl-2-2-(thiophen-2-yl)phenol (phenylamino)phenol (phenylamino)phenol (phenylamino)phenol NHPh NHPh NHPh OH OH ОН ΟH Test-41 Test-42 Test-43 Test-44 2-methyl-N-phenylaniline N<sup>1</sup>-phenylbenzene-2-methyl-6-2-(diphenylamino)phenol (phenylamino)phenol 1,2-diamine NHPh NHPh NPh<sub>2</sub> NHPh ΟН  $NH_2$ OH Test-45 Test-46 Test-47 Test-48 N-(2-(phenylamino)phenyl) 2-(phenylamino)benzenethiol 2-chloro-N-phenylaniline 2-azido-N-phenylaniline methanesulfonamide NHPh NHPh NHPh NHPh ŇH N<sub>3</sub> SH 0=S ;;



# **Appendix 8: BBXB Protein Energies**

|                 | Energy (kcal/mol) |               |               |
|-----------------|-------------------|---------------|---------------|
| Protein         | Total             | Van der Waals | electrostatic |
| Αβ              | -188.37           | -176.62       | -83.14        |
| AChE            | -11824.15         | -3505.07      | -11006.67     |
| $\alpha_1$ -ACT | -2535.93          | -2571.00      | -815.11       |
| Αροε4           | -4771.46          | -870.30       | -4652.69      |
| B7-1            | -1235.34          | -1364.49      | -387.79       |
| BHMT            | -13535.79         | -4781.19      | -11386.05     |
| C1qA            | -13234.02         | -5566.68      | -10374.84     |
| ICAM-1          | -1119.97          | -1258.12      | -462.30       |
| IFN-γ           | -12827.01         | -3611.30      | -11148.04     |
| IL-1βCE         | -7775.87          | -1526.68      | -7483.63      |
| IL-4            | -962.15           | -954.61       | -294.30       |
| IL-12           | -2430.07          | -2807.22      | -768.53       |
| IL-13           | -388.29           | -554.99       | -79.10        |
| MIP-1α          | -1832.98          | -2179.97      | -625.66       |
| ΜΙΡ-1β          | -1996.41          | -2273.27      | -654.33       |
| NEP             | -20607.56         | -4580.47      | -19329.89     |
| RANTES          | -1634.97          | -690.39       | -1634.48      |
| S100β           | -977.29           | -1054.54      | -481.74       |
| SDF-1           | -2190.99          | -302.72       | -2254.47      |
| Transferrin     | -3289.34          | -3436.47      | -1067.03      |

## Appendix 9: Analogues of NCE-0217

Analogues of NCE-0217 used in the QSAR





























ΗΟ



































O<sub>2</sub>N



O<sub>2</sub>N

ŃН



















179









H₃CS











'nн

٧Н



190



218

H₃CϘ

191



230

200



235















N

236

ΗΟ









н

/ NH

303

332

















но

H<sub>2</sub>N







342







353







QSAR predictions of activity for test compounds of biindoles
























# Appendix 10: Library of Known Drugs

| abacavir suflate           | amcinonide                  |
|----------------------------|-----------------------------|
| abciximab                  | amikacin sulfate            |
| acarbose                   | amiloride hydrochloride     |
| acebutolol hydrochloride   | aminocaproic acid           |
| acetaminophen              | aminophylline               |
| acetylcysteine             | amiodarone hydrochloride    |
| acetylsalicylic acid (ASA) | amitriptyline hydrochloride |
| acitretin                  | amlodipine besylate         |
| acyclovir                  | amobarbital sodium          |
| adapalene                  | amoxicillin trihydrate      |
| adenosine                  | amphotericin B              |
| alendronate                | ampicillin                  |
| alfacalcidol               | amprenavir                  |
| alfentanil hydrochloride   | amsacrine                   |
| alfuzosin                  | anagrelide hydrochloride    |
| alginic acid               | anakinra                    |
| alitetinoin                | anastrozole                 |
| allopurinol                | ancestim                    |
| alpha tocopherol           | anthralin                   |
| alprazolam                 | aprotinin                   |
| alprostadil                | articaine hydrochloride     |
| altretamine                | ascorbic acid               |
| aluminum hydroxide         | atenolol                    |
| amantadine hydrochloride   | atorvastatin calcium        |

| atovaquone                     | bismuth subsalicylate                 |
|--------------------------------|---------------------------------------|
| atracurium besylate            | bisoprolol fumarate                   |
| atropine sulfate               | bleomycin sulfate                     |
| attapulgite, activated         | bosentan                              |
| aurothioglucose                | botulinum toxin type A                |
| azatadine maleate              | bovine lipid extract surfactant       |
| azathioprine                   | bretylium tosylate                    |
| azithromycin                   | bromazepam                            |
| bacampicillin hydrochloride    | bromocriptine mesylate                |
| bacitracin                     | brompheniramine maleate               |
| baclofen                       | budesonide                            |
| basiliximab                    | bumetanide                            |
| beclomethasone dipropionate    | bupivacaine hydrochloride             |
| benazepril                     | bupropion hydrochloride               |
| benzocaine                     | buserelin                             |
| benzoyl peroxide               | buspirone hydrochloride               |
| benztropine mesylate           | busulfan                              |
| beractant                      | butalbital                            |
| betamethasone acetate          | butorphanol tartrate                  |
| betamethasone sodium phosphate | butyl methoxydibenzoylmethane (Parsol |
| bethanechol chloride           |                                       |
| bezafibrate                    |                                       |
| bicalutamide                   |                                       |
| biperiden hydrochloride        |                                       |
| bisacodyl                      |                                       |
|                                |                                       |

| cantharidin              | celecoxib                        |
|--------------------------|----------------------------------|
| capecitabine             | cephalexin                       |
| capsaicin                | cetirizine hydrochloride         |
| captopril                | cevonorgesterl/ethinyl estradiol |
| carbamazepine            | chloral hydrate                  |
| carboplatin              | chlorambucil                     |
| carisoprodol             | chloramphenicol                  |
| carmustine               | chlordiazepoxide hydrochloride   |
| carvedilol               | chlorhexidine acetate            |
| cascara                  | chloroprocaine hydrochloride     |
| caspofungin acetate      | chloroquine phosphate            |
| cefaclor                 | chlorphenesin                    |
| cefadroxil               | chlorpheniramine maleate         |
| cefazolin sodium         | chlorpromazine hydrochloride     |
| cefepime hydrochloride   | chlorpropamide                   |
| cefixime                 | chlortetracycline hydrochloride  |
| cefotaxime sodium        | chlorthalidone                   |
| cefotetan disodium       | cholecalciferol                  |
| cefoxitin sodium         | cholestyramine resin             |
| cefprozil                | choline salicylate               |
| ceftazidime              | ciazepam                         |
| ceftazidime pentahydrate | ciclopirox olamine               |
| ceftizoxime sodium       | cilazapril                       |
| ceftriaxone sodium       | cimetidine                       |
| cefuroxime sodium        | ciprofloxacin                    |

| ciprofloxacin hydrochloride  | colestipol hydrochloride      |
|------------------------------|-------------------------------|
| cisatracurium besylate       | colistimethate sodium         |
| cisplatin                    | cortisone acetate             |
| citalopram hydrobromide      | crythromycin                  |
| cladribine                   | cyanocobalamin                |
| clarithromycin               | cyclizine lactate             |
| clemastine hydrogen fumarate | cyclobenzaprine hydrochloride |
| clindamycin hydochloride     | cyclophosphamide              |
| clioquinol                   | cycloserine                   |
| clobazam                     | cyclosporine                  |
| clobetasol 17-propionate     | cyproheptadine hydrochloride  |
| clodronate disodium          | cyproterone acetate           |
| clofibrate                   | cytarabine                    |
| clomiphene citrate           | dacarbazine                   |
| clomipramine hydrochloride   | daclizumab                    |
| clonazepam                   | dactinomycin                  |
| clonidine hydrochloride      | dalteparin sodium             |
| clopidogrel bisulfate        | danaparoid sodium             |
| clorazepate dipotassium      | danazol                       |
| clotrimazole                 | dantrolene sodium             |
| cloxacillin sodium           | dapsone                       |
| clozapine                    | daunorubicin                  |
| cocaine hydrochloride        | deferoxamine mesylate         |
| codeine phosphate            | delavirdine mesylate          |
| colchicine                   | desflurane                    |

| desipramine hydrochloride             | docetaxel                 |
|---------------------------------------|---------------------------|
| desloratadine                         | docusate calcium          |
| desmopressin acetate                  | dolasetron mesylate       |
| desonide                              | donepezil hydrochloride   |
| desoximetasone                        | dopamine hydrochloride    |
| dexamphetamine                        | doperidone maleate        |
| diazepam                              | dornase alfa, recombinant |
| diazoxide                             | doxacurium chloride       |
| diclofenac potassium                  | doxazosin                 |
| dicyclomine                           | doxepin hydrochloride     |
| didanosine (ddl)                      | doxercalciferol           |
| didanosine (ddl)                      | doxorubicin hydrochloride |
| diethylpropion hydrochloride          | doxycycline hyclate       |
| diethylstilbestrol sodium diphosphate | doxylamine succinate      |
| diflucortolone valerate               | dronabinol                |
| diflunisal                            | econazole nitrate         |
| digoxin                               | efavirenz                 |
| dihydroergotamine mesylate            | enalapril maleate         |
| dihydrotachysterol                    | enalaprilat               |
| diltiazem hydrochloride               | enflurane                 |
| dimenhydrinate                        | enoxaparin sodium         |
| diphenhydramine                       | entacapone                |
| dipyridamole                          | epinephrine               |
| disopyramide                          | epirubicin hydrochloride  |
| dobutamine hydrochloride              | epoprostenol sodium       |

| eprosartan mesylate           | fenoterol hydrobromide     |
|-------------------------------|----------------------------|
| eptifibatide                  | fentanyl citrate           |
| ergocalciferol (calciferol)   | ferrous sulfate            |
| erythromycin                  | fexofenadine hydrochloride |
| esmolol hydrochloride         | filgrastim                 |
| estradiol                     | finasteride                |
| estramustine sodium phosphate | flavoxate hydrochloride    |
| estrone                       | flecainide acetate         |
| estropipate                   | floctafenine               |
| etanercept                    | fluconazole                |
| ethacrynate sodium            | flucytosine                |
| ethacrynic acid               | fludarabine phosphate      |
| ethambutol hydrochloride      | fludrocortisone acetate    |
| ethinyl estradiol             | flumazenil                 |
| ethopropazine hydrochloride   | flumethasone pivalate      |
| ethosuximide                  | flunarizine hydrochloride  |
| etidronate                    | fluocinonide               |
| etodolac                      | fluorouracil               |
| etoposide                     | fluoxetine hydrochloride   |
| exemestane                    | flupenthixol decanoate     |
| famciclovir                   | fluphenazine decanoate     |
| famotidne                     | flurazepam hydrochloride   |
| felodipine                    | flurbiprofen               |
| fenofibrate (micronized)      | flutamide                  |
| fenoprofen calcium            | fluticasone propionate     |

| fluvastatin sodium        | granisetron hydrochloride  |
|---------------------------|----------------------------|
| fluvoxamine maleate       | griseofulvin               |
| folic acid                | halcinonide                |
| fomepizol                 | halobetasol propionate     |
| fondaparins sodium        | haloperidol                |
| formoterol fumarate       | homosalate                 |
| fosfomycin tromethamine   | hydralazine hydrochloride  |
| fosinopril sodium         | hydrochlorothiazide        |
| fosphenytoin sodium       | hydrocortisone             |
| framycetin sulfate        | hydroquinone               |
| furosemide                | hydroxocobalamin           |
| fusidic acid              | hydroxychloroquine sulfate |
| gabapentin                | hydroxyurea                |
| galantamine hydrobromide  | hydroxyzine hydrochloride  |
| ganciclovir sodium        | hyoscine hydrobromide      |
| ganirelix acetate         | ibuprofen                  |
| gatifloxacin              | ibutilide fumarate         |
| gemcitabine hydrochloride | idarubicin hydrochloride   |
| gemfibrozil               | idoxuridine                |
| gentamicin sulfate        | ifosfamide                 |
| gliclazide                | imatinib mesylate          |
| glyburide                 | imipramine hydrochloride   |
| glycolic acid             | imiquimod                  |
| gonadorelin acetate       | indapamide                 |
| goserelin acetate         | indapamine                 |

| indinavir sulfate           | lepirudin                            |
|-----------------------------|--------------------------------------|
| indomethacin                | letrozole                            |
| iodoquinol                  | leuprolide acetate                   |
| ipecac                      | levodopa                             |
| irbsartan                   | levofloxacin                         |
| irinotecan hydrochloride    | levonorgestrel                       |
| isoflurane                  | levothyroxine sodium                 |
| isoniazid                   | lidocaine                            |
| isoniazid                   | limepiride                           |
| isoproterenol               | lincomycin hydrochloride monohydrate |
| isoproterenol hydrochloride | linezolid                            |
| isosorbide dinitrate        | liothyronine sodium                  |
| isotretinoin                | lisinopril                           |
| itraconazole                | lithium carbonate                    |
| ketamine hydrochloride      | lomustine                            |
| ketoconazole                | loperamide hydrochloride             |
| ketoproen                   | loratadine                           |
| ketorolac tromethamine      | lorazepam                            |
| labetalol hydrochloride     | losartan potassium                   |
| lactulose                   | lovastatin                           |
| lamivudine (3TC)            | loxapine                             |
| lamivudine (3TC)            | l-tryptohan                          |
| lamotrigine                 | magaldrate                           |
| lansoprazole                | magnesium citrate                    |
| leflunomide                 | mannitol                             |

| maprotiline hydrochloride            | methohexital sodium          |
|--------------------------------------|------------------------------|
| mazindol                             | methotrimeprazine maleate    |
| mebendazole                          | methoxamine hydrochloride    |
| mechlorethamine hydrochloride        | methoxsalen                  |
| meclizine hydrochloride              | methsuximide                 |
| medrogestone                         | methyldopa                   |
| medroxypogesterone acetate           | methylphenidate              |
| mefenamic acid                       | methylprednisolone           |
| mefloquine hydrochloride             | methysergide maleate         |
| megestrol acetate                    | metoclopramide hydrochloride |
| meloxicam                            | metolazone                   |
| melphalan                            | metoprolol tartrate          |
| menthol                              | metronidazole                |
| mentronidazole                       | mexiletine hydrochloride     |
| meperidine hydrochloride (pethidine) | miconazole nitrate           |
| mepivacaine hydrochloride            | midazolam hydrochloride      |
| mercaptopurine                       | milrinone lactate            |
| meropenem                            | minocycline hydrochloride    |
| mesoridazine besylate                | minoxidil                    |
| mestranol/norethindrone              | misoprostol                  |
| metformin hydrochloride              | mitomycin                    |
| methadone                            | mitotane                     |
| methenamine mandelate                | mitoxantrone hydrochloride   |
| methimazole                          | mivacurium chloride          |
| methocarbamol                        | moclobemide                  |

| modafinil                  | neomycin sulfate                    |
|----------------------------|-------------------------------------|
| mometasone furoate         | netilmicin sulfate                  |
| montelukast sodium         | nevirapine                          |
| morphine hydrochloride     | niacin                              |
| moxifloxacin hydrochloride | niacinamide                         |
| mupirocin                  | nicotine                            |
| mycophenolate mofetil      | nicoumalone                         |
| nabilone                   | nifedipine                          |
| nabumetone                 | nilutamide                          |
| nadolol                    | nitrazepam                          |
| nadroparin calcium         | nitrofurantion                      |
| nafarelin acetate          | nitroglycerin                       |
| naftifine hydrochloride    | nizatidne                           |
| nalbuphine hydrochloride   | nonoxynol-9                         |
| nalidixic acid             | norelgestromin/ethinyl estradiol    |
| naloxone hydrochloride     | norepinephrine bitartrate           |
| naltexone hydrochloride    | norethindrone                       |
| nandrolone decanoate       | norfloxacin                         |
| naparoxen                  | nortriptyline hydrochloride         |
| naproxen sodium            | nylidrin hydrochloride              |
| naratriptan hydrochloride  | nystatin                            |
| nateglinide                | octocrylene                         |
| nedocromil sodium          | octreotide acetate                  |
| nefazodone hydrochloride   | octyl dimethyl PABA (Padimate O)    |
| nelfinavir                 | octyl methoxycinnamate (Parsol MCX) |

| octyl salicylate                     | pantothenic acid (calcium pantothenate)          |
|--------------------------------------|--------------------------------------------------|
| ofloxacin                            | papaverine hydrochloride                         |
| olanzapine                           | para-aminosalicylate sodium (PAS sodium)         |
| omeprazole magnesium                 | paraldehyde                                      |
| ondansetron                          | paromomycin sulfate                              |
| orciprenaline sulfate                | paroxetine                                       |
| orlistat                             | penicillamine                                    |
| orphenandrine citrate                | penicillin G sodium                              |
| oseltamivir                          | pentamidine isethionate                          |
| oxaprozin                            | pentazocine hydrochloride                        |
| oxazepam                             | pentobarbital sodium                             |
| oxbenzoneterephthalylidene dicamphor | pentostatin                                      |
|                                      | pentoxifylline                                   |
| oxcarbazepine                        | pergolide mesylate                               |
| oxiconazole nitrate                  | pericyazine                                      |
| oxprenolol hydrochloride             | perindopril erbumine                             |
| oxtriphylline                        | perphenazine                                     |
| oxybutynin chloride                  | phenazopyridine hydrochloride                    |
| oxycodone hydrochloride              | phenelzine sulfate                               |
| oxymorphone hydrochloride            | phenobarbital                                    |
| oxytocin                             | nhenovymethyl nenicillin                         |
| paclitaxel                           | nhontormino                                      |
| pamabrom                             | prentermine                                      |
| pamidronate disodium                 | phentolamine mesylate                            |
| pancuronium bromide                  | phenylbenzymidazole sulfonic acid (Parsol<br>HS) |
| pantoprazole sodium                  | phenylbutazone                                   |

| phenylephrine hydrochloride   | prilocaine hydrochloride   |
|-------------------------------|----------------------------|
| phenytoin                     | primaquine phosphate       |
| phytonadione                  | primidone                  |
| pimozide                      | probenecid                 |
| pinaverium bromide            | procainamide hydrochloride |
| pindolol                      | procaine hydrochloride     |
| pioglitzaone                  | procarbazine hydrochloride |
| piperacillin sodium           | prochlorperazine           |
| pipotiazine palmitate         | procyclidine hydrochloride |
| piroxicam                     | proguanil                  |
| pivampicillin                 | promazine hydrochloride    |
| pizotifen                     | promethazine hydrochloride |
| podofilox                     | propafenone hydrochloride  |
| polymyxin B sulfate           | propantheline bromide      |
| polysiloxane/silicone dioxide | propofol                   |
| porfimer sodium               | propoxyphene napsylate     |
| povidone-iodine               | propranolol hydrochloride  |
| pralidoxime chloride          | propylthiouracil           |
| pramipexole dihydrochloride   | protamine sulfate          |
| pravastatin sodium            | pyrantel pamoate           |
| praziquantel                  | pyrazinamide               |
| prazosin hydrochloride        | pyridostigmine bromide     |
| prednisolone                  | pyridoxine hydrochloride   |
| prednisolone sodium phosphate | pyrimethamine              |
| prednisone                    | pyrvinium pamoate          |

| quetiapine fumarate        | rofecoxib                 |
|----------------------------|---------------------------|
| quinapril hydrochloride    | ropinirole hydrochloride  |
| quinidine bisulfate        | ropivacaine hydrochloride |
| quinupristin/dalfopristin  | rosiglitazone             |
| rabavirin                  | salbutamol                |
| rabeprazole                | salicylic acid            |
| rabeprazole sodium         | salmeterol xinafoate      |
| raloxifene hydrochloride   | saquinavir                |
| raltitrexed disodium       | scopolamine               |
| ramipril                   | secobarbital sodium       |
| ranitidie hydrochloride    | selegiline hydrochloride  |
| ranitidine hydrochloride   | selenium sulfide          |
| remifentanil hydrochloride | sertaline hydrochloride   |
| repaglinide                | sertraline                |
| retinol                    | sevelamer hydrochloride   |
| riboflavin                 | sevoflurane               |
| rifabutin                  | sibutramine               |
| rifabutin                  | sildenafil citrate        |
| rifampin                   | silver sulfadizaine       |
| risedronate                | simethicone               |
| risperidone                | simvastatin               |
| ritonavir                  | sirolimus                 |
| rivastigmine tartrate      | slfadiazine               |
| rizatriptan benzoate       | sodium alginate           |
| rocuronium bromide         | sodium arothiomalate      |

| sodium fusidate          | sulfinpyrazone             |
|--------------------------|----------------------------|
| sodium nitroprusside     | sulindac                   |
| sodium phosphates        | sumatriptan succinate      |
| sodium thiosulfate       | tacrolimus                 |
| solapsone                | tamoxifen citrate          |
| somatostatin             | tamsulosin hydrochloride   |
| somatropin               | taxaroten                  |
| sorbitol                 | tazarotene                 |
| sotalol hydrochloride    | tazarotene                 |
| spiramycin               | telmisartan                |
| spironolactone           | temazepam                  |
| spironolactone           | temozolomide               |
| stavudine (d4T)          | teniposide                 |
| stavudine (d4T)          | tenoxicam                  |
| sterculia gum            | terazosin hydrochloride    |
| streptomycin sulfate     | terbinafine hydrochloride  |
| streptomycin sulfate     | terbutaline sulfate        |
| streptozocin             | terbutaline sulfate        |
| strontium chloride       | terconazole                |
| succinylcholine chloride | testosterone               |
| sucralfate               | tetracaine                 |
| sufentanil citrate       | tetracycline hydrochloride |
| sulfamethoxazole         | theophylline               |
| sulfapyridine            | thiamine hydrochloride     |
| sulfasalazine            | thioguanine                |

| thioproperazine mesylate   | triamterene                      |
|----------------------------|----------------------------------|
| thioridazine hydrochloride | triamterene /hydrochlorothiazide |
| thiotepa                   | triclosan                        |
| thiothixene                | triethanolamine salicylate       |
| tiaprofenic acid           | trifluoperazine hydrochloride    |
| ticarcillin disodium       | trifluridine                     |
| ticlipidine hydrochloride  | trifuoperazine hydrochloride     |
| timolol maleate            | trihexyphenidyl hydrochloride    |
| tinzaparin sodium          | trimcinolone                     |
| tioconazole                | trimebutine                      |
| tirofiban hydrochloride    | trimeprazine tartrate            |
| tizanidine                 | trimethoprim                     |
| tobramycin sulfate         | trimipramine maleate             |
| tolbutamide                | trizolam                         |
| tolmetin sodium            | undecylenic acid                 |
| tolnaftate                 | ursodiol                         |
| tolterodine L-tartrate     | valacyclovir hydrochloride       |
| topiramate                 | valganciclovir                   |
| topotecan hydrochloride    | valproic acid                    |
| trandolapril               | valrubicin                       |
| tranexamic acid            | valsartan                        |
| tranylcypromine sulfate    | vancomycin hydrochloride         |
| trazodone hydrochloride    | vasopressin                      |
| tretinion                  | vecuronium bromide               |
| triamcinolone              | venlafaxine                      |

| verapamil hydrochloride | zaleplon         |
|-------------------------|------------------|
| vigabatrin              | zanamivir        |
| vinblastine sulfate     | zidovudine (AZT) |
| vincristine sulfate     | zoledronic acid  |
| vinorelbine tartrate    | zolmitriptan     |
| warfarin sodium         | zopiclone        |
| zafirlukast             | zuclope          |
| zalcitabine (ddC)       |                  |

# Appendix 11: Gas Phase Results of Solapsone-Gd<sup>3+</sup> and Solapsone

For all tables, purple cells indicate cation- $\pi$  interations, blue indicates  $\pi$ - $\pi$  and orange indicates hydrogen bonds

H RB2 RB2 Tyr10 K RB1 RB1 RS1 2 Hbonds H LB2 Q Initial orientation Final Orientation Initial orientation LS1 Final Orientation LB1 LB1 CS Gd<sup>3+</sup> chelates 3 SO<sub>3</sub><sup>-</sup> @ 2 sites each Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ 4 sites (2L + 2R) Total Energy van der Waals electrostatic Total Energy van der Waal electrostatic 206.263 -223.19 91.113 485.772 89.175 -497.51 ΔEs -47.427 ΔEs -64.355 -8.008 -9.946 -62.231 Q Tyr10 Val 18 Glu22 к н Q K RB2 RB1 LB2 LB2 Initial orientation Final Orientation Initial orientation Final Orientation CS RB1 LB2 LB2 Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ ites (2R + 1L) 2 sites each -238.032 86.985 -502.925 -183.091 82.931 -458.915 Total Energy Total Energy van der Waa electrostatic van der Waa electrostatio ΔEs -79.196 -12.136 -67.646 ΔEs -24.255 -16.19 -23.636 H LS1 LB1 LS1 H RS1 RB1 Tyr10 Leu17 Val18 K LS1 LS1 Phe 20 Q Leu17 к Q Initial orientation Final Orientation nitial orientation RS1 RS1 RS2 RB2 CS LS1 RS1 LS1 Final Orientation 2 Hbonds Gd<sup>3+</sup> chelates 2 SO<sub>3</sub> @ Gd<sup>3+</sup> chelates 2 SO<sub>3</sub> @ 5 sites (3L + 2R) 5 sites (2 + 3) Total Energy Total Energy -233.529 -241.321 van der Waals electrostatic 82.133 van der Wa 78.068 -506.181 497.803 electrostatic ΔEs -74.693 ΔEs -82.485 -16.988 -62.524 -21.053 -70.902 Q Leu17 Phe20 Q Leu17 Phe 20 н н RB1 RB1 RS1 Initial orientation LB1 Initial orientation LS1 LB1 LS1 Final Orientation LB1 LB1 LS1 Final Orientatio RS1 RB1 CS RS1 CS Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ 6 sites (3 each) Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ ites (3 each) Total Energy van der Waals electrostatic -224.646 85.647 -491.822 -211.061 89.649 -480.806 Total Energy van der Waals electrostatic -52.225 -9.472 -45.527 -65.81 -13.474 -56.543 ΔEs ΔEs His6 Tyr10 Tyr10 н Q Q LB2 LS1 2Hbond Initial orientatio Final Orientatior RB2 RB2 Initial orientation Final Orientation LB2 LB2 RB2 RS2 RS1 RB2 LB2 LS2 Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ 4 sites (2 each) Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ 4 sites (2 each) Total Energy van der Waals electrostatic 226.003 Total Energy -211.64 89.617 van der Waals electrostatic 87.759 -480.945 499.098 ΔEs ΔEs -67.167 -52.804 -9.504 -63.819 -11.362 -45.666 Val18 Q Leu17 H RS2 Q Tyr10 H LS1 H RS2 к Tyr10 Leu17 Initial orientation Initial orientation LS1 Gd<sup>3+</sup> Final Orientation LS1 LS1 C=O LB2 Final Orientation RS2 LS1 LB2 RS1 LB2 RS1 LB1 LS1 RB2 RS1 LS1 LS2 -CH2 -CH2 Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ 5 sites (3L + 2R) Gd<sup>3+</sup> chelates 2 SO<sub>3</sub><sup>-</sup> @ ites (2 each -235.169 84.987 -505.238 -248.404 77.417 -506.112 Total Energy Total Energy van der Waal electrostatic van der Waal electrostatic -89.568 -21.704 -70.833 ΔEs -76.333 -14.134 ΔEs

Gas phase results of Solapsone-Gd<sup>3+</sup> and the 1AMB conformer of A $\beta$ 

|                                                            | н              | н     | Q    | к          | Leu17   | Phe20            |                                                            | н               | н          | Q           | к     | Leu17 | Phe 20  |
|------------------------------------------------------------|----------------|-------|------|------------|---------|------------------|------------------------------------------------------------|-----------------|------------|-------------|-------|-------|---------|
| Initial orientation                                        | RS1            |       |      | LS2        |         |                  | Initial orientation                                        | LS2             |            |             | RS1   |       |         |
| Final Orientation                                          | RS1            |       |      | RS1        | RS1     | Gd <sup>3*</sup> | Final Orientation                                          | LS1             |            |             | RS1   | LS1   | RS1     |
|                                                            |                |       |      | LS2        | RS2     | LS2              |                                                            |                 |            |             |       |       |         |
|                                                            |                |       |      | -CH2-      |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Gd <sup>3*</sup> chelates 2 SO <sub>3</sub> <sup>*</sup> @ | 5 sites (3R +  | 2L)   |      |            |         |                  | Gd <sup>3</sup> chelates 2 SO <sub>3</sub> @               | 5 sites (3L + 2 | 2R)        |             |       |       |         |
| Total Energy                                               | -228.838       |       |      |            |         |                  | Total Energy                                               | -214.508        |            |             |       |       |         |
| van der Waals                                              | 81.443         |       |      |            |         |                  | van der Waals                                              | 91.245          |            |             |       |       |         |
| electrostatic                                              | -488.473       |       |      |            |         |                  | electrostatic                                              | -485.579        |            |             |       |       |         |
| ΔEs                                                        | -70.002        |       |      |            |         |                  | ΔEs                                                        | -55.672         |            |             |       |       |         |
|                                                            | -17.678        |       |      |            |         |                  |                                                            | -7.876          |            |             |       |       |         |
|                                                            | -53.194        |       |      |            |         |                  |                                                            | -50.3           |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            | н              | н     | Q    | к          | Leu17   |                  |                                                            | н               | н          | Q           | к     | Leu17 | Phe 20  |
| Initial orientation                                        | LS2            |       |      | RS2        | 151     |                  | Initial orientation                                        | RS2             |            |             | LS2   | 157   | 1.01    |
|                                                            |                |       |      | 2          | - 51    |                  | That Offentation                                           | RB2             |            |             | LB2   | LJZ   | LDI     |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L +  | 2R)   |      |            |         |                  | Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (2R +   | 2L + 2L)   |             |       |       |         |
| Total Enormy                                               | - 719 710      |       |      |            |         |                  | Total Energy                                               | -216 515        |            |             |       |       |         |
| van der Waals                                              | 93.365         |       |      |            |         |                  | van der Waals                                              | 84.462          |            |             |       |       |         |
| electrostatic                                              | -490.309       |       |      |            |         |                  | electrostatic                                              | -485.249        |            |             |       |       |         |
| 15                                                         |                |       |      |            |         |                  | 15                                                         |                 |            |             |       |       |         |
| ΔES                                                        | -59.383        |       |      |            |         |                  | ΔES                                                        | -57.679         |            |             |       |       |         |
|                                                            | -55.03         |       |      |            |         |                  |                                                            | -49.97          |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            |                |       | 0    | v          | Pho 20  |                  |                                                            |                 |            | 0           | v     | 10017 | Val18   |
| Initial orientation                                        | LS1            |       | ų.   | RS2        | . ne 20 |                  | Initial orientation                                        |                 | RB2        | ų           | LB2   | Leu1/ | + 01 10 |
| Final Orientation                                          | LS1            |       |      | RS2        | RB2     |                  | Final Orientation                                          | LB2             | RB2        |             |       | RS2   | RB2     |
|                                                            | -              |       |      |            |         |                  |                                                            |                 |            | -           |       | LS2   |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            | -           |       | LB2   |         |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (3L +  | 2R)   |      |            |         |                  | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 3 sites (2L + 1 | 1R)        |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Total Energy                                               | -206.592       |       |      |            |         |                  | Total Energy                                               | -218.66         |            |             |       |       |         |
| van der Waals<br>electrostatic                             | -480.249       |       |      |            |         |                  | van der Waals<br>electrostatic                             | -478.411        |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| ΔEs                                                        | -47.756        |       |      |            |         |                  | ΔEs                                                        | -59.824         |            |             |       |       |         |
|                                                            | -6.437         |       |      |            |         |                  |                                                            | -17.465         |            |             |       |       |         |
|                                                            | -44.97         |       |      |            |         |                  |                                                            | -45.152         |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Initial ariantation                                        | н              | H     | Q    | K          | Leu17   |                  |                                                            |                 |            |             |       |       |         |
| Initial orientation                                        | 152            | LB2   |      | RB2<br>RB2 | 852     |                  |                                                            |                 |            |             |       |       |         |
| indi onentation                                            | 1.52           | -CH2- |      | no.        | RB2     |                  |                                                            |                 |            |             |       |       |         |
|                                                            |                | LS2   |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            |                | -CH-  |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Gd <sup>3+</sup> chelates 2 SO." @                         | 4 sites (2 ea  | ch)   |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Total Energy                                               | -228.906       |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| van der Waals                                              | 83.88          |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| electrostatic                                              | -492.195       |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| ΔEs                                                        | - 70.07        |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            | -15.241        |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            | -56.916        |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            | L              | v     | F    | F          |         |                  |                                                            | L               | v          | F           | F     | His13 |         |
| Initial orientation                                        |                |       | RB2  | LB2        |         |                  | Initial orientation                                        | 007             | LB2        | RB2         |       | 007   |         |
| indi orientation                                           |                |       | TID2 |            |         |                  | This orientation                                           | RS2             |            |             |       | 1102  |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2 + 3 | :)    |      |            |         |                  | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L + 2 | 2R)        |             |       |       |         |
| Total Energy                                               | -191 //85      |       |      |            |         |                  | Total Energy                                               | -212 106        |            |             |       |       |         |
| van der Waals                                              | 92.94          |       |      |            |         |                  | van der Waals                                              | 92.231          |            |             |       |       |         |
| electrostatic                                              | -462.602       |       |      |            |         |                  | electrostatic                                              | -479.733        |            |             |       |       |         |
| ΔEs                                                        | -37 640        |       |      |            |         |                  | AEs                                                        | -52.77          |            |             |       |       |         |
|                                                            | -6.181         |       |      |            |         |                  |                                                            | -6.89           |            |             |       |       |         |
|                                                            | -27.323        |       |      |            |         |                  |                                                            | -44.454         |            |             |       |       |         |
|                                                            |                |       | -    |            | -       |                  |                                                            |                 |            | -           |       |       |         |
|                                                            | L              | v     | F    | F          | Lys16   |                  |                                                            | L               | v          | F           | F     | Asp23 |         |
| Initial orientation                                        |                |       | LB1  | RB1        |         |                  | Initial orientation                                        |                 |            | LB2         | RB2   |       |         |
| Final Orientation                                          | _              |       |      |            | RB1     |                  | Final Orientation                                          |                 |            |             | RB2   | RB2   |         |
| Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> @              | 6 sites - 3 ea | ach   |      |            |         |                  | Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> <sup>-</sup> @ | 5 sites (3L+    | 2R)        |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Total Energy                                               | -196.265       |       |      |            |         |                  | Total Energy                                               | -215.555        |            |             |       |       |         |
| van der Waals                                              | 85.138         |       |      |            |         |                  | van der Waals                                              | 93.234          |            |             |       |       |         |
| electrostatic                                              | -400.540       |       |      |            |         |                  | electrostatic                                              | -450.155        |            |             |       |       |         |
| ΔEs                                                        | -37.429        |       |      |            |         |                  | ΔEs                                                        | -56.719         |            |             |       |       |         |
|                                                            | -13.983        |       |      |            |         |                  |                                                            | -5.887          |            |             |       |       |         |
|                                                            | -25.667        |       |      |            |         |                  |                                                            | -54.876         |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
|                                                            | L              | v     | F    | F          |         |                  |                                                            | L               | v          | F           | F     | Lys16 | Asp23   |
| Initial orientation                                        | -              | RB2   | LB2  |            |         |                  | Initial orientation                                        |                 |            | RB1         | LB1   | 101   | 187     |
| maronentation                                              |                | 1102  | 102  |            |         |                  | . mai orientation                                          |                 |            | <u></u>     |       | LNH   | CS      |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L +  | 2R)   |      |            |         |                  | Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ | 6 sites, 2 ead  | h (R has 2 | SO3 L has 1 | .)    |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| Total Energy                                               | -214.701       |       |      |            |         |                  | Total Energy                                               | -237.856        | * w/       | CH2 of side | chain |       |         |
| electrostatic                                              | -480.931       |       |      |            |         | ++               | electrostatic                                              | -513.324        |            |             |       |       |         |
|                                                            |                |       |      |            |         |                  |                                                            |                 |            |             |       |       |         |
| ΔEs                                                        | -55.865        |       |      |            |         |                  | ΔEs                                                        | - 79.02         |            |             |       |       |         |
|                                                            | -9./26         |       |      |            |         |                  |                                                            | -12.586         |            |             |       |       |         |

|                                                            | L               | v   | F         | F   | HIs13 | Gln15 |                                                            | L               | V   | F | F   | His13 | Lys28 |
|------------------------------------------------------------|-----------------|-----|-----------|-----|-------|-------|------------------------------------------------------------|-----------------|-----|---|-----|-------|-------|
| Initial orientation                                        |                 | LB1 | RB1       |     |       |       | Initial orientation                                        | RB1             |     |   | LB1 |       |       |
| Final Orientation                                          |                 | RB1 | CS        |     | RS1   | RB1   | Final Orientation                                          | RB1             |     |   |     | RS1   | LS1   |
|                                                            |                 |     | LB1       |     |       | CS    |                                                            | RNH             |     |   |     |       | LNH   |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L + 2 | 2R) |           |     |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>*</sup> @ | 6 sites (3 eac  | h)  |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            |                 |     |   |     |       |       |
| Total Energy                                               | -192.333        |     |           |     |       |       | Total Energy                                               | -225.033        |     |   |     |       |       |
| van der Waals                                              | 89.118          |     |           |     |       |       | van der Waals                                              | 87.41           |     |   |     |       |       |
| electrostatic                                              | -454.094        |     |           |     |       |       | electrostatic                                              | -497.616        |     |   |     |       |       |
| AE <sub>2</sub>                                            | 22.407          |     |           |     |       |       | AE <sub>2</sub>                                            | 66 107          |     |   |     |       |       |
| ΔES                                                        | -33.497         |     |           |     |       |       | AES                                                        | -00.197         |     |   |     |       |       |
|                                                            | -10.003         |     |           |     |       |       |                                                            | -11./11         |     |   |     |       |       |
|                                                            | -10.013         |     |           |     |       |       |                                                            | -02.337         |     |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            |                 |     |   |     |       |       |
|                                                            | L               | V   | F         | F   | Gln15 |       |                                                            | L               | V   | F | F   | His13 | Lys28 |
| Initial orientation                                        |                 | RB1 | LB1       |     |       |       | Initial orientation                                        | LB1             |     |   | RB1 |       |       |
| Final Orientation                                          |                 | RB1 | LB1<br>CS |     | CS    |       | Final Orientation                                          | LB1             |     |   | RB1 | LS1   | RS1   |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L + 2 | 2R) |           |     |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3R + 2 | 2L) |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            |                 |     |   |     |       |       |
| Total Energy                                               | -194.654        |     |           |     |       |       | Total Energy                                               | -232.85         |     |   |     |       |       |
| van der Waals                                              | 88.431          |     |           |     |       |       | van der Waals                                              | 88.43           |     |   |     |       |       |
| electrostatic                                              | -452.907        |     |           |     |       |       | electrostatic                                              | -503.133        |     |   |     |       |       |
| AEc                                                        | 3E 010          |     |           |     |       |       | AEc                                                        | 74.014          |     |   |     |       |       |
| ALS                                                        | -55.616         |     |           |     |       |       | ALS                                                        | -74.014         |     |   |     |       |       |
|                                                            | 17.639          |     |           |     |       |       |                                                            | -10.091         |     |   |     |       |       |
|                                                            | -17.028         |     |           |     |       |       |                                                            | -07.834         |     |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            |                 |     |   |     |       |       |
|                                                            | L               | V   | F         | F   | Ala21 | Lys28 |                                                            | L               | V   | F | F   |       |       |
| Initial orientation                                        |                 | KB2 |           | LB2 | 100   | 164   | Initial orientation                                        | RB2             |     |   | LB2 |       |       |
| Final Orientation                                          |                 | KB2 |           | LBZ | LBZ   | 151   | Final Orientation                                          | KB2             |     |   |     |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> @              | 4 sites (2 ead  | :h) |           |     |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> '@             | 5 sites (3L + 2 | R)  |   |     |       |       |
|                                                            |                 | ,   |           |     |       |       |                                                            |                 | ,   |   |     |       |       |
| Total Energy                                               | -216.817        |     |           |     |       |       | Total Energy                                               | -174.26         |     |   |     |       |       |
| van der Waals                                              | 82.737          |     |           |     |       |       | van der Waals                                              | 94.836          |     |   |     |       |       |
| electrostatic                                              | -482.741        |     |           |     |       |       | electrostatic                                              | -449.527        |     |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            |                 |     |   |     |       |       |
| ΔEs                                                        | -57.981         |     |           |     |       |       | ΔEs                                                        | -15.424         |     |   |     |       |       |
|                                                            | -16.384         |     |           |     |       |       |                                                            | -4.285          |     |   |     |       |       |
|                                                            | -47.462         |     |           |     |       |       |                                                            | -14.248         |     |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            |                 |     |   |     |       |       |
|                                                            | L               | v   | F         | F   | Gly25 |       |                                                            | L               | v   | F | F   | Lys28 |       |
| Initial orientation                                        |                 | LB2 |           | RB2 |       |       | Initial orientation                                        | LB2             |     |   | RB2 |       |       |
| Final Orientation                                          |                 |     |           |     | RB2   |       | Final Orientation                                          |                 |     |   | RB2 | RS1   |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L + 2 | 2R) |           |     |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L + 2 | R)  |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            |                 |     |   |     |       |       |
| Total Energy                                               | -209.847        |     |           |     |       |       | Total Energy                                               | -196.093        |     |   |     |       |       |
| van der Waals                                              | 89.957          |     |           |     |       |       | van der Waals                                              | 92.946          |     |   |     |       |       |
| electrostatic                                              | -483.479        |     |           |     |       |       | electrostatic                                              | -469.645        |     |   |     |       |       |
| AFs                                                        | -51 011         |     |           |     |       |       | ΔFs                                                        | - 37 257        |     |   |     |       |       |
|                                                            | -9164           |     |           |     |       |       | 460                                                        | -57.237         |     |   | -   | -     | -     |
|                                                            | -3.104          |     |           |     |       |       |                                                            | -34 366         |     |   |     |       |       |
|                                                            |                 |     |           |     |       |       |                                                            | 54.500          |     |   |     |       |       |

# Gas phase results of Solapsone-Gd $^{3+}$ and the 1AMC conformer of $A\beta$

|                                                            | н           | н     | Q | К | Tyr10 |                                                          | н               | н     | Q | К   | Leu17 | Phe20 |
|------------------------------------------------------------|-------------|-------|---|---|-------|----------------------------------------------------------|-----------------|-------|---|-----|-------|-------|
| Initial orientation                                        | LB2         | RB2   |   |   |       | Initial orientation                                      | RS2             |       |   | LS2 |       |       |
| Final Orientation                                          | LB2         | RB2   |   |   | LS2   | Final Orientation                                        | RB2             |       |   | LS1 | RB2   | LB2   |
|                                                            |             |       |   |   |       |                                                          | RS1             |       |   | 2   |       |       |
|                                                            |             |       |   |   |       |                                                          |                 |       |   |     |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R | & 3L) |   |   |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub>              | @ 6 sites (3L 8 | & 3R) |   |     |       |       |
| Total Energy                                               | -195 765    |       |   |   |       | Total Energy                                             | -207 886        |       |   |     |       |       |
| van der Waals                                              | 104.78      |       |   |   |       | van der Waals                                            | 104.263         |       |   |     |       |       |
| electrostatic                                              | -499.452    |       |   |   |       | electrostatic                                            | -504.147        |       |   |     |       |       |
| A.E.a                                                      | 49 102      |       |   |   |       | AE <sub>2</sub>                                          | 60.224          |       |   |     |       |       |
| ΔES                                                        | -46.105     |       |   |   |       | AES                                                      | -60.224         |       |   |     |       |       |
|                                                            | -5.05       |       |   |   |       |                                                          | -5.507          |       |   |     |       |       |
|                                                            | -50.517     |       |   |   |       |                                                          | -55.212         |       |   |     |       |       |
|                                                            |             |       |   |   |       |                                                          |                 |       |   |     |       |       |
|                                                            | н           | н     | Q | К | Leu17 |                                                          | н               | н     | Q | К   | Leu17 |       |
| Initial orientation                                        | RB2         | LB2   |   |   |       | Initial orientation                                      | LB1             |       |   | RB1 |       |       |
| Final Orientation                                          | RB2         | LB2   |   |   | RB2   | Final Orientation                                        | LB1             |       |   | RS1 | CS    |       |
|                                                            | RS2         | LB2   |   |   | LS1   |                                                          | LB1             |       |   |     |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 4 sites (2L | & 2R) |   |   |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> | @ 6 sites (3L 8 | & 3R) |   |     |       |       |
|                                                            |             |       |   |   |       |                                                          |                 |       |   |     |       |       |
| Total Energy                                               | -201.584    |       |   |   |       | Total Energy                                             | -204.639        |       |   |     |       |       |
| van der Waals                                              | 94.463      |       |   |   |       | van der Waals                                            | 97.662          |       |   |     |       |       |
| electrostatic                                              | -488.395    |       |   |   |       | electrostatic                                            | -500.604        |       |   |     |       |       |
| ΔFs                                                        | -53 922     |       |   |   |       | AEs                                                      | -56 977         |       |   |     |       |       |
|                                                            | -15.367     |       |   |   |       |                                                          | -12.168         |       |   |     |       |       |
|                                                            | -39.46      |       |   |   |       |                                                          | -51.669         |       |   |     |       |       |
|                                                            |             |       |   |   |       |                                                          | ,               |       |   |     |       |       |

|                                                            | н                   | н      | 0 | к    | Tyr10   |       |                                                            | н                  | н     | 0 | к     | Leu17 | Phe20   |                           |
|------------------------------------------------------------|---------------------|--------|---|------|---------|-------|------------------------------------------------------------|--------------------|-------|---|-------|-------|---------|---------------------------|
| Initial orientation                                        | RB1                 | LB1    | ų | ĸ    | 1,110   |       | Initial orientation                                        | RB1                |       | 4 | LB1   | Leur  | THELO   |                           |
| Final Orientation                                          | RB1                 | IB1    |   |      | LB1     |       | Final Orientation                                          | CS                 |       |   | IB1   | CS    | 151     |                           |
|                                                            | CS                  | -CH2-  |   |      |         |       |                                                            |                    |       |   | -CH2- |       |         |                           |
|                                                            |                     | CITZ   |   |      |         |       |                                                            |                    |       |   | CITZ  |       |         |                           |
| Cd <sup>3†</sup> cholotos 250 · @                          | 6 cites (21, 9, 20) |        |   |      |         |       | Cd <sup>3+</sup> cholotos 250 · @                          | E citor (3D 9 31)  |       |   |       |       |         |                           |
| du cherates 2.503 @                                        | O SILES (SE & SK)   |        |   |      |         |       | Gu trierates 2.503 @                                       | 5 SILES (2R & SL)  |       |   |       |       |         |                           |
| Total Enormy                                               | 107.024             |        |   |      |         |       | Total Energy                                               | 108.020            |       |   |       |       |         |                           |
| von der Woole                                              | -197.954            |        |   |      |         |       | upp der Weels                                              | -196.959           |       |   |       |       |         |                           |
| electrostatic                                              | 490 579             |        |   |      | -       |       | electrostatic                                              | -492.027           |       |   |       |       |         |                           |
| electrostatic                                              | -409.376            |        |   |      |         |       | electrostatic                                              | -492.027           |       |   |       |       |         |                           |
| AEc                                                        | 50 373              |        |   |      | _       |       | AEa                                                        | F1 377             |       |   |       |       |         |                           |
| 415                                                        | -30.272             |        |   |      |         |       | 40.5                                                       | -51.277            |       |   |       |       |         |                           |
|                                                            | -9.557              |        |   |      | _       |       |                                                            | 42,002             |       |   |       |       |         |                           |
|                                                            | -40.045             |        |   |      |         |       |                                                            | -45.092            |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        | 0 |      | T 10    | 1     |                                                            |                    |       | 0 |       | 1     | ph - 20 |                           |
| Initial exignation                                         | 101                 | DD1    | ų | ĸ    | 19110   | Leuiz | Initial orientation                                        | 101                | п     | ų | DC1   | Leuiz | Pfiezo  |                           |
| Final Orientation                                          | 151                 | PD1    |   |      | <u></u> | 1 5 1 | Final Orientation                                          | 1.01               |       |   | DC1   | 1.01  | DC1     |                           |
| Final Orientation                                          | 131                 | CC ND1 |   |      | 1.01    | 131   | Final Orientation                                          | LBI                |       |   | DD1   | CC    | 101     |                           |
|                                                            |                     | C3     |   |      | LBI     |       |                                                            | 1.51               |       |   | ND1   | CS    |         |                           |
| a (3t )                                                    |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| Gd <sup></sup> chelates 2 SO <sub>3</sub> @                | 6 sites (3L & 3R)   |        |   |      |         |       | Gd <sup></sup> chelates 2 SO <sub>3</sub> @                | 6 sites (3L & 3R)  |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| Total Energy                                               | -218.345            |        |   |      |         |       | Total Energy                                               | -202.506           |       |   |       |       |         |                           |
| van der Waals                                              | 97.452              |        |   |      |         |       | van der Waals                                              | 99.885             |       |   |       |       |         |                           |
| electrostatic                                              | -506.372            |        |   |      |         |       | electrostatic                                              | -495.451           |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| ΔES                                                        | - /0.683            |        |   |      |         |       | ΔES                                                        | -54.844            |       |   |       |       |         |                           |
|                                                            | -12.3/8             |        |   |      |         |       |                                                            | -9.945             |       |   |       |       |         |                           |
|                                                            | -57.437             |        |   |      |         |       |                                                            | -46.516            |       |   |       |       |         |                           |
|                                                            |                     |        |   |      | -       |       |                                                            |                    |       |   |       | -     |         |                           |
|                                                            |                     |        | 6 |      |         |       |                                                            |                    |       | - |       | 10:17 |         |                           |
| Initial extention                                          | H                   | н      | ų | K    |         |       | Initial axis station                                       | H<br>DC1           | н     | Q | K     | Leu1/ |         |                           |
| Final Orientation                                          | 182                 |        |   | KB2  |         |       | Final Origination                                          | K51                |       |   | 151   | DC4   |         |                           |
| i mai orientation                                          | 182                 |        |   | r/BZ |         |       | rinal Unentation                                           | 851                |       |   | 101   | n21   |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            | KB1                |       |   |       |       |         |                           |
| e alt a construction of the                                | P. 14.2 (mm 7 1     |        |   |      |         |       | C 13t 11                                                   | C -14 10           |       |   |       |       |         |                           |
| Ga chelates 2 203, @                                       | 5 sites (2R & 3L)   |        |   |      |         |       | ud" chelates 2 SO3' @                                      | o sites (3L & 3R)  |       |   |       | -     |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       | -     |         |                           |
| Total Energy                                               | -183.466            |        |   |      |         |       | Total Energy                                               | -205.393           |       |   |       | -     |         |                           |
| van der Waals                                              | 102.853             |        |   |      | _       |       | van der Waals                                              | 99.724             |       |   |       | -     |         |                           |
| electrostatic                                              | -484.495            |        |   |      | _       |       | electrostatic                                              | -497.001           |       |   |       | -     |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| ΔEs                                                        | -35.804             |        |   |      |         |       | ΔEs                                                        | -57.731            |       |   |       |       |         |                           |
|                                                            | -6.977              |        |   |      |         |       |                                                            | -10.106            |       |   |       |       |         |                           |
|                                                            | -35.56              |        |   |      |         |       |                                                            | -48.066            |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            | Н                   | н      | Q | K    | Phe20   |       |                                                            |                    |       |   |       |       |         |                           |
| Initial orientation                                        | RB2                 |        |   | LB2  |         |       |                                                            |                    |       |   |       |       |         |                           |
| Final Orientation                                          | RB2                 |        |   | LB2  | LB1     |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            | RB2                 |        |   | LS2  |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        |   | RS2  | -       |       |                                                            |                    |       |   |       |       |         |                           |
| Gd <sup></sup> chelates 3 SO <sub>3</sub> @                | 6 sites (3L & 2R &  | k 1R)  |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| Iotal Energy                                               | -208.953            |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| van der Waals                                              | 95.955              |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| electrostatic                                              | -496.192            |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| ΔEs                                                        | -61.291             |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            | -13.875             |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            | -47.257             |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            | н                   | н      | Q | К    | Tyr10   |       |                                                            | н                  | н     | Q | К     | Tyr10 | Leu17   |                           |
| Initial orientation                                        |                     | RB2    |   | LB2  |         |       | Initial orientation                                        |                    | LB2   |   | RB2   |       |         |                           |
| Final Orientation                                          | LS2                 | RB2    |   |      | RS2     |       | Final Orientation                                          | RB2                | LS2   |   |       | LB2   | RS2     |                           |
|                                                            | LB2                 | -CH2-  |   |      | RS1     |       |                                                            | RS2                | -CH-  |   |       |       | LS2     |                           |
|                                                            |                     |        |   |      | LS2     |       |                                                            | LS2                | LB2   |   |       |       |         |                           |
|                                                            |                     |        |   |      | RB2     |       |                                                            |                    | -CH2- |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       | -                                                          |                    |       |   |       |       |         |                           |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 3 sites (2R & 2L)   |        |   |      |         |       | Gd <sup>3*</sup> chelates 3 SO <sub>3</sub> <sup>*</sup> @ | 5 sites (2L & 1L & | 2R)   |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| Total Energy                                               | -218.045            |        |   |      |         |       | Total Energy                                               | -229.735           |       |   |       |       |         |                           |
| van der Waals                                              | 86.523              |        |   |      |         |       | van der Waals                                              | 94.325             |       |   |       |       |         |                           |
| electrostatic                                              | -498.937            |        |   |      |         |       | electrostatic                                              | -518.809           |       |   |       |       |         |                           |
|                                                            |                     |        | T |      | _       |       |                                                            |                    |       |   |       |       |         |                           |
| ΔEs                                                        | -70.383             |        |   |      |         |       | ΔEs                                                        | -82.073            |       |   |       |       |         |                           |
|                                                            | -23.307             |        |   |      |         |       |                                                            | -15.505            |       |   |       |       |         |                           |
|                                                            | -50.002             |        |   |      |         |       |                                                            | -69.874            |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            |                     |        |   |      | _       |       |                                                            |                    |       |   |       |       |         |                           |
|                                                            | н                   | н      | Q | к    | Leu17   |       |                                                            | н                  | н     | Q | К     | Tyr10 | Leu17   |                           |
| Initial orientation                                        | RS1                 |        |   | LS2  |         |       | Initial orientation                                        | LS2                |       |   | RS1   |       |         |                           |
| Final Orientation                                          | RS1                 |        |   | LS1  | RS1     |       | Final Orientation                                          | LB1                |       |   | RB1   | LS1   | CS      |                           |
|                                                            |                     |        |   | LS2  |         |       |                                                            | LS1                |       |   | RS1   |       |         |                           |
|                                                            |                     |        |   |      | _       |       |                                                            | LS2                |       |   | 2     | -     |         |                           |
| 2                                                          |                     |        |   |      |         |       | 21                                                         |                    |       |   |       | -     |         |                           |
| Gd <sup>3*</sup> chelates 2 SO <sub>3</sub> <sup>†</sup> @ | 5 sites (2R & 3L)   |        |   |      |         |       | Gd <sup>3</sup> chelates 2 SO <sub>3</sub> @               | 5 sites (2R & 3L)  |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| Total Energy                                               | -207.725            |        |   |      |         |       | Total Energy                                               | -205.009           |       |   |       |       |         |                           |
| van der Waals                                              | 102.109             |        |   |      |         |       | van der Waals                                              | 98.398             |       |   |       |       |         |                           |
| electrostatic                                              | -508.407            |        |   |      |         |       | electrostatic                                              | -497.754           |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| ΔEs                                                        | -60.063             |        | Τ |      |         |       | ΔEs                                                        | -57.347            |       |   |       |       |         |                           |
|                                                            | -7.721              |        | T |      | _       |       |                                                            | -11.432            |       |   |       |       |         |                           |
|                                                            | -59.472             |        |   |      |         |       |                                                            | -48.819            |       |   |       |       |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       | -     |         |                           |
|                                                            |                     |        | - |      |         |       |                                                            |                    |       | - |       | - ··· |         | <b>D</b> <sup>1</sup> (1) |
| totated as to a single                                     | H                   | н      | Q | K    | Phe20   |       | totated at a 1                                             | Н                  | н     | Q | K     | Tyr10 | Leu17   | Phe20                     |
| Initial orientation                                        | LS1                 |        |   | RS2  |         |       | Initial orientation                                        | RS2                |       |   | LS1   |       |         |                           |
| Final Orientation                                          | LS1                 |        |   | KS2  | RB2     |       | Final Orientation                                          | KB1                | RS1   |   | LS1   | KS1   | LS1     | LS1                       |
|                                                            |                     |        |   | 2    |         |       |                                                            |                    |       |   | LB1   |       |         |                           |
| - 1 <sup>3†</sup> 1 1 1                                    |                     |        |   |      |         |       | a 3* 1 1 · · · · ·                                         |                    |       |   |       | -     |         |                           |
| Gd Chelates 2 SO3 @                                        | 5 sites (2R & 3L)   |        |   |      |         |       | Gd <sup></sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @   | ь sites (3L & 3R)  |       |   |       | -     |         |                           |
|                                                            |                     |        |   |      |         |       |                                                            |                    |       |   |       |       |         |                           |
| Iotal Energy                                               | -191.081            |        |   |      | _       |       | Total Energy                                               | -223.142           |       |   |       | -     |         |                           |
| van der Waals                                              | 105.299             |        |   |      |         |       | van der Waals                                              | 97.643             |       |   |       | -     |         |                           |
| electrostatic                                              | -490.172            |        |   |      |         |       | electrostatic                                              | -514.301           |       |   |       |       |         |                           |
| AEa                                                        |                     |        |   |      |         |       | AE <sub>0</sub>                                            |                    |       |   |       | -     |         |                           |
| 41.8                                                       | -43.419             |        |   |      |         |       | ALS                                                        | - /5.48            |       |   |       |       |         |                           |
|                                                            | -4.531              |        |   |      |         |       |                                                            | -12.18/            |       |   |       |       |         |                           |
|                                                            | -41.237             |        |   |      |         |       |                                                            | -65.366            |       |   |       |       |         |                           |

| Initial asia station                                       | L                   | V          | F          | F        | His13 | Ala21 |                                                            | L                   | v          | F          | F          | Val12 | Lys16 |
|------------------------------------------------------------|---------------------|------------|------------|----------|-------|-------|------------------------------------------------------------|---------------------|------------|------------|------------|-------|-------|
| Final Orientation                                          | LB2<br>LB2          | RB2        |            |          | LB2   | RB2   | Final Orientation                                          |                     |            | RB1        | LB1        | RS1   | LB1   |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 4 sites (2L & 2R)   |            |            |          |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 6 sites (3L & 3R)   |            |            |            |       | LS1   |
| Total Energy                                               | -196 509            |            |            |          |       |       | Total Energy                                               | -204.005            |            |            |            |       |       |
| van der Waals                                              | 95.002              |            |            |          |       |       | van der Waals                                              | 93.3                |            |            |            |       |       |
| electrostatic                                              | -475.067            |            |            |          |       |       | electrostatic                                              | -491.278            |            |            |            |       |       |
| ΔEs                                                        | -38.846             |            |            |          |       |       | ΔEs                                                        | -56.343             |            |            |            |       |       |
|                                                            | -26.132             |            |            |          |       |       |                                                            | -42.343             |            |            |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     |            |            |            | lunte |       |
| Initial orientation                                        | RB2                 | LB2        |            |          |       |       | Initial orientation                                        |                     | v          | LB1        | RB1        | LYSIG |       |
| Final Orientation                                          | RB2                 | LB2        |            |          |       |       | Final Orientation                                          |                     |            | LB1<br>RB1 | RS1        | RS1   |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (2R & 3L)   |            |            |          |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (2R & 3L)   |            | ·CH2·      |            |       |       |
| Total Energy                                               | -170.378            |            |            |          |       |       | Total Energy                                               | -213.926            |            |            |            |       |       |
| van der Waals<br>electrostatic                             | 102.679<br>-467.903 |            |            |          |       |       | van der Waals<br>electrostatic                             | 92.888<br>-500.231  |            |            |            |       |       |
| ΔEs                                                        | -22.716             |            |            |          |       |       | ΔEs                                                        | -66.264             |            |            |            |       |       |
|                                                            | -7.151              |            |            |          |       |       |                                                            | -16.942             |            |            |            |       |       |
|                                                            | -10.500             |            |            |          |       |       |                                                            | -51.2,0             |            |            |            |       |       |
|                                                            | L                   | v          | F          | F        |       |       |                                                            | L                   | v          | F          | F          | His13 | Lys16 |
| Initial orientation<br>Final Orientation                   | LB1<br>LB1          | RB1<br>CS  |            |          |       |       | Initial orientation<br>Final Orientation                   | LB2<br>LB2          |            |            | RB2<br>RB2 | LB2   | RS2   |
|                                                            | CS                  |            |            |          |       |       |                                                            | RS2                 |            |            |            | RS2   | RB2   |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (2R & 3L)   |            |            |          |       |       | Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> ' @            | 6 sites (2L & 2L &  | 2R)        |            |            |       |       |
| Total Energy                                               | -182.583            |            |            |          |       |       | Total Energy                                               | -230.053            |            |            |            |       |       |
| van der Waals<br>electrostatic                             | 106.438             |            |            |          |       |       | van der Waals<br>electrostatic                             | 97.692<br>-522.929  |            |            |            |       |       |
| ΔEs                                                        | -34.921             |            |            |          |       |       | ΔEs                                                        | -82.391             |            |            |            |       |       |
|                                                            | -3.392              |            |            |          |       |       |                                                            | -12.138             |            |            |            |       |       |
|                                                            | -35.591             |            |            |          |       |       |                                                            | -73.994             |            |            |            |       |       |
|                                                            | L                   | v          | F          | F        | Tyr10 | His13 |                                                            | L                   | v          | F          | F          |       |       |
| Initial orientation<br>Final Orientation                   | RB1<br>RB1          | LB1<br>CS  |            |          | RB2   | RS1   | Initial orientation<br>Final Orientation                   | RB2<br>RB2          |            |            | LB2<br>LB2 |       |       |
|                                                            |                     |            |            |          | RS2   |       |                                                            |                     |            |            | -          |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (2R & 3L)   |            |            |          |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> @              | 4 sites (2L & 2R)   |            |            |            |       |       |
| Total Energy                                               | -207.366            |            |            |          |       |       | Total Energy                                               | -182.787            |            |            |            |       |       |
| van der Waals                                              | 96.413              |            |            |          |       |       | van der Waals                                              | 105.725             |            |            |            |       |       |
| AE                                                         |                     |            |            |          |       |       | AE                                                         |                     |            |            |            |       |       |
| ΔEs                                                        | -59.704             |            |            |          |       |       | ΔEs                                                        | -35.125<br>-4.105   |            |            |            |       |       |
|                                                            | -45.786             |            |            |          |       |       |                                                            | -31.416             |            |            |            |       |       |
|                                                            |                     |            |            | _        |       |       |                                                            |                     |            |            |            |       |       |
| Initial orientation                                        | L                   | LB2        | RB2        | F        | RB2   |       | Initial orientation                                        | RB1                 | v          | F          | LB1        | LYS16 | HIS13 |
| Final Orientation                                          |                     |            | RB2        |          | -CH2- |       | Final Orientation                                          | RB1<br>RS1          |            |            | LB2        | RS1   | RS1   |
| Gd <sup>3+</sup> chaister 250 . @                          | 5 ritor (20 8, 21)  |            |            |          | RS2   |       | Gd <sup>3+</sup> chalatar 250 ° @                          | 5 ritor (2P 8, 21)  |            |            |            |       |       |
| du chemies 1301 @                                          | S artes (2rt d Sc)  |            |            |          |       |       | Gu Ciences 2003 @                                          | S sites (zit a Sc)  |            |            |            |       |       |
| Total Energy<br>van der Waals                              | -180.092<br>103.516 |            |            |          |       |       | Total Energy<br>van der Waals                              | -211.674<br>94.831  |            |            |            |       |       |
| electrostatic                                              | -479.083            |            |            |          |       |       | electrostatic                                              | -502.584            |            |            |            |       |       |
| ΔEs                                                        | -32.43              |            |            |          |       |       | ΔEs                                                        | -64.012             |            |            |            |       |       |
|                                                            | -30.148             |            |            |          |       |       |                                                            | -53.649             |            |            |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     |            |            |            |       |       |
| Initial orientation                                        | L                   | V<br>RB2   | F<br>LB2   | F        | Glu22 |       | Initial orientation                                        | L<br>LB1            | v          | F          | F<br>RB1   | His13 | Lys16 |
| Final Orientation                                          |                     | RB2        | LB2        |          | LB2   |       | Final Orientation                                          | LB2                 |            |            | RB1<br>CS  | LS1   | LS1   |
|                                                            |                     |            |            |          |       |       |                                                            |                     |            |            | LB1        |       |       |
| Gd* chelates 2 SO <sub>3</sub> @                           | 6 sites (3L & 3R)   |            |            |          |       |       | Gd*" chelates 2 SO <sub>2</sub> @                          | 5 sites (2R & 3L)   |            |            |            |       |       |
| Total Energy<br>van der Waals                              | -185.121            |            |            |          |       |       | Total Energy<br>van der Waals                              | -221.577<br>97.62   |            |            |            |       |       |
| electrostatic                                              | -483.797            |            |            |          |       |       | electrostatic                                              | -516.356            |            |            |            |       |       |
| ΔEs                                                        | -37.459             |            |            |          |       |       | ΔEs                                                        | -73.915             |            |            |            |       |       |
|                                                            | -4.797              |            |            |          |       |       |                                                            | -12.21<br>-67.421   |            |            |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     |            |            |            |       |       |
| Initial orientation                                        | L                   | V          | F PD1      | F        | Gln15 | Glu22 | Initial orientation                                        | L                   | V<br>PP2   | F          | F          |       |       |
| Final Orientation                                          |                     | LB1        | RB1        |          | LB1   | RB1   | Final Orientation                                          |                     | TUDE       |            | LUL        |       |       |
|                                                            |                     |            | CS         |          | CS    |       |                                                            |                     |            |            |            |       |       |
| Gd <sup>2+</sup> chelates 2 SO <sub>2</sub> @              | 4 sites (2L & 2R)   | and Glu22  | @ 2 sites  |          |       |       | Gd <sup>2+</sup> chelates 2 SO₃ @                          | 5 sites (2R & 3L)   |            |            |            |       |       |
| Total Energy                                               | -221.776            |            |            |          |       |       | Total Energy                                               | -168.877            |            |            |            |       |       |
| electrostatic                                              | -527.107            |            |            |          |       |       | electrostatic                                              | -466.488            |            |            |            |       |       |
| ΔEs                                                        | -74.114             |            |            |          |       |       | ΔEs                                                        | -21.215             |            |            |            |       |       |
|                                                            | -13.295             |            |            |          |       |       |                                                            | -5.768              |            |            |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     |            |            |            |       |       |
|                                                            | L                   | v          | F          | F        | Gin15 |       |                                                            | L                   | v          | F          | F          |       |       |
| Final Orientation                                          |                     | RB1<br>RB1 | LB1<br>LB1 |          | CS    |       | Final Orientation                                          |                     | LB2        |            | RB2        |       |       |
|                                                            |                     | CS         | CS         |          |       |       |                                                            |                     |            |            |            |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 4 sites (3L & 1R)   | and Glu22  | @ 2 sites  |          |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>†</sup> @ | 5 sites (2R & 3L)   |            |            |            |       |       |
| Total Energy                                               | -210.708            |            |            |          |       |       | Total Energy                                               | -176.797            |            |            |            |       |       |
| van der Waals<br>electrostatic                             | 99.258<br>-506.405  |            |            |          |       |       | van der Waals<br>electrostatic                             | 107.292<br>-475.654 |            |            |            |       |       |
| ΔEs                                                        | -63.046             |            |            |          |       |       | ΔEs                                                        | -29.135             |            |            |            |       |       |
|                                                            | -10.572             |            |            |          |       |       |                                                            | -2.538              |            |            |            |       |       |
|                                                            | -37.47              |            |            |          |       |       |                                                            | -20.719             |            |            |            |       |       |
|                                                            | L                   | v          | F          | F        |       |       |                                                            | L                   | v          | F          | F          |       |       |
| Initial orientation<br>Final Orientation                   |                     |            | RB2<br>RB2 | LB2      |       |       | Final Orientation                                          | LB2<br>LB2          | RB2        | RB2        |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     | RS2<br>LB2 |            |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     |            |            |            |       |       |
| unerates 2 SU <sub>2</sub> @                               | o sittes (SL & 2R ) | a inj      |            |          |       |       | Ju unerattes 3 SU <sub>2</sub> @                           | ⇒ antes (ZK & 3L)   |            |            |            |       |       |
| Total Energy<br>van der Waals                              | -187.245<br>106.971 |            |            |          |       |       | Total Energy<br>van der Waals                              | -211.151<br>102.366 |            |            |            |       |       |
| electrostatic                                              | -487.614            |            |            |          |       |       | electrostatic                                              | -509.153            |            |            |            |       |       |
| ΔEs                                                        | -39.583             |            |            |          |       |       | ΔEs                                                        | -63.489             |            |            |            |       |       |
|                                                            | -2.859              |            |            |          |       |       |                                                            | -7.464<br>-60.218   |            |            |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     |            |            |            |       |       |
| Initial orientation                                        | L                   | v          | F<br>LR2   | F<br>RR2 |       |       | Initial orientation                                        | L<br>RR7            | v          | F<br>IR2   | F          |       |       |
| Final Orientation                                          |                     |            |            |          |       |       | Final Orientation                                          |                     | RS2        | LB2        |            |       |       |
|                                                            |                     |            |            |          |       |       |                                                            |                     | кв2        |            |            |       |       |
| Gd ** chelates 2 SO <sub>2</sub> * @                       | 5 sites (2R & 3L)   |            |            |          |       |       | Gd <sup>™</sup> chelates 2 SO <sub>2</sub> `@              | 5 sites (3R & 2L)   | and Glu22  | @1site     |            |       |       |
| Total Energy                                               | -169.798            |            |            |          |       |       | Total Energy                                               | -234.218            |            |            |            |       |       |
| electrostatic                                              | -474.804            |            |            |          |       |       | electrostatic                                              | -531.47             |            |            |            |       |       |
| ΔEs                                                        | -22.136             |            |            |          |       |       | ΔEs                                                        | -86.556             |            |            |            |       |       |
|                                                            | -0.159              |            | - T        |          |       |       |                                                            | -7.556              |            |            |            |       |       |

|                                                            | H                  | H          | Q        | К          |       |        | la bial asia atabian                            | H                   | H          | Q        | K            | Tyr10  |              |            |
|------------------------------------------------------------|--------------------|------------|----------|------------|-------|--------|-------------------------------------------------|---------------------|------------|----------|--------------|--------|--------------|------------|
| Final Orientation                                          | LB2<br>LB2         | RB2        |          |            |       |        | Final Orientation                               | NDZ                 | LB2<br>LB2 |          |              | RS2    |              |            |
| Gd <sup>a+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (2F        | 8 3L)      |          |            | _     |        | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @ | 4 sites (2F         | 8, 2L)     |          |              |        |              |            |
| Total Foergy                                               | 7 462              |            |          |            | _     |        | Total Foergy                                    | .27 892             |            |          |              |        |              |            |
| van der Waals                                              | 136.518            |            |          |            | _     |        | van der Waals                                   | 132.759             |            |          |              |        |              |            |
| electrostatic                                              | -380.100           |            |          |            |       |        | erectrostatic                                   | -414.175            |            |          |              |        |              |            |
| ΔEs                                                        | -28.031            |            |          |            |       |        | ΔEs                                             | -63.385             |            |          |              |        |              |            |
|                                                            | -31.841            |            |          |            |       |        |                                                 | - 59.908            |            |          |              |        |              |            |
|                                                            | н                  | н          | Q        | к          | Tyr10 | Leu17  |                                                 | н                   | н          | Q        | к            | Tyr10  | Leu17        | lle31      |
| Initial orientation                                        | LB1                | RB1        |          |            | 181   | IB1    | Initial orientation                             | RB1<br>RS1          | LB1<br>CS  |          |              | R51    | 881          | RB1        |
|                                                            | LS1                |            |          |            |       |        |                                                 |                     | LB1        |          |              |        | CS           | CS<br>I R1 |
|                                                            |                    |            |          |            |       |        |                                                 |                     |            |          |              |        |              |            |
| Gd <sup>a+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ | 7 sites (3L        | & 2R & 2R) |          |            |       |        | Gd** chelates 2 SO3 @                           | 6 sites (3L         | & 3R)      |          |              |        |              |            |
| Total Energy<br>van der Waals                              | -79.292<br>131.807 |            |          |            |       |        | Total Energy<br>yan der Waals                   | -54.43<br>129.965   |            |          |              |        |              |            |
| electrostatic                                              | -467.126           |            |          |            | _     |        | electrostatic                                   | -435.194            |            |          |              |        |              |            |
| ΔEs                                                        | -114.785           |            |          |            |       |        | ΔEs                                             | -89.923             |            |          |              |        |              |            |
|                                                            | -112.861           |            |          |            | _     |        |                                                 | -80.929             |            |          |              |        |              |            |
|                                                            |                    |            |          |            |       |        |                                                 |                     |            |          |              |        |              |            |
| Initial orientation                                        | H<br>LB2           | н          | Q        | K<br>RB2   |       |        | Initial orientation                             | H<br>RB2            | н          | Q        | K<br>LB2     | Tyr10  |              |            |
| Final Orientation                                          | LB2                |            |          | RB2        |       |        | Final Orientation                               | RB2<br>RB2          |            |          |              | RB2    |              |            |
| Gd <sup>3+</sup> chelates 2 SO。 @                          | 5 sites (28        | 8.3L)      |          |            | _     |        | Gd <sup>3+</sup> chelates 2 SO。 @               | 5 sites (2F         | (& 3L)     |          |              |        |              |            |
| Total Feerry                                               | 0 000              |            |          |            |       |        | Total Energy                                    | 52 224              |            |          |              |        |              |            |
| van der Waals                                              | 131.525            |            |          |            |       |        | van der Waals                                   | 129.286             |            |          |              |        |              |            |
| electrostatic                                              | -394.301           |            |          |            |       |        | electrostatic                                   | -429.627            |            |          |              |        |              |            |
| ΔEs                                                        | -44.376            |            |          |            |       |        | ΔEs                                             | -88.827             |            |          |              |        |              |            |
|                                                            | -40.036            |            |          |            | _     |        |                                                 | -75.362             |            |          |              |        |              |            |
|                                                            | н                  | н          | 0        | ĸ          | Val17 |        |                                                 | н                   | н          | 0        | ĸ            | Phe 20 |              |            |
| Initial orientation                                        | LB1                |            | -        | RB1        |       |        | Initial orientation                             | RB1                 |            | -        | LB1          |        |              |            |
| mail orientation                                           | LB1                |            |          | CS (-CH2-) | LB1   |        | rinal orientation                               |                     |            |          | -CH2-        | LB1    |              |            |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 6 sites (3L        | & 3R)      |          |            | (C=O) |        | Gd <sup>8+</sup> chelates 2 SO <sub>8</sub> ` @ | 6 sites (3L         | & 3R)      |          | LNH          |        |              |            |
| Total Energy                                               | -34.66             |            |          |            |       |        | Total Energy                                    | -60.487             |            |          |              |        |              |            |
| van der Waals<br>electrostatic                             | 129.853            |            |          |            | -     |        | van der Waals<br>electrostatic                  | 126.233             |            |          |              |        |              |            |
| AE-                                                        |                    |            |          |            | -     |        | AT-                                             |                     |            |          |              |        |              |            |
| ans                                                        | - 70.153           |            |          |            |       |        | Ars                                             | -95.98<br>-12.497   |            |          |              |        |              |            |
|                                                            | -67.344            |            |          |            |       |        |                                                 | -87.121             |            |          |              |        |              |            |
|                                                            | н                  | н          | 0        | к          |       |        |                                                 | н                   | н          | 0        | К            | Val12  |              |            |
| Initial orientation                                        | LS1                |            |          | R51<br>R51 |       |        | Initial orientation                             | RS1<br>RS1          |            |          | LS1          | 65     |              |            |
| Chentation                                                 | 01                 |            |          | 131        |       |        | The Orientation                                 | 101                 |            |          | 2            |        |              |            |
| Gd <sup>a+</sup> chelates 2 SO <sub>3</sub> ' @            | 6 sites (3L        | & 3R)      |          |            |       |        | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @ | 6 sites (3L         | & 3R)      |          |              |        |              |            |
| Total Energy                                               | -74.527            |            |          |            | _     |        | Total Energy                                    | -23.292             |            |          |              |        |              |            |
| van der Waals<br>electrostatic                             | 135.243            |            |          |            |       |        | van der Waals<br>electrostatic                  | 134.324             |            |          |              |        |              |            |
| 40-                                                        | 440.07             |            |          |            |       |        | AC-                                             | 50 305              |            |          |              |        |              |            |
| AP3                                                        | -3.487             |            |          |            |       |        | ars                                             | -4.406              |            |          |              |        |              |            |
|                                                            | -111.39            |            |          |            |       |        |                                                 | -57.266             |            |          |              |        |              |            |
|                                                            | н                  | н          | Q        | к          |       |        |                                                 | н                   | н          | Q        | к            | Val12  |              |            |
| Initial orientation<br>Final Orientation                   | RS2<br>RS2         |            |          | L51<br>L51 | _     |        | Initial orientation<br>Final Orientation        | LS1<br>LS1          |            |          | RS2<br>RB1   | LS1    |              |            |
|                                                            |                    |            |          |            |       |        |                                                 |                     |            |          | LS1*<br>LB1* | C+O    |              |            |
|                                                            |                    |            |          |            | _     |        |                                                 |                     |            |          | -CH2-        |        |              |            |
| Gd <sup>a+</sup> chelates 2 SO <sub>a</sub> ' @            | 4 sites (3L        | & 1R)      |          |            |       |        | Gd³+ chelates 2 SO <sub>3</sub> ` @             | 6 sites (3L         | & 3R)      |          | 101          |        |              |            |
| Total Energy                                               | -44.994            |            |          |            |       |        | Total Energy                                    | -68.856             |            |          |              |        |              |            |
| van der Waals<br>electrostatic                             | 136.427            |            |          |            | -     |        | van der Waals<br>electrostatic                  | 130.098<br>-465.387 |            |          |              |        |              |            |
| AFs                                                        | .80.487            |            |          |            |       |        | AFs                                             | .104 349            |            |          |              |        |              |            |
|                                                            | -2.303             |            |          |            |       |        |                                                 | -8.632              |            |          |              |        |              |            |
|                                                            | -60.773            |            |          |            |       |        |                                                 | -111.122            |            |          |              |        |              |            |
|                                                            | н                  | н          | Q        | к          | Val12 |        |                                                 | н                   | н          | Q        | к            | Val 12 |              |            |
| Initial orientation<br>Final Orientation                   | LS2<br>LS1         |            |          | R51<br>R51 | LS2   |        | Initial orientation<br>Final Orientation        | RS1<br>RS1          |            |          | LS2<br>LS2   | RS1    |              |            |
|                                                            |                    |            |          |            | RS2   |        |                                                 |                     |            |          | RS1<br>-CH2- |        |              |            |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ` @            | 5 sites (2P        | R & 3L)    |          |            |       |        | Gd³⁺ chelates 2 SO <sub>3</sub> ` @             | 4 sites (2L         | & 2R)      |          |              |        |              |            |
| Total Energy                                               | -89.716            |            |          |            |       |        | Total Energy                                    | -60.352             |            |          |              |        |              |            |
| van der Waals<br>electrostatic                             | -471.853           |            |          |            |       |        | van der Waals<br>electrostatic                  | 129.737<br>-440.576 |            |          |              | -      |              |            |
| ΔEs                                                        | -125.209           |            |          |            |       |        | ΔEs                                             | -95.845             |            |          |              |        |              |            |
|                                                            | -9.128<br>-117.588 |            |          |            |       |        |                                                 | -8.993<br>-86.311   |            |          |              |        |              |            |
|                                                            |                    |            |          |            |       |        |                                                 |                     |            |          |              |        |              |            |
| Initial principal                                          | L                  | v          | F        | F          | -     |        | Initial origonation                             | L                   | v          | F        | F            | Lys16  | Asp23        |            |
| Final Orientation                                          |                    |            | 1102     | LDZ        | -     |        | Final Orientation                               |                     |            | LS1      | ND2          | LS1    | LB2          |            |
|                                                            |                    |            |          |            |       |        |                                                 |                     |            | L82      |              | 2      |              |            |
| Gd*" chelates 2 SO3`@                                      | 5 sites (2F        | 8 31.)     |          |            |       |        | Gd <sup>®</sup> chelates 2 SO <sub>3</sub> `⊕   | 6 sites (3L         | & 3R)      |          |              | -      |              |            |
| Total Energy<br>van der Waalr                              | 13.099             |            |          |            |       |        | Total Energy                                    | -70.149             |            |          |              |        |              |            |
| electrostatic                                              | -377.041           |            |          |            |       |        | electrostatic                                   | -456.32             |            |          |              |        |              |            |
| ΔEs                                                        | ·22.394            |            |          |            | -     |        | ΔEs                                             | -105.642            |            |          |              |        |              |            |
|                                                            | -0.284             |            |          |            |       |        |                                                 | -6.672<br>-102.055  |            |          |              | -      |              |            |
|                                                            |                    |            |          |            |       |        |                                                 |                     |            |          |              |        |              |            |
| Initial orientation                                        | L                  | v          | F<br>RB1 | F<br>LB1   | Lys16 | Asp23  | Initial orientation                             | L                   | v          | F<br>LB1 | F<br>RB1     |        |              |            |
| Final Orientation                                          |                    |            | RB1      | CS         | RS1   | CS CH2 | Final Orientation                               |                     |            |          | -            |        |              |            |
| - dt - c                                                   |                    |            |          | *D1        | nD1   |        | - dt - 1 - 1                                    |                     |            |          |              | -      |              |            |
| Gd <sup>-*</sup> chelates 2 SO <sub>3</sub> <sup>+</sup> @ | 6 sites (3L        | & 3R)      |          |            |       |        | Gd** chelates 2 SOa @                           | 5 sites (2F         | 1 & 3L)    |          |              |        |              |            |
| Total Energy<br>van der Waals                              | -55.202<br>126.534 |            |          |            |       |        | Total Energy<br>van der Waals                   | 20.025              |            |          |              |        |              |            |
| electrostatic                                              | -454.143           |            |          |            | -     |        | electrostatic                                   | -367.064            |            |          |              | -      |              |            |
| ΔEs                                                        | -90.695            |            |          |            |       |        | ΔEs                                             | -15.468             |            |          |              |        |              |            |
|                                                            | -12.194            |            |          |            |       |        |                                                 | -3.301<br>-12.799   |            |          |              |        |              |            |
|                                                            |                    |            |          |            |       |        |                                                 |                     |            |          |              |        |              |            |
| Initial orientation                                        | L<br>LB2           | v          | F<br>RB2 | F          |       |        | Initial orientation                             | L<br>RB2            | v          | F<br>LB2 | F            | His13  | Lys16        | Ala30      |
| Final Orientation                                          |                    |            |          | L52        |       |        | Final Orientation                               | RB2                 |            |          | RS2<br>LS2   | RB2    | RB2<br>-CH2- | RB2        |
| Gd <sup>ie</sup> chelster 200 - T                          | 5 cit (            | 0.21       |          |            |       |        | Gdit cheirere and i -                           | A rit /             | 8.30'      |          | LB2          |        | -            |            |
|                                                            | 5 and 5 (2)        |            |          |            |       |        | ou crienties 230 <sub>8</sub> @                 | 2 and 5 (21         | - un and   |          |              |        |              |            |
| Total Energy<br>van der Waals                              | -26.14<br>127.539  |            |          |            |       |        | Total Energy<br>van der Waals                   | -60.285<br>123.812  |            |          |              |        |              |            |
| electrostatic                                              | -407.102           |            |          |            |       |        | electrostatic                                   | -440.733            |            |          |              |        |              |            |
| ΔEs                                                        | -61.633            |            |          |            |       |        | ΔEs                                             | -95.778             |            |          |              |        |              |            |
|                                                            | -52.837            |            |          |            |       |        |                                                 | -86.468             |            |          |              |        |              |            |

## Gas phase results of Solapsone-Gd $^{3+}$ and the 1AML conformer of $A\beta$

|                                                                                                              | н                                                    | н           | 0 | К   |       |      |      |      |      |       |                                                                                                                     | н                                                                   | н          | 0 | К   |      |       |
|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------|---|-----|-------|------|------|------|------|-------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------|---|-----|------|-------|
| Initial orientation                                                                                          | RB2                                                  | LB2         | _ |     |       |      |      |      |      |       | Initial orientation                                                                                                 | LB2                                                                 | RB2        |   |     |      |       |
| Final Orientation                                                                                            | RB2                                                  |             |   |     |       |      |      |      |      |       | Final Orientation                                                                                                   | LB2                                                                 |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     | 152                                                                 |            |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @                                                              | 5 sites (2F                                          | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @                                                                     | 4 sites (2L                                                         | & 2R)      |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
| Total Energy                                                                                                 | -82.819                                              |             |   |     |       |      |      |      |      |       | Total Energy                                                                                                        | -121.23                                                             |            |   |     |      |       |
| electrostatic                                                                                                | -418.894                                             |             |   |     |       |      |      |      |      |       | electrostatic                                                                                                       | -445.844                                                            |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
| ΔEs                                                                                                          | -24.366                                              |             |   |     |       |      |      |      |      |       | ΔEs                                                                                                                 | -62.777                                                             |            |   |     |      |       |
|                                                                                                              | -25.618                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -52.568                                                             |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
|                                                                                                              | н                                                    | н           | 0 | ĸ   |       |      |      |      |      |       |                                                                                                                     | н                                                                   | н          | 0 | ĸ   |      |       |
| Initial orientation                                                                                          | LB1                                                  | RB1         | _ |     |       |      |      |      |      |       | Initial orientation                                                                                                 | RB1                                                                 | LB1        | _ |     |      |       |
| Final Orientation                                                                                            | LS1                                                  | RS1         |   |     |       |      |      |      |      |       | Final Orientation                                                                                                   | RS1                                                                 | RS1        |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     | KB1        |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @                                                              | 6 sites (3L                                          | & 3R)       |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @                                                          | 5 sites (2R                                                         | & 3L)      |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
| van der Waals                                                                                                | -127.595                                             |             |   |     |       |      |      |      |      |       | van der Waals                                                                                                       | -108.338                                                            |            |   |     |      |       |
| electrostatic                                                                                                | -454.871                                             |             |   |     |       |      |      |      |      |       | electrostatic                                                                                                       | -437.455                                                            |            |   |     |      |       |
| AT-                                                                                                          | 60.443                                               |             |   |     |       |      |      |      |      |       | AE-                                                                                                                 | 40.005                                                              |            |   |     |      |       |
| 141.5                                                                                                        | -6.987                                               |             |   |     |       |      |      |      |      |       | 113                                                                                                                 | -49.883                                                             |            |   |     |      |       |
|                                                                                                              | -61.595                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -44.179                                                             |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
|                                                                                                              | н                                                    | н           | Q | к   |       |      |      |      |      |       |                                                                                                                     | н                                                                   | н          | Q | к   |      |       |
| Initial orientation                                                                                          | RS1                                                  | LS1         |   |     |       |      |      |      |      |       | Initial orientation                                                                                                 | LS1                                                                 | RS1        |   |     |      |       |
| Final Orientation                                                                                            | RS1                                                  | LS1         |   |     |       |      |      |      |      |       | Final Orientation                                                                                                   | LS1                                                                 | RS1        |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @                                                              | 6 sites (3L                                          | & 3R)       |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @                                                          | 5 sites (2R                                                         | & 3L)      |   |     |      |       |
| Total Energy                                                                                                 | -117 131                                             |             |   |     |       |      |      |      |      |       | Total Energy                                                                                                        | -103 617                                                            |            |   |     |      |       |
| van der Waals                                                                                                | 104.871                                              |             |   |     |       |      |      |      |      |       | van der Waals                                                                                                       | 108.071                                                             |            |   |     |      |       |
| electrostatic                                                                                                | -446.028                                             |             |   |     |       |      |      |      |      |       | electrostatic                                                                                                       | -437.607                                                            |            |   |     |      |       |
| ΔEs                                                                                                          | -53 678                                              |             |   |     |       |      |      |      |      |       | ΔEs                                                                                                                 | -45 164                                                             |            |   |     |      |       |
|                                                                                                              | -3.686                                               |             |   |     |       |      |      |      |      |       |                                                                                                                     | -0.486                                                              |            |   |     |      |       |
|                                                                                                              | -52.752                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -44.331                                                             |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
|                                                                                                              | н                                                    | н           | Q | к   | Tyr10 |      |      |      |      |       |                                                                                                                     | н                                                                   | н          | Q | к   | Gly9 | Tyr10 |
| Initial orientation                                                                                          | RB2                                                  | 0.04        |   | LB2 | 000   |      |      |      |      |       | Initial orientation                                                                                                 | LB2                                                                 | 154        |   | RB2 | 000  | 102   |
| Final Orientation                                                                                            | RBZ                                                  | 851         |   | LBZ | RS2   |      |      |      |      |       | Final Orientation                                                                                                   | LBZ                                                                 | LSI        |   |     | -NH  | RS2   |
|                                                                                                              |                                                      |             |   |     | -CH2- |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      | -CH2- |
| Gd <sup>1+</sup> chelates 2 SO <sub>3</sub> ' @                                                              | 5 sites (2F                                          | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @                                                                     | 4 sites (2L                                                         | & 2R)      |   |     |      | RB2   |
| Total Energy                                                                                                 | -139.151                                             |             |   |     |       |      |      |      |      |       | Total Energy                                                                                                        | -143.452                                                            |            |   |     |      | -CH-  |
| van der Waals                                                                                                | 93.593                                               |             |   |     |       |      |      |      |      |       | van der Waals                                                                                                       | 91.58                                                               |            |   |     |      |       |
| electrostatic                                                                                                | -469.703                                             |             |   |     |       |      |      |      |      |       | electrostatic                                                                                                       | -469.77                                                             |            |   |     |      |       |
| ΔEs                                                                                                          | -80.698                                              |             |   |     |       |      |      |      |      |       | ΔEs                                                                                                                 | -84.999                                                             |            |   |     |      |       |
|                                                                                                              | -14.964                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -16.977                                                             |            |   |     |      |       |
|                                                                                                              | -76.427                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -76.494                                                             |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
|                                                                                                              | н                                                    | Н           | Q | K   | Asp1  | Glu3 | His6 | Asp7 | Gly9 | Tyr10 |                                                                                                                     | н                                                                   | н          | Q | К   | His6 | Gly9  |
| Final Orientation                                                                                            | RB2                                                  | RB2         |   | 182 | 182   | 182  | 151  | 182  | 182  | RB2   | Final Orientation                                                                                                   |                                                                     | LBZ        |   | RB2 | RS1  | RB2   |
|                                                                                                              |                                                      |             |   |     | -NH3+ |      |      | C=O  |      | RS2   |                                                                                                                     |                                                                     |            |   |     |      | -NH-  |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      | -CH2- |                                                                                                                     |                                                                     |            |   |     |      |       |
| Gd <sup></sup> chelates 2 SO <sub>3</sub> @                                                                  | 5 sites (2F                                          | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup></sup> chelates 2 SO <sub>3</sub> @                                                                         | 5 sites (2R                                                         | & 3L)      |   |     |      |       |
| Total Energy                                                                                                 | -144.663                                             |             |   |     |       |      |      |      |      |       | Total Energy                                                                                                        | -103.562                                                            |            |   |     |      |       |
| van der Waals                                                                                                | 92.843                                               |             |   |     |       |      |      |      |      |       | van der Waals                                                                                                       | 101.296                                                             |            |   |     |      |       |
| electrostatic                                                                                                | -405.521                                             |             |   |     |       |      |      |      |      |       | electrostatic                                                                                                       | -430.701                                                            |            |   |     |      |       |
| ΔEs                                                                                                          | -86.21                                               |             |   |     |       |      |      |      |      |       | ΔEs                                                                                                                 | -45.109                                                             |            |   |     |      |       |
|                                                                                                              | -15.714                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -7.261                                                              |            |   |     |      |       |
|                                                                                                              | -70.043                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -43.303                                                             |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
| Initial orientation                                                                                          | H<br>152                                             | H<br>RS2    | Q | К   |       |      |      |      |      |       | Initial orientation                                                                                                 | H<br>RS2                                                            | H<br>152   | Q | К   |      |       |
| Final Orientation                                                                                            | LS1                                                  | RB1         |   |     |       |      |      |      |      |       | Final Orientation                                                                                                   | RS1                                                                 | LS1        |   |     |      |       |
|                                                                                                              |                                                      | RS2         |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     | LS2        |   |     |      |       |
|                                                                                                              |                                                      | 101         |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     | LUL        |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @                                                   | 6 sites (3L                                          | & 3R)       |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @                                                                     | 5 sites (2R                                                         | & 3L)      |   |     |      |       |
| Tabel Factory                                                                                                | 433 300                                              |             |   |     |       |      |      |      |      |       | Tabel Frances                                                                                                       | 407.070                                                             |            |   |     |      |       |
| van der Waals                                                                                                | 102.375                                              |             |   |     |       |      |      |      |      |       | van der Waals                                                                                                       | 102.832                                                             |            |   |     |      |       |
| electrostatic                                                                                                | -452.891                                             |             |   |     |       |      |      |      |      |       | electrostatic                                                                                                       | -440.322                                                            |            |   |     |      |       |
| ΔEs                                                                                                          | -64 935                                              |             |   |     |       |      |      |      |      |       | ΔEs                                                                                                                 | -49 773                                                             |            |   |     |      |       |
| -                                                                                                            | -6.182                                               |             |   |     |       |      |      |      |      |       | -                                                                                                                   | -5.725                                                              |            |   |     |      |       |
|                                                                                                              | -59.615                                              |             |   |     |       |      |      |      |      |       |                                                                                                                     | -47.046                                                             |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
|                                                                                                              | Н                                                    | Н           | Q | к   | _     |      |      |      |      |       |                                                                                                                     | Н                                                                   | н          | Q | К   |      |       |
| Initial orientation                                                                                          | RS1                                                  | LS2<br>RS1  |   |     |       |      |      |      |      |       | Initial orientation                                                                                                 | LS2                                                                 | RS1<br>RS1 |   |     |      |       |
|                                                                                                              |                                                      | LS2         |   |     |       |      |      |      |      |       |                                                                                                                     | 2                                                                   | RB1        |   |     |      |       |
| culture                                                                                                      | F -14 - 1                                            | 0.71        |   |     |       |      |      |      |      |       | culture                                                                                                             | F -14 - 11                                                          | 0.001      |   |     |      |       |
| Gu chelates 2 SO3 @                                                                                          | o sites (2F                                          | (d. 3L)     |   |     |       |      |      |      |      |       | Gu chelates 2 SO3" @                                                                                                | o sites (2L                                                         | 04.3K)     |   |     |      |       |
| Total Energy                                                                                                 | -96.799                                              |             |   |     |       |      |      |      |      |       | Total Energy                                                                                                        | -130.154                                                            |            |   |     |      |       |
| van der Waals                                                                                                | 104                                                  |             |   |     |       |      |      |      |      |       | van der Waals                                                                                                       | 102.547                                                             |            |   |     |      |       |
| ciecuostatic                                                                                                 | -+27.323                                             |             |   |     |       |      |      |      |      |       | ciecciosidiic                                                                                                       | -400.94                                                             |            |   |     |      |       |
| ΔEs                                                                                                          | -38.346                                              |             |   |     |       |      |      |      |      |       | ΔEs                                                                                                                 | -71.701                                                             |            |   |     |      |       |
|                                                                                                              | -4.557                                               |             |   |     |       |      |      |      |      |       |                                                                                                                     | -6.01                                                               |            |   |     |      |       |
|                                                                                                              |                                                      |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
|                                                                                                              |                                                      |             | 6 |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            | - |     |      |       |
| Initial orientation                                                                                          | LS1                                                  | n<br>RS2    | ų | ĸ   |       |      |      |      |      |       | Initial orientation                                                                                                 | RS2                                                                 | LS1        | ų | N   |      |       |
| Final Orientation                                                                                            | LS1                                                  | RS2         |   |     |       |      |      |      |      |       | Final Orientation                                                                                                   | RS1                                                                 | LS1        |   |     |      |       |
|                                                                                                              | LB2                                                  | LS2<br>1 51 |   |     |       |      |      |      |      |       |                                                                                                                     | LS1                                                                 |            |   |     |      |       |
|                                                                                                              | LIC                                                  |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
|                                                                                                              | LBZ                                                  |             |   |     |       |      |      |      |      |       |                                                                                                                     |                                                                     |            |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @                                                   | 5 sites (2F                                          | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @                                                          | 5 sites (2R                                                         | & 3L)      |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> · @                                                              | 5 sites (2F                                          | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @                                                          | 5 sites (2R                                                         | & 3L)      |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @<br>Total Energy<br>van der Waals                  | -123.114<br>94.718                                   | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @<br>Total Energy<br>van der Waals                         | 5 sites (2R<br>-124.556<br>102.651                                  | & 3L)      |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @<br>Total Energy<br>van der Waals<br>electrostatic | -123.114<br>94.718<br>-451.398                       | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>•</sup> @<br>Total Energy<br>van der Waals<br>electrostatic        | 5 sites (2R<br>-124.556<br>102.651<br>-452.962                      | & 3L)      |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> @<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs       | -123.114<br>94.718<br>-451.398                       | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>•</sup> @<br>Total Energy<br>van der Waals<br>electrostatic<br>AFs | 5 sites (28<br>-124.556<br>102.651<br>-452.962                      | & 3L)      |   |     |      |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> " @<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs     | -123.114<br>94.718<br>-451.398<br>-64.661<br>-13.839 | t & 3L)     |   |     |       |      |      |      |      |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> · @<br>Total Energy<br>van der Waals<br>electrostatic                   | 5 sites (2R<br>-124.556<br>102.651<br>-452.962<br>-66.103<br>-5.906 | & 3L)      |   |     |      |       |

### Gas phase results of Solapsone-Gd $^{3+}$ and the 1BA4 conformer of $A\beta$

|                                                            |                    | V          | F             | F          | His14 | Glu22 |                                                            | 1                   | V            | F         | F    | GIn15 | Glu22 |
|------------------------------------------------------------|--------------------|------------|---------------|------------|-------|-------|------------------------------------------------------------|---------------------|--------------|-----------|------|-------|-------|
| Initial orientation<br>Final Orientation                   | LB2<br>LB2         | LS2        | RB2           | •          | LS1   | RB2   | Initial orientation<br>Final Orientation                   | RB2<br>RB2          | RS2          | LB2       |      | LB2   | LB2   |
| cd <sup>3+</sup> -b-1-b 200 - @                            | C -14 (2)          | 8 20)      |               |            |       |       | C4 <sup>3+</sup> -1-1-1-200 - 00                           | 5 alter ( 20        | LS2          |           |      |       |       |
| Gd <sup></sup> chelates 2 SO <sub>3</sub> @                | 6 sites (3L        | & 3R)      |               |            | _     |       | Gd <sup></sup> chelates 2 SO <sub>3</sub> @                | 5 sites (2R         | t & 3L)      |           |      |       |       |
| Total Energy                                               | -141.471           |            |               |            |       |       | Total Energy                                               | -112.926            |              |           |      |       |       |
| electrostatic                                              | -469.084           |            |               |            |       |       | electrostatic                                              | -434.898            |              |           |      |       |       |
| ΔEs                                                        | -83.018            |            |               |            |       |       | ΔEs                                                        | -54.473             |              |           |      |       |       |
|                                                            | -9.448             |            |               |            |       |       |                                                            | -9.844              |              |           |      |       |       |
|                                                            | 75.000             |            |               |            |       |       |                                                            | 41.022              |              |           |      |       |       |
|                                                            | L                  | v          | F             | F          | Gln15 | Glu22 |                                                            | L                   | v            | F         | F    | Gin15 | Glu22 |
| Initial orientation                                        |                    | LB1<br>CS  | RB1           |            | 152   | cs    | Initial orientation                                        |                     | RB1          | LB1       |      | CS.   | 152   |
|                                                            |                    |            |               |            | RB1   |       |                                                            |                     |              | CS        |      |       | RS1   |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R        | & 3L)      |               |            | RS1   |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> @              | 6 sites (3L         | & 3R) and    | Glu22 @ 1 | site |       |       |
| Total Connect                                              | 112.000            |            |               |            |       |       | Tabel Canada                                               | 100.470             |              |           |      |       |       |
| van der Waals                                              | 95.241             |            |               |            |       |       | van der Waals                                              | 101.993             |              |           |      |       |       |
| electrostatic                                              | -432.619           |            |               |            |       |       | electrostatic                                              | -470.459            |              |           |      |       |       |
| ΔEs                                                        | -53.633            |            |               |            |       |       | ΔEs                                                        | -75.025             |              |           |      |       |       |
|                                                            | -39.343            |            |               |            |       |       |                                                            | -77.183             |              |           |      |       |       |
|                                                            |                    |            |               |            |       |       |                                                            |                     |              |           |      |       |       |
| Initial orientation                                        | L<br>LB2           | V<br>RB2   | F             | F          | His14 | GIn15 | Initial orientation                                        | L<br>RB2            | V<br>LB2     | F         | F    |       |       |
| Final Orientation                                          | RS2                |            |               |            | RS2   | RB2   | Final Orientation                                          | RB2                 | LB2          |           |      |       |       |
|                                                            |                    |            |               |            |       |       |                                                            |                     |              |           |      |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R        | & 3L)      |               |            |       |       | Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ | 7 sites (3R         | t & 2L & 2L) |           |      |       |       |
| Total Energy                                               | -111.113           |            |               |            |       |       | Total Energy                                               | -128.899            |              |           |      |       |       |
| van der Waals<br>electrostatic                             | 97.968<br>-438.131 |            |               |            |       |       | van der Waals<br>electrostatic                             | 100.406<br>-445.858 |              |           |      |       |       |
| AFs                                                        | -52 66             |            |               |            |       |       | AEs                                                        | -70 446             |              |           |      |       |       |
|                                                            | -10.589            |            |               |            |       |       |                                                            | -8.151              |              |           |      |       |       |
|                                                            | -44.855            |            |               |            |       |       |                                                            | -52.582             |              |           |      |       |       |
|                                                            | 1                  | v          | F             | F          |       |       |                                                            | 1                   | v            | F         | F    |       |       |
| Initial orientation                                        | LB2                | v          | r             | RB2        |       |       | Initial orientation                                        | RB2                 | v            | · ·       | LB2  |       |       |
| Final Orientation                                          |                    |            |               | RB2        |       |       | Final Orientation                                          |                     |              |           | LB2  |       |       |
| cd <sup>3+</sup> -h-1-h 2.00 - @                           | E altara (Ol       | 0.001      |               |            |       |       | Cd <sup>3+</sup> -b-laber 200 - @                          | F altera (20        | 8 213        |           |      |       |       |
| su cherates 2 SO3 @                                        | 5 sites (2L        | α эπ)      |               |            |       |       | Gu cherates 2 503 @                                        | 5 sites (2h         | ( & SL)      |           |      |       |       |
| Total Energy<br>van der Waals                              | -89.166<br>102.459 |            |               |            |       |       | Total Energy<br>van der Waals                              | -64.469<br>106.748  |              |           |      |       |       |
| electrostatic                                              | -419.116           |            |               |            |       |       | electrostatic                                              | -397.596            |              |           |      |       |       |
| ΔEs                                                        | - 30.713           |            |               |            |       |       | ΔEs                                                        | -6.016              |              |           |      |       |       |
|                                                            | -6.098             |            |               |            |       |       |                                                            | -1.809              |              |           |      |       |       |
|                                                            |                    |            |               |            |       |       |                                                            |                     |              |           |      |       |       |
|                                                            | L                  | v          | F             | F          |       |       |                                                            | L                   | v            | F         | F    | His14 |       |
| Initial orientation<br>Final Orientation                   | RB1<br>RB1         |            |               | LB1<br>LB2 |       |       | Initial orientation<br>Final Orientation                   | LB1<br>LB1          |              |           | RB1  | LS1   |       |
|                                                            | CS                 |            |               |            |       |       |                                                            | CS                  |              |           |      | LB1   |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R        | & 3L)      |               |            |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L         | & 3R)        |           |      | LINH  |       |
| Total Energy                                               | -89 511            |            |               |            |       |       | Total Energy                                               | -102 772            |              |           |      |       |       |
| van der Waals                                              | 102.625            |            |               |            |       |       | van der Waals                                              | 99.134              |              |           |      |       |       |
| electrostatic                                              | -420.863           |            |               |            |       |       | electrostatic                                              | -425.454            |              |           |      |       |       |
| ΔEs                                                        | -31.058            |            |               |            |       |       | ΔEs                                                        | -44.319             |              |           |      |       |       |
|                                                            | -27.587            |            |               |            |       |       |                                                            | -32.178             |              |           |      |       |       |
|                                                            |                    |            |               |            |       |       |                                                            |                     |              |           |      |       |       |
| Initial orientation                                        | L                  | V<br>LB2   | F<br>RB2      | F          | Glu22 |       | Initial orientation                                        | L                   | V<br>RB2     | F<br>LB2  | F    | Gln15 |       |
| Final Orientation                                          |                    | LS2        |               |            | LS2   |       | Final Orientation                                          |                     | RB2          |           |      | RS2   |       |
| A.                                                         |                    | 602        |               |            | 852   |       |                                                            |                     |              |           |      | nDZ   |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L        | & 3R) and  | Glu22 @ 1 sit | e          |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> @              | 5 sites (2R         | t & 3L)      |           |      |       |       |
| Total Energy                                               | -113.386           |            |               |            |       |       | Total Energy                                               | -100.875            |              |           |      |       |       |
| electrostatic                                              | -439.467           |            |               |            |       |       | electrostatic                                              | -428.22             |              |           |      |       |       |
| ΔEs                                                        | -54 933            |            |               |            |       |       | ΔEs                                                        | -42 422             |              |           |      |       |       |
|                                                            | -8.189             |            |               |            |       |       |                                                            | -3.98               |              |           |      |       |       |
|                                                            | -40.191            |            |               |            |       |       |                                                            | -54.944             |              |           |      |       |       |
|                                                            | L                  | v          | F             | F          |       |       |                                                            | L                   | v            | F         | F    | Ala21 |       |
| Initial orientation                                        |                    | LB2        |               | RB2        |       |       | Initial orientation                                        | 863                 | RB2          |           | LB2  | 803   |       |
| ai orientation                                             |                    | 602        |               |            |       |       |                                                            | 102                 |              |           |      | nDZ   |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L        | & 3R)      |               |            |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L         | & 3R)        |           |      |       |       |
| Total Energy                                               | -92.015            |            |               |            |       |       | Total Energy                                               | -71.138             |              |           |      |       |       |
| electrostatic                                              | -408.383           |            |               |            |       |       | electrostatic                                              | -402.969            |              |           |      |       |       |
| ΔEs                                                        | - 33.562           |            |               |            |       |       | ΔEs                                                        | -12.685             |              |           |      |       |       |
|                                                            | -5.313             |            |               |            |       |       |                                                            | -3.582              |              |           |      |       |       |
|                                                            | -15.10/            |            |               |            |       |       |                                                            | -9.093              |              |           |      |       |       |
|                                                            | L                  | v          | F             | F          | Ala21 |       |                                                            | L                   | v            | F         | F    | His14 |       |
| Initial orientation                                        | LB1                | RB1<br>RP1 |               |            | ~     |       | Initial orientation                                        | RB1                 | LB1          |           |      | 101   |       |
| mai orientation                                            |                    | 101        |               |            | 5     |       |                                                            | RS1                 | 101          |           |      | -51   |       |
| Gd <sup>3+</sup> chelates 3 SO、 @                          | 7 sites (3I        | & 2R & 2R1 |               |            | _     |       | Gd <sup>3+</sup> chelates 2 SO. <sup>-</sup> @             | 6 sites (3I         | & 3R)        |           |      |       |       |
|                                                            |                    |            |               |            |       |       |                                                            |                     |              |           |      |       |       |
| rotal Energy<br>van der Waals                              | -99.926<br>102.601 |            |               |            |       |       | fotal Energy<br>van der Waals                              | -141.52<br>97.757   |              |           |      |       |       |
| electrostatic                                              | -430.295           |            |               |            |       |       | electrostatic                                              | -458.762            |              |           |      |       |       |
| ΔEs                                                        | -41.473            |            |               |            |       |       | ΔEs                                                        | -83.067             |              |           |      |       |       |
|                                                            | -5.956<br>-37.019  |            |               |            |       |       |                                                            | -10.8               |              |           |      |       |       |
|                                                            |                    |            |               |            |       |       |                                                            |                     |              |           |      |       |       |

|                                                            | н            | н          | 0  | к        | Leu17 |                                                            | н           | н          | 0 | к         | Leu17 |
|------------------------------------------------------------|--------------|------------|----|----------|-------|------------------------------------------------------------|-------------|------------|---|-----------|-------|
| Initial orientation                                        | RB2          | н<br>182   | ų  | ĸ        | Leuiz | Initial orientation                                        | 182         | RB2        | ų | ĸ         | Leuiz |
| Final Orientation                                          | RB2          | LB2        |    |          | RB2   | Final Orientation                                          | LB2         |            |   |           | RB2   |
|                                                            |              | LB2        |    |          | RS2   |                                                            |             |            |   |           | RS2   |
| cu3t                                                       | F -: 1 ( ) F | 0.0.0.41)  |    |          |       | C 1 <sup>3</sup> † -1 - 1                                  | C -: 1 (D)  | 0.00.0.40) |   |           |       |
| Gd <sup></sup> chelates 3 SO <sub>3</sub> @                | 5 sites (2F  | & 2L & 1L) |    |          |       | Gd <sup></sup> chelates 3 SO <sub>3</sub> @                | 6 sites (3L | &2R & 1R)  |   |           |       |
| Total Energy                                               | -141.591     |            |    |          |       | Total Energy                                               | -141.608    |            |   |           |       |
| van der Waals                                              | 89.125       |            |    |          |       | van der Waals                                              | 95.575      |            |   |           |       |
| electrostatic                                              | -456.242     |            |    |          |       | electrostatic                                              | -460.869    |            |   |           |       |
| AFs                                                        | -44 35       |            |    |          |       | AFs                                                        | -44 367     |            |   |           |       |
|                                                            | -14.012      |            |    |          |       | 11.0                                                       | -7.562      |            |   |           |       |
|                                                            | -32.257      |            |    |          |       |                                                            | - 36.884    |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
|                                                            | н            | н          | 0  | ĸ        |       |                                                            | н           | н          | 0 | ĸ         | Glv9  |
| Initial orientation                                        | RB1          | LB1        | ų. |          |       | Initial orientation                                        | LB1         | RB1        | 4 |           | Giys  |
| Final Orientation                                          | RB1          |            |    |          |       | Final Orientation                                          | LB2         | RB1        |   |           | LB2   |
|                                                            | RB1          |            |    |          |       |                                                            | LB2         | CS         |   |           | C=O   |
|                                                            | -CH2-        |            |    |          |       |                                                            | LDI         |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 6 sites (3F  | & 3L)      |    |          |       | Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> @ | 7 sites (3L | & 2R & 2R) |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| Total Energy                                               | -143.545     |            |    |          |       | Total Energy                                               | -174.374    |            |   |           |       |
| electrostatic                                              | -465.065     |            |    |          |       | electrostatic                                              | -487.173    |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| ΔEs                                                        | -46.304      |            |    |          |       | ΔEs                                                        | -77.133     |            |   |           |       |
|                                                            | -6.115       |            |    |          |       |                                                            | -14.833     |            |   |           |       |
|                                                            | -41.08       |            |    |          |       |                                                            | -63.188     |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
|                                                            | н            | н          | Q  | К        | Leu17 |                                                            | н           | Н          | Q | к         | Leu17 |
| Initial orientation                                        | LS1          | RS1        |    |          | 882   | Initial orientation                                        | RS1         | LS1        |   |           |       |
| rinal Orientation                                          | 152          | RSI        |    |          | KB2   | Final Orientation                                          | R51         | 151        |   |           | CS    |
|                                                            |              |            |    |          |       |                                                            | RB1         |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2F  | 8. 3L)     |    |          |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R | & 3L)      |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| Total Energy                                               | -162.665     |            |    |          |       | Total Energy                                               | -138.639    |            |   |           |       |
| electrostatic                                              | -478.553     |            |    |          |       | electrostatic                                              | -460.098    |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| ΔEs                                                        | -65.424      |            |    |          |       | ΔEs                                                        | -41.398     |            |   |           |       |
|                                                            | -12.59       |            |    |          |       |                                                            | -4.065      |            |   |           |       |
|                                                            | -54.568      |            |    |          |       |                                                            | -36.113     |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
|                                                            | н            | н          | Q  | К        |       |                                                            | н           | н          | Q | к         |       |
| Initial orientation                                        | LB2          |            |    | RB2      |       | Initial orientation                                        | RB2         |            |   | LB2       | _     |
| Final Orientation                                          | LB2          |            |    | RB2      |       | Final Orientation                                          |             |            |   |           |       |
| Gd <sup>3+</sup> chelates 2 SO.: @                         | 5 sites (2F  | 831)       |    |          |       | Gd <sup>3+</sup> chelates 2 SO-' @                         | 5 sites (2R | 8.31)      |   |           |       |
| da dicidici 2003 e                                         | 5 51005 (21  | ( d 52)    |    |          |       | da chemico 2003 e                                          | 5 51005 (21 | a 567      |   |           |       |
| Total Energy                                               | -119.625     |            |    |          |       | Total Energy                                               | -123.108    |            |   |           |       |
| van der Waals                                              | 101.002      |            |    |          |       | van der Waals                                              | 102.049     |            |   |           |       |
| electrostatic                                              | -449.446     |            |    |          |       | electrostatic                                              | -448.481    |            |   |           |       |
| ΔEs                                                        | -22.384      |            |    |          |       | AEs                                                        | -25.867     |            |   |           |       |
|                                                            | -2.135       |            |    |          |       |                                                            | -1.088      |            |   |           |       |
|                                                            | -25.461      |            |    |          |       |                                                            | -24.496     |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
|                                                            | н            | н          | Q  | К        |       |                                                            | н           | н          | Q | к         | Val12 |
| Initial orientation                                        | LB1          |            |    | RB1      |       | Initial orientation                                        | RB1         |            |   | LB1       |       |
| Final Orientation                                          | LB1          |            |    | RS1      |       | Final Orientation                                          | CS          |            |   | LB1       | CS    |
|                                                            | CS           |            |    |          |       |                                                            |             |            |   | LNH       |       |
| Gd <sup>3+</sup> chelates 2 SO.: @                         | 6 sites (3P  | 831)       |    |          |       | Gd <sup>3+</sup> chelates 2 SO-' @                         | 5 sites (2R | 8,31)      |   |           |       |
| da dicidici 2003 e                                         | 0 51005 (51  | ( d 52)    |    |          |       | da chemico 2003 e                                          | 5 51005 (21 | a 567      |   |           |       |
| Total Energy                                               | -152.622     |            |    |          |       | Total Energy                                               | -134.33     |            |   |           |       |
| van der Waals                                              | 94.052       |            |    |          |       | van der Waals                                              | 95.398      |            |   |           |       |
| erectrostatic                                              | -4/2.187     |            |    |          |       | electrostatic                                              | -450.786    |            |   |           |       |
| ΔEs                                                        | -55.381      |            |    |          |       | ΔEs                                                        | -37.089     |            |   |           |       |
|                                                            | -9.085       |            |    |          |       |                                                            | -7.739      |            |   |           |       |
|                                                            | -48.202      |            |    |          |       |                                                            | -26.801     |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
|                                                            | н            | н          | Q  | к        |       |                                                            | н           | н          | 0 | к         |       |
| Initial orientation                                        | LS1          |            |    | RS1      |       | Initial orientation                                        | RS1         |            |   | LS1       |       |
| Final Orientation                                          | LS1          |            |    | RS1      |       | Final Orientation                                          | RS1         |            |   | LS1       |       |
| Gd <sup>3+</sup> cholotoo 2 CO 1 =                         | Ceita - /    | 8.211      |    |          | +     | Gd <sup>3+</sup> abalate - 3.00                            | Geiter /7-  | 8.21       |   |           |       |
| ou unerates 2 SU <sub>3</sub> @                            | o sites (2F  | u ok olj   |    |          |       | Gu chelates 2 SU <sub>3</sub> @                            | u sites (3R | ox SLJ     |   |           |       |
| Total Energy                                               | -154.501     |            |    |          |       | Total Energy                                               | -161.525    |            |   |           |       |
| van der Waals                                              | 97.145       |            |    |          |       | van der Waals                                              | 99.369      |            |   |           |       |
| electrostatic                                              | -472.797     |            |    |          |       | electrostatic                                              | -484.591    | T          |   |           |       |
| ΔFs                                                        | .57.76       |            |    |          |       | AFs                                                        | -64 704     |            |   |           |       |
| 3                                                          | -57.26       |            |    |          |       | 11.0                                                       | -04.284     |            |   |           |       |
|                                                            | -48.812      |            |    |          |       |                                                            | -60.606     |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
|                                                            |              |            |    | v        |       |                                                            |             |            | ~ | v         |       |
| Initial orientation                                        | H<br>  \$1   | н          | ų  | K<br>R57 |       | Initial orientation                                        | H<br>R57    | н          | ų | K<br>  51 |       |
| Final Orientation                                          | LS1          |            |    | LS1      |       | Final Orientation                                          |             |            |   | LS1       |       |
|                                                            |              |            |    | -CH2-    |       |                                                            |             |            |   |           |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2F  | 8. 3L)     |    |          |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 4 sites (2L | & 2R)      |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| iotal Energy                                               | -143.833     |            |    |          |       | Iotal Energy                                               | -153.091    |            |   |           |       |
| electrostatic                                              | -472.613     |            |    |          |       | electrostatic                                              | -470.832    |            |   |           |       |
|                                                            |              |            |    |          |       |                                                            |             |            |   |           |       |
| ΔEs                                                        | -46.592      |            |    |          |       | ΔEs                                                        | -55.85      |            |   |           |       |
|                                                            | -1.412       |            |    |          |       |                                                            | -6.614      |            |   |           |       |
|                                                            | -48.628      |            |    |          |       |                                                            | -46.847     |            |   |           |       |

### Gas phase results of Solapsone-Gd $^{3+}$ and the 1IYT conformer of $A\beta$

| Initial orientation                                        | RS1         |          |     | LS2 |            |       | Initial orientation                                        | LS2                |           |           | RS1  |            |       |       |
|------------------------------------------------------------|-------------|----------|-----|-----|------------|-------|------------------------------------------------------------|--------------------|-----------|-----------|------|------------|-------|-------|
| Final Orientation                                          | RS1         |          |     | LS2 | LB2        |       | Final Orientation                                          |                    |           |           | RS1  |            |       |       |
|                                                            | LS1         |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            | LB2         |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| Gd <sup>3+</sup> chelates 2 SO.                            | A sites (2) | & 2R)    |     |     |            |       | Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> <sup>-</sup> @ | 5 sites (2R        | & 3I )    |           |      |            |       |       |
| Gu chelates 2 503 @                                        | 4 SILES (2L | Q 21()   |     |     |            |       | Gu chelates 2 503 @                                        | 5 31163 (21)       | a sej     |           |      |            |       |       |
| Total Energy                                               | -156.797    |          |     |     |            |       | Total Energy                                               | -146.669           |           |           |      |            |       |       |
| van der Waals                                              | 89.143      |          |     |     |            |       | van der Waals                                              | 102.184            |           |           |      |            |       |       |
| electrostatic                                              | -474.829    |          |     |     |            |       | electrostatic                                              | -475.052           |           |           |      |            |       |       |
| ΔEs                                                        | -59.556     |          |     |     |            |       | ΔEs                                                        | -49.428            |           |           |      |            |       |       |
|                                                            | -13.994     |          |     |     |            |       |                                                            | -0.953             |           |           |      |            |       |       |
|                                                            | -50.844     |          |     |     |            |       |                                                            | -51.067            |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| Initial orientation                                        | H           | H<br>DC1 | Q   | К   | Tyr10      | Leu1/ | Initial orientation                                        | H<br>PC1           | H         | Q         | K    | Tyr10      | Leu1/ |       |
| Final Orientation                                          | RB1         | RS1      |     |     | RS1        | RB2   | Final Orientation                                          | RS1                | LS1       |           |      | LB2        | RB1   |       |
|                                                            | LS1         |          |     |     |            |       |                                                            |                    |           |           |      |            | LB1   |       |
|                                                            | LS2         |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            | RS2         |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| C 4 <sup>3†</sup> - h - l - h - 2 - C O <sup>-1</sup> - C  |             | 0.213    |     |     |            |       | C1 <sup>3†</sup> -h - l -h                                 | C -14 (20          | 0.213     |           |      |            |       |       |
| Gd chelates 2 SO <sub>3</sub> @                            | 5 Sites (2H | & 3L)    |     |     |            |       | Gd chelates 2 SO <sub>3</sub> @                            | 6 Sites (3R        | & 3L)     |           |      |            |       |       |
| Total Energy                                               | -168,281    |          |     |     |            |       | Total Energy                                               | -163.068           |           |           |      |            |       |       |
| van der Waals                                              | 88.104      |          |     |     |            |       | van der Waals                                              | 96.339             |           |           |      |            |       |       |
| electrostatic                                              | -482.299    |          |     |     |            |       | electrostatic                                              | -487.4             |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| ΔEs                                                        | -71.04      |          |     |     |            |       | ΔEs                                                        | -65.827            |           |           |      |            |       |       |
|                                                            | -15.055     |          |     |     |            |       |                                                            | -63 415            |           |           |      |            |       |       |
|                                                            | 56.514      |          |     |     |            |       |                                                            | 55.415             |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            | Н           | н        | Q   | к   | Leu17      |       |                                                            | L                  | v         | F         | F    | His13      | Lys16 | Asp23 |
| Initial orientation                                        | RS2         | LS1      |     |     |            |       | Initial orientation                                        | RB2                |           | LB2       | 0.00 | 0.00       |       | 100   |
| Final Orientation                                          | RS1<br>RS2  | LS1      |     |     | RB1        |       | Final Orientation                                          | кв2                |           |           | RE2  | KB2        | KSZ   | LBZ   |
|                                                            | 152         |          | + + |     | LDI        |       |                                                            |                    |           |           | 1132 |            | LS2   |       |
| Gd <sup>3+</sup> chelates 2 SO-                            | 5 sites (2R | & 3L)    |     |     |            |       | Gd <sup>3+</sup> chelates 2 SO- <sup>-</sup> @             | 5 sites (2R        | & 3L)     |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    | ,         |           |      |            |       |       |
| Total Energy                                               | -164.573    |          |     |     |            |       | Total Energy                                               | -147.545           |           |           |      |            |       |       |
| van der Waals                                              | 90.553      |          |     |     |            |       | van der Waals                                              | 92.242             |           |           |      |            |       |       |
| electrostatic                                              | -479.415    |          |     |     |            |       | electrostatic                                              | -471.439           |           |           |      |            |       |       |
| AEc                                                        | 67 222      |          |     |     |            |       | AE <sub>2</sub>                                            | 50 204             |           |           |      |            |       |       |
| 403                                                        | -07.532     |          |     |     |            |       | 41.5                                                       | -10.895            |           |           |      |            |       |       |
|                                                            | -55.43      |          |     |     |            |       |                                                            | -47.454            |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            | L           | V        | F   | F   |            |       |                                                            | L                  | V         | F         | F    |            |       |       |
| Initial orientation                                        | LB2         | RB2      |     |     |            |       | Final Orientation                                          | RB2                | LB2       |           |      |            |       |       |
| Final Orientation                                          |             | ND2      |     |     |            |       | Fillal Orientation                                         | ND2                | LDZ       |           |      |            |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> @              | 5 sites (28 | 831)     |     |     |            |       | Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> : @            | 5 sites (2B        | & 3I )    |           |      |            |       |       |
|                                                            |             | ,        |     |     |            |       |                                                            |                    | ,         |           |      |            |       |       |
| Total Energy                                               | -107.872    |          |     |     |            |       | Total Energy                                               | -119.017           |           |           |      |            |       |       |
| van der Waals                                              | 102.762     |          |     |     |            |       | van der Waals                                              | 97.302             |           |           |      |            |       |       |
| electrostatic                                              | -435.377    |          |     |     |            |       | electrostatic                                              | -441.955           |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| ΔEs                                                        | -10.631     |          |     |     |            |       | ΔEs                                                        | -21.776            |           |           |      |            |       |       |
|                                                            | -11.392     |          |     |     |            |       |                                                            | -3.655             |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            | L           | v        | F   | F   | Ala21      |       |                                                            | L                  | V         | F         | F    | His14      |       |       |
| Initial orientation                                        | LB1<br>CS   | RB1      |     |     | <b>C</b> 5 |       | Final Orientation                                          | RB1<br>CS          | LB1       |           |      | <b>C</b> 5 |       |       |
| i mai onentation                                           | LB1         |          |     |     |            |       | i illa onentation                                          | CJ                 | 101       |           |      | -CH2-      |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R | & 3L)    |     |     |            |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R        | & 3L)     |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| Total Energy                                               | -119.66     |          |     |     |            |       | Total Energy                                               | -123.924           |           |           |      |            |       |       |
| van der Waals                                              | 97.725      |          |     |     |            |       | van der Waals                                              | 98.639             |           |           |      |            |       |       |
| electrostatic                                              | -441.631    |          | + + |     |            |       | electrostatic                                              | -447.056           |           |           |      |            |       |       |
| ΔEs                                                        | -27.419     |          | + + |     |            |       | ΔEs                                                        | -26.683            |           |           |      |            |       |       |
|                                                            | -5.412      |          |     |     |            |       |                                                            | -4.498             |           |           |      |            |       |       |
|                                                            | -17.646     |          |     |     |            |       |                                                            | -23.071            |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            |             |          | -   | r   |            |       |                                                            |                    | M         | -         | -    |            |       |       |
| Initial orientation                                        | L           | LB2      | RB2 | F   |            |       | Initial orientation                                        | L                  | RB2       | EB2       | F    |            |       |       |
| Final Orientation                                          |             |          |     |     |            |       | Final Orientation                                          |                    |           | LB2       |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2R | & 3L)    |     |     |            |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3R        | & 3L)     |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| Total Energy                                               | -105.688    |          | +   |     |            |       | Total Energy                                               | -129.067           |           |           |      |            |       |       |
| van der Waals                                              | 99.973      |          |     |     |            |       | van der Waals                                              | 100.634            |           |           |      |            |       |       |
| cicciosalle                                                | -430.939    |          | + + |     |            |       | ciecciosidit                                               | -4.30.150          |           |           |      |            |       |       |
| ΔEs                                                        | -8.447      |          |     |     |            |       | ΔEs                                                        | -31.826            |           |           |      |            |       |       |
|                                                            | -3.164      |          |     |     |            |       |                                                            | -2.503             |           |           |      |            |       |       |
|                                                            | -6.974      |          |     |     |            |       |                                                            | -32.151            |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
|                                                            | 1           | v        | F   | F   | Glp15      |       |                                                            | 1                  | v         | F         | F    | Hic14      | GIn15 | lvc16 |
| Initial orientation                                        | L           | LB1      | RB1 | F   | 30015      |       | Initial orientation                                        | L                  | v<br>RB1  | LB1       | r    | 111514     | 01113 | LY510 |
| Final Orientation                                          |             | LB1      |     |     | RB1        |       | Final Orientation                                          |                    | RS1       | LB1       |      | RS1        | RS1   | LS1   |
|                                                            |             | CS       |     |     |            |       |                                                            |                    | RB1       | LS1       |      | C=O        | LS1   |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           | LNH       |      |            |       |       |
| 24                                                         |             |          |     |     |            |       | 24                                                         |                    |           |           |      |            |       |       |
| Gd <sup>3*</sup> chelates 2 SO <sub>3</sub> <sup>*</sup> @ | 5 sites (2R | & 3L)    |     |     |            |       | Gd <sup>3*</sup> chelates 2 SO <sub>3</sub> @              | 5 sites (2R        | & 3L) and | Gln15 @ 1 | site |            |       |       |
| Total Economic                                             | 494.005     |          | -   |     |            |       | Total Commu                                                | 200.077            |           |           |      |            |       |       |
| van der Waals                                              | 96 099      |          |     |     |            |       | van der Waals                                              | -200.3/1<br>84.014 |           |           |      |            |       |       |
| electrostatic                                              | -456.565    |          |     |     |            |       | electrostatic                                              | -504.165           |           |           |      |            |       |       |
|                                                            |             |          |     |     |            |       |                                                            |                    |           |           |      |            |       |       |
| ΔEs                                                        | -34.176     |          |     |     |            |       | ΔEs                                                        | -103.13            |           |           |      |            |       |       |
|                                                            | -7.038      |          |     |     |            |       |                                                            | -19.123            |           |           |      |            |       |       |
|                                                            | -32.58      |          |     |     |            |       |                                                            | -80.18             |           |           |      |            |       |       |

|                                                            | 1                 | V            | E   | E     | Hic12  |         |                                                            |             | V          | E   | E   |       |       |
|------------------------------------------------------------|-------------------|--------------|-----|-------|--------|---------|------------------------------------------------------------|-------------|------------|-----|-----|-------|-------|
|                                                            | L                 | v            | r   | F     | 111313 |         |                                                            | L           | v          | r   | -   |       |       |
| Initial orientation                                        | RB2               |              |     | LB2   |        |         | Initial orientation                                        | LB2         |            |     | RB2 |       |       |
| Final Orientation                                          |                   |              |     |       | RB2    |         | Final Orientation                                          |             |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>2</sub> <sup>-</sup> @ | a 4 sites (21     | & 2R)        |     |       |        |         | Gd <sup>3+</sup> chelates 3 SO <sub>2</sub> <sup>-</sup> @ | 6 sites (3L | & 2R & 1R) |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| Tabel Calance                                              | 440 542           |              |     |       |        |         | Tabal Colored                                              | 407.000     |            |     |     |       |       |
| Total Ellergy                                              | -118.512          |              |     |       |        |         | Total Ellergy                                              | -137.932    |            |     |     |       |       |
| van der Waals                                              | 97.496            |              |     |       |        |         | van der Waals                                              | 99.749      |            |     |     |       |       |
| electrostatic                                              | -441.275          |              |     |       |        |         | electrostatic                                              | -458.98     |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| ΔEs                                                        | -21.271           |              |     |       |        |         | ΔEs                                                        | -40.691     |            |     |     |       |       |
|                                                            | -5 6/1            |              |     |       |        |         |                                                            | -3 388      |            |     |     |       |       |
|                                                            | 17.20             |              |     |       |        |         |                                                            | 24.005      |            |     |     |       |       |
|                                                            | -17.25            |              |     |       |        |         |                                                            | -34.993     |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            | L                 | V            | F   | F     | Ala21  |         |                                                            | L           | V          | F   | F   | His13 |       |
| Initial orientation                                        | LB1               |              |     | RB1   |        |         | Initial orientation                                        | RB1         |            |     | LB1 |       |       |
| Final Orientation                                          | CS                |              |     | RB1   | CS     |         | Final Orientation                                          | RB1         |            |     | LB1 | RB1   |       |
|                                                            | LB1               |              |     | RS1   |        |         |                                                            |             |            |     | CS  | RB2   |       |
|                                                            |                   |              |     | 1131  |        |         |                                                            |             |            |     | 0.5 | DNILL |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     | KINH  |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | @ 6 sites (3F     | R & 3L)      |     |       |        |         | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (2F | R & 3L)    |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| Total Energy                                               | -134,722          |              |     |       |        |         | Total Energy                                               | -136.958    |            |     |     |       |       |
| van der Waals                                              | 92 936            |              |     |       |        |         | van der Waals                                              | 88.444      |            |     |     |       |       |
| electrostatic                                              | _452.022          |              |     |       |        |         | electrostatic                                              | -455 212    |            |     | -   |       |       |
| ciccuostatic                                               | -452.022          |              |     |       |        |         | ciecciostdll                                               | -4-33.313   |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       | -     |
| ΔEs                                                        | -37.481           |              |     |       |        |         | ΔEs                                                        | -39.717     |            |     |     |       |       |
|                                                            | -10.201           |              |     |       |        |         |                                                            | -14.693     |            |     |     |       |       |
|                                                            | -28.037           |              |     |       |        |         |                                                            | -31.328     |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            |                   |              | -   |       |        |         |                                                            |             |            | -   | -   |       |       |
|                                                            | L                 | v            | F   | F     | Asp23  |         |                                                            | L           | V          | F   | F   |       |       |
| Initial orientation                                        |                   |              | RB2 | LB2   |        |         | Initial orientation                                        |             |            | LB2 | RB2 |       |       |
| Final Orientation                                          |                   |              |     |       | RB2    |         | Final Orientation                                          |             |            | LB2 |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| Gd <sup>3+</sup> chalates 2 SO <sup>-</sup> (              | a 5 sites (2      | 8.31)        |     |       |        |         | Gd <sup>3+</sup> chelates 2 SO <sup>-</sup> @              | 5 sites (2P | 8.31)      |     |     |       |       |
| Gu chelates 2 503 6                                        | 2 J SILCS (21     |              |     |       |        |         | Gu cherates 2503 @                                         | 5 51105 (21 |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| Total Energy                                               | -133.558          |              |     |       |        |         | Total Energy                                               | -126.371    |            |     |     |       |       |
| van der Waals                                              | 99.75             |              |     |       |        |         | van der Waals                                              | 98.232      |            |     |     |       |       |
| electrostatic                                              | -460.299          |              |     |       |        |         | electrostatic                                              | -450.218    |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| AFs                                                        | -36 317           |              |     |       |        |         | AFe                                                        | -20 13      |            |     |     |       |       |
| 41.5                                                       | 2.207             |              |     |       |        |         | 41.5                                                       | 4.005       |            |     |     |       |       |
|                                                            | -3.36/            |              |     |       |        |         |                                                            | -4.905      |            |     |     |       |       |
|                                                            | -36.314           |              |     |       |        |         |                                                            | -26.233     |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            | L                 | V            | F   | F     | Lys16  | Asp23   |                                                            | L           | v          | F   | F   | Lys16 | Asp23 |
| Initial orientation                                        |                   |              | LB1 | RB1   |        |         | Initial orientation                                        |             |            | RB1 | LB1 |       |       |
| Final Orientation                                          | _                 |              |     | RB1   | RB1    | <u></u> | Final Orientation                                          |             |            | CS. | LB1 | RB1   | CS.   |
|                                                            |                   |              |     | NDI   | NDI    | 05      | That offertation                                           |             |            | 004 | 66  | 101   | 0.5   |
|                                                            | _                 |              |     |       |        |         |                                                            |             |            | KBT | CS  | LB1   |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     | CS    |       |
| Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> <sup>-</sup> ( | @ 7 sites (3F     | R & 2L & 2L) |     |       |        |         | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3F | R & 3L)    |     |     | RS1   |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| Total Energy                                               | -139.108          |              |     |       |        |         | Total Energy                                               | -136.626    |            |     |     |       |       |
| van der Waale                                              | QA 470            |              |     |       |        |         | van der Waals                                              | 90 947      |            |     |     |       |       |
| vurruer vvddis                                             | 34.479<br>ACA 000 |              |     |       |        |         | valiuci vvddl5                                             | JU.04/      |            |     |     |       |       |
| erectrostatic                                              | -401.082          |              |     |       |        |         | electiostatic                                              | -451.454    |            |     | -   |       | -     |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| ΔEs                                                        | -41.867           |              |     |       |        |         | ΔEs                                                        | -39.385     |            |     |     |       |       |
|                                                            | -8.658            |              |     |       |        |         |                                                            | -12.29      |            |     |     |       |       |
|                                                            | -37.097           |              |     |       |        |         |                                                            | -27.469     | 1          |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            | 1                 | V            | F   | E     | AL-21  | 14620   |                                                            | 1           | V          | c   | c . |       |       |
| Initial ariantation                                        | L                 | V 102        | r   | F DDD | AldZI  | LY320   | Initial arisetation                                        | L           | V<br>0000  | г   | 102 |       |       |
| initial orientation                                        |                   | LB2          |     | KB2   |        |         | initial orientation                                        |             | KB2        |     | LB2 |       |       |
| Final Orientation                                          |                   |              |     |       | RB2    | RS1     | Final Orientation                                          |             |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| Gd <sup>3+</sup> chelates 2 SO-14                          | a 5 sites (2      | ( & 3L)      |     |       |        |         | Gd <sup>3+</sup> chelates 2 SO-1 @                         | 5 sites (2P | ( & 3L)    |     |     |       |       |
|                                                            |                   | /            |     |       |        |         |                                                            |             |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            | 105         |            |     |     | -     |       |
| Iotal Energy                                               | -148.741          |              |     |       |        |         | Iotal Energy                                               | -120.919    |            |     |     |       |       |
| van der Waals                                              | 95.511            |              |     |       |        |         | van der Waals                                              | 101.347     |            |     |     |       |       |
| electrostatic                                              | -475.794          |              |     |       |        |         | electrostatic                                              | -449.503    |            |     |     |       |       |
|                                                            |                   |              |     |       |        |         |                                                            |             |            |     |     |       |       |
| AEs                                                        | -51 5             |              |     |       |        |         | AEs                                                        | -23 679     |            |     |     |       |       |
|                                                            | 7 (20             |              |     |       |        |         |                                                            | 1 70        |            |     |     |       |       |
|                                                            | -7.626            |              |     |       |        |         |                                                            | -1.79       |            |     | -   |       |       |
|                                                            | -51.809           |              |     |       |        |         |                                                            | -25 518     |            |     |     |       |       |

|                                                            | н           | н        | 0 | ĸ   | Glv9       |              |                                                            | н           | н      | 0 | ĸ     | Glv9  |       |
|------------------------------------------------------------|-------------|----------|---|-----|------------|--------------|------------------------------------------------------------|-------------|--------|---|-------|-------|-------|
| Initial orientation                                        | LB2         | RB2      | ų | ĸ   | City 3     |              | Initial orientation                                        | RB2         | LB2    | ų | ĸ     | Giy5  |       |
| Final Orientation                                          |             | RB2      |   |     | LB2        |              | Final Orientation                                          | LB2         |        |   |       | RB2   |       |
|                                                            |             |          |   |     | C=O        |              |                                                            |             |        |   |       | C=O   |       |
| Gd <sup>3+</sup> chalator 2 50 . @                         | E citor (2) | 8, 201   |   |     |            |              | Gd <sup>3+</sup> chalator 2 50 . @                         | E citor (2) | 8, 201 |   |       |       |       |
| Gu cileiates 2.503 @                                       | 5 Sites (5L | . ol 2Nj |   |     |            |              | Gu crierates 2 503 @                                       | o sites (or | ol ZRJ |   |       |       |       |
| Total Energy                                               | -13.469     |          |   |     |            |              | Total Energy                                               | -13.601     |        |   |       |       |       |
| van der Waals                                              | 126.557     |          |   |     |            |              | van der Waals                                              | 125.012     |        |   |       |       |       |
| electrostatic                                              | -436.104    |          |   |     |            |              | electrostatic                                              | -429.435    |        |   |       |       |       |
| ΔEs                                                        | -26.753     |          |   |     |            |              | AEs                                                        | -26.885     |        |   |       |       |       |
|                                                            | -2.012      |          |   |     |            |              |                                                            | -3.557      |        |   |       |       |       |
|                                                            | -31.325     |          |   |     |            |              |                                                            | -24.656     |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
|                                                            | н           | н        | 0 | к   | Tyr10      |              |                                                            | н           | н      | 0 | к     |       |       |
| Initial orientation                                        | RB1         | LB1      | ~ |     |            |              | Initial orientation                                        | LB1         | RB1    |   |       |       |       |
| Final Orientation                                          | RS1         | CS       |   |     | CS         |              | Final Orientation                                          | LB1         | RB1    |   | CS    |       |       |
|                                                            | RB1         |          |   |     | -CH2-      |              |                                                            |             | CS     |   | -CH2- |       |       |
|                                                            | -CH2-       |          |   |     |            |              |                                                            |             | -CH-   |   | LDI   |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L | & 3R)    |   |     |            |              | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)  |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
| Total Energy                                               | -35.425     |          |   |     |            |              | Total Energy                                               | -43.557     |        |   |       |       |       |
| van der Waals<br>electrostatic                             | -441 13     |          |   |     |            |              | van der Waals<br>electrostatic                             | 116.453     |        |   |       |       |       |
| ciccuostatic                                               |             |          |   |     |            |              | ciccitostatic                                              | 451.500     |        |   |       |       |       |
| ΔEs                                                        | -48.709     |          |   |     |            |              | ΔEs                                                        | -56.841     |        |   |       |       |       |
|                                                            | -12.87      |          |   |     |            |              |                                                            | -12.116     |        |   |       |       |       |
|                                                            | -36.351     |          |   |     |            |              |                                                            | -46.589     |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
|                                                            | н           | н        | Q | к   | Gly9       | Tyr10        |                                                            | н           | н      | Q | к     | Leu17 |       |
| Initial orientation                                        | LS1         | RS1      |   |     |            | 151          | Initial orientation                                        | RS1         | LS1    |   |       | 67    |       |
| Final Orientation                                          | LS1         | RS1      |   |     | LS1<br>C=0 | LB1<br>-CH2- | Final Orientation                                          | RS1         | LS1    |   |       | CS    |       |
|                                                            |             |          |   |     |            | J. 14-       |                                                            |             |        |   |       |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 4 sites (2F | R & 2L)  |   |     |            |              | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L | & 3R)  |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
| Total Energy                                               | -64.808     |          |   |     |            |              | Total Energy                                               | -62.752     |        |   |       |       |       |
| van der Waals                                              | 121.901     |          |   |     |            |              | van der Waals                                              | 118.78      |        |   |       |       |       |
| electrostatic                                              | -400.033    |          |   |     |            |              | electrostatic                                              | -473.204    |        |   |       |       |       |
| ΔEs                                                        | -78.092     |          |   |     |            |              | ΔEs                                                        | -76.036     |        |   |       |       |       |
|                                                            | -6.668      |          |   |     |            |              |                                                            | -9.789      |        |   |       |       |       |
|                                                            | -75.88      |          |   |     |            |              |                                                            | -70.485     |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
|                                                            | н           | н        | Q | К   | Gly9       | Tyr10        |                                                            | н           | н      | Q | к     | Gly9  | Tyr10 |
| Initial orientation                                        | LS1         | RS2      |   |     |            |              | Initial orientation                                        | RS2         | LS1    |   |       |       |       |
| Final Orientation                                          | LS1         | RS2      |   |     | LS1        | LS1          | Final Orientation                                          | RS1         | LS1    |   | RS1   | RS2   | LS1   |
|                                                            |             | RSI      |   |     | C=O        | -CHZ-        |                                                            | RB2<br>RS2  |        |   |       | C=O   |       |
|                                                            |             |          |   |     |            |              |                                                            | 1152        |        |   |       |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)    |   |     |            |              | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L | & 3R)  |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
| Total Energy                                               | -46.413     |          |   |     |            |              | Total Energy                                               | -59.7       |        |   |       |       |       |
| van der Waals                                              | 119.419     |          |   |     |            |              | van der Waals                                              | 116.266     |        |   |       |       |       |
| electrostatic                                              | -437.88     |          |   |     |            |              | electrostatic                                              | -473.408    |        |   |       |       |       |
| ΔEs                                                        | -59.697     |          |   |     |            |              | ΔEs                                                        | -72.984     |        |   |       |       |       |
|                                                            | -9.15       |          |   |     |            |              |                                                            | -12.303     |        |   |       |       |       |
|                                                            | -53.101     |          |   |     |            |              |                                                            | -68.629     |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
|                                                            | н           | н        | Q | к   |            |              |                                                            | н           | н      | Q | к     |       |       |
| Initial orientation                                        | RB2         |          |   | LB2 |            |              | Initial orientation                                        | LB2         |        |   | RB2   |       |       |
| Final Orientation                                          | RB2         |          |   |     |            |              | Final Orientation                                          |             |        |   | RB2   |       |       |
| Gd <sup>3+</sup> chalator 250 · @                          | E citor (2) | 8, 201   |   |     |            |              | Gd <sup>3+</sup> chalator 2 50 . @                         | A citor (2P | 8.21)  |   |       |       |       |
| Gu chelates 2303 @                                         | 5 Sites (5L | . ol 2Nj |   |     |            |              | Gu crierates 2 503 @                                       | 4 SILES (2R | 0(2L)  |   |       |       |       |
| Total Energy                                               | -5.112      |          |   |     |            |              | Total Energy                                               | 2.001       |        |   |       |       |       |
| van der Waals                                              | 128.211     |          |   |     |            |              | van der Waals                                              | 123.436     |        |   |       |       |       |
| electrostatic                                              | -427.083    |          |   |     |            |              | electrostatic                                              | -414.633    |        |   |       |       |       |
| ΔEs                                                        | -18 396     |          |   |     |            |              | ΔEs                                                        | -11 283     |        |   |       |       |       |
|                                                            | -0.358      |          |   |     |            |              |                                                            | -5.133      |        |   |       |       |       |
|                                                            | -22.304     |          |   |     |            |              |                                                            | -9.854      |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
|                                                            | н           | н        | 0 | к   |            |              |                                                            | н           | н      | 0 | к     |       |       |
| Initial orientation                                        | LB1         |          |   | RB1 |            |              | Initial orientation                                        | RB1         |        |   | LB1   |       |       |
| Final Orientation                                          | LS1         |          |   | RB1 |            |              | Final Orientation                                          | RS1         |        |   | LB1   |       |       |
|                                                            | CS          |          |   | RS1 |            |              |                                                            | RB1         |        |   |       |       |       |
|                                                            | -unz-       |          |   | 2   |            |              |                                                            |             |        |   |       |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>5</sub> ' @            | 6 sites (3L | & 3R)    |   |     |            |              | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 6 sites (3L | & 3R)  |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
| Total Energy                                               | -47.759     |          |   |     |            |              | Total Energy                                               | -39.749     |        |   |       |       |       |
| van der Waals                                              | 121.271     |          |   |     |            |              | van der Waals                                              | 123.227     |        |   |       |       |       |
| electrostatic                                              | -462.808    |          |   |     |            |              | electrostatic                                              | -461.035    |        |   |       |       |       |
| ΔEs                                                        | -61.043     |          |   |     |            |              | ΔEs                                                        | -53.033     |        |   |       |       |       |
|                                                            | -7.298      |          |   |     |            |              |                                                            | -5.342      |        |   |       |       |       |
|                                                            | -58.029     |          |   |     |            |              |                                                            | -56.256     |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
|                                                            | н           | н        | 0 | к   |            |              |                                                            | н           | н      | 0 | к     |       |       |
| Initial orientation                                        | LS1         |          | ~ | SR1 |            |              | Initial orientation                                        | RS1         |        | ~ | LS1   |       |       |
| Final Orientation                                          | LS1         |          |   | SR1 |            |              | Final Orientation                                          | RS1         |        |   | LS1   |       |       |
| - 3*                                                       |             |          |   |     |            |              |                                                            |             | 0.000  |   | 2     |       |       |
| Gd <sup>-</sup> " chelates 2 SO <sub>3</sub> " @           | 6 sites (3L | & 3R)    |   |     |            |              | Gd <sup>3*</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)  |   |       |       |       |
| Total Energy                                               | -39 902     |          |   |     |            |              | Total Energy                                               | -47 969     |        |   |       |       |       |
| van der Waals                                              | 124.088     |          |   |     |            |              | van der Waals                                              | 127.927     |        |   |       |       |       |
| electrostatic                                              | -455.965    |          |   |     |            |              | electrostatic                                              | -458.958    |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |
| ΔEs                                                        | -53.186     |          |   |     |            |              | ΔEs                                                        | -56.152     |        |   |       |       |       |
|                                                            | -4.481      |          |   |     |            |              |                                                            | -0.642      |        |   |       |       |       |
|                                                            |             |          |   |     |            |              |                                                            |             |        |   |       |       |       |

### Gas phase results of Solapsone-Gd $^{3+}$ and the 1Z0Q conformer of $A\beta$
|                                                            | н           | н      | Q | к        | Gly9  | Tyr10  |       |                                                            | н           | н      | Q        | К        |       |       |       |
|------------------------------------------------------------|-------------|--------|---|----------|-------|--------|-------|------------------------------------------------------------|-------------|--------|----------|----------|-------|-------|-------|
| Initial orientation                                        | LS2         |        |   | RS1      |       |        |       | Initial orientation                                        | RS1         |        |          | LS2      |       |       |       |
| Final Orientation                                          | LS2         | LS1    |   | RS1      | LB2   | LS1    |       | Final Orientation                                          | RS1         |        |          | LS1      |       |       |       |
|                                                            | -CH2-       | -111-  |   |          | 0     | -0112- |       |                                                            |             |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)  |   |          |       |        |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 6 sites (3L | & 3R)  |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| Iotal Energy                                               | -43.614     |        |   |          |       |        |       | Iotal Energy                                               | -32.737     |        |          |          |       |       |       |
| electrostatic                                              | -459.888    |        |   |          |       |        |       | electrostatic                                              | -449.807    |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| ΔEs                                                        | -56.898     |        |   |          |       |        |       | ΔEs                                                        | -46.021     |        |          |          |       |       |       |
|                                                            | -55.109     |        |   |          |       |        |       |                                                            | -45.028     |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| Initial orientation                                        | H<br>151    | н      | Q | K<br>RS2 |       |        |       | Initial orientation                                        | H<br>RS2    | н      | Q        | K<br>151 |       |       |       |
| Final Orientation                                          | LS1         |        |   | RS1      |       |        |       | Final Orientation                                          | LS1         |        |          | LS1      |       |       |       |
|                                                            |             |        |   | -CH2-    |       |        |       |                                                            |             |        |          |          |       |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)  |   |          |       |        |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)  |          |          |       |       |       |
| Total Factory                                              | 22.270      |        |   |          |       |        |       | Tabel Frances                                              | 27.640      |        |          |          |       |       |       |
| van der Waals                                              | 123.86      |        |   |          |       |        |       | van der Waals                                              | 124.363     |        |          |          |       |       |       |
| electrostatic                                              | -447.177    |        |   |          |       |        |       | electrostatic                                              | -456.059    |        |          |          |       |       |       |
| 15                                                         |             |        |   |          |       |        |       | 45                                                         |             |        |          |          |       |       |       |
| ΔES                                                        | -45.663     |        |   |          |       |        |       | ΔES                                                        | -50.932     |        |          |          |       |       |       |
|                                                            | -42.398     |        |   |          |       |        |       |                                                            | -51.28      |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
|                                                            | н           | ц      | - | v        |       |        |       |                                                            | ц           |        | ~        | ~        | 10:17 |       |       |
| Initial orientation                                        | п           | RB2    | ų | LB2      |       |        |       | Initial orientation                                        | н           | LB2    | ų        | RB2      | Leuiz |       |       |
| Final Orientation                                          |             | RB2    |   |          |       |        |       | Final Orientation                                          |             | LB2    |          | RB2      | RS2   |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          | RS2      |       |       |       |
| Gd <sup>3+</sup> chalatos 350 ° C                          | 5 cites (2) | 8, 701 |   |          |       |        |       | Gd <sup>3+</sup> chalator 3 50 1 0                         | 5 sites (2) | 8. 201 |          | -CH2-    |       |       |       |
| Gu chera(es 2 SU <sub>3</sub> @                            | J SILES (3L | u znj  |   |          |       |        |       | Ju cherates 2 SU <sub>3</sub> @                            | J Sices (3L | ol Znj |          |          |       |       |       |
| Total Energy                                               | -10.22      |        |   |          |       |        |       | Total Energy                                               | -20.754     |        |          |          |       |       |       |
| van der Waals                                              | 125.242     |        |   |          |       |        |       | van der Waals                                              | 120.767     |        |          |          |       |       |       |
| electrostatic                                              | -429.447    |        |   |          |       |        |       | electrostatic                                              | -438.291    |        |          |          |       |       |       |
| AEs                                                        | -23.504     |        |   |          |       |        |       | AEs                                                        | -34.038     |        |          |          |       |       |       |
|                                                            | -3.327      |        |   |          |       |        |       |                                                            | -7.802      |        |          |          |       |       |       |
|                                                            | -24.668     |        |   |          |       |        |       |                                                            | -33.512     |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
|                                                            | н           | н      | Q | к        | Tyr10 |        |       |                                                            | н           | н      | Q        | к        | Gly9  | Tyr10 |       |
| Initial orientation                                        |             | LS1    |   | RS1      |       |        |       | Initial orientation                                        |             | RS1    |          | LS1      |       |       |       |
| Final Orientation                                          | RB2         | LS1    |   | RS1      | LS1   |        |       | Final Orientation                                          | LB1         | RS1    |          | LS1      | CS    | CS    |       |
|                                                            |             |        |   | 2        | -CH2- |        |       |                                                            |             |        |          |          | C=0   | -CH2- |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (3L | & 2R)  |   |          |       |        |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 6 sites (3L | & 3R)  |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| Total Energy                                               | -62.557     |        |   |          |       |        |       | Total Energy                                               | -72.103     |        |          |          |       |       |       |
| van der Waals                                              | 119.035     |        |   |          |       |        |       | van der Waals                                              | 121.535     |        |          |          |       |       |       |
| electrostatic                                              | -474.412    |        |   |          |       |        |       | electrostatic                                              | -404.040    |        |          |          |       |       |       |
| ΔEs                                                        | -75.841     |        |   |          |       |        |       | ΔEs                                                        | -85.387     |        |          |          |       |       |       |
|                                                            | -9.534      |        |   |          |       |        |       |                                                            | -7.034      |        |          |          |       |       |       |
|                                                            | -69.633     |        |   |          |       |        |       |                                                            | -79.869     |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
|                                                            | L           | v      | F | F        | Ala21 |        |       |                                                            | L           | v      | F        | F        | Ala21 |       |       |
| Initial orientation                                        | LB2         | RB2    |   |          | 002   |        |       | Initial orientation                                        | RB2         | LB2    |          | 007      | 102   |       |       |
| maromentation                                              | 102         |        |   |          | NDZ   |        |       | i mai onentation                                           | 102         |        |          | NDZ      | C=0   |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (3L | & 2R)  |   |          |       |        |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (3L | & 2R)  |          |          |       |       |       |
| Total Factory                                              | 0.264       |        |   |          |       |        |       | Tabel Free and                                             | 40.007      |        |          |          |       |       |       |
| van der Waals                                              | -8.304      |        |   |          |       |        |       | van der Waals                                              | -19.887     |        |          |          |       |       |       |
| electrostatic                                              | -425.819    |        |   |          |       |        |       | electrostatic                                              | -434.914    |        |          |          |       |       |       |
| AT-                                                        | 2           |        |   |          |       |        |       | AT-                                                        |             |        |          |          |       |       |       |
| ΔES                                                        | -21.648     |        |   |          |       |        |       | ΔES                                                        | -33.1/1     |        |          |          |       |       |       |
|                                                            | -21.04      |        |   |          |       |        |       |                                                            | -30.135     |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
|                                                            | 1           | v      | F | F        | HIc14 | Ala71  | Glu22 |                                                            | 1           | v      | F        | F        | His14 | vc16  | Ala71 |
| Initial orientation                                        | LB1         | RB1    |   |          |       | ,      | 0.022 | Initial orientation                                        | RB1         | LB1    | <u> </u> | L .      |       | 2,310 |       |
| Final Orientation                                          | LB1         | CS     |   |          | RB1   | CS     | CS    | Final Orientation                                          | CS          | LB1    |          |          | LS1   | RS1   | CS    |
|                                                            |             |        |   |          | RNH   | LB1    | -CH2- |                                                            | RB1         |        |          |          |       | -CH2- |       |
| Gd <sup>3+</sup> chelates 2 SO-' @                         | 6 sites (3I | & 3R)  |   |          |       |        |       | Gd <sup>3+</sup> chelates 2 SO <sub>-</sub> ' @            | 6 sites (3I | & 3R)  |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| Total Energy                                               | -23.729     |        |   |          |       |        |       | Total Energy                                               | -47.102     |        |          |          |       |       |       |
| van der Waals                                              | 111.479     |        |   |          |       |        |       | van der Waals                                              | 114.657     |        |          |          |       |       |       |
| electrostatic                                              | -427.402    |        |   |          |       |        |       | electrostatic                                              | -432.334    |        |          |          |       |       |       |
| ΔEs                                                        | -37.013     |        |   |          |       |        |       | ΔEs                                                        | -60.386     |        |          |          |       |       |       |
|                                                            | -17.09      |        |   |          |       |        |       |                                                            | -13.912     |        |          |          |       |       |       |
|                                                            | -22.703     |        |   |          |       |        |       |                                                            | -47.815     |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
|                                                            | L           | V      | F | F        |       |        |       |                                                            | L           | v      | F        | F        |       |       |       |
| Initial orientation                                        | RB2         |        |   | LB2      | -     |        |       | Initial orientation                                        | LB2         |        |          | RB2      |       |       |       |
| mai Unentation                                             | nB2         |        |   |          |       |        |       | i mai orientation                                          |             |        |          |          |       |       |       |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)  |   |          |       |        |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (3L | & 2R)  |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| Total Energy                                               | 10.709      |        |   |          |       |        |       | Total Energy                                               | 12.822      |        |          |          |       |       |       |
| electrostatic                                              | -405.989    |        |   |          |       |        |       | electrostatic                                              | -405.075    |        |          |          |       |       |       |
|                                                            |             |        |   |          |       |        |       |                                                            |             |        |          |          |       |       |       |
| ΔEs                                                        | -2.575      |        |   |          |       |        |       | ΔEs                                                        | -0.462      |        |          |          |       |       |       |
|                                                            | -2.724      |        |   |          |       |        |       |                                                            | -1.753      |        |          |          |       |       |       |
|                                                            | -1.21       |        |   |          |       |        |       |                                                            | 0.230       |        |          |          |       |       |       |

|                                                            | 1           | V          | F   | F     |       |                                                 | 1            | V          | F   | F         |       |        |
|------------------------------------------------------------|-------------|------------|-----|-------|-------|-------------------------------------------------|--------------|------------|-----|-----------|-------|--------|
| Initial orientation                                        | RB1         |            |     | LB1   |       | Initial orientation                             | LB1          |            |     | RB1       |       |        |
| Final Orientation                                          | RB1         |            |     | LB1   |       | Final Orientation                               | LB1          |            |     | RB1       |       |        |
|                                                            |             |            |     | CS    |       |                                                 |              |            |     | CS        |       |        |
| Cd <sup>3+</sup> shalatas 3.50 ' @                         | E citor (2) | 8. 201     |     |       |       | Cd <sup>3+</sup> shalatas 2.50 ' @              | E citoc (2)  | 9, 20)     |     |           |       |        |
| Gd chelates 2 SO <sub>3</sub> @                            | 5 sites (3L | & 2R)      |     |       |       | Gd chelates 2 SO <sub>3</sub> @                 | 5 sites (3L  | & 2K)      |     |           |       |        |
| Total Energy                                               | 1.62        |            |     |       |       | Total Energy                                    | -11.024      |            |     |           |       |        |
| van der Waals                                              | 122.113     |            |     |       |       | van der Waals                                   | 121.182      |            |     |           |       |        |
| electrostatic                                              | -405.695    |            |     |       |       | electrostatic                                   | -430.89      |            |     |           |       |        |
| 417                                                        |             |            |     |       |       | 45                                              |              |            |     |           |       |        |
| ΔES                                                        | -11.664     |            |     |       |       | ΔES                                             | -24.308      |            |     |           |       |        |
|                                                            | -0.916      |            |     |       |       |                                                 | -26.111      |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Initial orientation                                        | L           | V          | F   | F     |       | Initial extentation                             | L            | V          | F   | F         | Gln15 |        |
| Final Orientation                                          |             | LDZ        | ND2 |       |       | Final Orientation                               |              | RB2        | LDZ |           | RB2   |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> <sup>-</sup> @ | 5 sites (3L | & 2R)      |     |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @ | 6 sites (3L  | & 3R)      |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Total Energy                                               | -51.289     |            |     |       |       | Total Energy                                    | -51.939      |            |     |           |       |        |
| van der Waals                                              | 124.161     |            |     |       |       | van der Waals                                   | 128.101      |            |     |           |       |        |
| electrostatic                                              | -468.293    |            |     |       |       | electrostatic                                   | -474.913     |            |     |           |       |        |
| ΔEs                                                        | -64.573     |            |     |       |       | ΔEs                                             | -65.223      |            |     |           |       |        |
|                                                            | -4.408      |            |     |       |       |                                                 | -0.468       |            |     |           |       |        |
|                                                            | -63.514     |            |     |       |       |                                                 | -70.134      |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
|                                                            | 1           | v          | F   | F     |       |                                                 | 1            | v          | F   | F         | Ala71 | Val 24 |
| Initial orientation                                        |             | LB2        |     | RB2   |       | Initial orientation                             |              | RB2        | •   | LB2       |       | • 3124 |
| Final Orientation                                          |             |            |     |       |       | Final Orientation                               | RB2          | RB2        |     |           | RS2   | LB2    |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (3L | & 2R)      |     |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @ | 5 sites (3L  | & 2R)      |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Total Energy                                               | -16.594     |            |     |       |       | Total Energy                                    | -23.358      |            |     |           |       |        |
| van der Waals                                              | -425 429    |            |     |       |       | van der Waals                                   | -429 61      |            |     |           |       |        |
| electrostatic                                              | -433.420    |            |     |       |       | electrostatic                                   | -455.01      |            |     |           |       |        |
| ΔEs                                                        | -29.878     |            |     |       |       | ΔEs                                             | -36.642      |            |     |           |       |        |
|                                                            | -4.066      |            |     |       |       |                                                 | -10.74       |            |     |           |       |        |
|                                                            | -30.649     |            |     |       |       |                                                 | -34.831      |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
|                                                            | 1           | V          | F   | F     |       |                                                 | 1            | V          | F   | F         |       |        |
| Initial orientation                                        | RB2         |            | LB2 | •     |       | Initial orientation                             | LB2          |            | RB2 |           |       |        |
| Final Orientation                                          | RB2         |            |     |       |       | Final Orientation                               | LB2          |            | RB2 |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @            | 5 sites (3L | & 2R)      |     |       |       | Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> ' @ | 7 sites (3L  | & 2R & 2R) |     |           |       |        |
|                                                            |             |            |     |       |       | a . 16                                          |              |            |     |           |       |        |
| Total Energy                                               | -7.003      |            |     |       |       | Total Energy                                    | -33.049      |            |     |           |       |        |
| electrostatic                                              | -424.977    |            |     |       |       | electrostatic                                   | -450.006     |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| ΔEs                                                        | -20.287     |            |     |       |       | ΔEs                                             | -46.333      |            |     |           |       |        |
|                                                            | -3.859      |            |     |       |       |                                                 | -6.359       |            |     |           |       |        |
|                                                            | -20.198     |            |     |       |       |                                                 | -45.227      |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
|                                                            | L           | v          | F   | F     | Lys16 |                                                 | L            | v          | F   | F         |       |        |
| Initial orientation                                        | LB1         |            | RB1 |       |       | Initial orientation                             | RB1          |            | LB1 |           |       |        |
| Final Orientation                                          | LB1         |            | CS  | CS    | LS1   | Final Orientation                               | RB1          |            |     | CS        |       |        |
|                                                            |             |            |     | -CH2- | LB1   |                                                 |              |            |     |           |       |        |
| C13t -h -1-h - 2 CO - 6                                    | 7 - 14 (2)  | 0.00.0.00  |     | RB1   | LNH   | C131 -1                                         | F - 14 (2)   | 0.00)      |     |           |       |        |
| Gd <sup></sup> chelates 3 SO <sub>3</sub> @                | 7 sites (3L | & 2R & 2R) |     |       |       | Gd <sup></sup> chelates 2 SO <sub>3</sub> @     | 5 sites (3L  | & 2R)      |     |           |       |        |
| Total Energy                                               | -62 934     |            |     |       |       | Total Energy                                    | -3 936       |            |     |           |       |        |
| van der Waals                                              | 115.145     |            |     |       |       | van der Waals                                   | 121.682      |            |     |           |       |        |
| electrostatic                                              | -476.384    |            |     |       |       | electrostatic                                   | -415.945     |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| ΔEs                                                        | -76.218     |            |     |       |       | ΔEs                                             | -17.22       |            |     |           |       |        |
|                                                            | -13.424     |            |     |       |       |                                                 | -b.887       |            |     |           |       |        |
|                                                            | , 1.005     |            |     |       |       |                                                 | 11.100       |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
|                                                            | L           | V          | F   | F     |       |                                                 | L            | v          | F   | F         |       |        |
| Initial orientation                                        |             |            | RB2 | LB2   |       | Initial orientation                             |              |            | LB2 | RB2       |       |        |
| mai orientation                                            |             |            |     |       |       | rmal Unentation                                 |              |            |     | кв2       |       |        |
| Gd <sup>3+</sup> chelates 2 SO : 向                         | 5 sites (3) | & 2R)      |     |       |       | Gd <sup>3+</sup> chelates 2 SO . @              | 5 sites ( २) | & 2R)      |     |           |       |        |
| da chelates 2503 e                                         | 5 51005 (50 |            |     |       | _     | da diciates 2003 e                              | 5 5100 (52   | a 211,7    |     |           |       |        |
| Total Energy                                               | 9.348       |            |     |       |       | Total Energy                                    | 5.17         |            |     |           |       |        |
| van der Waals                                              | 126.144     |            |     |       |       | van der Waals                                   | 125.277      |            |     |           |       |        |
| electrostatic                                              | -407.448    |            |     |       |       | electrostatic                                   | -410.119     |            |     |           |       |        |
| 1.7                                                        |             |            |     |       |       | 15                                              |              |            |     |           |       |        |
| ΔES                                                        | -3.936      |            |     |       |       | ΔĽS                                             | -8.114       |            |     |           |       |        |
|                                                            | -2.669      |            |     |       |       |                                                 | -5.34        |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Indefed a 1 - 1 - 1                                        | L           | v          | F   | F     |       | terial for the form                             | L            | V          | F   | F         |       |        |
| Initial orientation                                        | pco         |            | LB1 | RB1   |       | Initial orientation                             | <u> </u>     |            | RB1 | LB1       |       |        |
| rmal Orientation                                           | RR2         |            | кв1 | RR2   |       | Final Orientation                               | RB1          |            |     | LB1<br>CS |       |        |
|                                                            |             |            |     |       |       |                                                 |              |            |     |           |       |        |
| Gd <sup>3+</sup> chelates 3 SO <sub>3</sub> ' @            | 7 sites (3L | & 2R & 2R) |     |       |       | Gd <sup>3+</sup> chelates 2 SO <sub>3</sub> ' @ | 5 sites (3L  | & 2R)      |     |           |       |        |
|                                                            |             | Li         |     |       |       |                                                 |              |            |     |           |       |        |
| Total Energy                                               | -36.079     |            |     |       |       | Total Energy                                    | -29.971      |            |     |           |       |        |
| van der Waals                                              | 118.414     |            |     |       |       | van der Waals                                   | 119.226      |            |     |           |       |        |
| erectrostatic                                              | -443.942    |            |     |       | + +   | electrostatic                                   | -442.937     |            |     |           |       |        |
| ΔEs                                                        | -49 362     |            |     |       |       | ΔEs                                             | -43.255      |            |     |           |       |        |
|                                                            | -10.155     |            |     |       |       |                                                 | -9.343       |            |     |           |       |        |
|                                                            | -39.163     |            |     |       |       |                                                 | -38.158      |            |     |           |       |        |

## Gas phase results of solapsone and the 1AMB conformer of $A\beta$

| -                              | н                | н   | Q | К         | Tyr10     |       |                                | н                  | н          | Q | К        | Leu17    |            |       |
|--------------------------------|------------------|-----|---|-----------|-----------|-------|--------------------------------|--------------------|------------|---|----------|----------|------------|-------|
| Initial Orientation            | RB2              | LB2 |   |           | RR2       |       | Initial Orientation            | LB2                | RB2<br>RB2 |   | 151      | RB1      |            |       |
|                                |                  | LB2 |   |           | RNH       |       |                                | LS2                | RB2        |   | LB2      | LB1      |            |       |
|                                |                  |     |   |           |           |       |                                |                    | RS2        |   |          | LNH      |            |       |
| Total Enormy                   | 14 659           |     |   |           |           |       | Total Enormy                   | 25 275             |            |   |          |          |            |       |
| van der Waals                  | 90.634           |     |   |           |           |       | van der Waals                  | 79.81              |            |   |          |          |            |       |
| electrostatic                  | -245.836         |     |   |           |           |       | electrostatic                  | -288.134           |            |   |          |          |            |       |
| AEs                            | -54.683          |     |   |           |           |       | AFs                            | -104 616           |            |   |          |          |            |       |
|                                | -5.204           |     |   |           |           |       |                                | -16.028            |            |   |          |          |            |       |
|                                | -54.943          |     |   |           |           |       |                                | -97.241            |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
|                                | н                | н   | Q | к         | Leu17     |       |                                | н                  | н          | Q | к        | Leu17    |            |       |
| Initial Orientation            | LB1              | RB1 |   |           | 151       |       | Initial Orientation            | RB1<br>PC1         | LB1        |   |          | PC1      |            |       |
| i mai onentation               | 61               | 101 |   |           | 1.51      |       | iniai orientation              | 101                | LS1        |   |          | RNH      |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
| Total Energy<br>van der Waals  | -7.541<br>87.459 |     |   |           |           |       | Total Energy<br>van der Waals  | -0.643             |            |   |          |          |            |       |
| electrostatic                  | -262.09          |     |   |           |           |       | electrostatic                  | -254.618           |            |   |          |          |            |       |
| 4.5.                           | 70.000           |     |   |           |           |       | 45-                            | co. 004            |            |   |          |          |            |       |
| ΔES                            | -76.882          |     |   |           |           |       | ΔES                            | -69.984            |            |   |          |          |            |       |
|                                | -71.197          |     |   |           |           |       |                                | -63.725            |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
|                                | н                | н   | Q | к         | Tyr10     | Leu17 |                                | н                  | н          | Q | к        | Leu17    |            |       |
| Initial Orientation            | LS2              | RS2 |   |           |           |       | Initial Orientation            | RS2                | LS2        |   |          |          |            |       |
| Final Orientation              | LS2              | RS2 |   |           | LB1<br>CS | LS2   | Final Orientation              | RS2<br>RB2         | LS2        |   |          | RS2      |            |       |
|                                |                  |     |   |           |           |       |                                | 1102               |            |   |          |          |            |       |
| Total Energy                   | -2.225           |     |   |           |           |       | Total Energy                   | -3.11              |            |   |          |          |            |       |
| van der Waals<br>electrostatic | -256.779         |     |   |           |           |       | van der Waals<br>electrostatic | 88.411<br>-258.513 |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
| ΔEs                            | -71.566          |     |   |           |           |       | ΔEs                            | -72.451            |            |   |          |          |            |       |
|                                | - 7.349          |     |   |           |           |       |                                | -7.427             |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
|                                | н                | н   | 0 | ĸ         |           |       |                                | н                  | н          | 0 | ĸ        | Tyr10    | Phe 20     |       |
| Initial Orientation            | LB2              |     | ų | RB2       |           |       | Initial Orientation            | RB2                |            |   | LB2      | 11120    | 111020     |       |
| Final Orientation              | LS2              |     |   | RS2       |           |       | Final Orientation              | RB1                |            |   | LNH      | RS2      | LS2        |       |
|                                |                  |     |   | RB2       |           |       |                                | RS2                |            |   |          | RB2      |            |       |
| Total Energy                   | -26.291          |     |   |           |           |       | Total Energy                   | -44.369            |            |   |          |          |            |       |
| van der Waals                  | 89.911           |     |   |           |           |       | van der Waals                  | 82.756             |            |   |          |          |            |       |
| electrostatic                  | -283.522         |     |   |           |           |       | electrostatic                  | -301.915           |            |   |          |          |            |       |
| ΔEs                            | -95.632          |     |   |           |           |       | ΔEs                            | -113.71            |            |   |          |          |            |       |
|                                | -5.927           |     |   |           |           |       |                                | -13.082            |            |   |          |          |            |       |
|                                | -92.029          |     |   |           |           |       |                                | -111.022           |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
| Initial Orientation            | H<br>RB1         | н   | Q | K<br>I B1 | Gly9      | Tyr10 | Initial Orientation            | H<br>IB1           | н          | Q | K<br>RB1 | Tyr10    | Leu17      | Phe20 |
| Final Orientation              | RB1              |     |   | LS1       | RS1       | RS1   | Final Orientation              | LB1                |            |   | RS1      | LS1      | RS1        | RS1   |
|                                | CS               |     |   | LS2       | C=O       |       |                                | LS1                |            |   | RS2      |          |            |       |
|                                | RS2<br>RS1*      |     |   | RB1*      |           |       |                                |                    |            |   | 2        |          |            |       |
|                                | *-CH2-           |     |   | *-CH2-    |           |       |                                |                    |            |   |          |          |            |       |
| Total Canana                   | 66.610           |     |   |           |           |       | Total Constant                 | 50.55              |            |   |          |          |            |       |
| van der Waals                  | 77.328           |     |   |           |           |       | van der Waals                  | 82.213             |            |   |          |          |            |       |
| electrostatic                  | -315.198         |     |   |           |           |       | electrostatic                  | -311.885           |            |   |          |          |            |       |
| AE <sub>0</sub>                | 125.00           |     |   |           |           |       | AE <sub>0</sub>                | 130.001            |            |   |          |          |            |       |
| 468                            | -135.96          |     |   |           |           |       | ΔES                            | -128.891           |            |   |          |          |            |       |
|                                | -124.305         |     |   |           |           |       |                                | -120.992           |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
|                                | н                | н   | Q | к         | Leu17     | Phe20 |                                | н                  | н          | Q | к        | Leu17    | Phe20      |       |
| Initial Orientation            | LS2              |     |   | RS2       | 1.01      | 001   | Initial Orientation            | RS2                |            |   | LS2      | 063      | 102        |       |
| Final Orientation              | 1.52             |     |   | 2         | LS2       | RS2   | Final Orientation              | 2                  |            |   | 2        | 52       | LS2        |       |
|                                |                  |     |   |           |           | RS1   |                                | RS1                |            |   | LS1      |          |            |       |
| Total Energy                   | -36 571          |     |   |           |           | CS    | Total Foormy                   | -64 122            |            |   | -CH2-    |          |            |       |
| van der Waals                  | 80.846           |     |   |           |           |       | van der Waals                  | 81.842             |            |   |          |          |            |       |
| electrostatic                  | -282.505         |     |   |           |           |       | electrostatic                  | -312.527           |            |   |          |          |            |       |
| ΔEs                            | -105 912         |     |   |           |           |       | ΔEs                            | -133.464           |            |   |          |          |            |       |
|                                | -14.992          |     |   |           |           |       |                                | -13.996            |            |   |          |          |            |       |
|                                | -91.612          |     |   |           |           |       |                                | -121.634           |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
|                                | н                | н   | Q | к         | Phe20     |       |                                | н                  | н          | Q | к        | Leu17    | PHe20      |       |
| Initial Orientation            | CS               |     |   | LS2       | 100       |       | Initial Orientation            | LS2                |            |   | CS       | <u> </u> | 001        |       |
| mai Unentation                 | 2                |     |   | 2         | LBZ       |       | rillal Orientation             | RS2                |            |   | RS2      | LB1      | CS         |       |
|                                |                  |     |   | LS1       |           |       |                                |                    |            |   |          | LS1      |            |       |
| Total Energy<br>van der Waals  | -57.396          |     |   | -CH2-     |           |       | Total Energy<br>yan der Waals  | -50.849<br>80.284  |            |   |          |          |            |       |
| electrostatic                  | -309.595         |     |   |           |           |       | electrostatic                  | -302.776           |            |   |          |          |            |       |
| 45-                            |                  |     |   |           |           |       | 45.                            |                    |            |   |          |          |            |       |
| APS                            | -126.737         |     |   |           |           |       | APS                            | -120.19            |            |   |          |          |            |       |
|                                | -118.702         |     |   |           |           |       |                                | -111.883           |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |
|                                | н                | н   | Q | к         | Phe20     |       |                                | н                  | н          | Q | к        | Tyr10    | Leu17      | Phe20 |
| Initial Orientation            | RS2              |     |   | CS        |           |       | Initial Orientation            | CS                 |            |   | RS2      |          |            |       |
| Final Orientation              | RS2<br>RS1       |     |   | CS<br>RB1 | LS2       | -     | Final Orientation              | RB1<br>CS          |            |   | RS2      | LS2      | RS1<br>RR1 | RS1   |
|                                | 151              |     |   | 101       |           |       |                                | LS2                |            |   |          |          | CS         |       |
|                                |                  |     |   |           |           |       |                                | _                  |            |   |          |          |            |       |
| Total Energy                   | -36.365          |     |   |           |           |       | Total Energy                   | -57.995            |            |   |          |          |            |       |
| electrostatic                  | -291.551         |     |   |           |           |       | electrostatic                  | -306.139           |            |   |          |          |            |       |
| A.D.                           |                  |     |   |           |           |       | 415                            | 4                  |            |   |          |          |            |       |
| ΔES                            | -105.706         |     |   |           |           |       | ΔES                            | -127.336           |            |   |          |          |            |       |
|                                | -100.658         |     |   |           |           |       |                                | -115.246           |            |   |          |          |            |       |
|                                |                  |     |   |           |           |       |                                |                    |            |   |          |          |            |       |

| Initial Origonation            | Н                                        | н | Q | K          | His6       | Gly9       | Tyr10      | Leu17 | Phe20  | Initial Origonation            | H                              | н     | Q | K          | Leu17      | Phe20      | Lys28      |
|--------------------------------|------------------------------------------|---|---|------------|------------|------------|------------|-------|--------|--------------------------------|--------------------------------|-------|---|------------|------------|------------|------------|
| Final Orientation              | RB1                                      |   |   | LS1        | RS1        | RS1        | RS1        | LS2   | LS2    | Final Orientation              | LS1<br>LS1                     |       |   | LB1        | CS         | RB1        | RS1        |
|                                | LB1<br>RNH                               |   |   | 2          |            | C=O        |            | LS1   | LS1    |                                | LB1                            |       |   | LS2        | LB1        | RS1<br>CS  |            |
|                                | RS1                                      |   |   |            |            |            |            |       | CITZ   |                                |                                |       |   | -CH2-      |            |            |            |
|                                | -CH2-                                    |   |   |            |            |            |            |       |        |                                |                                |       |   |            |            |            |            |
| Total Energy                   | -70.529                                  |   |   |            |            |            |            |       |        | Total Energy                   | -44.148                        |       |   |            |            |            |            |
| electrostatic                  | -323.936                                 |   |   |            |            |            |            |       |        | electrostatic                  | -298.529                       |       |   |            |            |            |            |
| AFs                            | -139.87                                  |   |   |            |            |            |            |       |        | AFs                            | -113.489                       |       |   |            |            |            |            |
|                                | -21.376                                  |   |   |            |            |            |            |       |        |                                | -16.066                        |       |   |            |            |            |            |
|                                | -133.043                                 |   |   |            |            |            |            |       |        |                                | -107.636                       |       |   |            |            |            |            |
|                                |                                          |   | 0 | v          | Lou17      | Rho 20     | 1.00.29    |       |        |                                |                                |       | 0 | v          | 10117      |            |            |
| Initial Orientation            | RS1                                      |   | ų | CS         | Leur/      | File20     | Ly320      |       |        | Initial Orientation            | CS                             |       | ų | RS1        | Leur       |            |            |
| Final Orientation              | RS2<br>RS1                               |   |   | RB1<br>RS1 | RB1<br>RS2 | LB1<br>CS  | LS2        |       |        | Final Orientation              | RB1<br>CS                      |       |   | RS1        | RS1        |            |            |
|                                |                                          |   |   | CS         |            |            |            |       |        |                                | RS1                            |       |   |            |            |            |            |
|                                |                                          |   |   |            |            |            |            |       |        |                                | K52                            |       |   |            |            |            |            |
| Total Energy                   | -54.786                                  |   |   |            |            |            |            |       |        | Total Energy                   | -35.809                        |       |   |            |            |            |            |
| electrostatic                  | -303.796                                 |   |   |            |            |            |            |       |        | electrostatic                  | -290.215                       |       |   |            |            |            |            |
| ΔEs                            | -124.127                                 |   |   |            |            |            |            |       |        | ΔEs                            | -105.15                        |       |   |            |            |            |            |
|                                | -15.672                                  |   |   |            |            |            |            |       |        |                                | -8.779                         |       |   |            |            |            |            |
|                                | -112.903                                 |   |   |            |            |            |            |       |        |                                | -99.322                        |       |   |            |            |            |            |
|                                |                                          |   | 0 | v          | Lou17      | Rho 20     |            |       |        |                                |                                |       | 0 | v          | Lou17      | Rho 20     | 11/2/29    |
| Initial Orientation            | CS                                       |   | ų | LB1        | Leur/      | File20     |            |       |        | Initial Orientation            | LB1                            |       | ų | CS         | Leui       | Fliezo     | Ly320      |
| Final Orientation              | RB1<br>CS                                |   |   | LS1        | CS         | LS1<br>LS2 |            |       |        | Final Orientation              | LS1                            |       |   | LB1<br>LS1 | RS1        | RB1<br>RS2 | RS2        |
|                                | 46.694                                   |   |   |            |            |            |            |       |        | 7.1.15                         | (7.74                          |       |   | LS2        |            | RS1        |            |
| van der Waals                  | -16.694<br>90.638                        |   |   |            |            |            |            |       |        | van der Waals                  | -67.71<br>74.669               |       |   | -CH2-      |            |            |            |
| electrostatic                  | -273.387                                 |   |   |            |            |            |            |       |        | electrostatic                  | -311.419                       |       |   |            |            |            |            |
| ΔEs                            | -86.035                                  |   |   |            |            |            |            |       |        | ΔEs                            | -137.051                       |       |   |            |            |            |            |
|                                | -5.2                                     |   |   |            |            |            |            |       |        |                                | -21.169                        |       |   |            |            |            |            |
|                                | 02.404                                   |   |   |            |            |            |            |       |        |                                | 120.520                        |       |   |            |            |            |            |
|                                | н                                        | н | Q | к          | Tyr10      | Leu17      |            |       |        |                                | н                              | н     | Q | к          | Tyr10      | Leu17      | Phe20      |
| Initial Orientation            | RB1                                      |   |   | CS         |            |            |            |       |        | Initial Orientation            | CS                             | 164   |   | RB1        |            | 0.04       | 0.64       |
| Final Orientation              | RS1                                      |   |   | LSI        | RSI        | CS         |            |       |        | Final Orientation              | LB1<br>LS1                     | -CH2- |   | 2          | LB2<br>LS2 | RBI        | K51        |
|                                |                                          |   |   |            |            |            |            |       |        |                                | CS                             |       |   |            |            |            |            |
| Total Energy                   | -49.527                                  |   |   |            |            |            |            |       |        | Total Energy                   | -62.546                        |       |   |            |            |            |            |
| van der Waals<br>electrostatic | -301.77                                  |   |   |            |            |            |            |       |        | van der Waals<br>electrostatic | 79.218                         |       |   |            |            |            |            |
| 15                             |                                          |   |   |            |            |            |            |       |        | 15                             |                                |       |   |            |            |            |            |
| ΔEs                            | -118.868                                 |   |   |            |            |            |            |       |        | ΔEs                            | -131.887<br>-16.62             |       |   |            |            |            |            |
|                                | -110.877                                 |   |   |            |            |            |            |       |        |                                | -122.376                       |       |   |            |            |            |            |
|                                |                                          |   |   |            |            |            |            |       |        |                                |                                |       |   |            |            |            |            |
| Initial Orientation            | H<br>IB1                                 | н | Q | K<br>RS1   | His6       | Gly9       | Tyr10      | Leu17 | Phe 20 | Initial Orientation            | H<br>RS1                       | н     | Q | K<br>IB1   | Tyr10      | Leu17      | Phe 20     |
| Final Orientation              | RB1                                      |   |   | RS1        | LS2        | LS1        | LS1        | RS1   | RS1    | Final Orientation              | RS2                            |       |   | LS2        | RB2        | CS         | LB1        |
|                                | LB1<br>LS1                               |   |   | RS2        | LS1<br>LB2 | C=O        |            |       |        |                                | RS1<br>RB1                     |       |   | 2<br>LB2   |            | LB1        | LNH<br>LS1 |
|                                | -CH2-                                    |   |   |            |            |            |            |       |        |                                |                                |       |   | -CH2-      |            |            | LB2        |
|                                |                                          |   |   |            |            |            |            |       |        |                                |                                |       |   |            |            |            |            |
| Total Energy<br>van der Waals  | -86.458                                  |   |   |            |            |            |            |       |        | Total Energy<br>van der Waals  | -62.135<br>77.901              |       |   |            |            |            |            |
| electrostatic                  | -327.173                                 |   |   |            |            |            |            |       |        | electrostatic                  | -316.209                       |       |   |            |            |            |            |
| ΔEs                            | -155.799                                 |   |   |            |            |            |            |       |        | ΔEs                            | -131.476                       |       |   |            |            |            |            |
|                                | -20.272                                  |   |   |            |            |            |            |       |        |                                | -17.937                        |       |   |            |            |            |            |
|                                | -130.28                                  |   |   |            |            |            |            |       |        |                                | -125.316                       |       |   |            |            |            |            |
|                                | н                                        | н | 0 | ĸ          | Leu17      |            |            |       |        |                                | н                              | н     | 0 | ĸ          | Tyr10      | Leu17      | Phe 20     |
| Initial Orientation            | RB1                                      |   |   | LS1        |            |            |            |       |        | Initial Orientation            | LS1                            |       |   | RB1        |            |            |            |
| Final Orientation              | CS LB1                                   |   |   | LS2<br>LS1 | CS         |            |            |       |        | Final Orientation              | LB1<br>LS1                     | -CH2- |   | RS1<br>RS2 | LB2        | RS1<br>LB1 | RS1        |
|                                | RB1                                      |   |   | -CH2-      |            |            |            |       |        |                                | LS2                            |       |   | 2          |            | LS1        |            |
| Total Energy                   | -39.046                                  |   |   |            |            |            |            |       |        | Total Energy                   | -85.251                        |       |   |            |            |            |            |
| van der Waals<br>electrostatic | 87.14                                    |   |   |            |            |            |            |       |        | van der Waals<br>electrostatic | 74.781<br>-328.792             |       |   |            |            |            |            |
| AE <sub>0</sub>                | 400.007                                  |   |   |            |            |            |            |       |        | AEa                            | 40.400                         |       |   |            |            |            |            |
| LAE8                           | -108.387<br>-8.698                       |   |   |            |            |            |            |       |        | ΔES                            | -154.592                       |       |   |            |            |            |            |
|                                | -101.893                                 |   |   |            |            |            |            |       |        |                                | -137.899                       |       |   |            |            |            |            |
|                                |                                          |   |   |            |            |            |            |       |        |                                |                                |       |   |            |            |            |            |
| Initial Orientation            | H<br>RS2                                 | н | Q | K<br>LB2   |            |            |            |       |        | Initial Orientation            | H<br>LB2                       | н     | Q | K<br>RS2   |            |            |            |
| Final Orientation              | RB1                                      |   |   | LS2        |            |            |            |       |        | Final Orientation              | LS2                            |       |   | RS2        |            |            |            |
|                                | KS2                                      |   |   | LBZ        |            |            |            |       |        |                                |                                |       |   | 2          |            |            |            |
| Total Energy<br>van der Waals  | -35.007                                  |   |   |            |            |            |            |       |        | Total Energy<br>van der Waals  | -23.542<br>93.314              |       |   |            |            |            |            |
| electrostatic                  | -290.411                                 |   |   |            |            |            |            |       |        | electrostatic                  | -283.717                       |       |   |            |            |            |            |
| ΔEs                            | -104.348                                 |   |   |            |            |            |            |       |        | ΔEs                            | -92.883                        |       |   |            |            |            |            |
|                                | -10.022                                  |   |   |            |            |            |            |       |        |                                | -2.524                         |       |   |            |            |            |            |
|                                |                                          |   |   |            |            |            |            |       |        |                                | JE.024                         |       |   |            |            |            |            |
|                                | н                                        | н | 0 | к          | His6       | Glv9       | Tvr10      | Leu17 | Phe20  |                                | н                              | н     | 0 | к          | Tvr10      | Phe20      |            |
| Initial Orientation            | LB1                                      |   | _ | RS2        |            |            | 107        |       | 0.04   | Initial Orientation            | RB1                            |       | _ | LS2        |            |            |            |
| rinal Orientation              | LB1<br>LS2                               |   |   | RS1<br>RS2 | LBZ        | C=O        | LS2<br>LB2 | CS    | K51    | Final Urientation              | RB1                            | -CH-  |   | 2          | RS1<br>RS2 | LBZ        |            |
|                                | LB2                                      |   |   | -CH2-      |            |            |            |       |        |                                | RNH                            |       |   | LS1        | C=O        |            |            |
|                                |                                          |   |   |            |            |            |            |       |        | -                              |                                |       |   | CITZ-      |            |            |            |
| Total Energy                   | -                                        |   |   |            |            |            |            |       |        | Total Enormy                   | -81 424                        |       |   |            |            |            |            |
| vali uei vvaais                | -58.545<br>73.264                        |   |   |            |            |            |            |       |        | van der Waals                  | 77.391                         |       |   |            |            |            |            |
| electrostatic                  | -58.545<br>73.264<br>-302.24             |   |   |            |            |            |            |       |        | van der Waals<br>electrostatic | 77.391                         |       |   |            |            |            |            |
| electrostatic<br>ΔEs           | -58.545<br>73.264<br>-302.24<br>-127.886 |   |   |            |            |            |            |       |        | van der Waals<br>electrostatic | 77.391<br>-330.032<br>-150.765 |       |   |            |            |            |            |

|                                          | н                   | н            | Q          | к          |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
|------------------------------------------|---------------------|--------------|------------|------------|------------|------------|------------|-------|-------|------------------------------------------|--------------------|--------------|-----|----------|------------|--------|-------|
| Initial Orientation<br>Final Orientation | LS2<br>LS2          |              |            | RB1<br>RS2 |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| Total Energy                             | -18.394             |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| electrostatic                            | -281.066            |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| ΔEs                                      | -87.735             |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
|                                          | -2.214              |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
|                                          | н                   | н            | Q          | к          | Tyr10      | Val18      |            |       |       |                                          | н                  | н            | Q   | к        | Tyr10      | Val18  |       |
| Initial Orientation<br>Final Orientation | RS1<br>RS1          | CS<br>RS1    |            |            | RS2        | CS         |            |       |       | Initial Orientation<br>Final Orientation | CS<br>LB1          | RS1<br>CS    |     |          | LB1        | RS1    |       |
|                                          |                     | -CH-<br>CS   |            |            |            |            |            |       |       |                                          | LS2<br>LS1         | -CH-<br>RS1  |     |          | CS<br>RB1  |        |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          | CS                 |              |     |          |            |        |       |
| Total Energy                             | -0.188              |              |            |            |            |            |            |       |       | Total Energy                             | -36.629            |              |     |          |            |        |       |
| electrostatic                            | -253.202            |              |            |            |            |            |            |       |       | electrostatic                            | -289.707           |              |     |          |            |        |       |
| ΔEs                                      | -69.529             |              |            |            |            |            |            |       |       | ΔEs                                      | -105.97            |              |     |          |            |        |       |
|                                          | -11.231<br>-62.309  |              |            |            |            |            |            |       |       |                                          | -18.989<br>-98.814 |              |     |          |            |        |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| Initial Orientation                      | H<br>CS             | H<br>RS2     | Q          | к          | Tyr10      | Leu17      | Phe20      |       |       | Initial Orientation                      | H<br>RS2           | H<br>CS      | Q   | к        | Try10      | Leu17  | Val18 |
| Final Orientation                        | LB1                 | RS2<br>-CH2- |            | LS2<br>2   | RS1        | LS2        | LS2<br>LB2 |       |       | Final Orientation                        | RS2                | RB1<br>CS    |     |          | RS2<br>C=O | RS1    | RS1   |
|                                          |                     |              |            |            |            |            |            |       |       |                                          |                    | RS1<br>-CH-  |     |          |            |        |       |
|                                          | _                   |              |            |            |            |            |            |       |       |                                          |                    | RS2<br>-CH2- |     |          |            |        |       |
| Total Coorne                             | 54.42               |              |            |            |            |            |            |       |       | Total Energy                             | 6 126              |              |     |          |            |        |       |
| van der Waals                            | 82.737              |              |            |            |            |            |            |       |       | van der Waals                            | 81.385             |              |     |          |            |        |       |
| electrostatic                            | -310.403            |              |            |            |            |            |            |       |       | electrostatic                            | -259.023           |              |     |          |            |        |       |
| ΔEs                                      | -123.761<br>-13.101 |              |            |            |            |            |            |       |       | ΔEs                                      | -75.477<br>-14.453 |              |     |          |            |        |       |
|                                          | -119.51             |              |            |            |            |            |            |       |       |                                          | -68.13             |              |     |          |            |        |       |
|                                          | н                   | н            | 0          | К          | Tvr10      | Glu11      | Leu17      | Val18 | Glu22 |                                          | н                  | н            | 0   | К        | His6       | Glv9   | Tvr10 |
| Initial Orientation                      | LS2                 | CS<br>PS2    | 852        |            | 151        | CS.        | 1.81       | 882   | 882   | Initial Orientation                      | CS<br>PB1          | LS2<br>CS    |     |          | 882        | P\$2   | 852   |
|                                          | C.S.E               | 2            | 102        |            |            | -CH2-      | LUI        | TUDE  | no.   |                                          | RS2                | -CH2-        |     |          | 102        | C=O    | RB1   |
|                                          | _                   | CS           |            |            |            |            |            |       |       |                                          |                    | 1.32         |     |          |            |        |       |
|                                          |                     | LS2          |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
|                                          |                     | -CH2-        |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| Total Energy<br>van der Waals            | -26.567<br>75.552   |              |            |            |            |            |            |       |       | Total Energy<br>van der Waals            | -39.49<br>71.273   |              |     |          |            |        |       |
| electrostatic                            | -272.675            |              |            |            |            |            |            |       |       | electrostatic                            | -288.886           |              |     |          |            |        |       |
| ΔEs                                      | -95.908             |              |            |            |            |            |            |       |       | ΔEs                                      | -108.831           |              |     |          |            |        |       |
|                                          | -81.782             |              |            |            |            |            |            |       |       |                                          | -97.993            |              |     |          |            |        |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| Initial Orientation                      | H<br>LB1            | RS1          | Q          | к          | Tyr10      | Leu17      |            |       |       | Initial Orientation                      | RS1                | H<br>LB1     | Q   | к        | Tyr10      |        |       |
| Final Orientation                        | LB1<br>LS2          | -CH-         |            |            | LS1<br>LB1 | CS         |            |       |       | Final Orientation                        | RS1                | LB1<br>LS1   | LS1 |          | RS2        |        |       |
|                                          | LS1<br>CS           | RB1<br>-CH2- |            |            |            |            |            |       |       |                                          |                    | RS1<br>-CH2- |     |          |            |        |       |
|                                          |                     | RS1          |            |            |            |            |            |       |       |                                          |                    | LNH          |     |          |            |        |       |
| Total Energy<br>van der Waals            | -37.222<br>78.84    |              |            |            |            |            |            |       |       | Total Energy<br>yan der Waals            | -14.897<br>82.849  |              |     |          |            |        |       |
| electrostatic                            | -286.891            |              |            |            |            |            |            |       |       | electrostatic                            | -265.747           |              |     |          |            |        |       |
| ΔEs                                      | -106.563            |              |            |            |            |            |            |       |       | ΔEs                                      | -84.238            |              |     |          |            |        |       |
|                                          | -95.998             |              |            |            |            |            |            |       |       |                                          | -74.854            |              |     |          |            |        |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| Initial Orientation                      | LS1                 | RB1          | ų          | ĸ          | Leuiz      |            |            |       |       | Initial Orientation                      | RB1                | LS2          | ų   | ĸ        | 19110      | Leu17  |       |
| Final Orientation                        | LS1                 | RS1          |            |            | LS1        |            |            |       |       | Final Orientation                        | RB1<br>RS1         | LS2          |     |          | RS2        | CS     |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          | RS2                |              |     |          |            |        |       |
| Total Energy<br>van der Waals            | -7.563<br>87.6      |              |            |            |            |            |            |       |       | Total Energy<br>van der Waals            | -37.813<br>81.639  |              |     |          |            |        |       |
| electrostatic                            | -262.152            |              |            |            |            |            |            |       |       | electrostatic                            | -290.705           |              |     |          |            |        |       |
| ΔEs                                      | -76.904             |              |            |            |            |            |            |       |       | ΔEs                                      | -107.154           |              |     |          |            |        |       |
|                                          | -71.259             |              |            |            |            |            |            |       |       |                                          | -99.812            |              |     |          |            |        |       |
|                                          |                     |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| Initial Orientation                      | H<br>LB1            | RS2          | Q          | ĸ          | Tyr10      | Leu17      | Val18      |       |       | Initial Orientation                      | H<br>RS2           | H<br>LB2     | Q   | ĸ        | Leu1/      | Val 18 |       |
| Final Orientation                        | LB1<br>LS2          | RS2          |            | LS2        | CS         | LS2<br>LB1 | RS2        |       |       | Final Orientation                        | RB1<br>RS2         | LB2<br>LS2   |     | RS2      | LS2        | LS2    |       |
|                                          | LS1                 |              |            |            |            |            |            |       |       |                                          | RNH                | -CH2-        |     |          |            |        |       |
| Total Energy<br>van der Waals            | -42.851<br>81.753   |              |            |            |            |            |            |       |       | Total Energy<br>van der Waals            | -54.195<br>75.935  |              |     |          |            |        |       |
| electrostatic                            | -297.33             |              |            |            |            |            |            |       |       | electrostatic                            | -302.613           |              |     |          |            |        |       |
| ΔEs                                      | -112.192            |              |            |            |            |            |            |       |       | ΔEs                                      | -123.536           |              |     |          |            |        |       |
|                                          | -106.437            |              |            |            |            |            |            |       |       |                                          | -111.72            |              |     |          |            |        |       |
|                                          |                     |              | 0          | ~          | Tur10      | Leu17      |            |       |       |                                          |                    |              | 0   | v        | Chu11      | Lou17  |       |
| Initial Orientation                      | LB2                 | RS2          | ų          | ĸ          | TyF10      | Leu1/      |            |       |       | Initial Orientation                      | RB2                | LS2          | ų   | N        | GIUII      | Leuiz  |       |
| Final Orientation                        | LB2<br>LS2          | -CH2-        | RS2<br>RB2 |            | 151        | LB2<br>LS2 |            |       |       | Final Orientation                        | RB1<br>RS2         | LB2<br>LS1   |     | RS2<br>2 | LB2        | KB1    |       |
|                                          |                     | RS2<br>RB2   |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |
| Total Energy                             | -25.724             |              |            |            |            |            |            |       |       | Total Energy                             | -43.477            |              |     |          |            |        |       |
| van der Waals<br>electrostatic           | 79.387              |              |            |            |            |            |            |       |       | van der Waals<br>electrostatic           | 81.892<br>-295.929 |              |     |          |            |        |       |
| ΔEs                                      | -95.065             |              |            |            |            |            |            |       |       | ΔEs                                      | -112.818           |              |     |          |            |        |       |
|                                          | -16.451             |              |            |            |            |            |            |       |       |                                          | -13.946            |              |     |          |            |        |       |
|                                          | -02.5/4             |              |            |            |            |            |            |       |       |                                          | 203.035            |              |     |          |            |        |       |
|                                          | н                   | Н            | Q          | K          | Tyr10      | Leu17      | Phe20      |       |       |                                          | н                  | Н            | Q   | K        | Glu11      | Leu17  | Val18 |
| Final Orientation                        | LB1                 | RB2<br>RB2   |            | LB2<br>LB2 | RS2        | LS2        | LB2        |       |       | Final Orientation                        | RB1                | LB2<br>LB2   |     | RB2      | LB2        | RS2    | LS2   |
|                                          | LS2<br>LS1          |              |            | LS2        |            | LB1        |            |       |       |                                          | RNH                | LB2<br>LS2   |     | RS2      |            |        |       |
| Total Energy                             | -60.376             |              |            |            |            |            |            |       |       | Total Energy                             | -31.426            |              |     |          |            |        |       |
| van der Waals<br>electrostatic           | 73.27<br>-306.118   |              |            |            |            |            |            |       |       | van der Waals<br>electrostatic           | 82.152<br>-284.056 |              |     |          |            |        |       |
| ΔEs                                      | -129 717            |              |            |            |            |            |            |       |       | ΔEs                                      | -100 767           |              |     |          |            |        |       |
|                                          | -22.568             |              |            |            |            |            |            |       |       |                                          | -13.686            |              |     |          |            |        |       |
|                                          | -113.225            |              |            |            |            |            |            |       |       |                                          |                    |              |     |          |            |        |       |

|                               | L                 | V        | F   | F   | Ala21      | Lys28      |       |       |                               | L                 | V   | F   | F        | Ala21    | Lys28  |       |       |        |
|-------------------------------|-------------------|----------|-----|-----|------------|------------|-------|-------|-------------------------------|-------------------|-----|-----|----------|----------|--------|-------|-------|--------|
| Initial Orientation           | LB1               | RB1      |     | 164 |            | 102        |       |       | Initial Orientation           | RB1               | LB1 |     | DC1      | 001      | 000    |       |       |        |
|                               |                   |          |     |     | 0          | LUL        |       |       | Tillar Offentation            | RB1               |     |     | 101      | 11,51    | RS1    |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
| Total Energy                  | -17.898           |          |     |     |            |            |       |       | Total Energy                  | -16.438           |     |     |          |          |        |       |       |        |
| electrostatic                 | -269.275          |          |     |     |            |            |       |       | electrostatic                 | -265.083          |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
| ΔEs                           | -87.239           |          |     |     |            |            |       |       | ΔEs                           | -85.779           |     |     |          |          |        |       |       |        |
|                               | -78.382           |          |     |     |            |            |       |       |                               | -15.021           |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
|                               |                   | W        |     |     | Mat2       | Lice 14    | Lur1C |       |                               |                   | M   |     |          | Life 1.4 |        |       |       |        |
| Initial Orientation           | LB1               | RB2      | r   | r   | HIST2      | LI214      | LYSID |       | Initial Orientation           | RB2               | LB2 | r   | r        | HI514    |        |       |       |        |
| Final Orientation             | LS2               | RS2      | RB2 | LB2 | LS2        | RS2        | LB2   |       | Final Orientation             |                   |     |     |          | LB2      |        |       |       |        |
|                               |                   |          |     |     |            |            | LS2   |       |                               |                   |     |     |          | LB2      |        |       |       |        |
| Total Energy                  | -29.528           |          |     |     |            |            |       |       | Total Energy                  | 22.727            |     |     |          |          |        |       |       |        |
| van der Waals                 | 82.827            |          |     |     |            |            |       |       | van der Waals                 | 86.961            |     |     |          |          |        |       |       |        |
| electrostatic                 | -279.741          |          |     |     |            |            |       |       | electrostatic                 | -235.178          |     |     |          |          |        |       |       |        |
| ΔEs                           | -98.869           |          |     |     |            |            |       |       | ΔEs                           | -46.614           |     |     |          |          |        |       |       |        |
|                               | -13.011           |          |     |     |            |            |       |       |                               | -8.877            |     |     |          |          |        |       |       |        |
|                               | -88.848           |          |     |     |            |            |       |       |                               | -44.285           |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
|                               | L                 | V        | F   | F   | Glu22      |            |       |       |                               | L                 | V   | F   | F        |          |        |       |       |        |
| Initial Orientation           | RB2               |          | LB2 |     | 102        |            |       |       | Initial Orientation           | LB2               |     | RB2 |          | -        |        |       |       |        |
| Final Orientation             |                   |          |     |     | LDZ        |            |       |       | Fillal Offeritation           |                   |     |     |          |          |        |       |       |        |
| Total Energy                  | 62.194            |          |     |     |            |            |       |       | Total Energy                  | 55.716            |     |     |          |          |        |       |       |        |
| van der Waals                 | 92.234            |          |     |     |            |            |       |       | van der Waals                 | 95.509            |     |     |          |          |        |       |       |        |
| electrostatic                 | -200.117          |          |     |     |            |            |       |       | electrostatic                 | -203.100          |     |     |          |          |        |       |       |        |
| ΔEs                           | -7.147            |          |     |     |            |            |       |       | ΔEs                           | -13.625           |     |     |          |          |        |       |       |        |
|                               | -3.604            |          |     |     |            |            |       |       |                               | -0.329            |     |     |          |          |        |       |       |        |
|                               | -9.224            |          |     |     |            |            |       |       |                               | -14.295           |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
|                               | L                 | V        | F   | F   | His13      | Lys16      | Lys28 |       |                               | L                 | V   | F   | F        | His13    | Lys28  |       |       |        |
| Initial Orientation           | LB1               |          |     | RB1 | 157        | 152        | RS1   |       | Initial Orientation           | RB1<br>RS1        |     |     | LB1      | RS1      | 157    |       |       |        |
| This offertation              |                   |          |     | RB1 | LS1        | LS1        | 101   |       | rindi Orientation             | RB1               |     |     | LB1      | 101      | 2      |       |       |        |
|                               |                   |          |     |     |            | LB1        |       |       |                               |                   |     |     | LS1      |          |        |       |       |        |
| Total Energy                  | -52.866           |          |     |     |            |            |       |       | Total Energy                  | -76.326           |     |     |          |          |        |       |       |        |
| van der Waals                 | 83.566            |          |     |     |            |            |       |       | van der Waals                 | 85.752            |     |     |          |          |        |       |       |        |
| electrostatic                 | -308.175          |          |     |     |            |            |       |       | electrostatic                 | -280.005          |     |     |          |          |        |       |       |        |
| AFs                           | -122 207          |          |     |     |            |            |       |       | AFs                           | -95.667           |     |     |          |          |        |       |       |        |
|                               | -12.272           |          |     |     |            |            |       |       |                               | -10.086           |     |     |          |          |        |       |       |        |
|                               | -117.282          |          |     |     |            |            |       |       |                               | -89.112           |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
|                               | L                 | V        | F   | F   | Lys16      | Lys28      |       |       |                               | L                 | V   | F   | F        | Lys16    | Lys28  |       |       |        |
| Initial Orientation           | LB2               |          |     | RB1 |            |            |       |       | Initial Orientation           | RB2               |     |     | LB1      |          |        |       |       |        |
| Final Orientation             | LB2               |          |     | LS2 | RS2        | LS1<br>152 |       |       | Final Orientation             | RS2               |     |     | LS2      | LS2      | RS1 2  |       |       |        |
|                               |                   |          |     | RB1 |            |            |       |       |                               |                   |     |     | RB1      |          | RB1    |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     | RS2      |          |        |       |       |        |
| Total Energy<br>van der Waals | -51.46            |          |     |     |            |            |       |       | Total Energy<br>wan der Waals | -44.287<br>81.673 |     |     |          |          |        |       |       |        |
| electrostatic                 | -305.46           |          |     |     |            |            |       |       | electrostatic                 | -294.105          |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
| ΔES                           | -120.801          |          |     |     |            |            |       |       | ΔES                           | -113.628          |     |     |          |          |        |       |       |        |
|                               | -114.567          |          |     |     |            |            |       |       |                               | -108.212          |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
|                               | 1                 | V        | 6   | E   | Hie12      | Hie14      | Lur16 |       |                               | 1                 | M   |     | E        | Tur10    | Hic12  | Hie14 | Ala21 | Jur 29 |
| Initial Orientation           | LB1               | •        |     | RB2 | 111325     | 111324     | 61010 |       | Initial Orientation           | RB2               | LB2 |     |          | 19120    | 111223 | 11324 | THEL  |        |
| Final Orientation             | LS1               | LB2      |     | RB2 | LS1        | LS1        | RS1   |       | Final Orientation             | RB1               |     |     | RB2      | LS1      | LS1    | LB2   | RB2   | RB2    |
|                               | LNH               |          |     |     |            | -CH2-      |       |       |                               | LB1               |     |     |          |          |        | LB2   |       | RS2    |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        | -CH2- |       | -      |
| Total Energy                  | -34.515           |          |     |     |            |            |       |       | Total Energy                  | -54.145           |     |     |          |          |        |       |       |        |
| electrostatic                 | -286.116          |          |     |     |            |            |       |       | electrostatic                 | -293,864          |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
| ΔEs                           | -103.856          |          |     |     |            |            |       |       | ΔEs                           | -123.486          |     |     |          |          |        |       |       |        |
|                               | -20.054           |          |     |     |            |            |       |       |                               | -27.791           |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
| Initial Orientation           | L<br>IB2          | V<br>RB2 | F   | F   | His14      |            |       |       | Initial Orientation           | RB7               | V   | F   | F<br>IB2 | His13    | Lys16  | Lys28 |       |        |
| Final Orientation             | LOL               | RS2      |     |     | RB2        |            |       |       | Final Orientation             | RS2               |     |     | LB1      | RB2      | RS2    | LS1   |       |        |
|                               |                   |          |     |     | RB2        |            |       |       |                               |                   |     |     | LNH      | RS2      |        |       |       |        |
|                               |                   |          |     |     | RS2        |            |       |       |                               |                   |     |     | LS2      |          |        |       |       |        |
| Total Energy                  | 19.905            |          |     |     |            |            |       |       | Total Energy                  | -48.346           |     |     |          |          |        |       |       |        |
| van der Waals                 | 89.169            |          |     |     |            |            |       |       | van der Waals                 | 81.514            |     |     |          |          |        |       |       |        |
| electrostatic                 | -237.685          |          |     |     |            |            |       |       | electrostatic                 | -304.457          |     |     |          |          |        |       |       |        |
| ΔEs                           | -49.436           |          |     |     |            |            |       |       | ΔEs                           | -117.687          |     |     |          |          |        |       |       |        |
|                               | -6.669            |          |     |     |            |            |       |       |                               | -14.324           |     |     |          |          |        |       |       |        |
|                               | -46.792           |          |     |     |            |            |       |       |                               | -113.564          |     |     |          |          |        |       |       |        |
|                               |                   |          |     |     |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
|                               | L                 | V        | F   | F   | His13      | Lys16      | Val24 | Lys28 |                               | L                 | ٧   | F   | F        | Gln15    |        |       |       |        |
| Initial Orientation           | LB2               |          |     | RB2 | 100        | 100        | 003   | 003   | Initial Orientation           |                   | RB1 | LB1 |          |          |        |       |       |        |
| rinal Urientation             | LISZ              |          |     | RB2 | LS2<br>LS1 | 131        | KB2   | KSZ   | rinal urientation             |                   | RB1 | 3   |          | US       |        |       |       |        |
|                               |                   |          |     | _   |            |            |       |       |                               |                   |     |     |          |          |        |       |       |        |
| Tatal Frances                 | EC 0780           |          |     |     |            |            |       |       | Total Factory                 | 61.001            |     |     |          |          |        |       |       |        |
| van der Waals                 | -56.0/9<br>77.346 |          |     |     |            |            |       |       | van der Waals                 | 61.491<br>89.798  |     |     |          |          |        |       |       |        |
| electrostatic                 | -307.997          |          |     |     |            |            |       |       | electrostatic                 | -193.531          |     |     |          |          |        |       |       |        |
| 412-                          |                   |          |     |     |            |            |       |       | 417-                          |                   |     |     |          |          |        |       |       |        |
| ats                           | -125.42           |          |     |     |            |            |       |       | ΔES                           | -7.85             |     |     |          |          |        |       |       |        |
|                               | -117.104          |          |     |     |            |            |       |       |                               | -2.638            |     |     |          |          |        |       |       |        |

|                     | L        | v   | F    | F        | Glu22  |       |       |                     | L        | v   | F     | F      | His14  | Gin15   | Lvs16 |        |
|---------------------|----------|-----|------|----------|--------|-------|-------|---------------------|----------|-----|-------|--------|--------|---------|-------|--------|
| Initial Orientation | -<br>1   | LB1 | RB1  |          |        |       |       | Initial Orientation | -        | RB2 | LB1   |        |        |         | -,    |        |
| Final Orientation   |          | LB1 | RS1  |          | CS     |       |       | Final Orientation   |          | RS2 | LB1   |        | RB2    | RNH     | LS2   |        |
|                     |          | LS1 |      |          | -CH2-  |       |       |                     |          |     | LNH   |        |        | RB1     | LB2   |        |
|                     |          |     |      |          |        |       |       |                     |          |     | LS2   |        |        |         | -CH2- |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| Total Energy        | 42.68    |     |      |          |        |       |       | Total Energy        | 0.03     |     |       |        |        |         |       |        |
| van der Waals       | 89.222   |     |      |          |        |       |       | van der Waals       | 84.524   |     |       |        |        |         |       |        |
| electrostatic       | -216.652 |     |      |          |        |       |       | electrostatic       | -253.93  |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| ΔEs                 | -26.661  |     |      |          |        |       |       | ΔEs                 | -69.311  |     |       |        |        |         |       |        |
|                     | -6.616   |     |      |          |        |       |       |                     | -11.314  |     |       |        |        |         |       |        |
|                     | -25.759  |     |      |          |        |       |       |                     | -63.037  |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | L        | V   | F    | F        |        |       |       |                     | L        | V   | F     | F      |        |         |       |        |
| Initial Orientation | 1        | LB2 | RB1  |          |        |       |       | Initial Orientation |          | RB2 | LB2   |        |        |         |       |        |
| Final Orientation   |          | LB2 | RB1  |          |        |       |       | Final Orientation   |          |     | LB2   |        |        |         |       |        |
| Table               | 45.450   |     |      |          |        |       |       | Table               | 55.345   |     |       |        |        |         |       |        |
| Total Energy        | 46.169   |     |      |          |        |       |       | Total Energy        | 56.345   |     |       |        |        |         |       |        |
| vali del vvadis     | 309.605  |     |      |          |        |       |       | vali uel vvadis     | 92.047   |     |       |        |        |         |       |        |
| electrostatic       | -208.605 |     |      |          |        |       |       | electrostatic       | -201.862 |     |       |        |        |         |       |        |
| 417-                | 22.472   |     |      |          |        |       |       | 417-                | 43.000   |     |       |        |        |         |       |        |
| 41.3                | -23.172  |     |      |          |        |       |       | 413                 | -12.330  |     |       |        |        |         |       |        |
|                     | -0.519   |     |      |          |        |       |       |                     | -5.191   |     |       |        |        |         |       |        |
|                     | -17.712  |     |      |          |        |       |       |                     | -10.909  |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | -        | V   | 6    | - E      | Gin15  |       |       |                     |          | V   | 6     | 6      | Hic14  | 1.00.29 |       |        |
| Initial Orientation | , L      | 182 | RB2  |          | GIIIIS |       |       | Initial Orientation |          | RB2 |       | 182    | 111314 | Lyszo   |       |        |
| Final Orientation   |          | LDL | TIDE |          | RB7    |       |       | Final Orientation   | 852      | RS2 |       | LUL    | RB2    | 151     |       |        |
| indi onentation     |          |     |      |          | no.    |       |       | i mar orientation   | 102      | RB2 |       |        | RS2    |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        | -CH2-  |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| Total Energy        | 39.194   |     |      |          |        |       |       | Total Energy        | -15.154  |     |       |        |        |         |       |        |
| van der Waals       | 91.989   |     |      |          |        |       |       | van der Waals       | 83.048   |     |       |        |        |         |       |        |
| electrostatic       | -217.886 |     |      |          |        |       |       | electrostatic       | -266.074 |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| ΔEs                 | -30.147  |     |      |          |        |       |       | ΔEs                 | -84.495  |     |       |        |        |         |       |        |
| -                   | -3.849   |     |      |          |        |       |       | -                   | -12.79   |     |       |        |        |         |       |        |
|                     | -26.993  |     |      |          |        |       |       |                     | -75.181  |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | L        | v   | F    | F        | Ala21  | Glu22 | Lys28 |                     | L        | v   | F     | F      | Val12  | His13   | Gln15 | Lys16  |
| Initial Orientation | -        | LB2 |      | RB2      |        |       |       | Initial Orientation | -        | •   | RB1   | LB1    |        |         |       | ,      |
| Final Orientation   |          |     |      | RB2      | LB2    | LB2   | RS2   | Final Orientation   |          |     | RS1   | LB1*   | RS1    | LS1     | RS1   | RS2    |
|                     |          |     |      | RS2      |        |       | 2     |                     |          |     | RB1   | LNH*   |        |         | -CH2- | RB1    |
|                     |          |     |      |          |        |       |       |                     |          |     | CS    | *-CH2- |        |         |       | RS1*   |
|                     |          |     |      |          |        |       |       |                     |          |     | -CH2- |        |        |         |       | LB1*   |
| Total Energy        | -9.463   |     |      |          |        |       |       | Total Energy        | -59.595  |     |       |        |        |         |       | LS1*   |
| van der Waals       | 82.769   |     |      |          |        |       |       | van der Waals       | 68.572   |     |       |        |        |         |       | *-CH2- |
| electrostatic       | -258.718 |     |      |          |        |       |       | electrostatic       | -303.526 |     |       |        |        |         |       | LS2    |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| ΔEs                 | -78.804  |     |      |          |        |       |       | ΔEs                 | -128.936 |     |       |        |        |         |       |        |
|                     | -13.069  |     |      |          |        |       |       |                     | -27.266  |     |       |        |        |         |       |        |
|                     | -67.825  |     |      |          |        |       |       |                     | -112.633 |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | L        | v   | F    | F        | Lys16  | Val24 |       |                     | L        | V   | F     | F      | GIn15  | Lys16   |       |        |
| Initial Orientation | ı        |     | LB1  | RB1      |        |       |       | Initial Orientation |          |     | LB1   | RB2    |        |         |       |        |
| Final Orientation   |          |     | LS1  | RS1      | LB1    | CS    |       | Final Orientation   |          |     | RB1   |        | LS2    | RB2     |       |        |
|                     |          |     |      | RB1      | RS1    |       |       |                     |          |     | CS    |        |        | RS2     |       |        |
|                     |          |     |      |          | RB1    |       |       |                     |          |     | LB1   |        |        | 2       |       |        |
|                     |          |     |      |          | LNH    |       |       |                     |          |     | LS2   |        |        |         |       |        |
| Total Energy        | -33.13   |     |      |          | LS1    |       |       | Total Energy        | -0.123   |     |       |        |        |         |       |        |
| van der Waals       | 80.492   |     |      |          | -CH2-  |       |       | van der Waals       | 83.544   |     |       |        |        |         |       |        |
| electrostatic       | -286.645 |     |      |          |        |       |       | electrostatic       | -255.682 |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| ΔEs                 | -102.471 |     |      |          |        |       |       | ΔEs                 | -69.464  |     |       |        |        |         |       |        |
|                     | -15.346  |     |      |          |        |       |       |                     | -12.294  |     |       |        |        |         |       |        |
|                     | -95.752  |     |      |          |        |       |       |                     | -64.789  |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | L        | v   | F    | F        | His13  | Lys16 |       |                     | E        | V   | F     | F      | His13  | Lys16   |       |        |
| Initial Orientation | ı        |     | RB2  | LB1      |        |       |       | Initial Orientation |          |     | RB1   | LB2    |        |         |       |        |
| Final Orientation   | LS2      |     | RB2  |          | LB2    | RB1   |       | Final Orientation   |          |     | RB2   | LB2    | LS1    | LB1     |       |        |
|                     |          |     |      |          | LS2    | RS2   |       |                     |          |     | RS1   |        |        | RB1     |       |        |
|                     |          |     |      |          |        | LS2   |       |                     |          |     |       |        |        | RNH*    |       |        |
|                     |          |     |      |          |        | -CH2- |       |                     |          |     |       |        |        | LNH*    |       |        |
| Total Energy        | -48.492  |     |      |          |        | RNH   |       | Total Energy        | -47.676  |     |       |        |        | LS1*    |       |        |
| van der Waals       | 77.575   |     |      |          |        | RS2   |       | van der Waals       | 78.354   |     |       |        |        | *-CH2-  |       |        |
| electrostatic       | -294.481 |     |      |          |        | _     |       | electrostatic       | -300.436 |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| ΔEs                 | -117.833 |     |      |          |        |       |       | ΔEs                 | -117.017 |     |       |        |        |         |       |        |
|                     | -18.263  |     |      |          |        |       |       |                     | -17.484  |     |       |        |        |         |       |        |
|                     | -103.588 |     |      |          |        |       |       |                     | -109.543 |     |       |        |        |         |       |        |
|                     |          |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     |          |     |      | L        |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | L        | V   | F    | F        | Lys16  | Lys28 |       |                     | L        | V   | F     | F      | Lys16  |         |       |        |
| Initial Orientation | ı        |     | LB2  | RB1      |        |       |       | Initial Orientation |          |     | RB2   | LB2    |        |         |       |        |
| Final Orientation   |          |     |      | LB1      | LS2    | RS1   |       | Final Orientation   |          |     | RB2   | LB2    | LB1    |         |       |        |
|                     |          |     |      | RB1      | LB2    | RNH   |       |                     |          |     | RS2   |        | LNH    |         |       |        |
|                     |          |     |      | RB2      |        | _     |       |                     |          |     |       |        | LS1    |         |       |        |
| Tuble               |          |     |      | <b>↓</b> |        |       |       | T.4.1-              |          |     |       |        | -CH2-  |         |       |        |
| Total Energy        | -28.859  |     |      |          |        | _     |       | Total Energy        | -14.425  |     |       |        |        |         |       |        |
| van der Waals       | 80.05    |     |      | <b>↓</b> |        |       |       | van der Waals       | 87.505   |     |       |        |        |         |       |        |
| erectrostatic       | -285.561 |     |      |          |        | -     |       | electrostatic       | -270.715 |     |       |        |        |         |       |        |
| 412-                |          |     |      |          |        |       |       | AT:                 |          |     |       |        |        |         |       |        |
| ΔES                 | -98.2    |     |      | <b>↓</b> |        |       |       | ΔEs                 | -83.766  |     |       |        |        |         |       |        |
|                     | -15.788  |     |      |          |        |       |       |                     | -8.333   |     |       |        |        |         |       |        |
|                     | -94.668  |     |      |          |        |       |       |                     | -79.822  |     |       |        |        |         |       |        |
|                     |          |     |      | <b>↓</b> |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     |          |     | -    | -        |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | L        | V   | F    | F        | His13  | Lys16 |       |                     |          |     |       |        |        |         |       |        |
| Initial Orientation | 1        |     | LB2  | RB2      | 000    | 100   |       |                     |          |     |       |        |        |         |       |        |
| una Urientation     | R52      |     | LB2  | rK52     | R52    | LS2   |       |                     |          |     |       |        |        |         |       |        |
|                     | RB2      |     |      | -CH2-    |        | LNH   |       |                     |          |     |       |        |        |         |       |        |
|                     |          |     |      | L        |        | LB1   |       |                     |          |     |       |        |        |         |       |        |
| T-1-1-5             |          |     |      |          |        | RS2   |       |                     |          |     |       |        |        |         |       |        |
| iotal Energy        | -52.56   |     |      | L        |        | -CH2- |       |                     |          |     |       |        |        |         |       |        |
| van der Waals       | /9.19    |     |      | ++       |        |       |       |                     |          |     |       |        |        |         |       |        |
| erectrostatic       | -297.391 |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
| AFe                 | 121.001  |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | -16 649  |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | -106 400 |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |
|                     | 100.430  |     |      |          |        |       |       |                     |          |     |       |        |        |         |       |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                      | Q           | K                                                                                                        | L                                                                                                                                                                | v                                                                                                                                                                       | F | F      | Lys28               |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                       | Q      | к     | L                                                                                           | v                                                                                                  | F      | F          | Lys28                       |              |              |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|---------------------|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|------------|-----------------------------|--------------|--------------|-------|
| Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |             |                                                                                                          | LB1                                                                                                                                                              |                                                                                                                                                                         |   |        | 100                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |        | 100   | RB1                                                                                         |                                                                                                    |        | -          | -                           |              |              |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |             |                                                                                                          | LB1                                                                                                                                                              |                                                                                                                                                                         |   | LS1    | LBZ                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |        | LSZ   | RB1                                                                                         |                                                                                                    |        | RSZ        | RB2                         |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          | LS1                                                                                                                                                              |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Van der Waalr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -27.757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -78.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -275.278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -323.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -97.098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -148.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -84.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -133.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                      | 0           | v                                                                                                        |                                                                                                                                                                  | V                                                                                                                                                                       | 6 | E      | Ghill               | Tyr10 | Lur 28 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ш                                                                                       | 0      | v     |                                                                                             | V                                                                                                  | E      | 5          | Tur10                       | Al=21        | 1 100 20     |       |
| Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ų           | ĸ                                                                                                        | LB1                                                                                                                                                              | v                                                                                                                                                                       |   | ,      | Giys                | Tyrio | Lyszo  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n                                                                                       | ų      | ĸ     | RB1                                                                                         | v                                                                                                  | ,      | r          | Tyrro                       | 70.821       | Lyszo        |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                                                                                                          | LB1                                                                                                                                                              |                                                                                                                                                                         |   | LS1    | RS2                 | RS2   | LS2    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        |       | RB1                                                                                         |                                                                                                    |        | RS1        | LS1                         | RS1          | RS1          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        | C=O                 |       | 2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              | RS2          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Roz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LOZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -83.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -70.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *329.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *515.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -152.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -139.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -20.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -19.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -138.712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -124.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                      | Q           | К                                                                                                        | L                                                                                                                                                                | v                                                                                                                                                                       | F | F      | Tyr10               | Lys28 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                       | Q      | к     | L                                                                                           | v                                                                                                  | F      | F          | Tyr10                       | Ala21        | Lys28        |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS1                    |             |                                                                                                          | LS1                                                                                                                                                              |                                                                                                                                                                         |   | LS1    | RS1                 | LS2   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        | RS1   | LS2                                                                                         |                                                                                                    |        |            | RS2                         | LS2          | LS1          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -CH2-                  |             |                                                                                                          | LB1                                                                                                                                                              |                                                                                                                                                                         |   |        | RS2                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        |       | CS                                                                                          |                                                                                                    |        |            |                             |              | 2            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       | RB1                                                                                         |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Roi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -59.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -53.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 82.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -300.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *303.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -128.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -123.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -25.192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -13.734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -110.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -114.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Initial Origonatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                      | Q           | к                                                                                                        | L                                                                                                                                                                | v                                                                                                                                                                       | F | F      |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | taitial Origatatia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                       | Q      | к     | L                                                                                           | v                                                                                                  | F      | F          | Ala21                       |              |              |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LB1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |             | LS2*                                                                                                     | RB2<br>RB2                                                                                                                                                       |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB2<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |        | LB2   | RB1<br>RB1                                                                                  |                                                                                                    |        |            | RS1                         |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |             | LB2*                                                                                                     | RS2                                                                                                                                                              |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        | LS2   | RNH                                                                                         |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             | *-CH2-                                                                                                   |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       | RS1                                                                                         |                                                                                                    |        |            |                             |              |              |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -35.508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -13.592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83.701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -285.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -264.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| AFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -104 849                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -82 933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -12.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -10.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -94.175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -73.604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                      | Q           | к                                                                                                        | L                                                                                                                                                                | v                                                                                                                                                                       | F | F      | Ala21               | Lys28 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                       | Q      | к     | L                                                                                           | v                                                                                                  | F      | F          | Gly9                        | Tyr10        | Ala21        | Lys28 |
| Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                                                                                                          | LB2                                                                                                                                                              |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        |       | RB2                                                                                         |                                                                                                    |        |            |                             |              |              |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             | RS2                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                         |   | LS2    | LB2                 | LS2   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        | LB1   | RB2                                                                                         |                                                                                                    |        | RS1<br>PNH | LB2                         | LB2          | RB2          | RS1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   | LUZ    |                     | LUL   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                         |        | LS1   |                                                                                             |                                                                                                    |        | i          |                             |              |              | -     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        | -CH2- |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -44.934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -71.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -298.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -309.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -114.275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -140.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -107.257                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -118.368                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ы                      | 0           | ~                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                         |   |        | CI-0                | 41-31 | char   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н                                                                                       | 0      | ~     |                                                                                             | M                                                                                                  |        |            | 41-21                       |              |              |       |
| Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ų           | N                                                                                                        | LB2                                                                                                                                                              | v                                                                                                                                                                       |   | ,      | Giys                | Alazi | Gly25  | Lyszo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n                                                                                       | ų      | ĸ     | RB2                                                                                         | v                                                                                                  | ,      | r          | Alazi                       |              |              |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             | RS2                                                                                                      | LS2                                                                                                                                                              |                                                                                                                                                                         |   | LS2    | RB2                 | LS2   | LB2    | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS2                                                                                     |        | LS2   | RB1                                                                                         | RS2                                                                                                |        |            | RB2                         |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |             | 2                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     | LB2   |        | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -CH2-                                                                                   |        | LNH   | RS2                                                                                         | RB2                                                                                                |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -CH2-<br>RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        | LB1   | RBZ                                                                                         |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -74.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -54.858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 72.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -303.442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -143.447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -124.199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -22.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -15.647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                      |             |                                                                                                          |                                                                                                                                                                  |                                                                                                                                                                         | F | F      | Gly25               |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н                                                                                       | Q      | к     | L                                                                                           | V<br>PB1                                                                                           | F      | F          |                             |              |              |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ų           | К                                                                                                        | L                                                                                                                                                                | V<br>IB1                                                                                                                                                                |   |        |                     |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |        |       | 104                                                                                         | RB1                                                                                                |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1                                                                                                                                                         | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB1                                                                                     |        |       | LB1                                                                                         |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1                                                                                                                                                  | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>LB1<br>LS1<br>LNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RB1<br>-CH2-                                                                            |        |       | LBI                                                                                         |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>LB1<br>LS1<br>LNH<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB1<br>-CH2-<br>RNH<br>PS1                                                              |        |       | LBI                                                                                         |                                                                                                    |        |            |                             |              |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>LB1<br>LS1<br>LNH<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       | LBI                                                                                         |                                                                                                    |        |            |                             |              |              |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -13.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       | LBI                                                                                         |                                                                                                    |        |            |                             |              |              |       |
| Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -13.726<br>81.547<br>-267.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        | Image: Constraint of the sector of  | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrotatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       | LBI                                                                                         |                                                                                                    |        |            |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -13.726<br>81.547<br>-267.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        | Image: Constraint of the sector of  | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>LB1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       | LBI                                                                                         |                                                                                                    |        |            |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -13.726<br>81.547<br>-267.666<br>-83.067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        | Image: Sector  | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | ų           | K<br>RS1                                                                                                 | L<br>RB1<br>RNH                                                                                                                                                  | V<br>LB1                                                                                                                                                                |   |        | LB2                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>LB1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        | ų           | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>181                                                                                                                                                                |   |        | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>LB1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |             | K<br>RS1                                                                                                 | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                |   |        | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RB1<br>-CH2-<br>RNH<br>RS1                                                              |        |       |                                                                                             |                                                                                                    |        |            |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                      | Q<br>Q      | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1                                                                                                                                                                | F | F      | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Total Energy van der Waals electrostatic ΔEs Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-259.862<br>-82.84<br>-17.046<br>-68.969<br>-82.84<br>H<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RB1<br>-CH2-<br>RNH<br>RS1                                                              | Q      | ĸ     | LBI                                                                                         | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H                      | Q           | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS                                                                                                                                              | F | F      | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation<br>Total Energy<br>Van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.969<br>H<br>RS1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RB1<br>-CH2-<br>RNH<br>RS1                                                              | Q      | K     | LBI                                                                                         | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>LS1<br>LS1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                      | Q           | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        | Image: Section of the sectio | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>LB1<br>LS1<br>LNH<br>LB1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | ĸ     | LB1<br>L<br>RS1<br>RB1                                                                      | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>H<br>LS1<br>LS1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н                      | Q           | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        | Image: Section of the sectio | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-259.862<br>-82.84<br>-17.068<br>-68.969<br>H<br>RS1<br>RS1<br>RS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | ĸ     | LB1<br>L<br>RS1<br>RB1                                                                      | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R51<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>-76.773<br>-76.773<br>-14.291<br>-76.773<br>-14.291<br>-76.773<br>-14.291<br>-76.773<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15.1<br>-15. | Н                      | Q           | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        | Image: Section of the sectio | Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic ΔEs Initial Orientatio Final Orientatio Final Orientatio Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>LB1<br>LS1<br>LNH<br>LNH<br>-13.499<br>78.792<br>-259.862<br>-259.862<br>-82.84<br>-17.046<br>-68.969<br>H<br>RS1<br>RS1<br>RS1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | ĸ     | LB1                                                                                         | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientatio<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                      | Q           | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        | Image: Section of the sectio | Initial Orientatio Final Orientatio Final Orientatio Total Energy van der Waals electrostatic Initial Orientatio Final Orientatio Total Energy van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-259.862<br>-82.84<br>-17.046<br>-68.969<br>H<br>RS1<br>RS1<br>RS1<br>2<br>16.33<br>88.664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | K     | LB1<br>L<br>RS1<br>RB1                                                                      | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientatio<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н                      | Q<br>Q      | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Total Energy van der Waals electrostatic ΔEs Initial Orientatio Final Orientatio Final Orientatio Van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н<br>LB1<br>LB1<br>LB1<br>-13.499<br>-78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.969<br>-85.84<br>-85.1<br>RS1<br>RS1<br>2<br>16.33<br>88.664<br>-240.513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | K     | L<br>RS1<br>RB1                                                                             | V<br>181                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н                      | Q<br>Q      | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Total Energy van der Waals electrostatic Distal Orientatio Final Orientatio Final Orientatio Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>LB1<br>LB1<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.969<br>М<br>R51<br>R51<br>R51<br>R51<br>2<br>16.33<br>88.664<br>-240.513<br>-53.011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | K     | L<br>RS1<br>RB1                                                                             | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                      | Q<br>Q      | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н<br>LB1<br>LB1<br>LB1<br>LNH<br>LB1<br>78.792<br>-259.862<br>-62.84<br>-7.068<br>-68.69<br>Н<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>2<br>16.33<br>88.664<br>-240.513<br>-53.011<br>-7.174<br>-7.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | K     | L<br>RS1<br>RB1                                                                             | V<br>L81                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-144.291<br>-76.773<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                      | Q           | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 182                 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н<br>ЦВ1<br>LS1<br>LNH<br>LS1<br>-13.499<br>78.792<br>-259.862<br>-259.862<br>-22.84<br>-17.046<br>-68.969<br>-851<br>R51<br>R51<br>R51<br>2<br>16.33<br>88.664<br>-240.513<br>-5.3011<br>-7.174<br>-49.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | K     | L<br>RS1<br>R81                                                                             | VLB1                                                                                               | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔΕ΄s<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔΕ΄s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H                      | Q           | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH                                                                                                                                           | V<br>LB1<br>V<br>RB1<br>CS<br>RB1                                                                                                                                       | F | F      | 1.82                |       |        | Image: Section of the sectio | Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic AEs Initial Orientatio Final Orientatio Final Orientatio Eta Energy van der Waals electrostatic AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>LB1<br>LB1<br>LB1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.969<br>Н<br>RS1<br>RS1<br>RS1<br>RS1<br>2<br>16.33<br>88.664<br>-240.513<br>-53.011<br>-7.174<br>-49.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | K     | L<br>RS1<br>RB1                                                                             | V<br>LB1                                                                                           | F      | F          |                             |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AE's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS1<br>-13.726<br>81.547<br>-267.666<br>-33.067<br>-14.291<br>-76.773<br>H<br>H<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н                      | Q           | K<br>R51<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH<br>L<br>L<br>LB1<br>CS                                                                                                                    | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>V<br>U<br>U<br>U<br>U                                                                                                              | F | F      | 182<br>             |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н<br>LB1<br>LS1<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.699<br>-82.84<br>-17.046<br>-68.699<br>-85.1<br>RS1<br>RS1<br>RS1<br>2<br>16.33<br>88.664<br>-240.513<br>-53.011<br>-7.174<br>-9.62<br>-8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R81<br>-CH2-<br>RNH<br>R51<br>H                                                         | Q      | K     | LB1<br>L<br>RS1<br>RB1                                                                      | V<br>LB1                                                                                           | F      | F          | Giy9                        |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initiaal Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AE's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-715<br>-84.04<br>83.888<br>-242.365<br>-60.937<br>-11.95<br>-51.472<br>-41.95<br>-51.472<br>-42.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н<br>Н                 | Q<br>Q      | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH<br>L<br>L<br>L<br>B11<br>CS                                                                                                               | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>CS<br>RB1                                                                                                                          | F | F      | 182<br>Tyr10<br>R82 |       |        | Image: Section of the sectio | Initial Orientatio       Final Orientatio       Total Energy       van der Waals       electrostatic       AEs       Initial Orientation       Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>ЦВ1<br>LS1<br>LNH<br>LS1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-59.862<br>-82.84<br>-17.046<br>-86.69<br>-88.69<br>-88.64<br>-240.513<br>-53.011<br>-7.174<br>-49.62<br>-8.01<br>-7.174<br>-8.051<br>-8.01<br>-7.174<br>-7.52,81<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.53,011<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.744<br>-7.7                                                                                   | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | K     | LB1<br>L<br>RS1<br>RB1<br>L<br>LS2                                                          | V<br>LB1                                                                                           | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientatic<br>Final Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н<br>152               | Q<br>Q      | K<br>R51<br>K                                                                                            | L<br>1911<br>RB1<br>RNH<br>L<br>181<br>CS<br>L<br>852                                                                                                            | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>CS<br>RB1                                                                                                                          | F | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Total Energy Van der Waals electrostatic ΔEs Total Energy Van der Waals electrostatic Total Energy Van der Waals electrostatic AEs Initial Orientatio Final Orientatio Final Orientatio Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н<br>ЦВ1<br>LS1<br>LNH<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-68.699<br>-68.699<br>-851<br>RS1<br>2<br>16.33<br>88.664<br>-240.513<br>-53.011<br>-7.174<br>-49.62<br>Н<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q      | ĸ     | L L L L L L L L L L L L L L L L L L L                                                       | V<br>L81<br>V<br>L82<br>L82<br>L82<br>L82<br>L82                                                   | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>Alfa<br>Initial Orientatic<br>Final Orientatio<br>Total Energy<br>van der Waals<br>electrostatic<br>Alfa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R51<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н<br>152               | Q           | K<br>RS1<br>K                                                                                            | L<br>181<br>RB1<br>RNH<br>L<br>181<br>CS<br>L<br>RS2                                                                                                             | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>V<br>V<br>LB1<br>LB1                                                                                                               |   | Ē      | 182<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Total Energy Van der Waals electrostatic AEs Initial Orientatio Total Energy Van der Waals electrostatic AEs Initial Orientatio Initial Orientatio Final Orientatio Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н<br>ЦВ1<br>LS1<br>LNH<br>LNH<br>LB1<br>-13.499<br>78.792<br>-259.862<br>-82.84<br>-17.046<br>-6.95<br>-82.84<br>-17.046<br>-6.95<br>-85.1<br>RS1<br>-20.53.01<br>-7.174<br>-49.62<br>Н<br>RS2<br>RB1<br>RN1<br>RS2<br>RB1<br>RN1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RB1<br>-CH2-<br>RHH<br>RS1<br>H                                                         | ٩      | ĸ     | L<br>R51<br>R81<br>L<br>L<br>L<br>L<br>L<br>L<br>L                                          | V<br>181<br>V<br>182<br>152                                                                        | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Wasik<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Wasik<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS1<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н<br>н                 | Q<br>Q      | К<br>R51<br>К                                                                                            | L<br>1811<br>RNH<br>RNH<br>L<br>1011<br>CS                                                                                                                       | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>V<br>LB1<br>LS2                                                                                                                    | F | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic ΔEs Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic ΔEs Initial Orientatio Final Orien                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н<br>Ша<br>ЦВ1<br>LS1<br>LNH<br>LB1<br>-13.499<br>-259.862<br>-259.862<br>-25.84<br>-25.84<br>-68.969<br>н<br>RS1<br>RS1<br>RS1<br>-3.3011<br>-7.174<br>-49.62<br>-49.62<br>-49.63<br>-49.63<br>-49.63<br>-49.63<br>-53.011<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174<br>-7.174                                                                         | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | Q.     | K     | L<br>RS1<br>RB1<br>L<br>LS2                                                                 | V<br>UB1                                                                                           | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R51<br>-13.726<br>81.547<br>-267.666<br>-83.067<br>-14.291<br>-76.773<br>H<br>L51<br>L51<br>L51<br>L81<br>8.404<br>83.889<br>-242.365<br>-242.365<br>-51.472<br>H<br>R52<br>R52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>H<br>152          | Q.          | K<br>R51<br>K                                                                                            | L<br>LB1<br>RB1<br>RNH<br>L<br>L<br>L<br>S<br>S<br>S<br>2                                                                                                        | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>V<br>LB1<br>LS2                                                                                                                    | F | F      | 182<br>Tyr10<br>R82 |       |        | Image: Amplitude         Image: Amplitude           Image: Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Initial Orientatio Final Orientatio Final Orientatio Total Energy van der Waals alectrostatic AEs Initial Orientatio Final Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>ша<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB1<br>-CH2-<br>RBH<br>RS1<br>H                                                         | Q      | ĸ     | L<br>RS1<br>R81<br>L<br>LS2                                                                 | V<br>181<br>182<br>182<br>182<br>152                                                               | F      | E          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Washs<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Washs<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientatic<br>Final Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS1<br>-13.726<br>81.547<br>-207.664<br>-33.067<br>-34.291<br>-76.773<br>H<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1<br>IS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н<br>н<br>152          | Q           | K<br>R51<br>K                                                                                            | L<br>LB1<br>RRH<br>L<br>L<br>LB1<br>CS<br>RS2                                                                                                                    | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>CS<br>RB1<br>V<br>LB1<br>L52                                                                                                       |   | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic AEs Initial Orientatio Final Orientatio Total Energy van der Waals electrostatic AEs Initial Orientatio In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н<br>ша<br>ца<br>ца<br>ца<br>ца<br>на<br>на<br>на<br>на<br>на<br>на<br>на<br>на<br>на<br>н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | ٩      | ĸ     | L<br>E<br>851<br>881<br>L<br>L<br>52                                                        | V<br>181<br>182<br>182<br>152                                                                      | F      | F          | Gly9<br>RB2                 |              |              |       |
| Total Energy<br>van der Wasis<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatio<br>Total Energy<br>van der Wasis<br>electrostatic<br>AEs<br>Total Energy<br>van der Wasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HS1           -1.3.726           81.547           81.547           -2.67.666           83.067           -14.21           -7.67.73           H           151           151           151           151           151           151           151           151           151           151           151           151           151           152           9.342365           9.51.472           H           852           18.04           83.288           83.288           83.288           83.284           18.04           83.285           9.242.9365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н<br>И                 | Q.          | K<br>R51<br>K                                                                                            | L<br>LB1<br>RR1<br>RR1<br>RNH                                                                                                                                    | v<br>LB1<br>v<br>RB1<br>CS<br>RB1<br>v<br>LB1<br>L52                                                                                                                    | F | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Final Orientatio Used Energy Used Ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>BI<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR<br>UR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RB1<br>-Cr12-<br>RNH<br>RS1<br>H                                                        | ٩      | ĸ     | L L<br>R51<br>R81                                                                           | V<br>LB1<br>V<br>LB2<br>L52                                                                        | F      | F          | Gły9<br>RB2                 |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13,776<br>81,577<br>-267,666<br>-34,097,666<br>-34,097,666<br>-34,097,673<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,773<br>-76,775<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>152               | Q<br>Q      | K<br>RS1<br>K                                                                                            | L<br>LB1<br>RR1<br>RR1<br>RRH<br>L<br>L<br>L<br>B1<br>GS<br>CS<br>R52                                                                                            | V<br>LB1<br>V<br>RB1<br>C<br>S<br>RB1<br>LS2                                                                                                                            | F | F      | LB2<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Total Energy Van der Wasis electrostatic Initial Orientatio Final Orient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>ша<br>ца<br>ца<br>ца<br>ца<br>на<br>на<br>на<br>на<br>на<br>на<br>на<br>на<br>на<br>н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RB1<br>-CH2-<br>RRH<br>RS1<br>H                                                         | Q      | ĸ     | L<br>L<br>RS1<br>R81<br>L<br>L<br>S2                                                        | V<br>181<br>V<br>182<br>182<br>152                                                                 | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AL's<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AL's<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | HS1           -13.726           81.597           -267.666           -83.067           -44.291           -14.291           -13.151           151           181.04           83.852           H           18.04           83.224.935           -14.223           -15.102           -14.04           -15.102           -16.04           -17.244.93           -18.04           83.244.93           -18.04           -19.244.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н<br>152               | a<br>a      | K<br>R51<br>K                                                                                            | L<br>LB1<br>RR1<br>RNH<br>L<br>L<br>L<br>R52                                                                                                                     | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>U<br>LB1<br>LS2                                                                                                                    |   | F      | 182<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientation<br>Final Orientation<br>Varial Energy<br>Varia der Visals<br>electrostatic<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Varial Energy<br>Varial Orientation<br>Final Orientation<br>Fina                                                                                                                                                                                                                                                       | н<br>ша<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB1<br>-CH2-<br>RNH<br>RS1<br>H                                                         | ٩      | ĸ     | L<br>L<br>R51<br>R81<br>L<br>L<br>L<br>S2                                                   | V<br>LB1<br>V<br>LB2<br>LB2<br>LS2                                                                 | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Wasis<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.726<br>81.547<br>-13.726<br>81.547<br>-14.291<br>-14.291<br>-151<br>-151<br>-151<br>-151<br>-151<br>-151<br>-151<br>-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н<br>152               | Q<br>Q      | к<br>R51<br>К                                                                                            | L<br>LB1<br>RR1<br>RR1<br>L<br>L<br>L<br>L<br>S<br>S                                                                                                             | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>LS2                                                                                                                                |   | F      | 182<br>Tyr10<br>R82 |       |        | Image: Amage:  | Initial Orientatio       Final Orientatio       Total Energy       Van der Waals       electrostatic       AEs       Initial Orientation       Final Orientation       Final Orientation       Initial Orientation       Initial Orientation       Initial Orientation       Initial Orientation       Fotal Energy       Van der Waals       electrostatic       AEs       Initial Orientation       Final Orientation       Final Orientation       Fotal Energy       Van der Waals       electrostatic       AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н<br>1.1.499<br>1.1.497<br>1.1.497<br>1.1.497<br>1.1.706<br>42.99<br>1.2.99.802<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.99<br>42.9       | RB1<br>(CH2)<br>RNH<br>RS1<br>H                                                         | Q      | ĸ     | L<br>RS1<br>RB1                                                                             | V<br>(B1)<br>(B2)<br>(B2)<br>(B2)                                                                  | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13,726           81,577           267,666           83,057           14,231           151           151           151           151           151           151           153           154           153           154           155           156           202,365           202,365           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           18,04           19,05           10,06           10,07           10,07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н<br>Н<br>152          | a<br>a      | K<br>R51<br>K                                                                                            | L<br>LB1<br>RRH<br>L<br>L<br>LB1<br>G<br>G<br>RS2                                                                                                                | V<br>LB1<br>V<br>RB1<br>CS<br>RB1<br>CS<br>LS2                                                                                                                          |   | F      | 182<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Total Energy Van der Waals electrostatic Direntatio Final Orientatio Total Energy Van der Waals electrostatic Listal Orientatio Final Orientatio Final Orientatio Total Energy Van der Waals electrostatic AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>H<br>J<br>J<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RB1<br>(CH2-<br>RNH<br>RS1<br>H                                                         | ٩      | ĸ     | L<br>R51<br>R81                                                                             | V<br>LB1                                                                                           | F      | F          | Giy9<br>RB2                 |              |              |       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Total Energy<br>rand Orientatic<br>Final Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HS1           -13.726           81.547           81.547           -247.666           -83.007           H           LS1           UB1           LS1           UB1           S404           -242.365           -60.937           -34.83.888           83.888           83.288           -242.365           -51.407           H           H2           H           H2           H           H3.288           -242.365           -51.807           -51.807           -44.1           H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>152               | Q<br>Q      | K<br>R51<br>K                                                                                            | L<br>LB1<br>RB1<br>RB1<br>RD1<br>L<br>L<br>L<br>L<br>L<br>L<br>RS2<br>RS2                                                                                        | v<br>LB1<br>v<br>RB1<br>CS<br>CS<br>RB1<br>V<br>LB1<br>LS2<br>V                                                                                                         |   | F      | L82<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Total Energy alectrostati AEs Initial Orientatio Total Energy van der Waals electrostati AEs Initial Orientatio Total Energy van der Waals electrostatio Total Energy van der Waals electrostatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н<br>н<br>11.3499<br>11.3499<br>11.3499<br>12.379 272<br>12.39 802<br>12.39 802<br>12.39 802<br>142.84<br>142.84<br>142.84<br>142.84<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85<br>143.85                                                                                | RB1<br>-(CI2-<br>RRH<br>RS1<br>H<br>H                                                   | Q      | ĸ     | L<br>L<br>KS1<br>RB1<br>L<br>LS2<br>L                                                       | V<br>181                                                                                           | F      | F          | Giy9<br>R82<br>Tyr10        | Alazi        | Giu22        |       |
| Total Energy<br>van der Waals<br>electrovatuk<br>ALS<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrovatic<br>ALS<br>Total Energy<br>van der Waals<br>electrovatic<br>ALS<br>Total Energy<br>van der Waals<br>electrovatic<br>ALS                                                                                                                                                                                                                                                                                                                                                                                                          | HS1           -13.726           81.547           2.377.662           2.377.662           3.14.291           -14.291           -76.773           H           131           131           131           131           131           131           131           131           131           131           131           131           131           131           131           132           133           133           134           135           136           137           138           139           149           152           132           1304           1304           1304           1304           1304           1304           1304           1304           1304           1304           1304           1304           1304           1304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н<br>К<br>(52)         | Q<br>Q      | K<br>R51<br>K<br>K                                                                                       | L<br>LB1<br>RR1<br>RR1<br>L<br>L<br>L<br>L<br>L<br>RS2<br>RS2                                                                                                    | ν<br>υ<br>ν<br>ν<br>ν<br>ν<br>ν<br>ν<br>ν<br>κ<br>ε<br>1<br>52<br>ν<br>κ<br>ε<br>1<br>ν<br>ν<br>κ<br>ε<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ<br>τ |   | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio       Final Orientatio       Total Energy       van der Wasis       electrostatic       AEs       Initial Orientatio       Final Orientatio       Final Orientatio       Final Orientatio       Pinal Orientatio       Final Orientatio       Pinal Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н<br>н<br>11.4499<br>78.922<br>-209.862<br>-229.962<br>-229.962<br>-229.962<br>-229.962<br>-229.962<br>-229.962<br>-229.962<br>-229.962<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-229.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.97<br>-239.9                                                                                                                                     | RB1<br>(CH2-<br>RNH<br>RS1<br>H<br>H                                                    | ٩      | K     | L<br>R51<br>R81<br>L<br>L52                                                                 | V<br>L81<br>L82<br>L82<br>L52<br>L52<br>L52                                                        | 5      | F          | Gły9<br>RB2<br>Tyr10        | Ala21        | Glu22        |       |
| Total Energy<br>van der Wasis<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Wasis<br>electrostatic<br>AEs<br>Total Energy<br>van der Wasis<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | HS1           -13.726           81.547           2.376 665           7.367 665           7.367 665           1.4591           -14.591           -14.591           -14.591           -14.591           -14.591           -14.591           -14.591           -14.591           -14.591           -14.591           -14.591           -14.591           -11.59           -51.472           H           8.228           -51.472           HS2           HS2           HS2           HS2           H           H           H           HS2           HS2           HS2           -244.931           -11.50           -22.4493           H           H           H           H           H           H           H           H           H           H           H           H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H<br>152<br>H<br>852   | Q<br>Q      | к<br>851<br>К<br>К                                                                                       | L<br>LB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L                       | V<br>UB1<br>V<br>V<br>R81<br>CS<br>R81<br>CS<br>R81<br>S2                                                                                                               |   | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Total Energy uan der Waals alectrostatic Alis Initial Orientatio Total Energy van der Waals electrostatic Alis Initial Orientatio Final Orie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>н<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>13.00<br>10 | RB1<br>-(CH2-<br>RNH<br>RS1<br>H<br>H<br>H<br>H                                         | Q      | ĸ     | L<br>R51<br>R81<br>L<br>L52<br>L<br>S2<br>P51                                               | V<br>(B1)<br>(B2)<br>(B2)<br>(B2)<br>(B2)<br>(B2)<br>(B2)<br>(B2)<br>(B2                           | 5      | F          | Giya<br>RB2<br>Tyr10<br>RB2 | Ala21        | Giu22<br>182 |       |
| Total Energy<br>van der Waals<br>electrovatate<br>detcrovatate<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrovatate<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                         | HS1           -13.726           81.437           2376 662           2307 662           2307 662           2307 662           2307 662           14.231           151           151           151           151           151           151           151           151           151           151           151           151           151           152           152           152           152           152           154           154           157           1597           1597           1597           1597           1597           1507           1507           1507           1507           1507           1507           1507           1507           1507           1507           1507           1507           1507           1507           1507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н<br>152<br>152        | Q<br>Q      | К<br>851<br>К<br>К<br>К<br>К<br>К<br>ЦИН<br>152<br>- 042-<br>С                                           | L<br>LB1<br>RR1<br>RR1<br>RR1<br>L<br>L<br>R52<br>R52<br>R52<br>R52<br>R52<br>R52<br>R52<br>R52<br>R53                                                           | ν<br>υ<br>ν<br>ν<br>κ<br>881<br>CS<br>R81<br>L52<br>ν<br>κ<br>881<br>R52                                                                                                |   | F      | 182<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio       Final Orientatio       Total Energy       van der Waals       electrostatic       AEs       Initial Orientatio       Final Orientatio       Final Orientatio       Initial Orientatio       Final Orientatio       Final Orientatio       Final Orientatio       Final Orientatio       Final Orientatio       Final Orientatio       Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>н<br>13.499<br>13.499<br>13.499<br>13.592<br>12.99.802<br>12.99.802<br>12.99.802<br>12.99.802<br>12.99.802<br>12.99.802<br>12.99.802<br>13.09<br>16.33<br>2.40.531<br>16.33<br>16.33<br>2.40.531<br>16.33<br>16.33<br>2.40.531<br>16.33<br>16.33<br>2.40.531<br>16.33<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.33<br>2.40.531<br>16.331<br>2.40.531<br>16.331<br>16.331<br>2.40.531<br>16.331<br>16.331<br>2.40.531<br>16.331<br>16.331<br>2.40.531<br>16.331<br>16.331<br>2.40.531<br>16.331<br>16.331<br>2.40.531<br>16.331<br>2.40.531<br>16.331<br>2.40.531<br>16.331<br>2.40.531<br>16.331<br>2.40.531<br>16.331<br>2.40.531<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>17.74<br>1                                   | R81<br>-(С12-<br>R8H<br>R51<br>H<br>H<br>H<br>H<br>H<br>K<br>H<br>K<br>K<br>S2<br>-C14- | Q      | ĸ     | L<br>R51<br>R81<br>L<br>L52<br>L<br>S2<br>R51                                               | V<br>181<br>182<br>152<br>152<br>152<br>152                                                        | 5<br>5 | F          | Giy9<br>R82<br>Tyr10<br>R82 | Ala21<br>162 | Glu22<br>182 |       |
| Total Energy<br>van der Washs<br>electrostatic<br>AE's<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Washs<br>electrostatic<br>AE's<br>Total Energy<br>van der Washs<br>electrostatic<br>AE's<br>Total Energy<br>van der Washs<br>electrostatic<br>AE's                                                                                                                                                                                                                                                                                                                                                                                                    | 13.726<br>13.726<br>13.147<br>-3.1007<br>-3.1007<br>-3.1007<br>-3.14.291<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-76.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.773<br>-77.775<br>-77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>152<br>H<br>R52   | Q<br>Q      | К<br>R51<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К                                | L<br>LB1<br>RR1<br>RR1<br>RR1<br>LL<br>LG1<br>CS<br>RS2<br>RB1                                                                                                   | ν<br>υ<br>υ<br>ν<br>ν<br>κ<br>π<br>μ<br>ν<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ<br>μ                                                              |   | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Final Orientatio Total Energy we der Wals alternotatio Initial Orientatio Total Energy van der Waals electrostatic Alls Initial Orientatio Final Orientatio F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>н<br>13.499<br>78.792<br>-279.962<br>-279.962<br>-299.962<br>-299.962<br>-299.962<br>-299.962<br>-299.962<br>-299.962<br>-299.962<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51<br>-200.51                                                                                                                                     | R81<br>-(Сн2-<br>R8н<br>R51<br>R51<br>H<br>H<br>H<br>H<br>H<br>H                        | Q<br>Q | K     | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | У<br>(В1)<br>(В1)<br>(В2)<br>(В2)<br>(В2)<br>(В2)<br>(В2)                                          | F      | F          | Giy9<br>RB2<br>Tyr10<br>RB2 | Ala21<br>182 | Glu22        |       |
| Total Energy<br>van der Waals<br>ekcrosstatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>ekctrosstatic<br>AEs<br>Initial Orientatic<br>Final Orientatic                                                                                                                                                                                                                                                                         | 113.726<br>113.726<br>113.726<br>114.291<br>227.666<br>114.291<br>114.291<br>114.291<br>114.291<br>114.291<br>114.291<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>115.1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                               | н<br>152<br>152<br>152 | a<br>a<br>a | К<br>R51<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц                           | L<br>LB1<br>RR1<br>RR1<br>RR1<br>L<br>L<br>L<br>R5<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>R52<br>R52<br>R52<br>R52<br>R51 | V<br>181<br>V<br>881<br>152<br>V<br>881<br>852                                                                                                                          |   | F      | 182<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio       Final Orientatio       Total Energy       Van der Waals       electrostatic       AEs       Initial Orientation       Final Orientation       Final Orientation       Final Orientation       Final Orientation       Final Orientation       Total Energy       Van der Waals       electrostatic       AEs       Initial Orientation       Final Orientation       Final Orientation       Final Orientation       Final Orientation       Final Orientation       Initial Orientation       Final Orientation       Total Energy       Van der Waals       electrostatic       AEs       Initial Orientation       Final Orientation       Final Orientation       Final Orientation       Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н<br>н<br>11.1499<br>78.792<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-299.992<br>-209.992<br>-17.06<br>-85.99<br>-17.06<br>-85.99<br>-17.06<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07<br>-17.07                                                                                 | RB1<br>(CH2-<br>RNH<br>RS1<br>H<br>H<br>H<br>H                                          | Q      | ĸ     | L<br>R51<br>R81<br>L<br>L52<br>R51<br>R52<br>R51                                            | V<br>LB1<br>LB2<br>LB2<br>LS2<br>LS2<br>LS2<br>LB2<br>LB2<br>LB2<br>LB2<br>LB2<br>LB2<br>LB2<br>LB |        | F          | Giy9<br>RB2<br>Tyr10<br>RB2 | Ala21<br>182 | Glu22<br>182 |       |
| Total Energy<br>van der Waals<br>electrostatic<br>ALS<br>Initial Orientatic<br>Final Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>electrostatic<br>ALS<br>Total Energy<br>van der Waals<br>electrostatic<br>ALS                                                                                                                                                                                                                                                                                                                                                                                                                                             | 113.726<br>113.726<br>113.147<br>225.7666<br>143.291<br>76.773<br>76.773<br>76.773<br>14.51<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>151<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>152<br>H<br>R52   | Q.          | К<br>R51<br>К<br>К<br>К<br>К<br>К<br>К<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц<br>Ц  | L<br>LB1<br>R81<br>R81<br>R81<br>L<br>L<br>L<br>L<br>R52<br>R852<br>R81                                                                                          | ν<br>μ<br>ν<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ<br>κ                                                                                            |   | F      | 182<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio Final Orientatio Final Orientatio Final Orientatio Control Internation Initial Orientatio Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>н<br>13.499<br>78.793<br>-279.802<br>-42.84<br>-17.06<br>42.84<br>-279.802<br>-42.84<br>-17.06<br>-42.95<br>-42.95<br>-42.95<br>-22.95<br>-22.95<br>-22.95<br>-22.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-23.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.95<br>-25.                                                                           | RB1<br>(СН2-<br>RS1<br>RS1<br>H<br>H<br>H<br>H<br>RS2<br>-CH-                           | Q<br>Q | K     | L<br>R51<br>R81<br>L<br>L52<br>L<br>S52<br>R51                                              | V<br>181<br>181<br>182<br>152<br>152<br>152                                                        | F      | F          | Giy9<br>R82<br>Tyr10<br>R82 | Ala21<br>182 | Glu22        |       |
| Total Energy<br>van der Waals<br>ekcrosstatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Final Orientatic<br>Total Energy<br>van der Waals<br>ekctrosstatic<br>AEs<br>Initial Orientatic<br>Final Orientatic                                                                                                                                                                                                                                 | 11.726<br>11.726<br>11.726<br>11.726<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11.727<br>11                                                                                                                                     | H<br>152<br>H          | Q           | K<br>851<br>K<br>K<br>K<br>K<br>LDH<br>LCH<br>LCH<br>LCH<br>LCH<br>LCH<br>LCH<br>LCH<br>LCH<br>LCH<br>LC | L<br>UB1<br>R01<br>R01<br>R01<br>R01<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                              | V<br>UB1<br>V<br>RB1<br>152<br>V<br>RB1<br>R52                                                                                                                          |   | F      | 182<br>Tyr10<br>RB2 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio       Final Orientatio       Total Energy       Van der Waals       electrostatic       Als       Initial Orientation       Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB1<br>-(С12-<br>RNH<br>RS1<br>H<br>H<br>H<br>H                                         | Q      | ĸ     | L<br>ES1<br>ES1<br>ES1<br>ES2<br>ES2<br>ES1                                                 | V<br>LB1<br>LB2<br>LB2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS                      |        | F          | Giy9<br>RB2<br>Tyr10<br>RB2 | Ala21<br>182 | Glu22        |       |
| Total Energy<br>van der Waabs<br>electrostatic<br>AE's<br>Initial Orientatic<br>Final Orientatic<br>Final Orientatic<br>Electrostatic<br>AE's<br>Total Energy<br>van der Waabs<br>electrostatic<br>AE's<br>Initial Orientatic<br>Final Orientatic                                                                                                                                         | HS1           -13.726           B1.547           237.666           -237.666           H           -14.237           -76.773           H           LS1           LS1           -76.773           -76.773           -76.773           -76.773           -14.231           -15.101           -15.423           -51.402           -51.402           -51.402           -51.402           -51.402           -12.64           -51.402           -51.402           -51.402           -51.402           -51.402           -51.402           -51.402           -51.402           -51.402           -51.402           -51.402           -51.402           -12.64           -51.402           -12.64           -12.64           -12.64           -12.64           -12.64           -12.64           -12.64           -12.64           -12.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>152<br>H<br>R52   | Q<br>Q      | К<br>R51<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>1012                                                      | L<br>LB1<br>R81<br>R81<br>R81<br>L<br>L<br>L<br>E52<br>R81<br>R81                                                                                                | v<br>UB1<br>V<br>RB1<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                                                                                   |   | r<br>r | 182<br>Tyr10<br>R82 |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientation<br>Final Orientation<br>Variation of visuals<br>electrostatic<br>Variation of visuals<br>electrostatic<br>Variation of visuals<br>electrostatic<br>Variation of visuals<br>electrostatic<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variation<br>Variatio | н<br>н<br>11.409<br>78.793<br>20.3980<br>11.060<br>46.590<br>40.598<br>11.060<br>46.590<br>40.598<br>10.060<br>45.598<br>10.060<br>45.598<br>10.060<br>45.598<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.060<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.0000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.000<br>10.00                                                                           | RB1<br>(СI2-<br>RS1<br>RS1<br>H<br>H<br>H<br>H<br>KS2<br>(-CI-                          | Q      | ĸ     | L<br>R51<br>R81<br>L<br>L52<br>L<br>S2<br>R51<br>R51                                        | V<br>181<br>122<br>152<br>152<br>152                                                               | F      | F          | Giy9<br>R82<br>Tyr10<br>R82 | Ala21<br>LB2 | Gluzz        |       |
| Total Energy<br>van der Wasis<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Final Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>Final Orientatic<br>Final Orientatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>Final Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs<br>Initial Orientatic<br>AEs | 13.726           -13.726           81.547           -23.666           -23.666           -25.7666           -14.23           -25.7677           -15.172           -14.23           -14.23           -14.23           -14.23           -14.23           -14.23           -11.24           -24.23           -11.25           -24.23           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27           -11.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>152<br>BS2        | Q.          | к<br>R51<br>К<br>К<br>К<br>ЦИН<br>(512<br>(62)<br>(62)                                                   | L<br>UB1<br>R01<br>R01<br>R01<br>R01<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                              | V<br>LB1<br>V<br>RG1<br>R52<br>V<br>LB1<br>L52<br>V<br>R81<br>R52                                                                                                       |   | F      | 182<br>Tyr10<br>R82 |       |        | Image: Amage:  | Initial Orientatio       Final Orientatio       Total Energy       Van der Waals       electrostatio       AEs       Initial Orientatio       Final Orientatio       Initial Orientatio       Initial Orientatio       Final Orientatio       Initial Orientatio       Initial Orientatio       Initial Orientatio       Final Orientatio       Initial Orientatio       Initial Orientatio       Final Orientatio       Final Orientatio       Final Orientatio       Final Orientatio       Initial Orientatio       Initial Orientatio       Final Orientatio       Initial Orientatio       Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца<br>ца                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R81<br>- (С12-<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81    | ٩      | K     | L<br>R51<br>R81<br>L<br>L<br>L<br>L<br>S2<br>R51                                            | V<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)<br>(B)                            |        | r          | Giy9<br>R82<br>Tyr10<br>R82 | Alazi        | Giu22        |       |

| Initial Orientatic<br>Final Orientatio         | H<br>LB2<br>LS2                             | Н                | Q | К                        | L                      | V<br>RB2 | F               | F                      | Tyr10<br>LS2        |            | Initial Orientatio<br>Final Orientation        | H<br>RS2<br>RS2                             | н | Q | K<br>RB2               | L                      | v | F<br>LB2<br>LB2 | F                      | Val12<br>LS2 |                       |
|------------------------------------------------|---------------------------------------------|------------------|---|--------------------------|------------------------|----------|-----------------|------------------------|---------------------|------------|------------------------------------------------|---------------------------------------------|---|---|------------------------|------------------------|---|-----------------|------------------------|--------------|-----------------------|
| Total Energy                                   | -4.358                                      |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy                                   | -4.967                                      |   |   | RS2<br>-CH2-           |                        |   |                 |                        |              |                       |
| van der Waals<br>electrostatic                 | 88.105<br>-260.234                          |                  |   |                          |                        |          |                 |                        |                     |            | electrostatic                                  | 87.255<br>-262.454                          |   |   |                        |                        |   |                 |                        |              |                       |
| AES                                            | -73.699<br>-7.732<br>-69.341                |                  |   |                          |                        |          |                 |                        |                     |            | Ars                                            | -74.308<br>-8.583<br>-71.561                |   |   |                        |                        |   |                 |                        |              |                       |
| Initial Orientatic<br>Final Orientatio         | H<br>LS2<br>LS2                             | Н                | Q | K<br>LB1<br>RS2<br>RB1   | L                      | V        | F<br>RB2<br>RB2 | F<br>R52<br>RB2        | Gly9<br>LB2<br>C=O  |            | Initial Orientatic<br>Final Orientation        | H<br>LS1<br>LS1<br>2                        | Н | Q | K<br>LS1<br>LNH<br>LB1 | L                      | v | F<br>RB1<br>RS1 | F                      | Val12<br>CS  |                       |
| Total Energy<br>van der Waals                  | -40.908<br>77.432                           |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals                  | -12.353<br>86.291                           |   |   |                        |                        |   |                 |                        |              |                       |
| electrostatic<br>ΔEs                           | -288.22                                     |                  |   |                          |                        |          |                 |                        |                     |            | ΔEs                                            | -2/1.565                                    |   |   |                        |                        |   |                 |                        |              |                       |
|                                                | -97.327                                     |                  |   |                          |                        |          |                 |                        |                     |            |                                                | -80.672                                     |   |   |                        |                        |   |                 |                        |              |                       |
| Initial Orientatic<br>Final Orientatio         | H<br>RB2<br>RB2                             | Н                | Q | K<br>RS1<br>RNH<br>RB2   | L                      | v        | F<br>LB2<br>LB2 | F                      |                     |            | Initial Orientatic<br>Final Orientation        | H<br>LB2                                    | н | Q | К                      | L                      | v | F<br>RB2        | F                      |              |                       |
| Total Energy<br>van der Waals<br>electrostatic | 11.949<br>92.656<br>-250.098                |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals<br>electrostatic | 33.277<br>95.985<br>-231.427                |   |   |                        |                        |   |                 |                        |              |                       |
| ΔEs                                            | -57.392<br>-3.182<br>-59.205                |                  |   |                          |                        |          |                 |                        |                     |            | ΔEs                                            | -36.064<br>0.147<br>-40.534                 |   |   |                        |                        |   |                 |                        |              |                       |
|                                                | н                                           | н                | Q | к                        | L                      | v        | F               | F                      |                     |            |                                                | н                                           | н | Q | к                      | L                      | v | F               | F                      | Lys28        |                       |
| Initial Orientatic                             | CS<br>RS2<br>LB1<br>CS<br>RB1               | RS2<br>-CH-      |   | LS2<br>2                 | RB2                    | RB2      |                 | LB2<br>LB2<br>LS2      |                     |            | Initial Orientatic<br>Final Orientatior        | RS1<br>RS1<br>RS2                           |   |   | RS1                    | R51                    |   |                 | LB1<br>LS1<br>LB1      | 151          |                       |
| Total Energy<br>van der Waals<br>electrostatic | -55.192<br>79.656                           |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals<br>electrostatic | -54.442<br>85.477                           |   |   |                        |                        |   |                 |                        |              |                       |
| ΔEs                                            | -124.533<br>-16.182<br>-114.65              |                  |   |                          |                        |          |                 |                        |                     |            | ΔEs                                            | -123.783<br>-10.361<br>-115.822             |   |   |                        |                        |   |                 |                        |              |                       |
| Initial Orientatic<br>Final Orientation        | H<br>LS1<br>LB2<br>LS2<br>LS1               | н                | Q | K<br>LS1<br>LS2          | L<br>151               | V        | F               | F<br>RB1<br>CS         | Lys28<br>RS2<br>RS1 |            | Initial Orientatic<br>Final Orientation        | H<br>LS2<br>LS1<br>LS2                      | н | Q | K<br>LS2               | L<br>LS2<br>LS1<br>LB1 | v | F               | F<br>RB1<br>CS<br>RS2  | Lys28<br>RS1 |                       |
| Total Energy<br>van der Waals                  | -59.236<br>82.176                           |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals                  | -64.797<br>78.013                           |   |   |                        |                        |   |                 |                        |              |                       |
| electrostatic<br>ΔEs                           | -312.374<br>-128.577<br>-13.662<br>-121.481 |                  |   |                          |                        |          |                 |                        |                     |            | electrostatic<br>ΔEs                           | -314.118<br>-134.138<br>-17.825<br>-123.225 |   |   |                        |                        |   |                 |                        |              |                       |
| Initial Orientatic                             | H                                           | н                | Q | к                        | L                      | v        | F               | F                      | Gly9                | Tyr10      | Initial Orientatio                             | H                                           | н | Q | к                      | L                      | v | F               | F                      | Val24        | Lys28                 |
| Final Orientation                              | LB1<br>RB1<br>LB1<br>LNH<br>LS1             |                  |   | LB2<br>RS1<br>RNH<br>RB1 | RNH<br>RB1             |          |                 | RB2<br>RS1             | LS1<br>C=O          | 151        | Final Orientation                              | RB2<br>RS1                                  |   |   | RB2                    | RS1                    |   |                 | LB1                    | LS1          | LS2                   |
| Total Energy<br>van der Waals<br>electrostatic | -CH2-<br>-62.082<br>71.44<br>-305.988       |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals<br>electrostatic | -31.06<br>86.198<br>-287.005                |   |   |                        |                        |   |                 |                        |              |                       |
| ΔEs                                            | -131.423<br>-24.398<br>-115.095             |                  |   |                          |                        |          |                 |                        |                     |            | ΔEs                                            | -100.401<br>-9.64<br>-96.113                |   |   |                        |                        |   |                 |                        |              |                       |
|                                                | н                                           | н                | Q | к                        | L                      | v        | F               | F                      | Lys28               |            |                                                | Н                                           | н | Q | к                      | L                      | v | F               | F                      | Lys28        |                       |
| Final Orientation                              | RB1<br>RS1<br>RNH<br>RB1                    |                  |   | RB2                      | LS1                    |          |                 | LS1<br>LB2             | LS2<br>2<br>LB2     |            | Final Orientation                              | LB2                                         |   |   | LS1<br>LNH<br>RS2      |                        |   |                 | LB1<br>RB1             | RS1          |                       |
| Total Energy<br>van der Waals<br>electrostatic | -55.2<br>76.561<br>-310.755                 |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals<br>electrostatic | -38.24<br>83.121<br>-294.816                |   |   |                        |                        |   |                 |                        |              |                       |
| ΔEs                                            | -124.541<br>-19.277<br>-119.862             |                  |   |                          |                        |          |                 |                        |                     |            | ΔEs                                            | -107.581<br>-12.717<br>-103.923             |   |   |                        |                        |   |                 |                        |              |                       |
| Initial Orientatic<br>Final Orientatio         | H<br>LS1<br>LB1<br>LS1                      | н                | Q | K<br>LB1<br>RB1          | L                      | v        | F               | F<br>RB2               |                     |            | Initial Orientatic<br>Final Orientation        | H<br>RS1<br>RS1                             | н | Q | K<br>RNH<br>RS1        | L                      | v | F               | F<br>LB2<br>LB2<br>LS2 | Val24<br>LB2 | Lys28<br>LB2<br>-CH2- |
| Total Energy                                   | LNH<br>-17.741<br>86.851                    |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>yan der Waals                  | -34.549<br>85.808                           |   |   | -CH2-                  |                        |   |                 |                        |              |                       |
| electrostatic<br>ΔEs                           | -273.744                                    |                  |   |                          |                        |          |                 |                        |                     |            | electrostatic<br>AEs                           | -288.857<br>-103.89                         |   |   |                        |                        |   |                 |                        |              |                       |
|                                                | -8.987<br>-82.851                           |                  |   |                          |                        |          |                 |                        |                     |            |                                                | -10.03<br>-97.964                           |   |   |                        |                        |   |                 |                        |              |                       |
| Initial Orientatic                             | H<br>LS2                                    | н                | Q | K                        | L                      | v        | F               | F<br>RB2               | Val24               | Lys28      | Initial Orientatio                             | H<br>RS2                                    | н | Q | K                      | L<br>PS7               | v | F               | F<br>LB2               |              |                       |
|                                                | 2<br>LS1                                    |                  |   | LS2<br>-CH2-             |                        |          |                 | RS2<br>RB1<br>CS       | RS2                 | RB2        |                                                | 2<br>RS1                                    |   |   | 2<br>LS1<br>-CH2-      |                        |   |                 | LB2                    |              |                       |
| Total Energy<br>van der Waals<br>electrostatic | -63.762<br>72.921<br>-306.561               |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals<br>electrostatic | -62.47<br>82.021<br>-311.965                |   |   |                        |                        |   |                 |                        |              |                       |
| ΔEs                                            | -133.103<br>-22.917<br>-115.668             |                  |   |                          |                        |          |                 |                        |                     |            | ΔEs                                            | -131.811<br>-13.817<br>-121.072             |   |   |                        |                        |   |                 |                        |              |                       |
| Initial Orientatic<br>Final Orientation        | H<br>RB2<br>RS2<br>RS1                      | H<br>RS2<br>-CH- | q | K<br>LS2<br>LB1<br>LNH   | L<br>RS2<br>RB1<br>LB1 | v        | F               | F<br>LB2<br>LB1<br>LS1 | Tyr10<br>RB2        |            | Initial Orientatic<br>Final Orientation        | H<br>LB2<br>LB2<br>LS1<br>LNH               | н | q | K<br>RS2<br>2<br>RB2   | L<br>LB2               | v | F               | F<br>RB2<br>RS1<br>RS2 |              |                       |
| Total Energy<br>van der Waals                  | -68.307<br>73.381                           |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals                  | -33.276<br>82.303                           |   |   | -CH2-                  |                        |   |                 |                        |              |                       |
| electrostatic<br>ΔEs                           | -309.769<br>-137.648<br>-22.457<br>-119.97* |                  |   |                          |                        |          |                 |                        |                     |            | electrostatic<br>ΔEs                           | -284.036<br>-102.617<br>-13.535<br>.93.147  |   |   |                        |                        |   |                 |                        |              |                       |
|                                                | H                                           | н                | 0 | к                        | L                      | v        | F               | F                      | Tyr10               | Lys28      |                                                | -33.143<br>H                                | н | 0 | к                      | L                      | v | F               | F                      |              |                       |
| Initial Orientatic<br>Final Orientation        | L51<br>L51<br>L52                           |                  |   |                          | RB1                    |          |                 | RS1                    | LS1                 | RS2<br>RS1 | Initial Orientation<br>Final Orientation       | n                                           |   |   |                        |                        |   |                 |                        |              |                       |
| Total Energy<br>van der Waals                  | -72.212                                     |                  |   |                          |                        |          |                 |                        |                     |            | Total Energy<br>van der Waals                  |                                             |   |   |                        |                        |   |                 |                        |              |                       |
| ΔEs                                            | -141.553                                    |                  |   |                          |                        |          |                 |                        |                     |            | ΔEs                                            | -69.341                                     |   |   |                        |                        |   |                 |                        |              |                       |
|                                                | -132.338                                    |                  |   |                          |                        |          |                 |                        |                     |            |                                                | 190.893                                     |   |   |                        |                        |   |                 |                        |              |                       |

|                          | н                  | н      | Q                                     | К | L   | v          | F | F   |       |       |       |                     | н        | н          | Q   | К | L   | v   | F   | F   | Lys28 |       |       |
|--------------------------|--------------------|--------|---------------------------------------|---|-----|------------|---|-----|-------|-------|-------|---------------------|----------|------------|-----|---|-----|-----|-----|-----|-------|-------|-------|
| Initial Orientation      | 1                  | LB1    |                                       |   | RB1 |            |   |     |       |       |       | Initial Orientation | n        | LS1        |     |   | RB1 |     |     |     |       |       |       |
| Final Orientation        | RS1                | LB1    |                                       |   | RS1 |            |   |     |       |       |       | Final Orientation   |          | LS1        |     |   | CS  | LS1 |     |     | RS1   |       |       |
|                          | 2                  | RB1*   |                                       |   | RNH |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          | RB1                | * (112 |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          |                    | 151    |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| Total Energy             | -2.771             |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | -19.925  |            |     |   |     |     |     |     |       |       |       |
| van der Waals            | 83.765             |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 88.25    |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -259.134           |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -277.919 |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| ΔEs                      | -72.112            |        |                                       |   |     |            |   |     |       |       |       | ΔEs                 | -89.266  |            |     |   |     |     |     |     |       |       |       |
|                          | -12.073            |        |                                       |   |     |            |   |     |       |       |       |                     | -7.588   |            |     |   |     |     |     |     |       |       |       |
|                          | -08.241            |        |                                       |   |     |            |   |     |       |       |       |                     | -87.026  |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          | н                  | н      | Q                                     | к | L   | v          | F | F   | Ala21 | Gly25 | Lys28 |                     | н        | н          | Q   | к | L   | v   | F   | F   | Tyr10 | Ala21 | Lys28 |
| Initial Orientation      | 1                  | RS2    |                                       |   | LB1 |            |   |     |       |       |       | Initial Orientation | n        | LS2        |     |   | RB1 |     |     |     |       |       |       |
| <b>Final Orientation</b> |                    | RS2    |                                       |   | LB1 | RS2        |   | LS2 | LB2   | LB2   | LB2   | Final Orientation   | LS2      | LS2        |     |   | RS2 |     |     | RS2 | LB2   | CS    | RS1   |
|                          |                    |        |                                       |   | CS  |            |   |     | LS2   |       | -CH2- |                     |          | -CH2-      |     |   | CS  |     |     |     |       |       | RS2   |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   | LB1 |     |     |     |       |       |       |
| Total Energy             | -19 699            |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | -62 359  |            |     |   |     |     |     |     |       |       |       |
| van der Waals            | 73 923             |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 77.452   |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -265.45            |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -308.691 |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| ΔEs                      | -89.03             |        |                                       |   |     |            |   |     |       |       |       | ΔEs                 | -131.7   |            |     |   |     |     |     |     |       |       |       |
|                          | -21.915            |        |                                       |   |     |            |   |     |       |       |       |                     | -18.386  |            |     |   |     |     |     |     |       |       |       |
|                          | -74.557            |        |                                       |   |     |            |   |     |       |       |       |                     | -117.798 |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          | н                  | н      | 0                                     | к | L   | v          | F | F   | Glu11 |       |       |                     | н        | н          | 0   | К | L   | v   | F   | F   | Tyr10 |       |       |
| Initial Orientation      | 1                  | RB2    |                                       |   | LB1 |            |   |     |       |       |       | Initial Orientation | n        | LB1        |     |   | RB2 |     |     |     |       |       |       |
| Final Orientation        |                    | RB2    |                                       |   | LB1 |            |   |     | RB2   |       |       | Final Orientation   | RS1      | LB1        | LS1 |   | RB2 |     |     |     | RS1   |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          | LNH        |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          | RB1        |     |   |     |     |     |     |       |       |       |
| Total Fearmy             | 12 422             |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | 1 400    |            |     |   |     |     |     |     |       |       |       |
| van der Waals            | 90,594             |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 1.488    |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -246.221           |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -246.967 |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| ΔEs                      | -56.918            |        |                                       |   |     |            |   |     |       |       |       | ΔEs                 | -67.853  |            |     |   |     |     |     |     |       |       |       |
|                          | -5.244             |        |                                       |   |     |            |   |     |       |       |       |                     | -15.611  |            |     |   |     |     |     |     |       |       |       |
|                          | -55.328            |        |                                       |   |     |            |   |     |       |       |       |                     | -56.074  |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        | 0                                     | v |     | V          | c |     | Turt0 | Chu11 |       |                     |          |            | 0   | ~ |     | M   |     |     |       |       |       |
| Initial Orientation      |                    | 151    | ų                                     | ĸ | PB2 | v          | F | F   | TYPIO | GIUII |       | Initial Orientation |          | PS2        | ų   | ĸ | 182 | v   | P   | F   |       |       |       |
| Final Orientation        | RS1                | IB1    |                                       |   | RB2 | 182        |   |     | CS    | 151   |       | Final Orientation   | 152      | RB2        | RB2 |   | INH |     |     |     |       |       |       |
|                          | 2                  | LNH    |                                       |   | RS1 |            |   |     |       | -CH2- |       |                     | 2        | RS2        |     |   | LS2 |     |     |     |       |       |       |
|                          | RB1                | LS1    |                                       |   | RNH |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   | RB1 |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| Total Energy             | -16.451            |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | -1.717   |            |     |   |     |     |     |     |       |       |       |
| van der Waals            | 79.561             |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 86.488   |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -200.042           |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -200.305 |            |     |   |     |     |     |     |       |       |       |
| AEs                      | -85 792            |        |                                       |   |     |            |   |     |       |       |       | AEs                 | -71.058  |            |     |   |     |     |     |     |       |       |       |
|                          | -16 277            |        |                                       |   |     |            |   |     |       |       |       | 111.5               | -9.35    |            |     |   |     |     |     |     |       |       |       |
|                          | -75.149            |        |                                       |   |     |            |   |     |       |       |       |                     | -69.472  |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          | н                  | H      | Q                                     | К | L   | V          | F | F   | Glu11 |       |       |                     | н        | н          | Q   | K | L   | v   | F   | F   | Glu11 |       |       |
| Initial Orientation      | 1                  | LB2    |                                       |   | RB2 |            |   |     | 102   |       |       | Initial Orientation | n        | RB2        |     |   | LB2 |     |     |     | 000   |       |       |
| Final Unentation         |                    | 152    |                                       |   |     |            |   |     | LBZ   |       |       | Final Orientation   |          | RB2<br>PB2 |     |   |     |     |     |     | RBZ   |       |       |
|                          |                    | LOL    |                                       |   |     |            |   |     |       |       |       |                     |          | RS2        |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          | -CH2-      |     |   |     |     |     |     |       |       |       |
| Total Energy             | 48.225             |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | 30.482   |            |     |   |     |     |     |     |       |       |       |
| van der Waals            | 90.679             |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 88.155   |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -208.211           |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -226.179 |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| ΔEs                      | -21.116            |        |                                       |   |     |            |   |     |       |       |       | ΔEs                 | -38.859  |            |     |   |     |     |     |     |       |       |       |
|                          | -5.159             |        |                                       |   |     |            |   |     |       |       |       |                     | -7.083   |            |     |   |     |     |     |     |       |       |       |
|                          | 17.510             |        |                                       |   |     |            |   |     |       |       |       |                     | 33.200   |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          | н                  | н      | Q                                     | к | L   | v          | F | F   | Tyr10 |       |       |                     | н        | н          | Q   | к | L   | v   | F   | F   |       |       |       |
| Initial Orientation      | 1                  | CS     |                                       |   |     | LB1        |   |     |       |       |       | Initial Orientation | n        | CS         |     |   |     | RB1 |     |     |       |       |       |
| Final Orientation        |                    | CS     |                                       |   |     | CS         |   |     | RS1   |       |       | Final Orientation   |          | CS         |     |   | RS1 | RB1 |     |     |       |       |       |
| Total Courses            | 42.450             |        |                                       |   |     |            |   |     |       |       |       | Tabel Concern       | 25.525   |            |     |   |     | RS1 |     |     |       |       |       |
| Total Energy             | 43.169             |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | 35.535   |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -212 142           |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -221 812 |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| ΔEs                      | -26.172            |        |                                       |   |     |            |   |     |       |       |       | ΔEs                 | -33.806  |            |     |   |     |     |     |     |       |       |       |
|                          | -6.641             |        |                                       |   |     |            |   |     |       |       |       |                     | -6.295   |            |     |   |     |     |     |     |       |       |       |
|                          | -21.25             |        |                                       |   |     |            |   |     |       |       |       |                     | -30.92   |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          | н                  | н      | 0                                     | v | 1   | V          | F | c   |       |       |       |                     | н        | н          | 0   | ĸ | 1   | v   | c   | F   |       |       |       |
| Initial Orientation      | 1                  | LB1    | , , , , , , , , , , , , , , , , , , , |   |     | RB1        |   |     |       |       |       | Initial Orientation | n        | RB1        | -   | - |     | LB1 | · · | · ' |       |       |       |
| Final Orientation        |                    | LS1    | LS1                                   |   |     | CS         |   |     |       |       |       | Final Orientation   |          | RS1        | RS1 |   |     | CS  |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          | RB1        |     |   |     |     |     |     |       |       |       |
| Total Energy             | 60.809             |        | _                                     |   |     |            |   |     |       |       |       | Total Energy        | 48.306   |            |     |   |     | _   | _   |     |       |       |       |
| van der Waals            | 90.591             |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 90.239   |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -197.759           |        | -                                     |   |     |            |   |     |       |       |       | electrostatic       | -208.562 |            |     |   |     | -   |     |     |       |       |       |
| ΔEs                      | -8 577             |        | -                                     |   |     |            |   |     |       |       |       | ΔEs                 | -21 035  |            |     |   |     |     | -   |     |       |       |       |
| -                        | -5.247             |        |                                       |   |     |            |   |     |       |       |       | -                   | -5.599   |            |     |   |     |     |     |     |       |       |       |
|                          | -6.866             |        |                                       |   |     |            |   |     |       |       |       |                     | -17.669  |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
|                          | н                  | H      | Q                                     | к | L   | V          | F | F   |       |       |       | 1 - 141 - 1 - 1     | н        | H          | Q   | к | L   | V   | F   | F   |       |       |       |
| Final Orientation        |                    | PC1    | pc4                                   |   |     | LB1<br>RP1 |   |     |       |       |       | Final Orientation   |          | 151        |     |   |     | кВ1 | -   |     |       |       |       |
| onentation               |                    | RNH    | 131                                   |   |     |            |   |     |       |       |       | r mar orientation   |          | LB1        |     |   |     | -   | -   |     |       |       |       |
| Total Energy             | 28.338             |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | 57.508   |            |     |   |     |     |     |     |       |       |       |
| van der Waals            | 87.651             |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 90.715   |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -231.463           |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -199.601 |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       | 17                  |          |            |     |   |     |     |     |     |       |       |       |
| ΔEs                      | -41.003            |        |                                       |   |     |            |   |     |       |       |       | ΔEs                 | -11.833  |            |     |   |     |     |     |     |       |       |       |
|                          | -8.187             |        |                                       |   |     |            |   |     |       |       |       |                     | -5.123   |            |     |   |     |     |     |     |       |       |       |
|                          | -40.57             |        |                                       |   |     |            |   |     |       |       |       |                     | -8.708   |            |     |   |     |     |     |     |       |       |       |
|                          |                    |        | -                                     |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     | -   |     |       |       |       |
|                          | н                  | н      | Q                                     | к | L   | v          | F | F   | Tyr10 |       |       |                     | н        | н          | Q   | к | L   | v   | F   | F   | Glu22 |       |       |
| Initial Orientation      | 1                  | RS2    | <u> </u>                              |   |     | LB1        |   |     |       |       |       | Initial Orientation | n        | LS2        |     |   |     | RB1 |     |     |       |       |       |
| Final Orientation        |                    | RS2    |                                       |   |     |            |   |     | RB2   |       |       | Final Orientation   |          | LS1        |     |   |     |     |     |     | CS    |       |       |
|                          |                    |        |                                       |   |     |            |   |     |       |       |       |                     |          |            |     |   |     |     |     |     |       |       |       |
| Total Energy             | 17.3               |        |                                       |   |     |            |   |     |       |       |       | Total Energy        | 50.07    |            |     |   |     |     |     |     |       |       |       |
| van der Waals            | 89.417<br>-241.00F |        |                                       |   |     |            |   |     |       |       |       | van der Waals       | 92.576   |            |     |   |     |     |     |     |       |       |       |
| electrostatic            | -241.995           |        |                                       |   |     |            |   |     |       |       |       | electrostatic       | -208.731 |            |     |   |     |     |     |     |       |       |       |
| ΔEs                      | -52 041            |        |                                       |   |     |            |   |     |       |       |       | ΔEs                 | -19 271  |            |     |   |     |     |     |     |       |       |       |
|                          | -6.421             |        |                                       |   |     |            |   |     |       |       |       |                     | -3.267   |            |     |   |     |     |     |     |       |       |       |
|                          | E1 102             |        |                                       |   |     |            |   |     |       |       |       |                     | 17 929   |            |     |   |     |     |     |     |       |       |       |

| Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>RB1<br>LS2<br>-CH2-<br>LB1                                                                                  | Q<br>RNH<br>RS2                                                                                                | K                      | L<br>LB2<br>LS2                      | V<br>LB2<br>LS2                       | F<br>RB2                                                                                                  | F                                          | Glu11<br>CS                                     |        | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>LB1<br>RB1<br>RB1<br>RB1<br>RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q<br>LS1<br>LNH<br>LB` | K                    | L<br>RB2                                                                     | V<br>RB2 | F                                | F                                                                                                                 | Tyr10<br>RS1                 |              |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------|------------------------------------------------------------------------------|----------|----------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|---------------------|
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -14.541<br>78.278<br>-264.396<br>-83.882<br>-17.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                         |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -3.189<br>76.683<br>-253.952<br>-72.53<br>-19.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -73.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                | ~                      |                                      | M                                     |                                                                                                           | ,                                          | Chull                                           | Ala 21 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -63.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | ~                    |                                                                              | M        |                                  |                                                                                                                   |                              |              |                     |
| Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RB2<br>RB1                                                                                                       | RNH<br>RB1                                                                                                     | ~                      | LB2                                  | LB1<br>LB1<br>LNH                     |                                                                                                           |                                            | RB2                                             | LS1    | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB1<br>CS<br>RB1       | ĸ                    |                                                                              | CS       | RB1<br>RB1<br>RS1                |                                                                                                                   |                              |              |                     |
| Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.183<br>78.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -16.969<br>88.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -230.849<br>-51.158<br>-17.828<br>-39.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -207.598<br>-86.31<br>-7.732<br>-16.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>RB1<br>RB1<br>RS1                                                                                           | Q<br>CS<br>RB1                                                                                                 | К                      | L                                    | V<br>RB1<br>RS1                       | F<br>LB1                                                                                                  | F                                          |                                                 |        | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>RS1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q<br>RS1<br>RB1        | к                    | L                                                                            | v        | F<br>LB1                         | F                                                                                                                 |                              |              |                     |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44.5<br>85.287<br>-211.214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.738<br>88.544<br>-211.438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -24.841<br>-10.551<br>-20.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -24.603<br>-7.294<br>-20.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LS1<br>LS1                                                                                                  | Q<br>LS1<br>LB1                                                                                                | К                      | L                                    | V                                     | F<br>RB1<br>CS                                                                                            | F                                          |                                                 |        | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>RS2<br>RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q<br>RB2               | К                    | L                                                                            | V        | F<br>LB1<br>LB1<br>LNH           | F                                                                                                                 | Glu11<br>RB2                 |              |                     |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.204<br>90.891<br>-212.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.274<br>86.677<br>-208.726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          | 62                               |                                                                                                                   |                              |              |                     |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -26.137<br>-4.947<br>-21.371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | ΔΕs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -25.067<br>-9.161<br>-17.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LS2<br>LS2                                                                                                  | Q                                                                                                              | К                      | L                                    | v                                     | F<br>RB1                                                                                                  | F                                          |                                                 |        | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>RB1<br>LB1<br>RB1<br>RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q<br>LS1<br>LNH<br>LB1 | K                    | L                                                                            | v        | F<br>LB2<br>LB2<br>LS1           | F                                                                                                                 |                              |              |                     |
| Van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51.216<br>88.868<br>-203.72<br>-18.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.051<br>80.284<br>-228.875<br>-47.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -12.827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 15.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LB1                                                                                                         | Q<br>LB2<br>LS2                                                                                                | K<br>RS1<br>RNH<br>RB2 | L                                    | v                                     | F<br>RB1<br>RB1<br>LB1                                                                                    | F                                          | Val12<br>RB2                                    |        | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>RB2<br>RB2<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q                      | к                    | L                                                                            | V<br>CS  | F<br>LB1<br>LS2<br>LB1           | F                                                                                                                 | Glu11<br>RB2                 | Glu22<br>CS  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |                                                                                                                | -CH2-                  |                                      |                                       |                                                                                                           |                                            |                                                 |        | Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46.124<br>81.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -13.63<br>80.981<br>-268.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -204.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -13.63<br>80.981<br>-268.043<br>-82.971<br>-14.857<br>-77.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  |                                                                                                                |                        |                                      |                                       |                                                                                                           |                                            |                                                 |        | electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -23.217<br>-14.769<br>-13.109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                      |                                                                              |          |                                  |                                                                                                                   |                              |              |                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -13.63<br>80.981<br>-268.043<br>-82.971<br>-14.857<br>-77.15<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LS2<br>CS<br>LB1                                                                                            | Q<br>RS2<br>RB1                                                                                                | K                      | L                                    | V<br>LS2                              | F<br>R82<br>R82<br>R52                                                                                    | F                                          |                                                 |        | electrostatic ΔEs Initial Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23.217<br>-14.769<br>-13.109<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>RB2<br>RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                      | K                    | L                                                                            | v        | F<br>LB2<br>LS2<br>LB2           | F                                                                                                                 |                              |              |                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -13.63<br>80.981<br>-268.043<br>-82.971<br>-14.857<br>-77.15<br>H<br>H<br>12.337<br>81.182<br>-237.761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>LS2<br>CS<br>LB1<br>LS2                                                                                     | Q<br>RS2<br>RB1<br>CS                                                                                          | K                      | L                                    | V<br>152                              | F<br>RB2<br>RB2<br>RS2                                                                                    | F                                          |                                                 |        | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -23.217<br>-14.769<br>-13.109<br>H<br>h<br>1<br>63.099<br>91.872<br>-194.249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>RB2<br>RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                      | ĸ                    |                                                                              | v        | F<br>LB2<br>LS2<br>LB2           | F                                                                                                                 |                              |              |                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -13.63<br>80.981<br>-268.043<br>-82.971<br>-14.857<br>-77.15<br>H<br>H<br>12.337<br>81.182<br>-237.761<br>-57.004<br>-14.656<br>-46.868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>LS2<br>CS<br>LB1<br>LS2                                                                                     | Q<br>RS2<br>RB1<br>CS                                                                                          | K                      | L                                    | V<br>LS2                              | F<br>RB2<br>RB2<br>RS2                                                                                    | F                                          |                                                 |        | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -234,002<br>-23,217<br>-14,769<br>-13,109<br>H<br>1<br>-13,109<br>91,872<br>-194,249<br>-6,242<br>-3,356<br>-3,356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>RB2<br>RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q                      | K                    |                                                                              | v        | F<br>LB2<br>LB2                  | F                                                                                                                 |                              |              |                     |
| Tetal Energy<br>van der Waals<br>electrovialic<br>deferovialic<br>AES<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrovialic<br>AES<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -13.63<br>80.981<br>-268.043<br>-82.971<br>-14.857<br>-77.15<br>H<br>H<br>12.337<br>81.182<br>-237.761<br>-57.004<br>-46.868<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н<br>LS2<br>CS<br>LB1<br>LS2<br>H<br>LB2<br>LB2<br>LB2<br>LB2<br>LB2<br>LS2                                      | Q<br>RS2<br>RB1<br>CS<br>Q<br>LS2                                                                              | K                      | L                                    | V<br>152<br>V                         | F<br>R82<br>R82<br>R52                                                                                    | F                                          |                                                 |        | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -234.002<br>-23.217<br>-14.769<br>-13.109<br>-13.109<br>-13.109<br>-13.109<br>-13.109<br>-13.209<br>-13.209<br>-14.249<br>-14.249<br>-6.242<br>-3.966<br>-3.356<br>-1<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>RB2<br>RB2<br>H<br>RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                      | K<br>K<br>LS2<br>LB2 | L<br>L<br>RB1<br>US2                                                         | v        | F<br>LB2<br>LS2<br>LB2           | F<br>F<br>L81<br>L81<br>L81<br>L81<br>L81                                                                         | Ala21<br>RB1                 |              |                     |
| Teal Energy<br>uen der yoals<br>dectoostatic<br>defsoutatic<br>defsoutation<br>final Orientation<br>Total Energy<br>van der Wasis<br>electrostatic<br>Initial Orientation<br>Total Energy<br>van der wasis<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -13.63<br>80.981<br>-268.043<br>-268.043<br>-268.043<br>-268.043<br>-82.971<br>-14.857<br>-77.15<br>-14.857<br>-77.15<br>-14.857<br>-14.856<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.868<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.968<br>-46.9688<br>-46.9688<br>-46.9688<br>-46.9688<br>-46.9688<br>-46.9688<br>-46.9688<br>-46.968                                                                                                                | H<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2                                                               | Q<br>RS2<br>R81<br>CS<br>Q<br>Q<br>LS2                                                                         | ĸ                      |                                      | v<br>152<br>v                         | F<br>RB2<br>R52<br>R52<br>F<br>RB2<br>RB2                                                                 | F                                          |                                                 |        | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -18.854<br>728.551<br>-18.854<br>-18.854<br>-18.854<br>-266.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>R82<br>R82<br>H<br>R82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                      | к<br>к<br>152<br>182 | L<br>L<br>RB1<br>LS2                                                         | v        | F<br>162<br>152<br>182           | F<br>F<br>LB1<br>LB1<br>LB1<br>LB2                                                                                | Ala21<br>RB1                 |              |                     |
| Tetal Energy<br>van er vaak<br>dectoostalic<br>dectoostalic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Vaak<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Vaak<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -12.63<br>80.981<br>-268.043<br>-268.043<br>-288.043<br>-82.977<br>-14.857<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>-77.15<br>- | H<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2                                                               | Q<br>R52<br>R81<br>C5<br>Q<br>Q<br>L52                                                                         | K                      |                                      | V<br>152<br>V                         | F<br>R02<br>R02<br>R52<br>F<br>F<br>R02<br>R02<br>R02                                                     | F                                          |                                                 |        | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -12.854<br>-13.059<br>-13.109<br>-13.109<br>-13.109<br>-13.109<br>-13.109<br>-13.109<br>-14.242<br>-3.966<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-3.356<br>-17.587<br>-7.5.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>R82<br>R82<br>H<br>R82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q                      | K<br>K<br>LS2<br>LB2 | L<br>1<br>181<br>152                                                         | v        | F<br>162<br>152<br>162           | F<br>F<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1                                      | Ala21<br>R81                 |              |                     |
| Tead Energy Initial Orientation Final Orientatio                                                                                                                                                                                                                                                                                                                                                          | -12.63<br>80.981<br>-2.86.043<br>-2.86.043<br>-2.86.043<br>-2.86.043<br>-1.4.857<br>-1.4.857<br>-1.4.857<br>-1.4.857<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.65888<br>-1.4.65888<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.6588<br>-1.4.65888<br>-1.                                                                                                                                                                                                                                                                   | Н<br>LS2<br>CS<br>LB1<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>RB2<br>RB2<br>RB2<br>RB2               | Q<br>R52<br>R81<br>C5                                                                                          | ĸ                      | L<br>L<br>L<br>L<br>L<br>L           | v<br>152<br>v<br>852                  | F<br>802<br>852<br>852<br>852<br>852<br>852<br>802<br>802<br>802                                          | F<br>F<br>IS2<br>IS2<br>IS2                | Val24<br>LB2                                    | Lynzæ  | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final | -18.854<br>H<br>-13.85<br>H<br>-13.109<br>-13.109<br>-13.109<br>-18.87<br>-18.854<br>H<br>H<br>-18.854<br>H<br>H<br>-18.854<br>H<br>H<br>-266998<br>-8.105<br>-266998<br>-8.105<br>-275.105<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H<br>882<br>882<br>H<br>882<br>L<br>82<br>L<br>82<br>L<br>82<br>L<br>82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a<br>a                 | K<br>K<br>K          | L<br>R81<br>152<br>152                                                       | v<br>v   | F<br>182<br>152<br>182           | F<br>F<br>181<br>181<br>184<br>182<br>182<br>F<br>R82<br>R82                                                      | Ala21<br>R81<br>Giu11<br>L82 | Val24<br>RB2 | Lys28<br>R82<br>R52 |
| Tetal Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation | -13.63<br>80.681<br>-255.043<br>-255.043<br>-45.57<br>-77.15<br>H<br>H<br>12.237<br>-87.761<br>-7.27<br>-87.761<br>-7.27<br>-87.763<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.23.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69<br>-7.25.69                                                                                                                                                                       | н<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152                                          | Q<br>852<br>881<br>CS<br>152                                                                                   | ĸ                      | L<br>L<br>L<br>L2                    | V<br>152<br>V<br>R52                  | F<br>R02<br>R02<br>R02<br>R02<br>R02<br>R02                                                               | F<br>F<br>1822<br>182                      | Val24<br>LB2                                    | Lyn28  | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Wals electrostatic Total Energy van der Wals electrostatic Initial Orientation Total Energy van der Wals electrostatic Distributed Total Energy van der Wals electrostatic AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22100<br>-22217<br>-14769<br>-13109<br>-13109<br>-13109<br>-1320<br>-134269<br>-134269<br>-134269<br>-134269<br>-134269<br>-13567<br>-78251<br>-78251<br>-78105<br>-11257<br>-78105<br>-11257<br>-78105<br>-11257<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-781000<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-78105<br>-7810    | H<br>R82<br>R82<br>H<br>R82<br>H<br>L82<br>L82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q<br>Q                 | К<br>К<br>162<br>К   | L<br>R81<br>152<br>851                                                       | v        | F<br>B2<br>52<br>182<br>F        | F<br>1011<br>1031<br>1032<br>1044<br>1032<br>1044<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032<br>1032 | Ala21<br>R81<br>Glu11<br>182 | Val24<br>R82 | Lys28<br>852        |
| Teal Energy ener                                                                                                                                                                                                                                                                                                                                                          | -13.63<br>80.681<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н<br>152<br>(5)<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152                            | Q<br>RS2<br>CS<br>LS2<br>LS2                                                                                   | ĸ                      | L<br>L<br>152                        | v<br>152<br>V<br>R52                  | F<br>R02<br>R52<br>R52<br>R02<br>R02<br>R02<br>F<br>F                                                     | F<br>F<br>162<br>152<br>162                | Val24                                           | Lyn28  | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -12.217<br>-14.769<br>-12.109<br>-13.109<br>H<br>H<br>-13.109<br>-13.109<br>-13.109<br>-14.769<br>-13.279<br>-134.269<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>-1.250<br>- | н<br>R82<br>R82<br>H<br>R82<br>L82<br>L82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Q.                     | к<br>К<br>152<br>182 | L<br>R81<br>152<br>L<br>R51                                                  | v        | F<br>182<br>152<br>182<br>182    | F<br>101<br>101<br>101<br>101<br>102<br>102<br>802<br>802                                                         | Ala21<br>RB1<br>Giu11<br>1B2 | Val24<br>R82 | Lys28<br>R82<br>R52 |
| Tead Energy<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -13.63<br>80.681<br>-255.043<br>-45.57<br>-77.15<br>H<br>H<br>12.237<br>-87.761<br>-7.27<br>-87.761<br>-7.27<br>-87.761<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.68<br>-7.27<br>-7.23.68<br>-7.23.76<br>-7.27<br>-7.23.68<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.23.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.76<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77<br>-7.25.77                                                                                                                                                                          | H<br>L52<br>C5<br>L82<br>L82<br>L82<br>L82<br>L82<br>L82<br>L82<br>L82<br>L82<br>R82<br>R82<br>R82<br>R82<br>R82 | Q<br>852<br>861<br>6<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                              | ĸ                      | L<br>L<br>L<br>152                   | V<br>152<br>V<br>V<br>R52<br>V<br>R52 | F<br>882<br>882<br>852<br>852<br>852<br>882<br>882<br>882<br>882<br>882                                   | F<br>F<br>1922<br>152<br>152<br>152<br>152 | Val24<br>LB2<br>LS1<br>LS1<br>LS2               | Lyn28  | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic electrostatic Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -12.247<br>-22.217<br>-14.769<br>-12.109<br>-12.109<br>-13.109<br>-13.109<br>-13.109<br>-14.769<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19.1479<br>-19                                                                                                                                                                                                 | н<br>882<br>882<br>882<br>882<br>882<br>Н<br>882<br>1882<br>1882<br>188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | а<br>а<br>а            | к<br>к<br>к<br>к     | L<br>RB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>U | v        | F<br>152<br>152<br>162<br>F<br>F | F<br>(01)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02)<br>(02                                          | Ala21<br>R81<br>Glu11<br>L82 | Val24<br>R82 | Lys28<br>R52        |
| Tead Energy Initial Orientation Final Orientation Final Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -13.63<br>80.681<br>-265.043<br>-265.043<br>-265.043<br>-275.044<br>-14.657<br>-14.557<br>-77.15<br>-14.577<br>-77.15<br>-14.577<br>-71.57<br>-71.57<br>-71.57<br>-71.57<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.16<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-72.77.26<br>-73.77.26<br>-73.77.26<br>-73.77.26<br>-73.77.277.26<br>-73.77.277.277.277.277.277.277.277.277.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н<br>152<br>153<br>153<br>155<br>155<br>155<br>155<br>155<br>155<br>155<br>155                                   | Q<br>832<br>831<br>6<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9 | ĸ                      | L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | v<br>152<br>v<br>852<br>v<br>882      | F<br>882<br>882<br>852<br>852<br>852<br>802<br>802<br>802<br>802<br>802<br>802<br>802<br>802<br>802<br>80 | F<br>F<br>102<br>102<br>F                  | Val24<br>LB2<br>LS2<br>LS1<br>LS2<br>LS1<br>LS2 | Lynz8  | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic Total Energy van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -12.217<br>-14.769<br>-13.109<br>H<br>H<br>-13.109<br>-13.109<br>-13.109<br>-14.769<br>-14.769<br>-14.269<br>-14.269<br>-14.269<br>-14.269<br>-14.269<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.326<br>-1.3266<br>-1.3266<br>-1.3266<br>-1.3266<br>-1.3266<br>-1.3266<br>-1.3266<br>-1.326       | н<br>882<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>882<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>883<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>884<br>н<br>88<br>8<br>8<br>8<br>8<br>8<br>8 | a<br>a<br>a            | к<br>к<br>к<br>к     | L<br>RB1<br>152<br>851                                                       | v        | F<br>162<br>152<br>152<br>1692   | F<br>F<br>L01<br>L01<br>L01<br>L01<br>L01<br>L01<br>L01<br>L01<br>L01<br>L01                                      | Ala21<br>R01<br>Giu11<br>IB2 | Val24        | Lys28               |

|                     | н         | н     | Q | к        | L   | v          | F  | F          | Lys28  |                        | н                 | н | Q | К     | L     | v        | F        | F   |        |
|---------------------|-----------|-------|---|----------|-----|------------|----|------------|--------|------------------------|-------------------|---|---|-------|-------|----------|----------|-----|--------|
| Initial Orientatio  | n         |       |   | CS       | RB1 |            |    |            |        | Initial Orientatio     | n                 |   |   | CS    | LB1   |          |          |     |        |
| Final Orientation   | LS1       |       |   | LS1      | RS1 |            |    | RB1        | RS2    | Final Orientation      | LB1               |   |   | RS1   | LS1   |          |          | RS1 |        |
|                     |           |       |   | LB1      |     |            |    | CS         |        |                        | LS1               |   |   | CS    | LB1   |          |          |     |        |
|                     |           |       |   |          |     |            |    | RS1<br>PS2 |        |                        | LS2<br>CS         |   |   | -CH2- |       |          |          |     |        |
|                     |           |       |   |          |     |            |    | R32        |        |                        | LS .              |   |   | RS2   |       |          |          |     |        |
| Total Energy        | -48.47    |       |   |          |     |            |    |            |        | Total Energy           | -50.239           |   |   |       |       |          |          |     |        |
| van der Waals       | 80.07     |       |   |          |     |            |    |            |        | van der Waals          | 81.169            |   |   |       |       |          |          |     |        |
| electrostatic       | -303.75   |       |   |          |     |            |    |            |        | electrostatic          | -300.455          |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| ΔEs                 | -117.811  |       |   |          |     |            |    |            |        | ΔEs                    | -119.58           |   |   |       |       |          |          |     |        |
|                     | -15.768   |       |   |          |     |            |    |            |        |                        | -14.669           |   |   |       |       |          |          |     |        |
|                     | 112.037   |       |   |          |     |            |    |            |        |                        | 105.502           |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     | н         | н     | Q | к        | L   | V          | F  | F          |        |                        | н                 | н | Q | К     | L     | v        | F        | F   |        |
| Initial Orientatio  | n         |       |   | RB1      | LB1 |            |    |            |        | Initial Orientatio     | in                |   |   | LB1   | RB1   |          |          |     |        |
| Final Orientation   | RS2       |       |   | RS1      | CS  |            |    |            |        | Final Orientation      | RS1               |   |   | LB1   | RS1   |          |          | CS  |        |
|                     | CS<br>DD1 |       |   |          | RB1 |            |    |            |        |                        |                   |   |   | LS1   | RB1   |          |          |     |        |
|                     | NDI       |       |   |          | 101 |            |    |            |        |                        |                   |   |   | -CH2- |       |          |          |     |        |
| Total Energy        | -34.195   |       |   |          |     |            |    |            |        | Total Energy           | -7.175            |   |   |       |       | -        |          |     |        |
| van der Waals       | 86.786    |       |   |          |     |            |    |            |        | van der Waals          | 87.066            |   |   |       |       |          |          |     |        |
| electrostatic       | -285.656  |       |   |          |     |            |    |            |        | electrostatic          | -263.3            |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| ΔEs                 | -103.536  |       |   |          |     |            |    |            |        | ΔEs                    | -76.516           |   |   |       |       |          |          |     |        |
|                     | -9.052    |       |   |          |     |            |    |            |        |                        | -8.772            |   |   |       |       |          |          |     |        |
|                     | -94.705   |       |   |          |     |            |    |            |        |                        | -72.407           |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     | н         | н     | Q | к        | L   | v          | F  | F          |        |                        | н                 | н | Q | К     | L     | v        | F        | F   | Lys28  |
| Initial Orientatio  | n         |       |   | RS1      | LB1 |            |    |            |        | Initial Orientatio     | n                 |   |   | LS1   | RB1   |          |          |     |        |
| Final Orientation   | n         |       |   | RS1      | CS  |            |    | RS1        |        | Final Orientation      | LS1               |   |   | LS2   | LS1   |          |          | LB1 | RS2    |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   | 2     |       |          |          | CS  | 2      |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   | -CH2- |       | -        |          |     | 151    |
| Total Energy        | 3.608     |       |   |          |     |            |    |            |        | Total Energy           | -69.143           |   |   |       |       |          |          |     |        |
| van der Waals       | 92.176    |       |   |          |     |            |    |            |        | van der Waals          | 78.185            |   |   |       |       |          |          |     |        |
| electrostatic       | -254.844  |       |   |          |     |            |    |            |        | electrostatic          | -317.423          |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| ΔEs                 | -65.733   |       |   |          |     |            |    |            |        | ΔEs                    | -138.484          |   |   |       |       |          |          |     |        |
|                     | -3.662    |       |   |          |     |            |    |            |        |                        | -17.653           |   |   |       |       |          |          |     |        |
|                     | -63.951   |       |   |          |     |            |    |            |        |                        | -126.53           |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     | н         | н     | Q | к        | L   | v          | F  | F          |        |                        | н                 | н | Q | К     | L     | v        | F        | F   | Lvs28  |
| Initial Orientatio  | n         |       | _ | RS2      | LB1 |            |    |            |        | Initial Orientatio     | n                 |   | _ | LS2   | RB1   |          |          |     | -,     |
| Final Orientation   | LS2       |       |   | RS2      | LB1 |            |    | RB1        |        | Final Orientation      | LB1               |   |   | LS2   | RB1   |          |          | RS2 | RB2    |
|                     |           |       |   | 2        | LS1 |            |    | RS2        |        |                        | LS2               |   |   |       | RS1   |          |          |     | RS2    |
|                     |           |       |   |          |     |            |    | RS1        |        |                        | LS1               |   |   |       |       |          |          |     | 2      |
| Total Canada        | 53,296    |       |   |          |     |            |    | CS         |        | Total Coores           | 20.052            |   |   |       |       |          |          |     |        |
| van der Waals       | -52.560   |       |   |          |     |            |    |            |        | van der Waals          | -39.955<br>82.806 |   |   |       |       |          |          |     |        |
| electrostatic       | -297.078  |       |   |          |     |            |    |            |        | electrostatic          | -322.053          |   |   |       |       | -        |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| ΔEs                 | -121.727  |       |   |          |     |            |    |            |        | ΔEs                    | -109.294          |   |   |       |       |          |          |     |        |
|                     | -16.065   |       |   |          |     |            |    |            |        |                        | -13.032           |   |   |       |       |          |          |     |        |
|                     | -106.185  |       |   |          |     |            |    |            |        |                        | -131.16           |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     |           | L     | 0 | v        |     | V          | c  | E          |        |                        | ц                 | U | 0 | V     |       | V        | c        | c   | Lvc29  |
| Initial Orientatio  | n         |       | ų | RB2      | IB1 | v          |    |            |        | Initial Orientatio     | n                 |   | ų | RB1   | IB2   |          |          |     | Ly320  |
| Final Orientation   | RB1       | LB2   |   | RS2      | LS2 |            |    |            |        | Final Orientation      | RB2               |   |   | RS2   | LS2   |          |          | LS2 | LS1    |
|                     | RS2       | -CH2- |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     | LS2    |
|                     |           | LS2   |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     |           | -CH-  |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| Total Energy        | -40.782   |       |   |          |     |            |    |            |        | Total Energy           | -68.14            |   |   |       |       |          |          |     |        |
| van der Waals       | 81.424    |       |   |          |     |            |    |            |        | van der Waals          | 77.03             |   |   |       |       |          |          |     |        |
| electrostatic       | -200.41   |       |   |          |     |            |    |            |        | electrostatic          | -515.110          |   |   |       |       |          |          |     |        |
| ΔEs                 | -110.123  |       |   |          |     |            |    |            |        | AEs                    | -137.481          |   |   |       |       |          |          |     |        |
|                     | -14.414   |       |   |          |     |            |    |            |        |                        | -18.808           |   |   |       |       |          |          |     |        |
|                     | -97.517   |       |   |          |     |            |    |            |        |                        | -124.223          |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| Initial Origonatio  | н         | н     | Q | K        | L   | V          | F  | F          |        | Initial Orientatio     | н                 | н | Q | K     | L 102 | V        | F        | F   | Lys28  |
| Final Orientation   | /···      |       |   | 152      | R52 |            |    |            |        | Final Orientation      | RB2               |   |   | R52   | RB1   |          |          | 152 | 151    |
|                     |           |       |   |          | RB2 |            |    |            |        | ar one mation          | RS1               |   |   | RB1   |       |          |          |     | LS2    |
|                     |           |       |   |          |     |            |    |            |        |                        | RNH               |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| Total Energy        | -18.752   |       |   |          |     |            |    |            |        | Total Energy           | -73.585           |   |   |       |       |          |          |     |        |
| van der Waals       | 87.046    |       |   |          |     |            |    |            |        | van der Waals          | 71.756            |   |   |       |       |          |          |     |        |
| ciecciostatic       | -2/1.20/  |       |   |          |     |            |    |            |        | electrostatic          | -314.01           |   |   |       |       | -        |          |     |        |
| ΔEs                 | -88.093   |       |   |          |     |            |    |            |        | ΔEs                    | -142.926          |   |   |       |       |          |          |     |        |
|                     | -8.792    |       |   |          |     |            |    |            |        |                        | -24.082           |   |   |       |       |          |          |     |        |
|                     | -80.374   |       |   |          |     |            |    |            |        |                        | -123.717          |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     | L. L.     | U.    | 0 | v        |     |            | r. | r          | 146.36 |                        | L.                | P | ~ | v     |       |          | <i>r</i> |     | 110-20 |
| Initial Origotation | n         | н     | ų | K<br>IR7 | RR7 | v          | r  | r          | Lys28  | Initial Origontation   | n                 | н | ų | RR7   | 187   | V        | F        | F   | LyS28  |
| Final Orientation   | n         |       |   | LB1      |     |            |    | RB1        | RS1    | Final Orientation      | RB1               |   |   | RS2   | LB1   |          |          |     | LB2    |
|                     |           |       |   | LNH      |     |            |    |            | 3      |                        |                   |   |   | RB1   | RB1   |          |          |     | LS2    |
|                     |           |       |   | LS2      |     |            |    |            |        |                        |                   |   |   | RNH   |       |          |          |     |        |
|                     |           |       |   | -CH2-    |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| Total Energy        | -42.684   |       |   |          |     |            |    |            |        | Total Energy           | -39.588           |   |   |       |       | <u> </u> |          |     |        |
| van uer Waars       | -293 107  |       |   |          |     |            |    |            |        | van der waals          | -288 247          |   |   |       |       |          |          |     |        |
| crectiostduc        | -233.107  |       |   |          |     |            |    |            |        | electrostatic          | -200.247          |   |   |       |       |          |          |     |        |
| ΔEs                 | -112.025  |       |   |          |     |            |    |            |        | ΔEs                    | -108.929          |   |   |       |       |          |          |     |        |
|                     | -11.478   |       |   |          |     |            |    |            |        |                        | -13.264           |   |   |       |       |          |          |     |        |
|                     | -102.214  |       |   |          |     |            |    |            |        |                        | -97.354           |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
|                     |           |       | ~ |          |     |            | -  | -          |        |                        |                   |   | ~ |       |       |          | -        | -   | 1      |
| Initial Orice to C  | Н         | н     | Q | K        | L   | V          | F  | F          |        | painting of the second | Н                 | н | Q | K     | L     | V        | F        | F   | Lys28  |
| Final Orientation   | R\$2      | R\$2  |   | 152      | 181 | RB2<br>RB2 |    |            |        | Final Orientation      | ""<br>1           |   |   | 152   | 152   | nd2      |          | 151 | RS1    |
|                     |           | -CH-  |   | LNH      | RB2 |            |    |            |        | ai orientation         |                   |   |   | LB2   | LB1   |          |          | LNH | RB1    |
|                     |           | RB2   |   | LB1      |     |            |    |            |        |                        |                   |   |   |       |       |          |          | LB1 |        |
|                     |           | -CH2- |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |
| Total Energy        | -52.335   |       |   |          |     |            |    |            |        | Total Energy           | -37.662           |   |   |       |       |          |          |     |        |
| van der Waals       | 74.538    |       |   |          |     |            |    |            |        | van der Waals          | 85.084            |   |   |       |       |          |          |     |        |
| electrostatic       | -295.775  |       |   |          |     |            |    |            |        | electrostatic          | -287              |   |   |       |       |          |          |     |        |
| AFs                 | -121 67/  |       |   |          |     |            |    |            |        | AFs                    | -107.003          |   |   |       |       |          |          |     |        |
|                     | -21.3     |       |   |          |     |            |    |            | ++     | -11-0                  | -10.754           |   |   |       |       |          |          |     |        |
|                     | -104.882  |       |   |          |     |            |    |            |        |                        | -96.107           |   |   |       |       |          |          |     |        |
|                     |           |       |   |          |     |            |    |            |        |                        |                   |   |   |       |       |          |          |     |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q                | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                               | v   | F                         | F                                                                                                                                                                     |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н | Q      | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                               | v                     | F                                                   | F                                                                                                                                                                                                                                                      |                     |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                  | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | LB2 |                           |                                                                                                                                                                       |                                       |          | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |        | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       | LB1                                                 |                                                                                                                                                                                                                                                        |                     |            |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LB2   |                  | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS2                             | LB2 |                           |                                                                                                                                                                       |                                       |          | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       | LS1                                                 |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -CH2- |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RB1                             |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LS2                             |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -21 884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LDZ                             |     |                           |                                                                                                                                                                       |                                       |          | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -14 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 89.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -270.576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -269.992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -91.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -83.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -14.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -79.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 79.099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q                | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                               | v   | F                         | F                                                                                                                                                                     |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н | Q      | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                               | v                     | F                                                   | F                                                                                                                                                                                                                                                      |                     |            |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                  | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     | RB1                       |                                                                                                                                                                       |                                       |          | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |        | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       | RB1                                                 |                                                                                                                                                                                                                                                        |                     |            |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                  | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LS1                             |     | RS1                       |                                                                                                                                                                       |                                       |          | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       | CS                                                  |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  | LNH*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | -CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -46.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  | LS1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |     |                           |                                                                                                                                                                       |                                       |          | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  | *-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |     |                           |                                                                                                                                                                       |                                       |          | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 87.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -300.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -263.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| ΔES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -115.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | ΔES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - /4.988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -109.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -72 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q                | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                               | v   | F                         | F                                                                                                                                                                     |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н | Q      | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                               | v                     | F                                                   | F                                                                                                                                                                                                                                                      |                     |            |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                  | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     | RB2                       |                                                                                                                                                                       |                                       |          | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |        | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       | LB2                                                 |                                                                                                                                                                                                                                                        |                     |            |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                  | LB1<br>PP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |     |                           | LS2<br>PP1                                                                                                                                                            |                                       |          | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |        | LNH*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                       | LBZ                                                 |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  | RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     |                           | NDI                                                                                                                                                                   |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |        | RB1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                       | 61                                                  |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  | -CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | RNH*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -25.321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 78.233                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        | *-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -262.567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -275.851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -75 17*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |     |                           |                                                                                                                                                                       |                                       | <u>├</u> | AFe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -04 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -10.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |     | -                         |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -17.605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -71.674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -84.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q                | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                               | v   | F                         | F                                                                                                                                                                     | Glu22                                 | Asp23    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н | Q      | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                               | v                     | F                                                   | F                                                                                                                                                                                                                                                      | Val 12              |            |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                  | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     | RB1                       |                                                                                                                                                                       |                                       |          | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |        | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                               |                       | LB2                                                 |                                                                                                                                                                                                                                                        |                     |            |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                  | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     | RB2                       |                                                                                                                                                                       | RB2                                   | RB2      | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | LS2    | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       | LB2                                                 | RB2                                                                                                                                                                                                                                                    | LS2                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  | LNH*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |     | -CH2-<br>PC1              |                                                                                                                                                                       | -CH2-                                 | -url2-   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | -CH2-  | LSZ<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                       | 152                                                 |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  | *-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |     | RNH                       |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     | RB1                       |                                                                                                                                                                       |                                       |          | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -32.091                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        | RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 80.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -235.453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -286.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| AT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | AT-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101 433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| ALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -54.445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | ΔES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -101.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -44.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -95.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q                | K 162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L                               | v   | F                         | F                                                                                                                                                                     |                                       |          | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н | Q      | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                               | v                     | F                                                   | F                                                                                                                                                                                                                                                      |                     |            |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                  | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     | RB2                       |                                                                                                                                                                       |                                       |          | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       | RB2                                                 |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |     | RS2                       |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -9.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93.529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -267.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -239.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| AEc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | AEc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
| 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -78.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          | 1113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -48.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -76.755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -48.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        |                     |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |     |                           |                                                                                                                                                                       |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                       |                                                     |                                                                                                                                                                                                                                                        | Val24               | Lys28      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q                | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                               | v   | F                         | F                                                                                                                                                                     |                                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н |        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                               | V                     | F                                                   | F                                                                                                                                                                                                                                                      |                     |            |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н     | Q                | K<br>LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                               | v   | F<br>RB2                  | F                                                                                                                                                                     |                                       |          | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н |        | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                               | v                     | F                                                   | F<br>RB1                                                                                                                                                                                                                                               | 000                 | DCA        |
| Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>on<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н     | Q                | K<br>LB2<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                               | v   | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н |        | K<br>CS<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L<br>CS                         | v                     | F                                                   | F<br>RB1<br>CS<br>RB1                                                                                                                                                                                                                                  | RS2                 | RS1<br>RS2 |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                               | v   | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н |        | K<br>CS<br>LS2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS                              | v                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>2n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                               | v   | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н |        | K<br>CS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L<br>CS                         | V                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientatio<br>Final Orientation<br>Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>on<br>n<br>-24.343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                               | V   | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>n<br>-40.894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н |        | K<br>CS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS                              | V                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>on<br>-24.343<br>86.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                               | V   | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>n<br>-40.894<br>83.068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н |        | K<br>CS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS                              |                       | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>201<br>-24.343<br>86.177<br>-278.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                               | V   | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>n<br>-40.894<br>83.068<br>-295.759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Н |        | K<br>CS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS                              |                       | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>n<br>-24.343<br>86.177<br>-278.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Η     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |     | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>-40.894<br>83.068<br>-295.759                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н |        | K<br>CS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS                              |                       | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>n<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Η     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |     | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H |        | K<br>CS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS                              |                       |                                                     | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>00<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | V   | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H |        | K<br>CS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS                              |                       | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |     | F<br>RB2<br>RB2           | F                                                                                                                                                                     |                                       |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H |        | K<br>CS<br>LS2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                       |                                                     | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>n<br>-24,343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H     |                  | K<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |     | F<br>RB2<br>RB2           | F                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H |        | K<br>CS<br>LS2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                       | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>on<br>-24,343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н     | Q<br>            | К<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | V   | F<br>RB2<br>RB2           | F                                                                                                                                                                     | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H | Q      | К<br>СS<br>LS2<br>2<br>LS1<br>-СH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | V<br>                 | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2                                                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>n<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Н     | Q<br>            | К<br>LB2<br>LS2<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | V   | F<br>RB2<br>RB2           | F                                                                                                                                                                     | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>wan der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H | Q      | К<br>СS<br>LS2<br>2<br>LS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | V                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>F<br>RB1                                                                                                                                                                                                          | RS2                 | RS1<br>RS2 |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>n<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>n<br>RS1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н     | Q<br>            | К<br>LB2<br>LS2<br>-CH2-<br>К<br>К<br>СS<br>RB1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                               | V   | F<br>RB2<br>RB2           | F<br>F<br>F<br>LB1<br>CS<br>LB1                                                                                                                                       | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>n<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H | Q      | К<br>СS<br>LS2<br>2<br>LS1<br>-CH2-<br>К<br>LB1<br>LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | v                     | F<br>                                               | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1                                                                                                                                                                                             | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>n<br>-24,343<br>86,177<br>-278,1<br>-93,684<br>-9,661<br>-87,207<br>H<br>H<br>n<br><b>R</b> 51<br>R52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H     | Q<br>Q           | К<br>LB2<br>LS2<br>-CH2-<br>К<br>К<br>СS<br>RB1<br>RS2<br>СS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                               | V   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28<br>LS2                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>n<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H | Q      | К<br>СS<br>LS2<br>2<br>LS1<br>-CH2-<br>К<br>К<br>ЦВ1<br>LB1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 |                       | F<br>                                               | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                         | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>n<br>-24,343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>n<br>r<br>RS1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н     | Q                | к<br>LB2<br>LS2<br>-CH2-<br>К<br>К<br>С<br>С<br>Я<br>В1<br>Я<br>В1<br>Я<br>S2<br>С<br>S<br>Я<br>S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L                               | v   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28<br>LS2                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>H<br>n<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H | Q      | К<br>СS<br>LS2<br>2<br>LS1<br>-CH2-<br>К<br>LB1<br>LB1<br>LS1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | v                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                      | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>RS1<br>RS1<br>RS1<br>RS1<br>-62.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н     | Q                | к<br>LB2<br>LS2<br>-CH2-<br>К<br>К<br>С<br>К<br>К<br>К<br>С<br>К<br>К<br>С<br>С<br>К<br>С<br>С<br>К<br>С<br>С<br>К<br>С<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>С<br>К<br>С<br>К<br>С<br>С<br>К<br>С<br>С<br>К<br>С<br>С<br>К<br>С<br>С<br>К<br>С<br>С<br>С<br>С<br>К<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>С |                                 | V   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>H<br>n<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н | Q      | к<br>с5<br>L52<br>2<br>L51<br>-СН2-<br>К<br>к<br>ЦВ1<br>ЦВ1<br>ЦS1<br>L52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | V                     | F                                                   | F<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                                   | RS2<br>Lys28<br>RS1 | RS1<br>RS2 |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>-24,343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>n<br><b>RS1</b><br><b>RS2</b><br>-62.208<br>78.286<br>-62.208<br>78.286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н     | Q                | K<br>LB2<br>LS2<br>-CH2-<br>K<br>K<br>CS<br>RB1<br>-CH2-<br>CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                               | V   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28<br>LS2                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>Н<br>Н<br>-44.063<br>85.885<br>203.272                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H | Q      | к<br>сs<br>LS2<br>2<br>LS1<br>-СH2-<br>К<br>ЦВ1<br>ЦВ1<br>LS1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | V                     | F                                                   | F<br>RB1<br>RS2<br>F<br>RB1<br>RS2<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                     | RS2<br>Lys28<br>RS1 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>wan der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>n<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>R51<br>R52<br>-62.208<br>78.286<br>-312.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н     | Q                | к<br>LB2<br>LS2<br>-CH2-<br>К<br>К<br>С<br>S<br>RB1<br>RS2<br>CS<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | V   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>H<br>n<br>L51<br>-44.063<br>85.885<br>-303.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H | Q      | к<br>сs<br>LS2<br>2<br>LS1<br>-CH2-<br>К<br>LB1<br>LB1<br>LS1<br>LS2<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | V                     | F                                                   | F<br>RB1<br>RS2<br>F<br>RB1<br>CS<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                           | RS2<br>Lys28<br>RS1 | RS1<br>RS2 |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>nn<br>-24.343<br>86.177<br>-278.1<br>-9.661<br>-9.661<br>-87.207<br>H<br>H<br>nn<br>R51<br>R52<br>-62.208<br>78.286<br>-312.409<br>-312.409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н     | Q                | K<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>K<br>K<br>CS<br>RB1<br>RS2<br>CS<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | V   | F<br>RB2<br>RB2           | F<br>F<br>EB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>n<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>n<br>LS1<br>LS1<br>-44.063<br>85.885<br>-303.131<br>-113.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н | Q      | к<br>сs<br>LS2<br>LS1<br>-СН2-<br>К<br>К<br>ЦВ1<br>LS1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | V                     | F<br>                                               | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                           | RS2<br>Lys28        | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>H<br>R52<br>-62.208<br>78.286<br>-312.409<br>-13.1549<br>-17.552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н     | Q                | K<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>K<br>K<br>CS<br>RB1<br>RS2<br>CS<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                               | V   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28<br>LS2                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>n<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>H<br>n<br>LS1<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>-9.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H | Q      | К<br>СS<br>LS2<br>2<br>LS1<br>-CH2-<br>К<br>LB1<br>LB1<br>LS1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                               | V                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>-24.343<br>86.177<br>-278.1<br>-9.3.684<br>-9.661<br>-87.207<br>H<br>RS1<br>RS2<br>RS2<br>-62.208<br>RS2<br>-312.409<br>-131.549<br>-17.552<br>-121.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н     | Q<br>            | к<br>LB2<br>LS2<br>-CH2-<br>-CH2-<br>К<br>К<br>СS<br>RB1<br>RS2<br>CS<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | V   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28<br>LS2                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-120.77<br>-104.866<br>H<br>H<br>-104.866<br>85.885<br>-303.131<br>-113.404<br>-9.953<br>-112.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H | Q      | к<br>сS<br>LS2<br>2<br>LS1<br>-CH2-<br>К<br>ЦВ1<br>ЦВ1<br>ЦS1<br>LS2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | V                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                           | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>H<br>R51<br>R52<br>-851<br>R52<br>-82.208<br>78.286<br>-312.209<br>-312.499<br>-13.1549<br>-17.552<br>-121.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н     | Q                | K<br>LB2<br>LS2<br>-CH2-<br>-CH2-<br>K<br>K<br>CS<br>RB1<br>RS2<br>CS<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | V   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>CS<br>LB1<br>LS2                                                                                                                                     | Lys28<br>LS2                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>n<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>H<br>n<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>-9.953<br>-112.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н | Q      | к<br>сs<br>2<br>2<br>LS1<br>-СH2-<br>К<br>LB1<br>LB1<br>LS1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | V                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                      | RS2<br>Lys28<br>RS1 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>эл<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>-87.207<br>-85.207<br>-85.207<br>-85.208<br>-85.208<br>-312.409<br>-13.552<br>-121.516<br>-7.252<br>-121.516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H     | Q                | K<br>LB2<br>LS2<br>-CH2-<br>-CH2-<br>K<br>K<br>CS<br>RB1<br>RS2<br>CS<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | v   | F<br>RB2<br>RB2<br>F<br>F | F<br>F<br>LB1<br>LS1<br>LS2                                                                                                                                           | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н<br>п<br>-40.894<br>83.068<br>-255.759<br>-110.235<br>-12.77<br>-104.866<br>н<br>н<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>-9.953<br>-112.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н | Q      | к<br>сs<br>LS2<br>LS1<br>-СH2-<br>К<br>LB1<br>LS1<br>LS2<br>LS2<br>СH2-<br>К<br>LB1<br>LS1<br>LS2<br>СH2-<br>СH2-<br>СH2-<br>СH2-<br>СH2-<br>СН2-<br>СН2-<br>СН2-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3-<br>СН3- | L<br>CS<br>                     | V                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                      | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-24,343<br>86,177<br>-278,1<br>-93,684<br>-9,661<br>-87,207<br>H<br>R51<br>R52<br>-62,208<br>78,286<br>-62,208<br>-78,286<br>-131,549<br>-131,549<br>-131,549<br>-17,552<br>-121,516<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H     | Q<br>            | K<br>LB2<br>LS2<br>-CH2-<br>-CH2-<br>-<br>CH2-<br>K<br>K<br>K<br>K<br>RS1<br>-CH2-<br>K<br>K<br>RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | V   | F<br>RB2<br>RB2<br>RB2    | F<br>F<br>LB1<br>CS<br>CS<br>LB1<br>LS2                                                                                                                               | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н<br>п<br>-40.894<br>83.068<br>-295.759<br>-110.255<br>-12.77<br>-104.866<br>н<br>п<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>-9.953<br>-112.28<br>н<br>п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н | Q      | К<br>СS<br>2<br>2<br>1<br>51<br>-СH2-<br>К<br>1<br>8<br>1<br>1<br>51<br>1<br>52<br>К<br>К<br>8<br>51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | v                     | F                                                   | F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                      | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostanic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>эл<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а<br>а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q<br>            | к<br>LB2<br>LS2<br>-CH2-<br>К<br>К<br>RB1<br>RS1<br>-CH2-<br>К<br>RB1<br>RS1<br>RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 | V   | F<br>RB2<br>RB2<br>F<br>F | F<br>F<br>L81<br>L82<br>L52<br>F<br>L82<br>L52<br>L52<br>L52<br>L52<br>L52<br>L52<br>L52<br>L52<br>L53<br>L53<br>L53<br>L53<br>L53<br>L53<br>L53<br>L53<br>L53<br>L53 | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>И<br>-44.063<br>85.885<br>-303.131<br>-1113.404<br>-9.953<br>-112.238<br>Н<br>п<br>R51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н | Q.     | К<br>СS<br>2<br>2<br>LS1<br>-CH2-<br>К<br>К<br>ЦВ1<br>ЦВ1<br>ЦS1<br>ЦS2<br>К<br>К<br>К<br>Я<br>К<br>Я<br>К<br>Я<br>К<br>Я<br>К<br>Я<br>К<br>Я<br>К<br>Я<br>К<br>Я<br>К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>CS<br>L<br>L<br>L          | v                     | F                                                   | F<br>R81<br>CS<br>R81<br>R52<br>F<br>F<br>R81<br>R51<br>R51<br>F<br>L81<br>L81                                                                                                                                                                         | RS2<br>Lys28<br>RS1 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н<br>-24.343<br>86.177<br>-278.1<br>-93.684<br>-9.661<br>-87.207<br>н<br>R51<br>R52<br>-62.208<br>78.286<br>-312.409<br>-131.549<br>-17.552<br>-121.516<br>н<br>о                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н     | Q<br>            | K<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>K<br>RB1<br>RS2<br>CS<br>RB1<br>RS1<br>-CH2-<br>K<br>RB1<br>RB1<br>RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | v   | F<br>R02<br>R02<br>F<br>F | F<br>F<br>LB1<br>LS2<br>F<br>LB1<br>LS2<br>CS<br>CS                                                                                                                   | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Data Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>н<br>н<br>-104.866<br>-295.759<br>-104.866<br>-105.865<br>-303.131<br>-113.404<br>-9.953<br>-112.238<br>н<br>н<br>п<br>-112.238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н | Q      | к сs<br>Ls2<br>2<br>LS1<br>-CH2-<br>К<br>ЦВ1<br>LS2<br>LS2<br>LS2<br>К<br>К<br>RS1<br>RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L<br>CS<br>L<br>L<br>RS1        | V                     | F<br>                                               | F<br>R81<br>R81<br>R82<br>F<br>F<br>R81<br>CS<br>CS<br>R81<br>R81<br>R81<br>R81                                                                                                                                                                        | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>-24.343<br>86.177<br>-278.1<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-97.278<br>-93.661<br>-97.278<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.661<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93.621<br>-93                                                                                                                                                                                                                                                      | H     | Q<br>Q<br>Q      | K<br>LB2<br>LS2<br>LS2<br>-CH2-<br>K<br>K<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>KB1<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 | v   | F<br>R02<br>R02<br>F<br>F | F<br>F<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1                                                                                                        | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H<br>-40.894<br>-295.759<br>-110.235<br>-12.77<br>-101.886<br>-44.063<br>85.885<br>-112.288<br>-113.404<br>-9.953<br>-112.288<br>H<br>n<br>R51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н | Q      | K CS<br>CS<br>2<br>LS3<br>S3<br>-CH2-<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>S51<br>RNH<br>RS51<br>RNH<br>RS51<br>RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L<br>CS<br>L<br>L<br>RS1        | v                     | F<br>F                                              | F<br>R81<br>CS<br>R81<br>R52<br>F<br>R81<br>R51<br>F<br>R81<br>R51<br>L81<br>L81<br>L81                                                                                                                                                                | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>H<br>-24,343<br>86,177<br>-278,1<br>-93,684<br>-95,615<br>-95,615<br>-95,615<br>-95,615<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552<br>-10,552                                                                                                                                                                                                                                                        | н     | Q<br>Q           | K<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>CH2-<br>K<br>RS1<br>-CH2-<br>K<br>RS1<br>LS1<br>LS1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                 | v   | F<br>R02<br>R02<br>F<br>F | F<br>F<br>L81<br>L52<br>F<br>L81<br>L52<br>CS<br>L81<br>L52<br>CS<br>CS<br>CS<br>CS                                                                                   | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>-40.894<br>83.068<br>-295.759<br>-110.233<br>-1277<br>-104.866<br>H<br>H<br>N<br>LS1<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>85.885<br>-303.131<br>-112.238<br>H<br>n<br>R<br>S1<br>-955<br>-955<br>-955<br>-957<br>-957<br>-957<br>-957<br>-957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н | Q      | к<br>СS<br>2<br>2<br>1<br>51<br>-<br>СH2-<br>К<br>8<br>1<br>51<br>1<br>52<br>8<br>1<br>52<br>8<br>52<br>8<br>52<br>8<br>52<br>8<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L<br>CS<br>L<br>L               | V<br>V<br>V<br>V      | F<br>F                                              | F<br>R81<br>R81<br>R82<br>R82<br>F<br>F<br>R81<br>CS<br>R81<br>R81<br>R81<br>R81                                                                                                                                                                       | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H<br>H<br>-24,343<br>86,177<br>-2,78,1<br>-9,3864<br>-62,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-17,828<br>-32,209<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515                                                                                                                                                                                                                                                       | H     | Q<br>Q           | K<br>LB2<br>LS2<br>LS2<br>-CH2-<br>CH2-<br>K<br>RB1<br>RS2<br>CS<br>K<br>851<br>-CH2-<br>K<br>RB1<br>RB1<br>RB1<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 | v   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS                                                                                                  | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>40.894<br>83.068<br>83.068<br>7.255.759<br>110.235<br>12.277<br>10.4866<br>H<br>1.2.77<br>10.4866<br>5.885<br>7.301.31<br>113.000<br>-9.533<br>1112.238<br>H<br>n<br>85.885<br>-301.531<br>-31.653<br>81.432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н | Q.     | K<br>CS<br>2<br>2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS2<br>LS2<br>K<br>K<br>RNH<br>RS1<br>LCH2-<br>CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L<br>CS<br>L<br>L<br>RS1        | V<br>V<br>V<br>V<br>V | F<br>                                               | F<br>R81<br>R81<br>R82<br>F<br>F<br>R81<br>R81<br>R81<br>R81                                                                                                                                                                                           | R52                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>H<br>-24,343<br>-27,8,1<br>-27,8,1<br>-3,661<br>-87,207<br>H<br>H<br>-852<br>-12,556<br>H<br>H<br>-22,556<br>H<br>-22,556<br>-11,559<br>-11,559<br>-11,559<br>-25,556<br>-25,557<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,857<br>-25,                                                                                                                                                                                                                                               | н     | Q<br>Q           | K<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 | v   | F<br>R82<br>R82           | F<br>F<br>LB1<br>LS2<br>F<br>LB1<br>LS2<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS                                                                                           | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>-40.894<br>-40.894<br>-295.759<br>-110.233<br>-255.759<br>-110.235<br>-12.77<br>-104.866<br>-12.77<br>-104.866<br>-12.77<br>-104.866<br>-30.5131<br>-11.9404<br>-44.063<br>-30.5131<br>-11.9404<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-11.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.238<br>-1.2                                                                      | н | Q      | к<br>СS<br>2<br>2<br>51<br>51<br>- CH2-<br>К<br>8<br>51<br>52<br>8<br>52<br>8<br>52<br>8<br>52<br>8<br>53<br>8<br>54<br>7<br>642-<br>8<br>54<br>7<br>642-<br>8<br>54<br>7<br>642-<br>8<br>54<br>7<br>642-<br>8<br>54<br>7<br>65<br>7<br>65<br>7<br>65<br>7<br>65<br>7<br>65<br>7<br>65<br>7<br>65<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>CS<br>L<br>L<br>RS1        | v                     | F<br>                                               | F<br>RB1<br>RB1<br>RB1<br>RB2<br>F<br>RB1<br>CS<br>RB1<br>RS1                                                                                                                                                                                          | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>-24,343<br>86,177<br>-278,18<br>-3656<br>-87,207<br>-87,207<br>-851<br>-852<br>-852<br>-852<br>-12,516<br>-17,552<br>-12,516<br>-17,552<br>-12,516<br>-17,552<br>-12,516<br>-17,552<br>-12,516<br>-17,552<br>-12,516<br>-17,552<br>-12,516<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,55                                                                                                                                                                                                                                                     | н     | Q<br>Q           | K<br>U22<br>-CH2-<br>CH2-<br>CH2-<br>CH2-<br>K<br>RB1<br>RS2<br>CS<br>RS1<br>-CH2-<br>K<br>RD1<br>RD1<br>RD1<br>RD1<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | v   | F<br>R82<br>R82           | F<br>F<br>LB1<br>LB2<br>LS2<br>F<br>LB1<br>LS2<br>CS                                                                                                                  | Lys28                                 |          | Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Final Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs Total Energy Van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>4-0.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-104.866<br>H<br>H<br>-44.063<br>85.885<br>-303.131<br>-1113.404<br>-9.953<br>-112.238<br>H<br>n<br>R51<br>-31.653<br>81.432<br>-281.939                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н | Q.     | к<br>СS<br>2<br>2<br>151<br>- СH2-<br>К<br>151<br>LS2<br>К<br>8<br>51<br>LS2<br>К<br>8<br>51<br>К<br>8<br>51<br>- СH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>CS<br>L<br>KS1             | v                     | F<br>F<br>F                                         | F<br>RB1<br>RB1<br>RB1<br>RS2<br>F<br>RB1<br>RB1<br>RB1<br>RB1                                                                                                                                                                                         | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostanic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H<br>H<br>-24,343<br>86,177<br>-278,1<br>-93,681<br>-87,207<br>H<br>H<br>R52<br>-87,207<br>H<br>R52<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,400<br>-312,400<br>-312,400<br>-312,400<br>-312,400<br>-312,400<br>-312,400<br>-312,400<br>-3    | н     | Q<br>Q           | K<br>U2<br>(52<br>(52<br>(52<br>(52<br>(5)<br>(52)<br>(52)<br>(52)<br>(53)<br>(53)<br>(53)<br>(53)<br>(53)<br>(53)<br>(53)<br>(53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | v   | F<br>RB2<br>RB2           | F<br>F<br>L81<br>L52<br>F<br>L81<br>L52<br>CS                                                                                                                         | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Final Orientation<br>Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orient | H<br>-40.894<br>83.068<br>-255.759<br>-110.235<br>-1277<br>-108.866<br>-1277<br>-108.866<br>-1277<br>-108.866<br>-1277<br>-108.866<br>-1277<br>-112.238<br>-303.131<br>-113.040<br>-9.53<br>-112.238<br>-9.53<br>-112.238<br>-9.53<br>-112.238<br>-112.238<br>-112.238<br>-238.939<br>-100.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н | Q.     | к<br>СS<br>2<br>2<br>51<br>-CH2-<br>К<br>181<br>151<br>152<br>152<br>К<br>8<br>1<br>851<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L<br>CS<br>L<br>RS1             | v                     | F                                                   | F<br>R81<br>R81<br>R82<br>F<br>F<br>R81<br>CS<br>R81<br>R51<br>F<br>L81<br>R81                                                                                                                                                                         | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>H<br>-24343<br>86.177<br>-278.18<br>-93.684<br>-9.661<br>-97.207<br>-93.684<br>-9.661<br>-97.207<br>-93.684<br>-9.661<br>-97.207<br>-852<br>-852<br>-852<br>-852<br>-11.584<br>-11.684<br>-83.028<br>-269.846<br>-6.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н     | Q<br>Q           | K<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>K<br>RB1<br>RB1<br>CS<br>K<br>K<br>RB1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 | v   | F<br>Rb2<br>Rb2<br>F      | F<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                      | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>-40.894<br>81.068<br>-255.799<br>-255.799<br>-101.865<br>-111.023<br>-112.23<br>-12.27<br>-104.866<br>-111.024<br>-111.024<br>-111.024<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-111.024<br>-0.953<br>-0.953<br>-111.024<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.953<br>-0.955<br>-0.955<br>-0.955<br>-0.955<br>-0.955<br>-0 | н | Q.     | K<br>CS<br>2<br>LS1<br>-CH2-<br>K<br>LB1<br>LS1<br>LS2<br>LS2<br>K<br>K<br>RNH<br>RNH<br>RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L<br>CS<br>L<br>RS1             | v                     | F                                                   | F<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>LB1<br>LB1<br>LB1                                                                                                                                                                                | RS2                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>H<br>-24,343<br>86,177<br>-278,1<br>-3,661<br>-87,207<br>H<br>H<br>-82,207<br>H<br>H<br>-11,582<br>-12,516<br>H<br>-11,584<br>-2,59,846<br>-81,025<br>-6,633<br>-6,102<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-6,259,846<br>-81,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,025<br>-1,                                                                                                                                                                                                                   | н     | a<br>a           | K<br>U2<br>U52<br>CH2<br>CH2<br>K<br>R81<br>R81<br>R81<br>CS<br>K<br>R81<br>U33<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | v   | F R02<br>R02<br>F         | F<br>F<br>L01<br>L01<br>L01<br>L01<br>L01<br>CS                                                                                                                       | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>-40.894<br>83.068<br>-255.790<br>-110.235<br>-1277<br>-108.866<br>H<br>H<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>-9.53<br>-112.238<br>H<br>H<br>n<br>R51<br>-31.653<br>81.432<br>-31.653<br>81.432<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555<br>-31.555                                                                                   | н |        | к<br>СS<br>2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS2<br>LS2<br>К<br>К<br>К<br>К<br>NIN<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>CS<br>L<br>RS1             | v                     | F<br>F<br>F<br>F<br>F                               | F<br>R81<br>R81<br>R82<br>F<br>F<br>R81<br>R51<br>E<br>8<br>R81<br>R81                                                                                                                                                                                 | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>H<br>-2,2,3,40<br>86,177<br>-2,78,1<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,1                                                                                                                                                                                               | н     | ٩                | K<br>LU2<br>LS2<br>-CH2-<br>CH2-<br>CH2-<br>K<br>RB1<br>RB1<br>CS<br>K<br>K<br>RB1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | v   | F<br>RB2<br>RB2           | F<br>F<br>L81<br>CS<br>L83<br>L52<br>F<br>L91<br>L91<br>CS                                                                                                            | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientatio  | H<br>-40.894<br>13.060<br>-295.759<br>-295.759<br>-295.759<br>-102.35<br>-12.277<br>-101.866<br>H<br>n<br>-44.063<br>85.885<br>-303.131<br>9.553<br>-112.238<br>H<br>H<br>-11.304<br>-551<br>-12.238<br>R51<br>-31.653<br>R51.422<br>-281.939<br>-10.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н | ٩      | к<br>СS<br>2<br>1<br>51<br>2<br>1<br>51<br>2<br>51<br>2<br>51<br>2<br>51<br>2<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L<br>CS<br>L<br>RS1             | v                     | F<br>F<br>F<br>F<br>F                               | F<br>RB1<br>RB1<br>RB1<br>RS2<br>F<br>RB1<br>RS1                                                                                                                                                                                                       | R52                 | RS1<br>RS2 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientatio  | H<br>-24,343<br>86,177<br>-278.1<br>-3.661<br>-87.207<br>-85.2<br>-85.2<br>-85.2<br>-77.828<br>-42.208<br>-11.552<br>-12.536<br>H<br>-15.52<br>-22.536<br>-42.209<br>-12.536<br>-17.752<br>-17.552<br>-42.536<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209<br>-42.209                                                                                                                                                                                                                                                     | н     | Q<br>Q<br>Q      | К<br>U2<br>U52<br>U52<br>U52<br>U52<br>U52<br>U52<br>U52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | v   | F R82<br>R82<br>F F       | F<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>F<br>F                                                                                                             | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>-40.834<br>83.068<br>-255.759<br>-101.025<br>-110.235<br>-12.27<br>-101.866<br>H<br>H<br>H<br>n<br>R51<br>-303.131<br>-113.404<br>-9.53<br>-303.131<br>-113.404<br>-9.53<br>-112.238<br>H<br>R51<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553<br>-31.553                                                                                  | н |        | К<br>СS<br>2<br>2<br>1<br>51<br>51<br>51<br>51<br>51<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L<br>CS<br>L<br>L               | v                     | F<br>F                                              | F<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1                                                                                                                                                                                              | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>AEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н     | Q<br>Q           | K<br>U22<br>-OH2-<br>-OH2-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | v   | F R82<br>R82              | F<br>F<br>LB1<br>LB2<br>L52<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                | Lys28<br>152                          |          | Initial Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Initial Orient                                                                                                                                                                                                                                                                                                                                                       | H<br>-40.894<br>83.068<br>-295.759<br>-110.235<br>-12.77<br>-108.866<br>-12.77<br>-108.866<br>H<br>H<br>H<br>N<br>R518<br>-303.131<br>-113.404<br>R518<br>-31.653<br>81.432<br>-381.932<br>-31.653<br>81.432<br>-31.653<br>81.432<br>-31.653<br>81.432<br>-31.653<br>81.432<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.054<br>-31.653<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31.054<br>-31                                                                                  | н | Q<br>Q | K<br>CS<br>LS<br>2<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L<br>CS<br>L<br>RS1             | v                     | F<br>F                                              | F<br>RB1<br>RB1<br>RB1<br>RS2<br>F<br>RB1<br>CS<br>RB1<br>RS1<br>F<br>LB1<br>RB1                                                                                                                                                                       | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>H<br>-24,343<br>86,177<br>-278,18<br>-3661<br>-93,846<br>-93,846<br>-93,846<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-85,207<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515<br>-12,515                                                                                                                                                                                                                                                         | н     | Q<br>Q           | K<br>U2<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>K<br>K<br>R0<br>K<br>R0<br>K<br>R0<br>K<br>K<br>C<br>S<br>K<br>K<br>K<br>L<br>S<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0<br>L0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L<br>L                          | v   | F<br>RB2<br>RB2<br>F      | F<br>F<br>Lun<br>CS<br>Lun<br>Lun<br>Lun<br>Lun<br>CS<br>F<br>F<br>Run<br>Run                                                                                         | Lys28<br>L52                          |          | Initial Orientation Final Orientation Final Orientation Final Orientation Total Energy For Maais electrostatic AEs Final Orientation AEs Initial Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                       | H<br>-40.884<br>83.069<br>-255.790<br>-101.235<br>-257.790<br>-110.235<br>-257.790<br>-110.235<br>-257.790<br>-110.235<br>-110.235<br>-303.131<br>-113.400<br>-953.3<br>-953.3<br>-112.238<br>H<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-940.6<br>-953.5<br>-953.5<br>-953.5<br>-940.6<br>-953.5<br>-953.5<br>-953.5<br>-940.6<br>-953.5<br>-953.5<br>-953.5<br>-953.5<br>-940.6<br>-953.5<br>-953.5<br>-940.6<br>-953.5<br>-940.6<br>-953.5<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6<br>-940.6                                                                                                                                                                                                                                                                                                                                                                     | н | Q<br>Q | к<br>СS<br>2<br>1<br>151<br>- Сн2-<br>К<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>103<br>1<br>10<br>1<br>10<br>1<br>10<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>10<br>1<br>1<br>10<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L<br>CS<br>L<br>L<br>RS1        | v                     | F<br>F<br>F<br>F<br>F<br>F                          | F<br>RB1<br>RB1<br>RB2<br>F<br>F<br>RB1<br>RB1<br>RB1<br>F<br>LB1<br>LB1<br>RB1<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                             | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>H<br>H<br>-24,343<br>86,177<br>-278,1<br>-93,681<br>-87,207<br>H<br>H<br>R52<br>-87,207<br>H<br>H<br>R52<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,409<br>-312,400<br>-312,40 | H     | Q<br>Q<br>Q<br>Q | K<br>UQ2<br>(52<br>-012-<br>012-<br>-<br>012-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 | v   | F R82<br>R82<br>F F       | F<br>F<br>L01<br>L05<br>L05<br>L05<br>L05<br>L05<br>L05<br>L05<br>L05<br>L05<br>L05                                                                                   | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.894<br>83.668<br>-255.759<br>-110.235<br>-1277<br>-108.866<br>H<br>H<br>-44.063<br>85.885<br>-303.131<br>-113.040<br>-355.85<br>-303.131<br>-113.040<br>-31.653<br>81.432<br>-31.653<br>81.432<br>-31.653<br>81.432<br>-31.653<br>81.432<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.653<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-31.654<br>-                                                                                        | н | Q<br>Q | K<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L<br>CS<br>L<br>RS1             | v<br>v<br>v           | F<br>F<br>F<br>F<br>F<br>F                          | F<br>RB1<br>RB1<br>RB1<br>RS2<br>F<br>F<br>RB1<br>CS<br>RB1<br>CS<br>RB1<br>RS1<br>F<br>LB1<br>LB1<br>RB1<br>RB1                                                                                                                                       | R52                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H     | Q<br>Q<br>Q      | К<br>ЦВ2<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>L<br>L<br>L                | v   | F<br>RB2<br>RB2<br>F      | F<br>F<br>LB1<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2                                                                                   | Lys28                                 |          | Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientatio                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.884<br>83.068<br>-255.792<br>-255.792<br>-255.792<br>-255.792<br>-255.792<br>-255.792<br>-255.792<br>-210.235<br>-110.235<br>-110.235<br>-110.245<br>-303.131<br>-113.404<br>-9.933<br>-303.131<br>-113.404<br>-9.933<br>-112.238<br>H<br>-9.933<br>-112.238<br>H<br>-9.933<br>-112.238<br>-9.93<br>-112.238<br>-9.93<br>-112.238<br>-9.93<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.238<br>-112.23                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н |        | K<br>CS<br>2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L<br>CS<br>L<br>L<br>RS1        | v                     | F<br>F<br>F<br>F<br>F<br>F                          | F<br>R81<br>R81<br>R82<br>F<br>F<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>B31<br>B31<br>B31<br>B31<br>B31<br>B31<br>B31<br>B31<br>B31<br>B3                                                                                                        | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>H<br>-24,343<br>86,177<br>-278.1<br>-93,684<br>-3,661<br>-87,207<br>H<br>H<br>-851<br>-852<br>-93,266<br>-81,207<br>-17,552<br>-21,516<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552<br>-17,552                                                                                                                                                                                                                                                     | н     | а<br>а<br>а      | K<br>U2<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>K<br>R51<br>C5<br>C5<br>K<br>R51<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L<br>L<br>51                    | v   | F<br>RB2<br>RB2<br>F      | F<br>F<br>L031<br>L52<br>F<br>L031<br>L52<br>F<br>L031<br>L52<br>F<br>R031<br>R031<br>R031<br>R031<br>R031<br>R031<br>R031<br>R031                                    | Lys28<br>L52                          |          | Initial Orientation<br>Final Orientation<br>Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.894<br>83.068<br>-255.799<br>-110.325<br>-12.77<br>-10.886<br>H<br>-44.063<br>55.885<br>-303.131<br>-113.304<br>-9.53<br>-305.131<br>-113.248<br>-9.53<br>-305.131<br>-113.248<br>-9.53<br>-100.994<br>H<br>-1.4.065<br>-3.019<br>-0.0094<br>H<br>RS1<br>-3.019<br>-0.0094<br>H<br>RS2<br>-3.009<br>-0.0094<br>H<br>RS2<br>-3.009<br>-0.0094<br>H<br>RS2<br>-3.009<br>-0.0094<br>H<br>RS2<br>-3.009<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094<br>-0.0094                                                                      | н | Q.     | K<br>CS<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS2<br>LS2<br>K<br>K<br>RS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RS1<br>RS1<br>RS2<br>-CH2-<br>K<br>S52<br>CCH2-<br>K<br>S52<br>CC-<br>CH2-<br>K<br>S52<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L<br>CS<br>L<br>L<br>RS1        | v<br>v                | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F           | F<br>RB1<br>RB1<br>RB1<br>RB2<br>F<br>F<br>RB1<br>CS<br>F<br>LB1<br>LB1<br>LB1<br>LS2<br>LS2<br>LS1<br>LS2<br>LS1<br>LS2<br>LS1<br>LS2<br>LS1<br>LS2<br>LS1<br>LS2<br>LS1<br>LS2<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3 | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>H<br>-2,23,243<br>86,177<br>-2,78,1<br>-2,78,1<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-9,168<br>-8,7207<br>-8,7207<br>-8,7207<br>-8,7207<br>-8,7207<br>-8,7207<br>-1,78,28<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,                                                                                                                                                                                                 | н     | Q<br>Q<br>Q      | K<br>LU2<br>LS2<br>-OH2-<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L<br>L<br>L<br>L                | v   | F R82<br>R82<br>F F       | F<br>F<br>LB1<br>LB1<br>LB2<br>CS<br>F<br>F<br>RD1<br>RD1<br>RD1<br>RD1<br>RD1<br>RD1<br>RD1<br>RD1<br>RD1<br>RD1                                                     | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>-40.894<br>81.068<br>-295.799<br>-295.799<br>-101.235<br>-12.277<br>-101.866<br>H<br>n<br>-44.063<br>85.889<br>-303.131<br>-11.238<br>85.889<br>-303.131<br>-11.238<br>85.889<br>-303.131<br>-11.238<br>85.893<br>-303.131<br>-11.238<br>81.432<br>-31.653<br>81.432<br>-31.653<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426<br>-31.426                                                                                           | н | Q<br>Q | к<br>СS<br>IS2<br>2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L<br>CS<br>L<br>L<br>RS1        | v                     | F<br>                                               | F<br>RB1<br>RB1<br>RB2<br>F<br>F<br>RB1<br>RB1<br>RB1<br>RB1<br>B1<br>LS2<br>LS1<br>LS1<br>LS2<br>LS1<br>LS1<br>LS2<br>LS1<br>LS1<br>LS2<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3                                         | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation | H<br>H<br>H<br>-24,343<br>86,177<br>-278.1<br>93,684<br>-87,287<br>-36,61<br>-87,287<br>-85,287<br>-85,287<br>-85,287<br>-12,536<br>H<br>-62,208<br>-78,286<br>-312,409<br>-32,249<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,245<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-42,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-44,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,445<br>-45,455<br>-45,455<br>-45                                                                                                                                                                                                                                                   | н     | a<br>a<br>a      | K<br>U2<br>U52<br>U52<br>U52<br>V57<br>V72<br>K<br>K<br>R81<br>R81<br>R81<br>R81<br>R81<br>K<br>C<br>S<br>C<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L<br>L<br>L<br>L<br>U<br>S<br>3 | v   | F R82<br>R82<br>F F       | F<br>F<br>UB1<br>CS<br>UB1<br>CS<br>F<br>F<br>RB1<br>CS<br>UB1                                                                                                        | Lys28<br>L52                          |          | Initial Orientation Final Orientation Final Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                       | H<br>-40.834<br>83.068<br>-255.759<br>-255.759<br>-101.850<br>-110.235<br>-275.739<br>-110.235<br>-303.131<br>-44.063<br>85.885<br>-303.131<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>-9.53<br>-9.53<br>-112.238<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.53<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.54<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55<br>-9.55                                                                                                                                                                                                                                                                                                   | н |        | к<br>СS<br>2<br>2<br>151<br>151<br>151<br>151<br>151<br>151<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L<br>CS<br>L<br>L<br>RS1        | v                     | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F           | F<br>RB1<br>RB1<br>RB2<br>F<br>F<br>RB1<br>RB1<br>RB1<br>RB1<br>F<br>LB1<br>LB1<br>LS2<br>LB1<br>LS2<br>LB1<br>CS                                                                                                                                      | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation | H<br>H<br>-2,43,430<br>86,177<br>-2,781<br>-9,1684<br>-9,664<br>-9,664<br>-9,782<br>-9,1684<br>-9,664<br>-9,664<br>-9,664<br>-9,782<br>-9,1684<br>-9,664<br>-9,782<br>-9,1684<br>-9,664<br>-9,664<br>-9,782<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-1,752<br>-                                                                                                                                                                                               | н     | а<br>а<br>а      | K<br>U22<br>-OH2-<br>-OH2-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L<br>L<br>L<br>I<br>S<br>I      | v   | F R82<br>R82              | F<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                          | Lys28<br>152                          |          | Initial Orientation Final Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                       | H<br>-40.894<br>13.060<br>-295.759<br>-225.759<br>-12.77<br>-10.4866<br>H<br>-10.235<br>-12.77<br>-10.4866<br>-30.110<br>-25.759<br>-30.110<br>-35.857<br>-30.1113<br>-35.857<br>-30.1113<br>-35.857<br>-30.1113<br>-35.857<br>-35.102<br>-35.102<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.405<br>-31.40                                                                                              | н |        | к<br>СS<br>2<br>2<br>4<br>4<br>4<br>7<br>4<br>7<br>4<br>7<br>4<br>7<br>4<br>7<br>4<br>7<br>4<br>7<br>4<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L<br>CS<br>L<br>L<br>RS1<br>RS1 | v<br>v<br>v           | F<br>                                               | F<br>RB1<br>RB1<br>RB2<br>F<br>RB1<br>RB1<br>RB1<br>RB1<br>F<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientatio  | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н     | a<br>a<br>a      | K<br>U2<br>U5<br>U5<br>U5<br>U5<br>U5<br>U5<br>K<br>K<br>R0<br>S<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>C<br>S<br>S<br>S<br>C<br>S<br>S<br>S<br>C<br>S<br>S<br>S<br>S<br>C<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L<br>L<br>L<br>L<br>151         | v   | F R82<br>R82<br>F F<br>F  | F<br>F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>F<br>F<br>RB1<br>CS<br>LB1                                                                                         | Lys28<br>L52                          |          | Initial Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Final Orientation Final Orientation Final Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Final Orientation Final Orientation Final Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>-40.884<br>83.068<br>-255.793<br>-101.235<br>-257.793<br>-110.235<br>-27.704.866<br>H<br>-44.063<br>85.885<br>-303.131<br>-113.404<br>-305.853<br>-303.131<br>-113.404<br>-305.853<br>-303.131<br>-113.404<br>-305.853<br>-303.131<br>-113.404<br>-305.853<br>-303.131<br>-113.404<br>-305.853<br>-303.131<br>-31.653<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-31.452<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                          | н |        | K<br>CS<br>2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS2<br>LS2<br>K<br>K<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>CS<br>L<br>RS1             | v                     | F<br>                                               | F<br>RB1<br>RB1<br>RB2<br>F<br>F<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>F<br>LB1<br>LB1<br>LB1<br>C<br>C<br>C<br>C<br>C                                                                                                                                 | RS2                 | R51<br>R52 |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>H<br>-24,343<br>86,177<br>-278.1<br>-3,661<br>-87,207<br>-3,661<br>-87,207<br>-42,278.1<br>-3,661<br>-87,207<br>-11,584<br>-12,526<br>-12,249<br>-11,584<br>-6,63<br>-6,157<br>-2,294,424<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,57411<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741<br>-11,5741                                                                                                                                                                                                                                                                                                  | н     | а<br>а<br>а      | K<br>U2<br>U2<br>CH2<br>CH2<br>K<br>R01<br>R01<br>R01<br>R01<br>R01<br>R01<br>R01<br>R01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | v   | F<br>RB2<br>RB2           | F<br>F<br>LB1<br>LS2<br>LS2<br>F<br>F<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1                                                           | Lys28                                 |          | Initial Orientation<br>Final Orientation<br>Final Contentiation<br>I call Energy<br>van der Vaals<br>electrostatic<br>AEs<br>I initial Orientation<br>Final Orient                                                                                                                               | H<br>-40.894<br>83.068<br>-255.759<br>-10.235<br>-255.759<br>-10.285<br>-255.759<br>-10.285<br>-255.759<br>-10.285<br>-255.759<br>-10.285<br>-255.759<br>-10.285<br>-255.759<br>-30.311<br>-11.340<br>-31.653<br>81.843<br>-39.533<br>-11.281.99<br>-10.09.944<br>-1.440.65<br>-30.944<br>-31.653<br>81.843<br>-32.81.99<br>-10.99.944<br>-1.440.65<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.99.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-34.94<br>-3                                                                                                                                                                                                                                                                                                                                                                                                                                        | н |        | K<br>CS<br>US<br>2<br>2<br>CH2-<br>CH2-<br>CH2-<br>K<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1<br>UB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L<br>CS<br>L<br>L<br>RS1        | v<br>v                | F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F<br>F | F<br>RB1<br>RB1<br>RB1<br>RB2<br>F<br>RB1<br>RB1<br>RB1<br>F<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1<br>B1                                                                                                             | RS2                 | R51<br>R52 |



## Gas phase results of solapsone and the 1AML conformer of $A\beta$

| nial Orientatio         nial of and between the second secon                                 |                     |          |     | 0 | × V   | Tur 10 | Lou17     | 10.21 |       |                    |          |      | 0                                      | V  | Tur10      | 41-20 | 10.21 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|-----|---|-------|--------|-----------|-------|-------|--------------------|----------|------|----------------------------------------|----|------------|-------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial Origntation | 181      | 6   | ų | ĸ     | 19110  | Leuir     | nest  |       | Initial Origotatio |          | 1.01 | ų                                      | N. | 19110      | Masu  | nest  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final Orientation   | 151      | 6   |   |       | PP1    | <i>CS</i> | 151   |       | Final Orientation  | PP1      | 151  |                                        |    | <b>C</b> S | DC1   | DC1   |
| Image         Image <t< td=""><td>rinal orientation</td><td>IB1</td><td>RB1</td><td></td><td></td><td>NDI</td><td></td><td>LB1</td><td></td><td>rinal Orientation</td><td>CS</td><td>LB1</td><td></td><td></td><td>152</td><td>N31</td><td>1.51</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rinal orientation   | IB1      | RB1 |   |       | NDI    |           | LB1   |       | rinal Orientation  | CS       | LB1  |                                        |    | 152        | N31   | 1.51  |
| No.         No. <td></td> <td>LDI</td> <td>DC1</td> <td></td> <td></td> <td></td> <td>-</td> <td>CS</td> <td></td> <td></td> <td>PS2</td> <td>LDI</td> <td></td> <td></td> <td>101</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | LDI      | DC1 |   |       |        | -         | CS    |       |                    | PS2      | LDI  |                                        |    | 101        |       |       |
| Index         Index <th< td=""><td></td><td></td><td>131</td><td></td><td></td><td></td><td>_</td><td>0</td><td></td><td></td><td>132</td><td></td><td></td><td></td><td>LDI</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |          | 131 |   |       |        | _         | 0     |       |                    | 132      |      |                                        |    | LDI        |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy        | 141.601  |     |   |       |        |           |       |       | Total Energy       | 128.155  |      |                                        |    |            |       |       |
| 12223       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22       1.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | van der Waals       | 113.753  |     |   |       |        |           |       |       | van der Waals      | 108.913  |      |                                        |    |            |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | electrostatic       | -222.828 |     |   |       |        |           |       |       | electrostatic      | -232.366 |      |                                        |    |            |       |       |
| Max         -142.88         -142.88         -142.88         -142.88         -142.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -126.88         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AE-                 | 105 101  |     |   |       |        |           |       |       | 415                | 100.00   |      |                                        |    |            |       |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΔES                 | -125.184 |     |   |       |        | _         |       |       | ΔES                | -138.63  |      |                                        |    |            |       |       |
| 1-13 101         1-13 101         1-13 101         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01         1-14 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     | -18.11   |     |   |       |        |           |       |       |                    | -22.95   |      |                                        |    |            |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | -113.101 |     |   |       |        |           |       |       |                    | -122.639 |      |                                        |    |            |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | н        | н   | 0 | к     | Tyr10  | Leu17     | lle31 | Met35 |                    | н        | н    | 0                                      | к  | Tyr10      | Leu17 | lle31 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial Orientation | CS       | RB1 | _ |       | .,     |           |       |       | Initial Orientatio | RS1      | CS   | _                                      |    |            |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final Orientation   | IB1      | RS1 |   | 152   | 151    | RB1       | CS    | R52   | Final Orientation  | RS1      | LB1  |                                        |    | RS2        | RS1   | RS1   |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | LS2      |     |   | -CH2- |        | RS1       | RB1   |       |                    | RS2      | LB1  |                                        |    | CS         |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | 151      |     |   |       |        |           | RS2   |       |                    |          | 151  |                                        |    |            |       |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | RB1      |     |   |       |        |           |       |       |                    |          | INH  |                                        |    |            |       |       |
| 94.38<br>2004 of<br>an der Wash<br>electrostatic       94.38<br>2005 20       94.38<br>2005 20 <td></td> <td>nor</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>RB1</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                  |                     | nor      |     |   |       |        |           |       |       |                    |          | RB1  |                                        |    |            |       |       |
| Interface         94.38         Image: Marrier Marrie                                         |                     |          |     |   |       |        |           |       |       |                    |          |      |                                        |    |            |       |       |
| and er Vasati       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47       19.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Energy        | 94.318   |     |   |       |        |           |       |       | Total Energy       | 113.581  |      |                                        |    |            |       |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | van der Waals       | 109.47   |     |   |       |        |           |       |       | van der Waals      | 113.63   |      |                                        |    |            |       |       |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic       | -265.249 |     |   |       |        |           |       |       | electrostatic      | -249.063 |      |                                        |    |            |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ΔEs                 | -172.467 |     |   |       |        |           |       |       | ΔEs                | -153.204 |      |                                        |    |            |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | -22 393  |     |   |       |        |           |       |       |                    | -18 233  |      |                                        |    |            |       |       |
| NH         H         H         Q         K         Tyr10         Leu 7         Ile31           Initial Orientario<br>Final Orientario<br>Intel a Orientario<br>Insta Orientario<br>R51         R51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | -155.522 |     |   |       |        |           |       |       |                    | -139.336 |      |                                        |    |            |       |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |          |     |   |       |        |           |       |       |                    |          |      |                                        |    |            |       |       |
| nitial Orientatio       CS       RS1       CI       RS1       RS1 <td></td> <td>н</td> <td>н</td> <td>0</td> <td>ĸ</td> <td>Tyr10</td> <td>10117</td> <td>11031</td> <td></td> <td></td> <td>н</td> <td>н</td> <td>0</td> <td>ĸ</td> <td>Tyr10</td> <td>10117</td> <td>lle31</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | н        | н   | 0 | ĸ     | Tyr10  | 10117     | 11031 |       |                    | н        | н    | 0                                      | ĸ  | Tyr10      | 10117 | lle31 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial Orientation | CS.      | RS1 | 4 | N     | 19120  | LC U I /  | nesi  |       | Initial Orientatio | CS.      | 151  | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |    | 19120      | LCUIT | nesi  |
| INH     R82     R2     R2     R2     R3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Final Orientation   | 151      | RS1 |   |       | RS1    | RS1       | RS2   |       | Final Orientation  | LB1      | 151  |                                        |    | RS2        | 151   | LB1   |
| IB1<br>RS1         IS1         IS1           fotal Energy<br>and der Wasis<br>electrostatic         70tal Energy<br>225 763         131.421<br>143.996         131.421<br>2-25 763           NEs         -175.431<br>- 163.48         -135.364<br>- 177.467         -177.467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | LNH      | RB2 |   |       |        |           |       |       |                    | CS       |      |                                        |    | LS1        |       |       |
| θS1         88.354         Total Energy         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         131.421         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | LB1      |     |   |       |        |           |       |       |                    | 151      |      |                                        |    |            |       |       |
| Total Energy     88.354     Total Energy     131.421       and er Waals     115.515     114.396       electrostatic     -225.763       AEs     -175.431       -163.48     -127.467       -163.492     -103.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | RS1      |     |   |       |        |           |       |       |                    |          |      |                                        |    |            |       |       |
| ander Waals     115.515     114.396     114.396     114.396       electrostatic     -273.129     electrostatic     -225.763     electrostatic       AEs     -178.431     -163.48     -171.467     electrostatic       -163.402     -163.402     -116.306     -116.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy        | 88.354   |     |   |       |        | _         |       |       | Total Energy       | 131.421  |      |                                        |    |            |       |       |
| 273.29     273.29     275.30     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763     225.763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | van der Waals       | 115.515  |     |   |       |        |           |       |       | van der Waals      | 114.396  |      |                                        |    |            |       |       |
| ΔEs         -178.431         ΔEs         -135.364           -163.48         -12.484         -17.467           -163.402         -110.096         -110.096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | electrostatic       | -273.129 |     |   |       |        |           |       |       | electrostatic      | -225.763 |      |                                        |    |            |       |       |
| -16.348 - 17.467 - 16.340 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 - 116.036 | ΔEs                 | -178.431 |     |   |       |        |           |       |       | ΔEs                | -135.364 |      |                                        |    |            |       |       |
| -163.402 -116.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | -16.348  |     |   |       |        |           |       |       |                    | -17.467  |      |                                        |    |            |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | -163.402 |     |   |       |        |           |       |       |                    | -116.036 |      |                                        |    |            |       |       |

| Initial Orientation                      | H<br>LS1            | H<br>CS    | Q | к          | Ser8       | Tyr10      |          |            | Initial Orientatio                      | H<br>RS2            | H<br>CS    | Q | к          | Tyr10      | lle31     |                   |       |
|------------------------------------------|---------------------|------------|---|------------|------------|------------|----------|------------|-----------------------------------------|---------------------|------------|---|------------|------------|-----------|-------------------|-------|
| Final Orientation                        | LS1                 | RB1<br>RNH |   |            | RS1        | LS1        |          |            | Final Orientation                       | RS2                 | LB1<br>LS2 |   |            | LS2<br>RS2 | CS<br>RB1 |                   |       |
|                                          |                     | RS1        |   |            |            |            |          |            |                                         |                     | LS1        |   |            | RB2        | RS1       |                   |       |
| Total Energy                             | 153.364             |            |   |            |            |            |          |            | Total Energy                            | 91.679              |            |   |            |            |           |                   |       |
| electrostatic                            | -221.332            |            |   |            |            |            |          |            | electrostatic                           | -260.357            |            |   |            |            |           |                   |       |
| ΔEs                                      | -113.421            |            |   |            |            |            |          |            | ΔEs                                     | -175.106            |            |   |            |            |           |                   |       |
|                                          | -7.293              |            |   |            |            |            |          |            |                                         | -28.987             |            |   |            |            |           |                   |       |
|                                          | -111.005            |            |   |            |            |            |          |            |                                         | 130.03              |            |   |            |            |           |                   |       |
|                                          | н                   | н          | Q | к          | Tyr10      | Ala30      | lle31    | Leu34      |                                         | н                   | н          | Q | к          | Tyr10      | Val12     | Leu17             | lle31 |
| Initial Orientation<br>Final Orientation | CS<br>LB1           | RS2<br>RS2 |   |            | CS         | LS2        | LS2      | LB2        | Initial Orientatio<br>Final Orientation | CS<br>RB1           | LS2<br>LS2 |   | RS2        | LB2        | RS2       | LS2               | LS1   |
|                                          | CS                  |            |   |            | RB1        |            |          | LS2        |                                         | RS2                 |            |   | -CH2-      | LS2        | C=0       |                   | LB1   |
|                                          | RB1                 |            |   |            | K51        |            |          |            |                                         | LS2<br>LB1          |            |   |            |            | RBZ       |                   |       |
| Total Energy                             | 128.272             |            |   |            |            |            |          |            | Total Energy                            | 85.313              |            |   |            |            |           |                   |       |
| van der Waals<br>electrostatic           | 107.93              |            |   |            |            |            |          |            | van der Waals<br>electrostatic          | 108.596             |            |   |            |            |           |                   |       |
| 412-                                     | 420 542             |            |   |            |            |            |          |            | 412-                                    | 404 472             |            |   |            |            |           |                   |       |
| ALS                                      | -138.513            |            |   |            |            |            |          |            | ALS                                     | -181.472            |            |   |            |            |           |                   |       |
|                                          | -120.073            |            |   |            |            |            |          |            |                                         | -158.704            |            |   |            |            |           |                   |       |
|                                          |                     |            | 0 | ~          | T-=10      | Lev17      | 144125   |            |                                         |                     |            | 0 | ~          | Tur10      | Lou17     | 10024             |       |
| Initial Orientation                      | LS2                 | cs         | ų |            | Tyrio      | Leuir      | IVIE 133 |            | Initial Orientatio                      | RB1                 | LB1        | ų | ~          | 19110      | Leuiz     | Leu34             |       |
| Final Orientation                        | LS2                 | LS2<br>LB1 |   |            | LS2<br>LS1 | LS2        | RS2      |            | Final Orientation                       | LS1<br>RB1          | LS2<br>LB2 |   |            | LS2<br>LS1 | LS1       | RB2               |       |
|                                          |                     | CS         |   |            |            |            |          |            |                                         | RNH<br>PS1          | LS1        |   |            | LB1        |           |                   |       |
|                                          | 453.005             |            |   |            |            |            |          |            | Table                                   | 405 000             |            |   |            |            |           |                   |       |
| Total Energy<br>van der Waals            | 157.065<br>115.325  |            |   |            |            |            |          |            | van der Waals                           | 106.999 110.726     |            |   |            |            |           |                   |       |
| electrostatic                            | -205.955            |            |   |            |            |            |          |            | electrostatic                           | -255.044            |            |   |            |            |           |                   |       |
| ΔEs                                      | -109.72             |            |   |            |            |            |          |            | ΔEs                                     | -159.786            |            |   |            |            |           |                   |       |
|                                          | -16.538             |            |   |            |            |            |          |            |                                         | -21.137<br>-145.317 |            |   |            |            |           |                   |       |
|                                          |                     |            |   |            |            |            |          |            |                                         |                     |            |   |            |            |           |                   |       |
| Initial Orientation                      | H<br>LB1            | H<br>PB1   | Q | к          | Tyr10      | lle31      |          |            | Initial Orientatio                      | H<br>PS1            | H          | Q | к          | Tyr10      | Leu17     | lle31             |       |
| Final Orientation                        | LB1                 | RB1        |   |            | RB1        | CS         |          |            | Final Orientation                       | RS2                 | LB1        |   |            | RB1        | RS1       | RS1               |       |
|                                          | LB1<br>LS1          | RS1        |   |            | RNH<br>RS1 |            |          |            |                                         | RS1                 | LS1<br>2   |   |            | CS         |           |                   |       |
|                                          | LNH                 |            |   |            |            |            |          |            |                                         |                     | CS         |   |            |            |           |                   |       |
| Total Energy                             | 162.629             |            |   |            |            |            |          |            | Total Energy                            | 124.873             |            |   |            |            |           |                   |       |
| electrostatic                            | -204.363            |            |   |            |            |            |          |            | electrostatic                           | -240.452            |            |   |            |            |           |                   |       |
| ΔEs                                      | -104.156            |            |   |            |            |            |          |            | ΔEs                                     | -141.912            |            |   |            |            |           |                   |       |
|                                          | -15.667             |            |   |            |            |            |          |            |                                         | -12.408             |            |   |            |            |           |                   |       |
|                                          | -94.636             |            |   |            |            |            |          |            |                                         | -130.725            |            |   |            |            |           |                   |       |
|                                          | н                   | н          | Q | К          | Tyr10      | Val 12     |          |            |                                         | н                   | н          | Q | К          | Ser8       | Tyr10     | Leu17             | lle31 |
| Initial Orientation                      | LB1                 | RS1<br>RS1 |   |            | 001        | 151        |          |            | Initial Orientatio                      | LS1                 | RB1<br>RB1 |   |            | 882        | 152       | 101               | 151   |
| rinal Orientation                        | LS1                 | 131        |   |            | RS1        | 51         |          |            | Final Orientation                       | LNH                 | RB1        |   |            | NDZ        | 62        | LDI               | 61    |
|                                          | LS2                 |            |   |            | RNH<br>LB1 |            |          |            |                                         |                     | RNH<br>RS1 |   |            |            |           |                   |       |
| Total Enermy                             | 125 642             |            |   |            |            |            |          |            | Total Enermy                            | 122.62              |            |   |            |            |           |                   |       |
| van der Waals                            | 115.672             |            |   |            |            |            |          |            | van der Waals                           | 113.598             |            |   |            |            |           |                   |       |
| electrostatic                            | -243.755            |            |   |            |            |            |          |            | electrostatic                           | -230.653            |            |   |            |            |           |                   |       |
| ΔEs                                      | -141.143            |            |   |            |            |            |          |            | ΔEs                                     | -133.155            |            |   |            |            |           |                   |       |
|                                          | -134.028            |            |   |            |            |            |          |            |                                         | -120.926            |            |   |            |            |           |                   |       |
|                                          |                     |            |   |            |            |            |          |            |                                         |                     |            |   |            |            |           |                   |       |
| Initial Orientation                      | H<br>RB1            | H<br>LS1   | Q | К          | Tyr10      | Leu17      |          |            | Initial Orientatio                      | H<br>LB1            | H<br>RS2   | Q | К          | Tyr10      | Leu17     | lle31             |       |
| Final Orientation                        | RB1<br>RB1          | LS2        |   |            | RB1        | LS1        |          |            | Final Orientation                       | LB1                 | RS2<br>RB2 |   | LS2        | RB1<br>PS1 | RS2       | RB2               |       |
|                                          | RS1                 |            |   |            | LB1        |            |          |            |                                         | RB1                 |            |   |            | RS2        |           |                   |       |
|                                          | LS1                 |            |   |            |            |            |          |            |                                         | N32                 |            |   |            |            |           |                   |       |
| Total Energy                             | 92.271              |            |   |            |            |            |          |            | Total Energy                            | 112.594             |            |   |            |            |           |                   |       |
| van der Waals<br>electrostatic           | 108.973             |            |   |            |            |            |          |            | van der Waals                           | 106.729             |            |   |            |            |           |                   |       |
| electrostatic                            | -200.004            |            |   |            |            |            |          |            | electrostatic                           | -243.017            |            |   |            |            |           |                   |       |
| ΔEs                                      | -174.514<br>-22.89  |            |   |            |            |            |          |            | ΔEs                                     | -154.191<br>-25.134 |            |   |            |            |           |                   |       |
|                                          | -156.277            |            |   |            |            |            |          |            |                                         | -133.29             |            |   |            |            |           |                   |       |
|                                          |                     |            |   |            | 7.40       | 11.04      |          |            |                                         |                     |            |   |            | 7          | 1         | 14-140            | 41-24 |
| Initial Orientation                      | RS2                 | H<br>LB1   | Q | K          | Tyr10      | lle31      | Met35    |            | Initial Orientatio                      | H<br>LS2            | RB1        | Q | к          | Tyr10      | Leu17     | Val18             | Ala21 |
| Final Orientation                        | RS2                 | LS2        |   |            | RB2<br>RS2 | RB1<br>RS1 | CS       |            | Final Orientation                       | LB2<br>LS2          | RB1<br>LS2 |   |            | LS1        | LS2       | RS2<br>RB2        | RB2   |
|                                          |                     |            |   |            |            | -          |          |            |                                         |                     | RNH<br>RS2 |   |            |            |           |                   |       |
|                                          |                     |            |   |            |            |            |          |            |                                         |                     |            |   |            |            |           |                   |       |
| Total Energy<br>van der Waals            | 123.772<br>115.656  |            |   |            |            |            |          |            | Total Energy<br>van der Waals           | 97.578<br>112.972   |            |   |            |            |           |                   |       |
| electrostatic                            | -237.171            |            |   |            |            |            |          |            | electrostatic                           | -261.451            |            |   |            |            |           |                   |       |
| ΔEs                                      | -143.013            |            |   |            |            |            |          |            | ΔEs                                     | -169.207            |            |   |            |            |           |                   |       |
|                                          | -16.207<br>-127.444 |            |   |            |            |            |          |            |                                         | -18.891<br>-151.724 |            |   |            |            |           |                   |       |
|                                          |                     |            |   |            |            |            |          |            |                                         |                     |            |   |            |            |           |                   |       |
| Initial Originator                       | H<br>PP1            | H          | Q | к          | Tyr10      | Val12      | Leu17    | lle31      | Initial Origonation                     | H                   | H          | Q | к          | Tyr10      | Leu17     | Val18             | Ala21 |
| Final Orientation                        | RS2                 | LB2        |   | RS2        | LB2        | RS2        | LS2      | LS1        | Final Orientation                       | RB2                 | LB1        |   |            | RB1        | LB2       | LB2               | LB2   |
|                                          | 2<br>LS2            | LS2        |   | -CH2-      | LS2        | C=O<br>RB2 |          |            |                                         | RS2                 | LB1<br>LB2 |   |            | RNH<br>RS1 | RS2       |                   |       |
|                                          | RB1                 |            |   |            |            |            |          |            |                                         |                     | LNH<br>BB1 |   |            | RB2        |           |                   |       |
|                                          |                     |            |   |            |            |            |          |            |                                         |                     | RS2        |   |            |            |           |                   |       |
| Total Energy                             | 87.586              |            |   |            |            |            |          |            | Total Energy                            | 87.918              |            |   |            |            |           |                   |       |
| van der Waals<br>electrostatic           | 109.614<br>-271.806 |            |   |            |            |            |          |            | van der Waals<br>electrostatic          | 105.741<br>-267.353 |            |   |            |            |           |                   |       |
| AEa                                      | 170.407             |            |   |            |            |            |          |            | AEe                                     | 170.007             |            |   |            |            |           |                   |       |
| ALS                                      | -1/9.199 -22.249    |            |   |            |            |            |          |            | ΔE8                                     | -1/8.867<br>-26.122 |            |   |            |            |           |                   |       |
|                                          | -162.079            |            |   |            |            |            |          |            |                                         | -157.626            |            |   |            |            |           |                   |       |
|                                          | v                   | P          | 0 | ۲          | Tu=10      | 10.17      | Pho 20   | 11021      |                                         | P                   | Р          | 0 | v          | Tur-10     | 10:17     | lle <sup>24</sup> |       |
| Initial Orientation                      | LB1                 | RB2        | ų |            | .,,10      |            | 1.1.220  | 004        | Initial Orientatio                      | RB1                 | LB2        | 4 | ~          | .,110      |           | 10.31             |       |
| rinal Orientation                        | LB1<br>RB1          | KB2        |   | LB2<br>LS2 | RB2        | RB1<br>RS1 | LB2      | RB1<br>RS1 | Final Orientation                       | LB1<br>LB1          | LS2        |   | RB2<br>RS2 | LB1<br>LS2 | LS2       | LS1               |       |
|                                          | LS2                 |            |   | -CH2-      |            |            |          |            |                                         | RB1                 |            |   |            | LB2        |           |                   |       |
|                                          |                     |            |   |            |            |            |          |            |                                         | LS2                 |            |   |            |            |           |                   |       |
| Total Energy                             | 82.454              |            |   |            |            |            |          |            | Total Energy                            | 90.053              |            |   |            |            |           |                   |       |
| van der Waals<br>electrostatic           | 107.24<br>-272.631  |            |   |            |            |            |          |            | van der Waals<br>electrostatic          | 111.041<br>-267.29  |            |   |            |            |           |                   |       |
| AEa                                      | 101 221             |            |   |            |            |            |          |            | AEe                                     | 170 332             |            |   |            |            |           |                   |       |
| 14128                                    | -184.331<br>-24.623 |            |   |            |            |            |          |            | ats                                     | -176.732            |            |   |            |            |           |                   |       |
|                                          | -162.904            |            |   |            |            |            |          |            |                                         | -157.563            |            |   |            |            |           |                   |       |

|                                         |                    |            |   |              | F          | 1          | 14-140 | 11.04      |                                         |                     |            | 0 |                | T 40       | 1      | 11.04     |            |       |
|-----------------------------------------|--------------------|------------|---|--------------|------------|------------|--------|------------|-----------------------------------------|---------------------|------------|---|----------------|------------|--------|-----------|------------|-------|
| Initial Orientatio                      | H LB2              | RB1        | ų | ĸ            | TYFIU      | Leuiz      | Val 18 | 11631      | Initial Orientatio                      | RS2                 | LS2        | ų | ĸ              | TVF10      | Leu1/  | liest     |            |       |
| Final Orientation                       | LB2                | LB1<br>RS2 |   |              | LB2<br>LS2 | LB1        | RB2    | LS1<br>LB1 | Final Orientation                       | RS2<br>RB2          | LS1<br>LS2 |   |                | LS2<br>LB2 | LS2    | CS<br>LB1 |            |       |
|                                         |                    |            |   |              |            | _          |        |            |                                         | LS2                 |            |   |                |            |        |           |            |       |
| Total Energy                            | 129.34             |            |   |              |            |            |        |            | Total Energy                            | 118.153             |            |   |                |            |        |           |            |       |
| electrostatic                           | -243.475           |            |   |              |            |            |        |            | electrostatic                           | 113.636<br>-244.455 |            |   |                |            |        |           |            |       |
| ΔEs                                     | -137.445           |            |   |              |            |            |        |            | ΔEs                                     | -148.632            |            |   |                |            |        |           |            |       |
|                                         | -13.56             |            |   |              |            |            |        |            |                                         | -18.227             |            |   |                |            |        |           |            |       |
|                                         |                    |            |   |              |            |            |        |            |                                         |                     |            |   |                |            |        |           |            |       |
|                                         | н                  | н          | Q | к            | Ser8       | Tyr10      | Leu17  | lle31      |                                         | н                   | н          | Q | к              | Tyr10      | Val 12 | Leu17     | lle31      | Met35 |
| Initial Orientatio<br>Final Orientation | LS2                | RS2<br>RS2 |   |              | RS2        | LS1        | LS2    | LB2        | Initial Orientatio<br>Final Orientation | RB2<br>RS2          | LS2<br>LB2 |   |                | LS2        | RB2    | LS2       | LS1        | LS1   |
|                                         | LS1                | RB2        |   | _            |            | LB1<br>CS  |        | LS2        |                                         | RB1<br>PB2          | LS2        |   |                |            |        |           |            | LB1   |
| *                                       | 400 500            |            |   |              |            | RB1        |        |            | T + 1 5                                 | 100 535             |            |   |                |            |        |           |            |       |
| van der Waals                           | 112.356            |            |   |              |            |            |        |            | van der Waals                           | 100.525             |            |   |                |            |        |           |            |       |
| electrostatic                           | -257.899           |            |   |              |            |            |        |            | electrostatic                           | -259.332            |            |   |                |            |        |           |            |       |
| ΔEs                                     | -164.246           |            |   |              |            | _          |        |            | ΔEs                                     | -166.26             |            |   |                |            |        |           |            |       |
|                                         | -148.172           |            |   |              |            |            |        |            |                                         | -149.605            |            |   |                |            |        |           |            |       |
|                                         |                    |            |   |              |            |            |        |            |                                         |                     |            |   |                |            |        |           |            |       |
| Initial Orientatio                      | H LS2              | RB2        | Q | к            | Tyr10      | Leu17      | Phe20  |            | Initial Orientatio                      | RS2                 | H<br>LB2   | Q | к              | Tyr10      | Val12  | Leu17     | lle31      |       |
| Final Orientation                       | LS2<br>LB1         | RS2<br>RB2 |   | LB2*<br>LS2* | RS1        | LB2<br>RS2 | LB2    |            | Final Orientation                       | RB2<br>RS2          | LS2<br>LB2 |   |                | LS2<br>LB2 | RB2    | LS2       | LB1<br>LS1 |       |
|                                         | RS2                |            |   | *-CH2-       |            |            |        |            |                                         | RNH<br>RB1          |            |   |                |            |        |           |            |       |
| Total Casan                             | 70.200             |            |   |              |            |            |        |            | Total Courses                           | 100.405             |            |   |                |            |        |           |            |       |
| van der Waals                           | 105.496            |            |   |              |            |            |        |            | van der Waals                           | 112.374             |            |   |                |            |        |           |            |       |
| electrostatic                           | -271.216           |            |   |              |            |            |        |            | electrostatic                           | -258.507            |            |   |                |            |        |           |            |       |
| ΔEs                                     | -187.476           |            |   | -            |            |            |        |            | ΔEs                                     | -166.38<br>-19.489  |            |   |                |            |        |           |            |       |
|                                         | -161.489           |            |   |              |            |            |        |            |                                         | -148.78             |            |   |                |            |        |           |            |       |
|                                         |                    |            |   |              | T0         |            |        |            |                                         |                     |            | _ |                | 7. 10      |        |           |            |       |
| Initial Orientatio                      | H LB2              | RS2        | ų | ĸ            | i yr 10    |            |        |            | Initial Orientatio                      | RB2                 | H<br>LB2   | ų | к              | ryr10      |        |           |            |       |
| Final Orientation                       | LB2<br>LS2         | RB2<br>RS2 |   |              | LS2        |            |        |            | Final Orientation                       | RB2<br>RS2          | LS2<br>LB2 |   |                | LB1<br>RB1 |        |           |            |       |
|                                         |                    |            |   |              |            |            |        |            |                                         |                     |            |   |                |            |        |           |            |       |
| Total Energy                            | 175.468            |            |   |              |            | -          |        |            | Total Energy                            | 133.402             |            |   |                |            |        |           |            |       |
| electrostatic                           | -200.736           |            |   |              |            | _          |        |            | electrostatic                           | -234.103            |            |   |                |            |        |           |            |       |
| ΔEs                                     | -91.317            |            |   |              |            |            |        |            | ΔEs                                     | -133.383            |            |   |                |            |        |           |            |       |
|                                         | -5.542             |            |   |              |            | _          |        |            |                                         | -12.432             |            |   |                |            |        |           |            |       |
|                                         |                    |            |   |              |            |            |        |            |                                         |                     |            |   |                |            |        |           |            |       |
|                                         | н                  | н          | Q | к            | Tyr10      | Val12      | Leu17  | lle31      |                                         | н                   | н          | Q | к              | Val12      |        |           |            |       |
| Final Orientation                       | LB2<br>LB1         | RB2<br>RB2 |   | LB2          | RS1        | LS2        | LS2    | RB2        | Final Orientatio                        | CS                  |            |   | RB1<br>RB2     | RS1        |        |           |            |       |
|                                         | LS2<br>LNH         |            |   | LS2<br>-CH2- |            | C=O        |        |            |                                         |                     |            |   | RNH<br>RS1*    | RB1        |        |           |            |       |
|                                         | LS2                |            |   |              |            |            |        |            |                                         |                     |            |   | RB1*           |            |        |           |            |       |
| Total Energy                            | 82.081             |            |   |              |            |            |        |            | Total Energy                            | 155.141             |            |   |                |            |        |           |            |       |
| electrostatic                           | -275.642           |            |   |              |            |            |        |            | electrostatic                           | -212.451            |            |   |                |            |        |           |            |       |
| ΔEs                                     | -184.704           |            |   |              |            |            |        |            | ΔEs                                     | -111.644            |            |   |                |            |        |           |            |       |
|                                         | -23.932            |            |   | _            |            |            |        |            |                                         | -12.567             |            |   |                |            |        |           |            |       |
|                                         |                    |            |   |              |            |            |        |            |                                         |                     |            |   |                |            |        |           |            |       |
|                                         | н                  | н          | Q | к            | Val12      |            |        |            |                                         | н                   | н          | Q | к              |            |        |           |            |       |
| Initial Orientatio<br>Final Orientation | CS<br>CS           |            |   | LB1<br>LS1   | CS         |            |        |            | Initial Orientatio<br>Final Orientatior | CS                  |            |   | RS1<br>RS1     |            |        |           |            |       |
|                                         |                    |            |   | LB1          | C=O        | _          |        |            |                                         |                     |            |   |                |            |        |           |            |       |
| Total Energy                            | 203 203            |            |   |              |            |            |        |            | Total Energy                            | 172 739             |            |   |                |            |        |           |            |       |
| van der Waals                           | 124.276            |            |   |              |            |            |        |            | van der Waals                           | 130.443             |            |   |                |            |        |           |            |       |
| electrostatic                           | -170.014           |            |   |              |            |            |        |            | electrostatic                           | -201.802            |            |   |                |            |        |           |            |       |
| ΔEs                                     | -63.582            |            |   |              |            |            |        |            | ΔEs                                     | -94.046<br>-1.42    |            |   |                |            |        |           |            |       |
|                                         | -60.287            |            |   |              |            |            |        |            |                                         | -92.135             |            |   |                |            |        |           |            |       |
|                                         |                    |            | 0 | ×            | Val12      |            |        |            |                                         |                     | ы          | 0 | v              | Val12      |        |           |            |       |
| Initial Orientatio                      | RS1                |            |   | CS           | Post.      |            |        |            | Initial Orientatio                      | CS                  |            | ų | LS1            | Varia      |        |           |            |       |
| Final Orientation                       | RS1<br>RS2         |            |   | CS           | R51        |            |        |            | Final Orientation                       | CS                  |            |   | LS1<br>LS2     | LB1        |        |           |            |       |
|                                         |                    |            |   | RS2          |            | _          |        |            |                                         | RS1                 |            |   | 2<br>CS        |            |        |           |            |       |
| Total Energy<br>van der Waals           | 180.046<br>123.299 |            |   |              |            | _          |        |            | Total Energy<br>van der Waals           | 131.771<br>120.688  |            |   | -CH2-          |            |        |           |            |       |
| electrostatic                           | -190.264           |            |   |              |            |            |        |            | electrostatic                           | -234.21             |            |   |                |            |        |           |            |       |
| ΔEs                                     | -86.739            |            |   |              |            |            |        |            | ΔEs                                     | -135.014            |            |   |                |            |        |           |            |       |
|                                         | -8.564             |            |   |              |            |            |        |            |                                         | -11.175             |            |   |                |            |        |           |            |       |
|                                         |                    |            |   |              |            |            |        |            |                                         |                     |            |   |                |            |        |           |            |       |
| Initial Orientatio                      | H<br>LS1           | н          | Q | K<br>CS      | Val12      |            |        |            | Initial Orientatio                      | H<br>LS2            | н          | Q | K              |            |        |           |            |       |
| Final Orientation                       | LS2                |            |   | RB1          | LS2        |            |        |            | Final Orientation                       | LS2                 |            |   | RB1<br>RS2     |            |        |           |            |       |
|                                         | 201                |            |   | -CH2-        |            |            |        |            |                                         |                     |            |   | LB1            |            |        |           |            |       |
| Total Energy                            | 112.348            |            |   | LB1          |            |            |        |            | Total Energy                            | 130.305             |            |   | -CH2-          |            |        |           |            |       |
| van der Waals<br>electrostatic          | 118.4<br>-250.78   |            |   |              |            |            |        |            | van der Waals<br>electrostatic          | 124.737<br>-248.375 |            |   |                |            |        |           |            |       |
| ΔEs                                     | -154.437           |            |   |              |            |            |        |            | ΔEs                                     | -136.48             |            |   |                |            |        |           |            |       |
|                                         | -13.463            |            |   |              |            |            |        |            | -                                       | -7.126              |            |   | -              |            |        |           |            |       |
|                                         |                    |            |   |              |            | _          |        |            |                                         | 1.0.048             |            |   | -              |            |        |           |            |       |
|                                         | н                  | н          | Q | К            | Val12      |            |        |            |                                         | н                   | н          | Q | к              | Tyr10      |        |           |            |       |
| Initial Orientatio                      | LB1                |            |   | LS2<br>LS2   | LS1        |            |        |            | Initial Orientatio<br>Final Orientation | CS<br>LB1           |            |   | RS2<br>RS1     | LS2        |        |           |            |       |
|                                         | LS1<br>CS          |            |   | LS1<br>-CH2- |            |            |        |            |                                         | LS2<br>LS1          |            |   | RS2<br>CS*     |            |        |           |            |       |
| Total Energy                            | 151.659            |            |   |              |            |            |        |            | Total Energy                            | 115.748             |            |   | RB1*<br>*-CH2- |            |        |           |            |       |
| van der Waals                           | 123.952            |            |   |              |            |            |        |            | van der Waals                           | 119.89              |            |   |                |            |        |           |            |       |
| ciectiostatic                           | -223.431           |            |   |              |            | _          |        |            | electrostatic                           | -230.767            |            |   |                |            |        |           |            |       |
| ΔEs                                     | -115.126           |            |   |              |            |            |        |            | ΔEs                                     | -151.037<br>-11.973 |            |   |                |            |        |           |            |       |
|                                         | -113.704           |            |   |              |            |            |        |            |                                         | -141.04             |            |   |                |            |        |           |            |       |
|                                         | щ                  |            | _ | ~            | Valation   | Di- 40     |        |            |                                         | P                   | н          | ^ | ~              | Db-40      |        |           |            |       |
| Initial Orientatio                      | RS2                | н          | ų | CS           | vai12      | -ne19      |        |            | Initial Orientatio                      | LB1                 | п          | ų | RB1            |            |        |           |            |       |
| Final Orientation                       | RS1<br>RS2         |            |   | LB1<br>LS2   | RS1        | LB2        |        |            | Final Orientation                       | LS1<br>LNH          |            |   | RS1<br>RB1     | RS1        |        |           |            |       |
|                                         | RB2                |            |   | RS2<br>-CH2- |            |            |        |            |                                         | LB1                 |            |   | RNH            |            |        |           |            |       |
| Total Energy                            | 140.666            |            |   |              |            |            |        |            | Total Energy                            | 144.492             |            |   |                |            |        |           |            |       |
| electrostatic                           | -228.979           |            |   |              |            |            |        |            | electrostatic                           | -226.666            |            |   |                |            |        |           |            |       |
| ΔEs                                     | -126.119           |            |   |              |            |            |        |            | ΔEs                                     | -122.293            |            |   |                |            |        |           |            |       |
|                                         | -11.318            |            |   |              |            |            |        |            |                                         | -11.832             |            |   |                |            |        |           |            |       |
|                                         |                    |            |   |              |            |            |        |            |                                         |                     |            |   |                |            |        |           |            |       |

| Initial Orientation<br>Final Orientation | RB1<br>RB1                     | н | Q   | LB1<br>LB1          |                   |            |        | Initial Orientatio<br>Final Orientation | LB1<br>LB1                      | н   | ų            | RS1<br>RS1          | LS1          | LB2          |            |
|------------------------------------------|--------------------------------|---|-----|---------------------|-------------------|------------|--------|-----------------------------------------|---------------------------------|-----|--------------|---------------------|--------------|--------------|------------|
|                                          | RNH<br>RS1                     |   |     | LS1<br>CS           |                   |            |        |                                         | LB1<br>LS1<br>LNH               |     |              |                     |              |              |            |
| Total Energy<br>van der Waals            | 144.383<br>123.62              |   |     | -CH2-               |                   |            |        | Total Energy<br>van der Waals           | 113.661<br>120.14               |     |              |                     |              |              |            |
| electrostatic                            | -227.609                       |   |     |                     |                   |            |        | electrostatic                           | -258.648                        |     |              |                     |              |              |            |
| AES                                      | -122.402<br>-8.243<br>-117.882 |   |     |                     |                   |            |        | Ars                                     | -153.124<br>-11.723<br>-148.921 |     |              |                     |              |              |            |
|                                          | н                              | н | Q   | к                   |                   |            |        |                                         | н                               | н   | Q            | к                   | Val12        |              |            |
| Initial Orientation<br>Final Orientation | RS1                            |   |     | LB1<br>LB1<br>LS1   |                   |            |        | Initial Orientatio<br>Final Orientation | LS1<br>LS1                      |     |              | RB1<br>RB1<br>RS1   | CS<br>LB1    |              |            |
|                                          | 100.010                        |   |     | RS1<br>RB1          |                   |            |        |                                         |                                 |     |              |                     | LS1          |              |            |
| van der Waals<br>electrostatic           | 124.296                        |   |     | -CH2-               |                   |            |        | van der Waals<br>electrostatic          | 124.617<br>-239.846             |     |              |                     |              |              |            |
| ΔEs                                      | -126.869                       |   |     |                     |                   |            |        | ΔEs                                     | -126.643                        |     |              |                     |              |              |            |
|                                          | -122.619                       |   |     |                     |                   |            |        |                                         | -130.119                        |     |              |                     |              |              |            |
| Initial Orientation                      | H<br>RB1<br>DC2                | н | Q   | K<br>LS1            | Tyr10             |            |        | Initial Orientatio                      | H<br>LB1                        | н   | Q            | K<br>RS2            | Tyr10        |              |            |
|                                          | RB1<br>RS1                     |   |     | LS2<br>2            |                   |            |        |                                         | LS2<br>LS1                      |     |              | 2<br>CS             | 2            |              |            |
| Total Energy<br>van der Waals            | 116.5<br>123.199               |   |     | CS<br>-CH2-         |                   |            |        | Total Energy<br>van der Waals           | 125.551<br>120.292              |     |              | -CH2-               |              |              |            |
| electrostatic<br>ΔEs                     | -260.676                       |   |     |                     |                   |            |        | electrostatic<br>ΔEs                    | -240.486                        |     |              |                     |              |              |            |
|                                          | -8.664<br>-150.949             |   |     |                     |                   |            |        |                                         | -11.571<br>-130.759             |     |              |                     |              |              |            |
|                                          | н                              | н | Q   | к                   | Val12             |            |        |                                         | н                               | н   | Q            | к                   | Val12        | Phe19        |            |
| Initial Orientation<br>Final Orientation | RS2<br>RB2<br>RS2              |   |     | LB1<br>LS2<br>RS2   | RS2               |            |        | Initial Orientatio<br>Final Orientation | LS2<br>LS2                      |     |              | RB1<br>LB1<br>RB1   | LS2<br>C=O   | RB1<br>RS1   |            |
|                                          | 2                              |   |     | -CH2-<br>RB1        |                   |            |        |                                         | 100 500                         |     |              | RS2<br>LS2          |              | RS2          |            |
| van der Waals<br>electrostatic           | 133.363<br>119.563<br>-230.059 |   |     |                     |                   |            |        | van der Waals<br>electrostatic          | 109.588<br>113.086<br>-253.445  |     |              | RNH                 |              |              |            |
| ΔEs                                      | -133.422                       |   |     |                     |                   |            |        | ΔEs                                     | -157.197                        |     |              |                     |              |              |            |
|                                          | -120.332                       |   |     |                     |                   |            |        |                                         | -143.718                        |     |              |                     |              |              |            |
| Initial Orientation                      | H<br>RB1                       | н | Q   | K<br>LS2            | Val12             |            |        | Initial Orientatio                      | H<br>LB1                        | н   | Q            | K<br>RB2            | Tyr10        | Val12        | Leu17      |
| Final Orientation                        | RS2                            |   |     | LS2                 | CS                |            |        | Final Orientation                       | LB1<br>LB1<br>RS2               | LS2 |              | RB2<br>RS2          | LS2<br>LB2   | RB2          | LS2        |
|                                          |                                |   |     |                     |                   |            |        |                                         | RB1<br>LS2                      |     |              |                     |              |              |            |
| Total Energy<br>van der Waals            | 150.103<br>125.883             |   |     |                     |                   |            |        | Total Energy<br>van der Waals           | 86.324<br>111.154               |     |              |                     |              |              |            |
| electrostatic<br>AEs                     | -219.597                       |   |     |                     |                   |            |        | AFs                                     | -272.262                        |     |              |                     |              |              |            |
|                                          | -5.98                          |   |     |                     |                   |            |        |                                         | -20.709                         |     |              |                     |              |              |            |
|                                          | н                              | н | Q   | к                   |                   |            |        |                                         | н                               | н   | Q            | к                   | His6         | Glu11        | Val12      |
| Initial Orientation<br>Final Orientation | RB2                            |   |     | LB1<br>LB1<br>RB1   |                   |            |        | Initial Orientation                     | LB2<br>LS2<br>LB2               |     | RS2<br>-CH2- | RB1<br>RB1<br>LS2   | RS2<br>RB2   | RB2<br>-CH2- | LS2<br>C=0 |
| Total Course                             | 150 205                        |   |     |                     |                   |            |        | Tatal Farmer                            | 140.007                         |     |              | -CH2-<br>LB1        |              |              |            |
| van der Waals<br>electrostatic           | 124.35                         |   |     |                     |                   |            |        | van der Waals<br>electrostatic          | 117.135                         |     |              |                     |              |              |            |
| ΔEs                                      | -107.489                       |   |     |                     |                   |            |        | ΔEs                                     | -117.72                         |     |              |                     |              |              |            |
|                                          | -101.213                       |   |     |                     |                   |            |        |                                         | -104.303                        |     |              |                     |              |              |            |
| Initial Orientation                      | H<br>RB1                       | н | Q   | K<br>LB2            | Tyr10             |            |        | Initial Orientatio                      | H<br>LB2                        | н   | Q            | K<br>RS1            | Tyr10        |              |            |
| Final Orientation                        | RB1<br>LB1                     |   |     | LS1                 | RNH<br>RS1<br>RB2 |            |        | Final Orientation                       | LB1<br>LB2<br>LS1               |     |              | RB1<br>RNH          | 151          |              |            |
|                                          | RNH<br>RS1                     |   |     |                     |                   |            |        |                                         | LNH                             |     |              |                     |              |              |            |
| Total Energy<br>van der Waals            | 114.264<br>112.566             |   |     |                     |                   |            |        | Total Energy<br>van der Waals           | 133.015<br>115.889              |     |              |                     |              |              |            |
| ΔEs                                      | -152.521                       |   |     |                     |                   |            |        | ΔEs                                     | -133.77                         |     |              |                     |              |              |            |
|                                          | -19.297<br>-135.467            |   |     |                     |                   |            |        |                                         | -15.974<br>-121.312             |     |              |                     |              |              |            |
| Initial Orientation                      | H<br>RS2                       | н | Q   | K<br>LS2            | Val12             | Leu17      | Phe 20 | Initial Orientatio                      | H<br>LS2                        | н   | Q            | K<br>RS2            |              |              |            |
| Final Orientation                        | RS2                            |   |     | RB1<br>LS2<br>RS2   | RB1<br>CS         | RS2        | RB2    | Final Orientation                       | LS2                             |     |              | RB1<br>RS1          |              |              |            |
| Total Energy                             | 98.592                         |   |     | -CH2-               |                   |            |        | Total Energy                            | 114.082                         |     |              |                     |              |              |            |
| electrostatic                            | -262.539                       |   |     |                     |                   |            |        | electrostatic                           | -256.233                        |     |              |                     |              |              |            |
| ΔEs                                      | -168.193<br>-17.096            |   |     |                     |                   |            |        | ΔEs                                     | -152.703<br>-8.574              |     |              |                     |              |              |            |
|                                          | - 151.011                      |   |     |                     |                   |            |        |                                         | -140.500                        |     |              |                     |              |              |            |
| Initial Orientation<br>Final Orientation | H<br>LS2<br>LB2                | н | Q   | RB2<br>RS2          |                   |            |        | Initial Orientatio                      | RB2<br>RB2                      | н   | Q            | K<br>LS2<br>LS2     | Tyr10<br>RB2 | RS2          | LB2        |
|                                          | LB2<br>LS2                     |   |     | 2<br>RB1<br>RNH     |                   |            |        |                                         | RB2<br>RS2                      |     |              | LNH<br>LB1          |              |              |            |
| Total Energy<br>van der Waals            | 149.96<br>125.987              |   |     |                     |                   |            |        | Total Energy<br>van der Waals           | 143.321<br>121.255              |     |              |                     |              |              |            |
| ΔEs                                      | -116.825                       |   |     |                     |                   |            |        | ΔEs                                     | -123.464                        |     |              |                     |              |              |            |
|                                          | -5.876                         |   |     |                     |                   |            |        |                                         | -10.608                         |     |              |                     |              |              |            |
| table O.                                 | Н                              | н | Q   | K                   | His6              | Glu11      |        | Initial Contraction                     | Н                               | н   | Q            | K                   | Glu11        | Phe 19       |            |
| Final Orientation                        | LB2<br>LS2<br>LB2              |   | RB2 | RS2<br>LS2<br>-CH2- | RB2               | RB2<br>C=O |        | initial Orientatio                      | RS2<br>RS2                      |     | LB2<br>LS2   | LB2<br>LB1<br>LS2   | LS2<br>C=O   | LB2          |            |
| Total Energy                             | 125 484                        |   |     | RS2                 |                   |            |        | Total Fnerey                            | 105.8                           |     | -CH2-        | RB1<br>RS2<br>-CH2- |              |              |            |
| van der Waals<br>electrostatic           | 120.78<br>-251.266             |   |     |                     |                   |            |        | van der Waals<br>electrostatic          | 108.479<br>-250.285             |     |              |                     |              |              |            |
| ΔEs                                      | -141.301                       |   |     |                     |                   |            |        | ΔEs                                     | -160.985<br>-23.384             |     |              |                     |              |              |            |
|                                          | -141 520                       |   |     |                     |                   |            |        |                                         | -140 559                        |     |              |                     |              |              |            |

|                                                | Initial Orienta<br>Final Orientat              | itior L<br>ion L    | H<br>B2<br>S2                | н                      | Q             | K<br>RB2<br>RS2<br>RB1          |                          |                               |                         |              | Initial O<br>Final O           | Drientati<br>rientatio     | H<br>RB2<br>RB2<br>RS2                         | H                             | Q                          | K<br>LB2<br>LS2<br>RS2 | Phe1             | 9 Ala3          | 2                    |                            |       |        |
|------------------------------------------------|------------------------------------------------|---------------------|------------------------------|------------------------|---------------|---------------------------------|--------------------------|-------------------------------|-------------------------|--------------|--------------------------------|----------------------------|------------------------------------------------|-------------------------------|----------------------------|------------------------|------------------|-----------------|----------------------|----------------------------|-------|--------|
|                                                | Total Energy<br>van der Waals<br>electrostatic | 119<br>5 121<br>-24 | 0.734<br>1.746<br>8.885      |                        |               |                                 |                          |                               |                         |              | Total Er<br>van der<br>electro | nergy<br>r Waals<br>static | 120.241<br>123.502<br>-250.331                 |                               |                            | -CH2-<br>LB1<br>LNH    |                  |                 |                      |                            |       |        |
|                                                | ΔEs                                            | -1                  | 47.051<br>10.117<br>39.158   |                        |               |                                 |                          |                               |                         |              | ΔEs                            |                            | -146.544<br>-8.361<br>-140.604                 |                               |                            |                        |                  |                 |                      |                            |       |        |
|                                                | Initial Orienta<br>Final Oriental              | ition<br>ion R<br>R | H<br>52<br>B1<br>B1          | H<br>LB2<br>LB2<br>LS2 | Q             | K<br>RB2<br>RB2<br>RS2<br>-CH2- | Tyr10<br>LB1<br>LNH      | RB<br>RS<br>C=0               | 12 Leu1<br>2 LS2<br>2 D | 7            | Initial C<br>Final O           | Drientati<br>rientatio     | H<br>on<br>LB1<br>RB1<br>LS2                   | H<br>RB2<br>RB2<br>RS2        | Q                          | K<br>LB2<br>LB2<br>LS2 | Tyr1             | ) Val1          | 2 Leu1<br>RS2<br>RB2 | 17 Ile3                    | 2     |        |
|                                                | Total Energy<br>van der Waals<br>electrostatic | 89<br>6 109<br>-26  | 52<br>.198<br>9.493<br>5.449 |                        |               |                                 |                          | RN                            | H<br>1                  |              | Total Er<br>van der<br>electro | nergy<br>r Waals<br>static | RS2<br>104.356<br>112.157<br>-252.406          |                               |                            |                        |                  |                 |                      |                            |       |        |
|                                                | ΔEs                                            | -1<br>-1            | 77.587<br>-22.37<br>55.722   |                        |               | Aras                            | Sara                     | Tur10                         | Hic13                   | Hic14        | ΔEs                            |                            | -162.429<br>-19.706<br>-142.679                |                               |                            | V                      |                  | 5               | Aras                 | Tur10                      | Hie13 | Hie 14 |
| Initial Orientation<br>Final Orientation       | RB2<br>RS2<br>RB2                              | LB2<br>LB2          |                              |                        |               | LB2<br>LS1                      | LB1                      | RB1<br>RS1                    | RB2                     | RB1<br>LB1   | RS2<br>RB2                     |                            | Initial Orientati<br>Final Orientatio          | io LB2<br>or LS2              |                            | RB2<br>RS2<br>RB2      |                  |                 | RS2                  | LB2                        | LB2   | LB1    |
| Total Energy<br>van der Waals<br>electrostatic | 115.978<br>110.769<br>-242.869                 |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | Total Energy<br>van der Waals<br>electrostatic | 94.29<br>110.9<br>-264.3      | 6<br>23<br>44              |                        |                  |                 |                      |                            |       | RB1    |
| ΔEs                                            | -150.807<br>-21.094<br>-133.142                |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | ΔEs                                            | -172<br>-2<br>-154            | .489<br>0.94<br>.617       |                        |                  |                 |                      |                            |       |        |
| Initial Orientation                            | L<br>r LB2                                     | v                   | F<br>RB2                     | 2                      | F             | Val12                           | His13                    | Lys16                         |                         |              |                                |                            | Initial Orientati                              | L<br>io RB2                   |                            | v                      | F<br>LB2         | F               | His13                | Lys16                      | Ala30 |        |
| Total Energy                                   | 109.477                                        |                     | RB2                          | 2 L                    | 52            | LB1<br>C=O                      | LB2<br>LS1<br>LNH<br>LB1 | -CH2-<br>RB1<br>RNH<br>RS2    |                         |              |                                |                            | Total Energy                                   | 120.7                         | 36                         |                        | LB2<br>LS2       | RB1             | RS2<br>RB2           | LS2<br>LS1<br>RB2<br>-CH2- | RBZ   |        |
| electrostatic                                  | -252.906                                       |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | electrostatic                                  | -237.                         | 58                         |                        |                  |                 |                      |                            |       |        |
| ΔEs                                            | -157.308<br>-18.016<br>-143.179                |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | ΔEs                                            | -145<br>-1<br>-127            | .989<br>7.59<br>.853       |                        |                  |                 |                      |                            |       |        |
| Initial Orientation<br>Final Orientation       | RB2<br>RS2                                     | v                   | F                            | U                      | F<br>B2<br>B2 | Tyr10<br>RS2                    | His13<br>LB1             | His14<br>RB2                  | Lys16                   | Ile31<br>RB1 |                                |                            | Initial Orientati<br>Final Orientatio          | L<br>IO LB2                   |                            | v                      | F                | F<br>RB2        | His13                | Ile31                      |       |        |
| Total Energy<br>van der Waals                  | 96.269<br>110.673                              |                     |                              | L                      | 52            |                                 | RB1<br>RS2               | RS2                           |                         | RNH          |                                |                            | Total Energy<br>van der Waals                  | 179.8                         | 79                         |                        |                  |                 | LB2                  | LB2                        |       |        |
| ΔEs                                            | -170.516<br>-21.19<br>-151.877                 |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | ΔEs                                            | -86                           | .906<br>.498<br>.026       |                        |                  |                 |                      |                            |       |        |
| Initial Orientation<br>Final Orientation       | L                                              | V<br>RB2            | F<br>LB2                     | 2                      | F             | Arg5<br>RS1                     | Ala21<br>RB2             | Asp23<br>LB2                  |                         |              |                                |                            | Initial Orientati<br>Final Orientatio          | L                             |                            | V<br>LB2               | F<br>RB2         | F               | Arg5<br>LS2          |                            |       |        |
| Total Energy<br>van der Waals<br>electrostatic | 240.003<br>122.529<br>-132.045                 |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | Total Energy<br>van der Waals<br>electrostatic | 245.6<br>128.8<br>-132.8      | 12<br>19<br>31             |                        |                  |                 |                      |                            |       |        |
| ΔEs                                            | -26.782<br>-9.334<br>-22.318                   |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | ΔEs                                            | -21<br>-3<br>-23              | .173<br>.044<br>.104       |                        |                  |                 |                      |                            |       |        |
| Initial Orientation                            | L                                              | v                   | F<br>LB1                     | LR                     | F<br>B1<br>B1 | Lys16                           |                          |                               |                         |              |                                |                            | Initial Orientati                              | L                             |                            | v                      | F<br>RB1         | F<br>LB1        | Lys16                |                            |       |        |
| Total Energy<br>van der Waals                  | 205.134<br>125.216                             |                     |                              |                        | DI            | 2<br>LB1                        |                          |                               |                         |              |                                |                            | Total Energy<br>van der Waals                  | 161.2<br>118.6                | 37                         |                        | RB1<br>RS1       | LB1<br>CS       | RS2<br>CS            |                            |       |        |
| electrostatic<br>ΔEs                           | -169.977<br>-61.651<br>-6.647<br>-60.25        |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | electrostatic<br>ΔEs                           | -212.0<br>-105<br>-13<br>-102 | 44<br>.548<br>.188<br>.317 |                        |                  |                 |                      |                            |       |        |
|                                                | L                                              | v                   | F                            |                        | F             | Lys16                           |                          |                               |                         |              |                                |                            |                                                | L                             |                            | v                      | F                | F               | Lys16                |                            |       |        |
| Initial Orientation<br>Final Orientation       | n                                              |                     | RB2<br>RB2                   | 2 L<br>2 R             | B1<br>B1      | RB2<br>RS1                      |                          |                               |                         |              |                                |                            | Initial Orientati<br>Final Orientatio          | on                            |                            |                        | LB1<br>LB1<br>CS | RB2<br>RS2      | RB1<br>RS2           |                            |       |        |
| Total Energy<br>van der Waals<br>electrostatic | 201.536<br>125.789<br>-172.429                 |                     |                              |                        |               | 2                               |                          |                               |                         |              |                                |                            | Total Energy<br>van der Waals<br>electrostatic | 174.2<br>120.4<br>-193.5      | 51<br>38<br>65             |                        |                  |                 | 2                    |                            |       |        |
| ΔEs                                            | -65.249<br>-6.074<br>-62.702                   |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | ΔEs                                            | -92<br>-11<br>-83             | .524<br>.375<br>.838       |                        |                  |                 |                      |                            |       |        |
| Initial Orientation<br>Final Orientation       | L                                              | v                   | F<br>LB2<br>LB2              | 2 R<br>2 R             | F<br>B1<br>B1 | Val12<br>RB2                    | His13<br>RB2<br>RS1      | Lys16<br>RB1<br>LS2           |                         |              |                                |                            | Initial Orientati<br>Final Orientatio          | L<br>on<br>on                 |                            | v                      | F<br>RB1         | F<br>LB2<br>LB2 | Lys16<br>LB1<br>LNH  |                            |       |        |
| Total Energy<br>van der Waals<br>electrostatic | 139.756<br>114.317<br>-222.72                  |                     |                              |                        |               |                                 |                          | LB1<br>RNH*<br>RS1*<br>*-CH2- |                         |              |                                |                            | Total Energy<br>van der Waals<br>electrostatic | 214.6<br>127.2<br>-156.9      | 59<br>12<br>66             |                        |                  |                 | LS1                  |                            |       |        |
| ΔEs                                            | -127.029<br>-17.546<br>-112.993                |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | ΔEs                                            | -52<br>-4<br>-47              | .116<br>.651<br>.239       |                        |                  |                 |                      |                            |       |        |
| Initial Orientation                            | L                                              | v                   | F                            | 2 R                    | F<br>B2       | Lys16                           |                          |                               |                         |              |                                |                            | Initial Orientati                              | L                             |                            | v                      | F<br>RB2         | F<br>LB2        | Lys16                |                            |       |        |
| Final Orientation<br>Total Energy              | 175.798                                        |                     | LS2<br>LB2                   | 2                      |               | LS2<br>2                        |                          |                               |                         |              |                                |                            | Final Orientatio                               | on<br>191.4                   | 17                         |                        | RB2              |                 | RS1<br>2             |                            |       |        |
| van der Waals<br>electrostatic<br>ΔEs          | 129.1<br>-198.029<br>-90.987<br>-2 763         |                     |                              |                        |               |                                 |                          |                               |                         |              |                                |                            | van der Waals<br>electrostatic<br>ΔEs          | 127.4<br>-180.<br>-75         | 4<br>8<br>.368<br>.423     |                        |                  |                 |                      |                            |       |        |
|                                                | -2.703                                         |                     |                              | -                      |               |                                 |                          |                               |                         |              |                                |                            |                                                | -4                            | 073                        |                        |                  |                 |                      |                            |       | -      |

|                                                | н                               | н          | 0 | ĸ                        | 1   | v          | F                 | F                 | Am5                | Tyr10         | lle31 | Met35 |                                                | н                               | н          | 0 | ĸ                             | 1   | V   | F               | F               | Tyr10        | Ala21  | lle31      | lle32 |
|------------------------------------------------|---------------------------------|------------|---|--------------------------|-----|------------|-------------------|-------------------|--------------------|---------------|-------|-------|------------------------------------------------|---------------------------------|------------|---|-------------------------------|-----|-----|-----------------|-----------------|--------------|--------|------------|-------|
| Initial Orientation<br>Final Orientation       | LB2<br>LB2<br>LS2               | LB1<br>LS2 | ų |                          | LS2 | RB2<br>RB2 |                   |                   | RB2                | LB2<br>LS2    | LB1   | CS    | Initial Orientatio<br>Final Orientation        | RB2<br>RS2                      | LB1<br>RB1 | ų | ĸ                             | RS2 | LB2 |                 |                 | RS1          | LB2    | RS2<br>RB2 | LS2   |
| Total Energy                                   | 100.457                         | RS2        |   |                          |     |            |                   |                   |                    |               |       |       | Total Energy                                   | 92.363                          | UNH        |   |                               |     |     |                 |                 |              |        |            |       |
| van der Waals<br>electrostatic                 | 106.939<br>-262.125             |            |   |                          |     |            |                   |                   |                    |               |       |       | van der Waals<br>electrostatic                 | 111.484<br>-269.366             |            |   |                               |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -166.328<br>-24.924<br>-152.398 |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -174.422<br>-20.379<br>-159.639 |            |   |                               |     |     |                 |                 |              |        |            |       |
| Initial Orientation                            | H<br>RS1                        | н          | Q | к                        | L   | v          | F<br>LB1          | F                 |                    |               |       |       | Initial Orientatio                             | H<br>RB2                        | н          | Q | к                             | L   | v   | F<br>LB1        | F               | His6         | Val 12 |            |       |
| Final Orientation                              | RS1                             |            |   | LB1<br>RB1<br>RNH        |     |            | RB1<br>LS1        | CS                |                    |               |       |       | Final Orientation                              | RB2<br>RS1                      |            |   | LB1<br>RB1<br>RNH*            |     |     | LS1<br>LB1      |                 | LB2          | RB2    |            |       |
| Total Energy<br>van der Waals                  | 147.511<br>114.941              |            |   | -CH2-<br>LNH             |     |            |                   |                   |                    |               |       |       | Total Energy<br>van der Waals                  | 151.262<br>110.167              |            |   | RS1*<br>*-CH2-                |     |     |                 |                 |              |        |            |       |
| electrostatic<br>ΔEs                           | -221.293                        |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -214.008                        |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | -111.566                        |            |   |                          |     |            |                   |                   |                    |               |       |       |                                                | -104.281                        |            |   |                               |     |     |                 |                 |              |        |            |       |
| Initial Orientation<br>Final Orientation       | H<br>LB2<br>LB2                 | н          | Q | K<br>LNH<br>LB2<br>-CH2- | L   | v          | F<br>RB1          | F                 |                    |               |       |       | Initial Orientatio<br>Final Orientation        | H<br>RB1<br>RS1<br>RB1          | н          | Q | K<br>LB1<br>LNH               | L   | V   | F<br>LB2<br>LB2 | F               | Val12<br>RS1 |        |            |       |
| Total Energy<br>van der Waals                  | 168.907<br>128.929              |            |   |                          |     |            |                   |                   |                    |               |       |       | Total Energy<br>van der Waals                  | 173.478<br>116.807              |            |   |                               |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -97.878<br>-2.934               |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔΕs                                            | -93.307<br>-15.056              |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | -103.561                        |            |   |                          |     |            |                   |                   |                    |               |       |       |                                                | -84.225                         |            |   |                               |     |     |                 |                 |              |        |            |       |
| Initial Orientation<br>Final Orientation       | H<br>LS1<br>LS1                 | н          | Q | K<br>LB1                 | L   | v          | F<br>RB2<br>RB2   | F                 | Glu11<br>RB1       | Val 12<br>LB1 |       |       | Initial Orientatio<br>Final Orientation        | H<br>RS1<br>RS1                 | н          | Q | K<br>RB1                      | L   | v   | F<br>LB2<br>LB2 | F<br>LB1        |              |        |            |       |
| Tabal Casari                                   | 115.6                           |            |   | -CH2-<br>RB1<br>RS2      |     |            |                   |                   | C=O                | CS            |       |       | Tatal Casari                                   | 160.442                         |            |   | LS2<br>LB1                    |     |     |                 | CS              |              |        |            |       |
| van der Waals<br>electrostatic                 | 113.0<br>118.507<br>-254.839    |            |   |                          |     |            |                   |                   |                    |               |       |       | van der Waals<br>electrostatic                 | 119.645                         |            |   |                               |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -151.185<br>-13.356<br>-145.112 |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -106.343<br>-12.218<br>-94.076  |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | н                               | н          | Q | к                        | L   | v          | F                 | F                 | Val12              |               |       |       |                                                | н                               | н          | Q | к                             | L   | v   | F               | F               |              |        |            |       |
| Initial Orientation<br>Final Orientation       | LS2<br>LS2<br>LS1               |            |   | RS2<br>2                 |     |            | RB2<br>RS2<br>RB2 |                   | LS2                |               |       |       | Initial Orientatio<br>Final Orientation        | RS2<br>RS2<br>RB2               |            |   | LS2<br>RS2                    |     |     | LB2<br>LB2      |                 |              |        |            |       |
| Total Energy                                   | 124.179                         |            |   | RB1                      |     |            |                   |                   |                    |               |       |       | Total Energy<br>van der Waals                  | 177.297                         |            |   | -CHZ-                         |     |     |                 |                 |              |        |            |       |
| electrostatic<br>ΔEs                           | -234.341<br>-142.606            |            |   |                          |     |            |                   |                   |                    |               |       |       | electrostatic<br>ΔEs                           | -190.09                         |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | -16.556<br>-124.614             |            |   |                          |     |            |                   |                   |                    |               |       |       |                                                | -7.663                          |            |   |                               |     |     |                 |                 |              |        |            |       |
| Initial Orientation                            | H<br>LB2                        | н          | Q | K                        | L   | v          | F<br>RB2          | F                 | Val12              |               |       |       | Initial Orientatio                             | H<br>RB2                        | н          | Q | K                             | L   | v   | F<br>LB2        | F               | His6         |        |            |       |
| Final Orientation                              | LS2                             |            |   | RB1                      |     |            | RB2               | RD2               | LB1                |               |       |       | Final Orientation                              | RS2                             |            |   | LD2<br>LNH<br>LB1<br>RS2      |     |     | LNH             |                 | LDZ          |        |            |       |
| Total Energy<br>van der Waals<br>electrostatic | 124.332<br>113.258<br>-236.964  |            |   |                          |     |            |                   |                   |                    |               |       |       | Total Energy<br>van der Waals<br>electrostatic | 112.034<br>114.1<br>247.527     |            |   | -CH2-                         |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -142.453                        |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -154.751                        |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | -127.237                        |            |   |                          |     |            |                   |                   |                    |               |       |       |                                                | 357.254                         |            |   |                               |     |     |                 |                 |              |        |            |       |
| Initial Orientation<br>Final Orientation       | H<br>CS<br>LS2                  | н          | Q | RS1                      | CS  | V          | F                 | F<br>RB1<br>RB1   | RS1                | RS1           |       |       | Initial Orientatio<br>Final Orientation        | RB1                             | н          | Q | LS2                           | RS2 | v   | F               | F<br>RB2<br>RB2 | RB2          | RB2    |            |       |
|                                                | LBI                             |            |   | CS*<br>RB1*<br>*-CH2-    |     |            |                   |                   | LDI                |               |       |       |                                                | RS1<br>LB1                      |            |   | -CH2-<br>LB2                  | Rai |     |                 |                 | 0            | 131    |            |       |
| Total Energy<br>van der Waals<br>electrostatic | 144.712<br>108.961<br>-210.574  |            |   |                          |     |            |                   |                   |                    |               |       |       | Total Energy<br>van der Waals<br>electrostatic | 106.808<br>116.914<br>-266.849  |            |   |                               |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -122.073<br>-22.902             |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -159.977<br>-14.949             |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | -100.847                        |            | 0 | ×                        |     | V          | 5                 | 5                 |                    |               |       |       |                                                | -157.122                        |            | 0 | ×                             | 1   | V   | 6               | 6               |              |        |            |       |
| Initial Orientation<br>Final Orientation       | CS<br>LB1<br>CS                 |            |   | LS1<br>LS2               |     |            |                   | LB2<br>LB2<br>LS2 |                    |               |       |       | Initial Orientatio<br>Final Orientatior        | LB1<br>LS1                      |            |   |                               |     |     |                 | RB1             |              |        |            |       |
| Total Energy<br>van der Waals                  | 139.484<br>121.098              |            |   |                          |     |            |                   |                   |                    |               |       |       | Total Energy<br>van der Waals                  | 232.751 128.9                   |            |   |                               |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -127.301                        |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -34.034                         |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | -121.028                        |            |   |                          |     |            |                   |                   |                    |               |       |       |                                                | -32.7                           |            |   |                               |     |     |                 |                 |              |        |            |       |
| Initial Orientation<br>Final Orientation       | H<br>RB1<br>RS1<br>RB1          | н          | Q | K                        | L   | v          | F                 | F<br>LB1<br>LB1   | Gly29<br>CS<br>C=0 | Ala30<br>CS   |       |       | Initial Orientatio<br>Final Orientation        | H<br>RS1<br>RS1<br>RS2          | н          | Q | K<br>RS1<br>-CH2-             | L   | V   | F               | F<br>LB1        | Val12<br>RS1 |        |            |       |
| Total Energy<br>van der Waals<br>electrostatic | 223.416<br>124.67<br>-146.555   |            |   |                          |     |            |                   |                   |                    |               |       |       | Total Energy<br>van der Waals<br>electrostatic | 158.871<br>123.077<br>-209.897  |            |   |                               |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -43.369<br>-7.193               |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -107.914                        |            |   |                               |     |     |                 |                 |              |        |            |       |
|                                                | -36.828                         |            |   |                          |     |            |                   |                   |                    |               |       |       |                                                | -100.17                         |            |   |                               |     |     | _               |                 |              |        |            |       |
| Initial Orientation<br>Final Orientation       | H<br>LS1<br>LS1                 | н          | Q | K<br>LB1                 | L   | v          | F                 | F<br>RB1<br>CS    |                    |               |       |       | Initial Orientatio<br>Final Orientation        | H<br>LS2<br>LS2                 | н          | Q | RS2                           | L   | V   | F               | F<br>RB1<br>CS  | Val12<br>LS2 |        |            |       |
| Total Epermy                                   | 182 792                         |            |   | LS1<br>-CH2-             |     |            |                   |                   |                    |               |       |       | Total Energy                                   | 117 972                         |            |   | LS2*<br>LB1*<br>CS*<br>*.CH2. |     |     |                 | NB1             |              |        |            |       |
| van der Waals<br>electrostatic                 | 120.544                         |            |   |                          |     |            |                   |                   |                    |               |       |       | van der Waals<br>electrostatic                 | 112.473                         |            |   | RB1                           |     |     |                 |                 |              |        |            |       |
| ΔEs                                            | -84.003<br>-11.319<br>-76.726   |            |   |                          |     |            |                   |                   |                    |               |       |       | ΔEs                                            | -148.912<br>-19.39<br>-131.136  |            |   |                               |     |     |                 |                 |              |        |            |       |

|                     | н                                        | н | 0 | ĸ      | 1 | V | F   | F    | Lve28  |       |                     |                           |   |   |        |     |   |     |        |        |       |
|---------------------|------------------------------------------|---|---|--------|---|---|-----|------|--------|-------|---------------------|---------------------------|---|---|--------|-----|---|-----|--------|--------|-------|
| Initial Orientation | RS2                                      |   | ų | ĸ      |   | • |     | IB1  | LYSLO  |       |                     |                           |   |   |        |     |   |     |        |        |       |
| Final Orientation   | RB2                                      |   |   | RS1    |   |   |     | CS   | 182    |       |                     |                           |   |   |        |     |   |     |        |        |       |
| rindi Offentation   | RS2                                      |   |   | 2      |   |   |     | 00   | 152    |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     | 1102                                     |   |   | 852    |   |   |     |      | 1.52   |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   | CH2    |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| Total Enormy        | 110 221                                  |   |   | -012-  |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| van der Waals       | 117 198                                  |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| electrostatic       | -264.49                                  |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| AEc                 | 156 464                                  |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| 413                 | 14 665                                   |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     | -14.005                                  |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     | -154.703                                 |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   | 0 | v      |   | V | E   |      | Ture10 | 8021  |                     |                           |   | 0 | v      |     | M | E   | E      | Vol12  | 41-20 |
| Initial Origination | n                                        | n | ų | ĸ      | L | v |     | F    | Tyr10  | liesi | Initial Onlandation | п                         |   | ų | ĸ      | L.  | v |     | P I DA | Valitz | Alasu |
| Initial Orientation | LBI                                      |   |   |        |   |   |     | RBZ  |        |       | Initial Orientatio  | RB2                       |   |   |        | -   |   |     | LB1    |        |       |
| Final Orientation   | LB1                                      |   |   | RS1    |   |   |     |      | LS1    | LB2   | Final Orientation   | RS1                       |   |   | LB1    | RS1 |   | LB2 | LB1    | RB2    | RS1   |
|                     | LB1                                      |   |   |        |   |   |     |      |        |       |                     | RB2                       |   |   | LS2    |     |   | LNH | KB1    |        |       |
|                     | LS1                                      |   |   |        |   |   |     |      |        |       |                     |                           |   |   | LNH    |     |   |     |        |        |       |
|                     | RB1                                      |   |   |        |   |   |     |      |        |       |                     |                           |   |   | RB1    |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   | RNH*   |     |   |     |        |        |       |
| Total Energy        | 109.697                                  |   |   |        |   |   |     |      |        |       | Total Energy        | 102.45                    |   |   | RS1*   |     |   |     |        |        |       |
| van der Waals       | 114.288                                  |   |   |        |   |   |     |      |        |       | van der Waals       | 106.463                   |   |   | RB2*   |     |   |     |        |        |       |
| electrostatic       | -252.191                                 |   |   |        |   |   |     |      |        |       | electrostatic       | -252.083                  |   |   | *-CH2- |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| ΔEs                 | -157.088                                 |   |   |        |   |   |     |      |        |       | ΔEs                 | -164.335                  |   |   |        |     |   |     |        |        |       |
|                     | -17.575                                  |   |   |        |   |   |     |      |        |       |                     | -25.4                     |   |   |        |     |   |     |        |        |       |
|                     | -142,464                                 |   |   |        |   |   |     |      |        |       |                     | -142.356                  |   |   |        |     |   |     |        |        |       |
|                     | 2.2. 704                                 |   |   |        |   |   |     |      |        |       |                     | 2.2.330                   |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     | н                                        | н | 0 | к      | 1 | v | F   | F    |        |       |                     | н                         | н | 0 | к      | 1   | v | F   | F      | Val12  | Gly29 |
| Initial Orientation | 182                                      |   | ~ |        |   |   |     | PB1  |        |       | Initial Orientatio  | PB1                       |   | ~ |        |     |   |     | 182    |        | 0.725 |
| Final Orientation   | 182                                      |   |   | 1634   |   |   |     | 101  |        |       | Final Orientatio    | DD 1                      |   |   | DC2    |     |   |     | 182    | DC1    | 151   |
| Final Orientation   | LSZ                                      |   |   | LSZ    |   |   |     |      |        |       | Final Orientation   | RST                       |   |   | R52    |     |   |     | LBZ    | RSI    | 151   |
|                     | LB2                                      |   |   | LB2*   |   |   |     |      |        |       |                     | RB1                       |   |   |        |     |   |     | 151    |        | C=0   |
|                     |                                          |   |   | *-CH2- |   |   |     |      |        |       |                     | RNH                       |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| Total Energy        | 166.493                                  |   |   |        |   |   |     |      |        |       | Total Energy        | 143.087                   |   |   |        |     |   |     |        |        |       |
| van der Waals       | 120.516                                  |   |   |        |   |   |     |      |        |       | van der Waals       | 117.447                   |   |   |        |     |   |     |        |        |       |
| electrostatic       | -203.118                                 |   |   |        |   |   |     |      |        |       | electrostatic       | -235.114                  |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| ΔEs                 | -100.292                                 |   |   |        |   |   |     |      |        |       | ΔEs                 | -123.698                  |   |   |        |     |   |     |        |        |       |
|                     | -11 347                                  |   |   |        |   |   |     |      |        |       |                     | -14 416                   |   |   |        |     |   |     |        |        |       |
|                     | -03 301                                  |   |   |        |   |   |     |      |        |       |                     | -125 387                  |   |   |        |     |   |     |        |        |       |
|                     | 55.551                                   |   |   |        |   |   |     |      |        |       |                     | 123.307                   |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   | -   |      |        |       |                     |                           |   |   |        |     |   | -   | -      |        |       |
|                     | н                                        | н | Q | ĸ      | L | v | •   | P.   |        |       |                     | н                         | н | Q | ĸ      | L   | v | P.  | F      | Lys28  | GIY29 |
| Initial Orientation | LS1                                      |   |   |        |   |   |     | RB2  |        |       | Initial Orientatio  | RS1                       |   |   |        |     |   |     | LB2    |        |       |
| Final Orientation   | LB2                                      |   |   | RS1    |   |   |     |      |        |       | Final Orientation   | RS1                       |   |   | RNH*   |     |   |     | LB1    | LS1    | LS1*  |
|                     | LS1                                      |   |   | 2      |   |   |     |      |        |       |                     |                           |   |   | RS1*   |     |   |     |        |        | LNH*  |
|                     |                                          |   |   | LS1    |   |   |     |      |        |       |                     |                           |   |   | *-CH2- |     |   |     |        |        | LB1*  |
|                     |                                          |   |   | -CH2-  |   |   |     |      |        |       |                     |                           |   |   | RB2    |     |   |     |        |        | *C=O  |
| Total Energy        | 133.74                                   |   |   | RB1    |   |   |     |      |        |       | Total Energy        | 151.948                   |   |   |        |     |   |     |        |        |       |
| van der Waals       | 124.794                                  |   |   | RNH    |   |   |     |      |        |       | van der Waals       | 118.16                    |   |   |        |     |   |     |        |        |       |
| electrostatic       | -240.272                                 |   |   |        |   |   |     |      |        |       | electrostatic       | -215.342                  |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| AFe                 | -133 045                                 |   |   |        |   |   |     |      |        |       | AFe                 | -114 837                  |   |   |        |     |   |     |        |        |       |
| 141.0               | -7.069                                   |   |   |        |   |   |     |      |        |       |                     | -13 703                   |   |   |        |     |   |     |        |        |       |
|                     | -120 5/15                                |   |   |        |   |   |     |      |        |       |                     | -105 615                  |   |   |        |     |   |     |        |        |       |
|                     | -130.343                                 |   |   |        |   |   |     |      |        |       |                     | -105.015                  |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   | 6 |        | , | V | -   | -    | Marian |       |                     | P.                        |   | 6 |        | ,   |   | -   | -      |        |       |
| Initial Original 1  | п                                        | n | ų | N      | L | v | P   | F    | vari2  |       | Initial Onlast 1    | п                         | п | ų | N      | L   | v |     | F      |        |       |
| mitial Orientation  | LS2                                      |   |   | 10.00  |   |   |     | KB2  | 1.07   |       | Initial Orientatio  | KS2                       |   |   | 100    |     |   |     | LBZ    |        |       |
| Final Orientation   | LS2                                      |   |   | LS2*   |   |   | KNH | CS   | LS2    |       | Final Orientation   | RS2                       |   |   | LS2    |     |   |     | LB2    |        |       |
|                     | LS1                                      |   |   | LB1*   |   |   | RS1 |      |        |       |                     |                           |   |   | 2      |     |   |     |        |        |       |
|                     |                                          |   |   | *-CH2- |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   | RB1    |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| Total Energy        | 115.772                                  |   |   | RNH    |   |   |     |      |        |       | Total Energy        | 148.022                   |   |   |        |     |   |     |        |        |       |
| van der Waals       | 110.521                                  |   |   | RS1    |   |   |     |      |        |       | van der Waals       | 130.638                   |   |   |        |     |   |     |        |        |       |
| electrostatic       | -242.452                                 |   |   |        |   |   |     |      |        |       | electrostatic       | -233.8                    |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| ΔEs                 | -151.013                                 |   |   |        |   |   |     |      |        |       | ΔEs                 | -118.763                  |   |   |        |     |   |     |        |        |       |
|                     | -21.342                                  |   |   |        |   |   |     |      |        |       |                     | -1.225                    |   |   |        |     |   |     |        |        |       |
|                     | -132.725                                 |   |   |        |   |   |     |      |        |       |                     | -124.073                  |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
|                     | н                                        | н | 0 | К      | L | v | F   | F    |        |       |                     | н                         | н | 0 | К      | L   | v | F   | F      | Tyr10  | Val12 |
| Initial Orientation | 182                                      |   | ~ |        | - |   |     | RB2  |        |       | Initial Orientatio  | RB2                       |   | ~ |        | -   |   | · · | 182    | .,     |       |
| Einal Orientation   | 182                                      |   |   | 151    |   |   |     | TIDE |        |       | Einal Orientation   | PB2                       |   |   |        |     |   |     | LUL    | RB2    | 852   |
| ai onentation       | LDZ                                      |   |   | LOI    |   |   |     |      |        |       | rinal Onentation    | DP2                       |   |   |        |     |   |     |        | ND2    | 6-0   |
|                     |                                          |   |   | LINE   |   |   |     |      |        |       |                     | RB2                       |   |   |        |     |   |     |        |        | C=U   |
|                     |                                          |   |   |        |   |   |     |      |        |       |                     | R52                       |   |   |        |     |   |     |        |        | R62   |
|                     | 101.000                                  |   |   |        |   |   |     |      |        |       |                     |                           |   |   |        |     |   |     |        |        |       |
| Iotal Energy        | 184.656                                  |   |   | -      |   |   |     |      |        |       | Total Energy        | 163.689                   |   |   |        |     |   |     |        |        |       |
| van der Waals       | 130 652                                  |   |   |        |   |   |     |      |        |       | van der Waals       | 121.443                   |   |   |        |     |   |     |        |        |       |
| electrostatic       |                                          |   |   |        |   |   |     |      |        |       | electrostatic       | -200 727                  |   |   |        |     |   |     |        |        |       |
| cicculostatic       | -198.088                                 |   |   |        |   |   |     |      |        |       | ciccuostatic        | 200.727                   |   |   |        |     |   |     |        |        |       |
| ciccitostatic       | -198.088                                 |   |   |        |   |   |     |      |        |       | cicerostutic        | 200.727                   |   |   |        |     |   |     |        |        |       |
| ΔEs                 | -198.088<br>-82.129                      |   |   |        |   |   |     |      |        |       | ΔEs                 | -103.096                  |   |   |        |     |   |     |        |        |       |
| ΔEs                 | -198.088<br>-82.129<br>-1.211            |   |   |        |   |   |     |      |        |       | ΔEs                 | -103.096                  |   |   |        |     |   |     |        |        |       |
| ΔEs                 | -198.088<br>-82.129<br>-1.211<br>-88.361 |   |   |        |   |   |     |      |        |       | ΔEs                 | -103.096<br>-10.42<br>-91 |   |   |        |     |   |     |        |        |       |

| Final Orientatio                                                                                                                                                                                                                                               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB1<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ų |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LS2    | RB1<br>CS                                                                                                               | F | F | Glu22<br>RS1<br>-CH2- | Ile31<br>LS2                             | CS                 |           | Initial Orientation<br>Final Orientation                                                 | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>CS<br>RB1<br>CS<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB1<br>LB1                                                    | -                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Phe4<br>LS1 | LS1<br>LS2   | RS1<br>RB2                                                                                        | RS1                                                                                         | RB2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|---|---|-----------------------|------------------------------------------|--------------------|-----------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----|
| Total Energy<br>van der Waals                                                                                                                                                                                                                                  | 143.487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | Total Energy<br>van der Waals                                                            | 124.995<br>111.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| ΔEs                                                                                                                                                                                                                                                            | -123.298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | ΔEs                                                                                      | -141.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
|                                                                                                                                                                                                                                                                | -111.504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           |                                                                                          | -124.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| Initial Orientati                                                                                                                                                                                                                                              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L      | V<br>RB1                                                                                                                | F | F | Arg5                  | lle31                                    | lle32              | Met35     | Initial Orientatio                                                                       | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB1                                                           | F                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arg5        | Glu22        | Ile31                                                                                             |                                                                                             |     |
| Final Orientatio                                                                                                                                                                                                                                               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LSI    |                                                                                                                         |   |   | RS1                   | LSZ                                      | LB1                | LSZ       | Final Orientatio                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RS1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LSI                                                                |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS2<br>LS1  | -CH2-        | R51                                                                                               |                                                                                             |     |
| Total Energy                                                                                                                                                                                                                                                   | 116.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | Total Energy                                                                             | 113.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| electrostatic                                                                                                                                                                                                                                                  | -247.665                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | electrostatic                                                                            | -251.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| ΔEs                                                                                                                                                                                                                                                            | -150.242<br>-18.313<br>-137.938                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | ΔEs                                                                                      | -153.495<br>-16.841<br>-141.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
|                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L      | v                                                                                                                       | F | F | Arg5                  | Glu22                                    |                    |           |                                                                                          | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v                                                                  | F                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ala21       | Glu22        |                                                                                                   |                                                                                             |     |
| Initial Orientati<br>Final Orientatio                                                                                                                                                                                                                          | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | LB1<br>CS                                                                                                               |   |   | CS                    | LB1                                      |                    |           | Initial Orientatio                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS1<br>LS1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB1                                                                |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1         | RS1<br>-CH2- |                                                                                                   |                                                                                             |     |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                 | 197.194<br>122.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | Total Energy<br>van der Waals<br>electrostatic                                           | 222.478 122.271 -146.347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| ΔEs                                                                                                                                                                                                                                                            | -69.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | ΔEs                                                                                      | -44.307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
|                                                                                                                                                                                                                                                                | -66.657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           |                                                                                          | -36.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| Initial Orientati                                                                                                                                                                                                                                              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L      | V<br>RB2                                                                                                                | F | F | Arg5                  | Tyr10                                    | Glu22              |           | Initial Orientatio                                                                       | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | K L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB2                                                           | F                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arg5        | Tyr10        | Ile31                                                                                             |                                                                                             |     |
| Final Orientatio                                                                                                                                                                                                                                               | LB2<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LB1<br>LS2<br>RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LS2    | RS2<br>RB2                                                                                                              |   |   | RB2<br>RS1            | LB2<br>LS2                               | RB2                |           | Final Orientation                                                                        | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB1<br>LB1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB2<br>LS2                                                         |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LB2<br>LS1  | RS2<br>RB2   | RS1                                                                                               |                                                                                             |     |
| Total Energy                                                                                                                                                                                                                                                   | 93.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | Total Energy                                                                             | 77.699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| electrostatic                                                                                                                                                                                                                                                  | 106.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | electrostatic                                                                            | 103.791                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| ΔEs                                                                                                                                                                                                                                                            | -172.788<br>-25.602<br>-153.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           | ΔEs                                                                                      | -189.086<br>-28.072<br>-162.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
|                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L      | v                                                                                                                       | F | F | Arg5                  | Tyr10                                    | lle31              |           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| Initial Orientati<br>Final Orientatio                                                                                                                                                                                                                          | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LB2<br>RB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LS2    | RB2<br>RB2                                                                                                              |   |   | RB2<br>RS2            | LS2                                      | LB1<br>LNH         |           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
|                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          | LB2                |           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                 | 98.284<br>110.558<br>-255.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
| ΔEs                                                                                                                                                                                                                                                            | -168.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                                                                                                                         |   |   |                       |                                          |                    |           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              |                                                                                                   |                                                                                             |     |
|                                                                                                                                                                                                                                                                | -146.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q      | К                                                                                                                       | L |   | v                     | F                                        | F                  | V         | al12                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Q                                                                  | ŀ                                                                                                         | (<br>)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L           | v            | F                                                                                                 |                                                                                             | F   |
| Initial Orige                                                                                                                                                                                                                                                  | tation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | 1.00                                                                                                                    |   |   |                       |                                          |                    |           |                                                                                          | initial C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Jinemati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | 0                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              | LC                                                                                                |                                                                                             |     |
| Initial Orier<br>Final Orient                                                                                                                                                                                                                                  | itation<br>ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | RS1<br>LS1*                                                                                                             |   |   |                       | RS1                                      | LB                 | 2 I.<br>C | .S1<br>≽O                                                                                | Final O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 'n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | 2                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              | LS                                                                                                | ;1                                                                                          |     |
| Initial Orien<br>Final Orient<br>Total Energy<br>van der Waa                                                                                                                                                                                                   | ation<br>ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LS1<br>124.222<br>119.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | RS1<br>LS1*<br>LNH*<br>*-CH2-                                                                                           |   |   |                       | RS1                                      | LB                 | 2 1       | S1<br>=0                                                                                 | Final O<br>Total Ei<br>van dei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nergy<br>r Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 161.984<br>126.065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | 2                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              | LS                                                                                                | :1                                                                                          |     |
| Initial Orien<br>Final Orient<br>Total Energy<br>van der Waa<br>electrostati                                                                                                                                                                                   | tation<br>ation<br>/<br>als<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LS1<br>124.222<br>119.022<br>244.528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | RS1<br>LS1*<br>LNH*<br>*-CH2-                                                                                           |   |   |                       | RS1                                      | LB                 | 2 1       | S1<br>=0                                                                                 | Final O<br>Total Ei<br>van dei<br>electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rientatio<br>nergy<br>r Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 161.984<br>126.065<br>-214.478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |              |                                                                                                   | i1                                                                                          |     |
| Initial Orient<br>Final Orient<br>Total Energy<br>van der Waa<br>electrostati<br>ΔEs                                                                                                                                                                           | Atation<br>ation<br>/<br>als<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | RS1<br>LS1*<br>LNH*<br>*-CH2-                                                                                           |   |   |                       | RS1                                      | LB                 | 2 1       | S1<br>≽O                                                                                 | Final Ο<br>Total Er<br>van der<br>electro<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nergy<br>r Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 161.984<br>126.065<br>-214.478<br>-104.801<br>-5.798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                           | \$2<br>?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |                                                                                                   |                                                                                             |     |
| Initial Orient<br>Final Orient<br>Total Energy<br>van der Waa<br>electrostati<br>ΔEs                                                                                                                                                                           | Atation<br>Ation<br>Als<br>C -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841<br>-134.801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | RS1<br>LS1*<br>LNH*<br>*-CH2-                                                                                           |   |   |                       | RS1                                      | LB                 |           | S1<br>⊨O                                                                                 | Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rientatio<br>nergy<br>r Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 161.984<br>126.065<br>-214.478<br>-104.801<br>-5.798<br>-104.751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |                                                                                                           | \$2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |              |                                                                                                   |                                                                                             |     |
| Initial Orient<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs                                                                                                                                                                            | tation<br>ation<br>/<br>als<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841<br>-134.801<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q      | RS1<br>LS1*<br>LNH*<br>*-CH2-<br>K<br>RB1                                                                               |   |   | V                     | F LB1                                    | F                  |           | 81 ==0 =================================                                                 | Final Ο<br>Total Er<br>van der<br>electro<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rientatio<br>nergy<br>r Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n<br>161.984<br>126.065<br>-214.478<br>-104.801<br>-5.799<br>-104.751<br>H<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                                                  |                                                                                                           | 52<br>2<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L           |              |                                                                                                   |                                                                                             | F   |
| Initial Oriert<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs                                                                                                                                                                            | tation<br>ation<br>/<br>als<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841<br>-134.801<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q      | RS1<br>LS1*<br>LNH*<br>*-CH2-<br>K<br>RB1<br>RB1<br>RS2                                                                 |   |   | V                     | F<br>LB1<br>LB1<br>CS                    | F                  | 2 L<br>C  | s1<br>=0<br>al12<br>s51                                                                  | Final O<br>Total Er<br>van der<br>electro<br>ΔEs<br>Initial O<br>Final O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rientatio<br>nergy<br>r Waals<br>static<br>Drientati<br>rientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n<br>161.984<br>126.065<br>-214.478<br>-104.801<br>-5.799<br>-104.751<br>H<br>on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Q                                                                  |                                                                                                           | 52<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L           |              | ES<br>F<br>RE<br>C                                                                                | 11                                                                                          | F   |
| Initial Oriert Final Orient Total Energy van der Wae electrostati AEs Initial Oriert Final Orient                                                                                                                                                              | ntation<br>ation<br>als<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841<br>-134.801<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q      | K<br>LS1*<br>LNH*<br>*-CH2-<br>K<br>RB1<br>RB1<br>RS2<br>RS1                                                            |   |   | V                     | F<br>LB1<br>LB1<br>CS                    | F                  |           | s1<br>=0<br>al12<br>tS1                                                                  | Final O<br>Total Er<br>van der<br>electro<br>ΔEs<br>Initial C<br>Final O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rientatio<br>nergy<br>r Waals<br>static<br>Drientati<br>rientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n<br>161.984<br>126.065<br>-214.478<br>-104.801<br>-5.798<br>-104.751<br>H<br>on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2<br>3<br>4<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q.                                                                 |                                                                                                           | 52<br>2<br>3<br>4<br>5<br>5<br>1<br>2<br>2<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L           |              | LS                                                                                                | 11                                                                                          | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati                                                                                                                                                                                    | tation<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841<br>-134.801<br>H<br>168.37<br>122.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q.     | K<br>K<br>RB1<br>RB1<br>RB1<br>RS2<br>RS1                                                                               |   |   | V                     | F<br>LB1<br>LB1<br>CS                    |                    |           | s1<br>=0<br>al12<br>381                                                                  | Final O<br>Total Et<br>van der<br>electro<br>ΔEs<br>Initial C<br>Final O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rientatio<br>nergy<br>r Waals<br>static<br>Drientatio<br>nergy<br>r Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n<br>161.984<br>126.065<br>-214.478<br>-104.801<br>-5.796<br>-104.751<br>H<br>on<br>n<br>193.001<br>131.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q                                                                  |                                                                                                           | 52<br>2<br>3<br>3<br>3<br>1<br>2<br>3<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L           |              | F<br>F<br>C                                                                                       | 11                                                                                          | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orient<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati                                                                                             | tation<br>/<br>/<br>tation<br>/<br>tation<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841<br>-134.801<br>H<br>168.37<br>122.108<br>197.595<br>08.415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ά      | K<br>K<br>RB1<br>RB1<br>RB1<br>RS2<br>RS1                                                                               |   |   | V                     | F<br>LB1<br>LB1<br>CS                    |                    |           | s1<br>=0<br>al12                                                                         | Final O<br>Total Er<br>van der<br>electro<br>ΔEs<br>Initial C<br>Final O<br>Total Er<br>van der<br>electro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rientatio<br>nergy<br>· Waals<br>static<br>Drientatio<br>nergy<br>· Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n<br>161.984<br>126.065<br>-214.478<br>-104.803<br>-5.798<br>-104.751<br>H<br>on<br>n<br>193.001<br>131.687<br>-189.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8<br>8<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q.                                                                 |                                                                                                           | 22<br>22<br>3<br>3<br>3<br>3<br>3<br>1<br>2<br>2<br>3<br>3<br>1<br>2<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L           |              | F<br>RE<br>C                                                                                      | ::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::                  | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs                                                                                       | tation<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LS1<br>124.222<br>119.022<br>244.528<br>-142.563<br>-12.841<br>134.801<br>H<br>H<br>168.37<br>122.108<br>197.595<br>-9.755<br>-9.755                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q      | RS1<br>LS1*<br>LN+<br>*-CH2-<br>K<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1                        |   |   | V                     | F<br>BB1<br>BB1<br>CS                    | LB                 | V V       | S1                                                                                       | Final O<br>Total Ei<br>van der<br>electro<br>ΔEs<br>Initial C<br>Final O<br>Total Ei<br>electro<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rientatio<br>nergy<br>r Waals<br>static<br>Drientatio<br>nergy<br>r Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n<br>161.984<br>126.065<br>-214.478<br>-104.801<br>-5.759<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-7.784<br>-0.177<br>-7.944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q.                                                                 | LS.                                                                                                       | 22 23 24 25 26 27 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L           | V            | LS                                                                                                | 11 1                                                                                        | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa-<br>electrostati<br>ΔEs<br>Initial Oriert<br>Final Orient<br>Total Energy<br>van der Wa-<br>electrostati                                                                                           | tation<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LS1<br>124.222<br>119.022<br>224.528<br>224.528<br>1-12.543<br>-12.841<br>-134.801<br>H<br>H<br>168.37<br>H<br>H<br>168.37<br>-59.415<br>-98.415<br>-97.55<br>-87.868                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H | Image: Amage:  | Q      | RS1<br>LS1<br>*-CH2-<br>KB1<br>RB1<br>RS1<br>RS1                                                                        |   |   | V                     | F<br>LB1<br>LB1<br>CS                    | LB                 |           | s1                                                                                       | Final O Total Ei van dei electro ΔEs Initial C Total Ei van dei electro ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nergy<br>Waals<br>Static<br>Drientati<br>rientatio<br>nergy<br>Waals<br>Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n<br>161.984<br>126.065<br>-214.478<br>-104.801<br>-5.738<br>-104.751<br>H<br>on<br>in<br>193.001<br>131.687<br>-189.157<br>-73.784<br>-0.177<br>-79.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>H<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q                                                                  | LS. 2                                                                                                     | ( ) 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L           | V            |                                                                                                   |                                                                                             | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orient<br>Total Energy<br>van der Wa<br>electrostati                                                                                                             | tation<br>i als<br>c -<br>tation<br>i als<br>c -<br>i als<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LS1<br>124,222<br>119.022<br>224,528<br>-142,563<br>-12,841<br>-134,801<br>H<br>H<br>168.37<br>-122,108<br>197.595<br>-98,415<br>-9.755<br>-9.755<br>-87,868<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H | Image: Section of the sectio | Q<br>Q | K<br>RS1<br>LS1<br>LS1<br>*CH2-<br>*CH2-<br>*CH2-<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1 |   |   | V                     | F<br>LB1<br>LB1<br>CS<br>F<br>LB1        | LB                 |           | s1<br>=0<br>al12<br>351                                                                  | Final O<br>Total EI<br>electro<br>ΔEs<br>Initial C<br>Final O<br>Total EI<br>van dei<br>electro<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nergy<br>Waals<br>Static<br>Drientati<br>nergy<br>Waals<br>Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | п<br>161.984<br>126.065<br>-214.478<br>-104.801<br>-5.798<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.7                                                                                                    | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | α<br>α<br>α<br>α<br>α<br>α<br>α<br>α<br>α<br>α<br>α<br>α<br>α<br>α | 1.5.1<br>2<br>3<br>4<br>4<br>5<br>5<br>6<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L           | V            |                                                                                                   | ::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::<br>::                  | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Was<br>electrostati<br>ΔEs<br>Initial Orient<br>Total Energy<br>van der Was<br>electrostati<br>ΔEs                                                                                                    | tation<br>i alion<br>i alis<br>c -<br>i alis<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LS1<br>124.222<br>224.528<br>-122.563<br>-12.841<br>134.801<br>H<br>168.37<br>-12.108<br>197.595<br>-9.755<br>-9.755<br>-87.868<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H | Image: Amage:  | Q.     | K<br>K<br>RB1<br>K<br>CH2-<br>K<br>RB1<br>RB1<br>RS1<br>RS1<br>KS1<br>S                                                 |   |   | V                     | F<br>LB1<br>LB1<br>CS                    | LB<br>F<br>F       |           | s1<br>=0<br>ai12<br>151                                                                  | Final O<br>Total Ei<br>van der<br>electro<br>ΔEs<br>Initial O<br>Total Es<br>electro<br>ΔEs<br>Initial O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nergy<br>Waals<br>Static<br>Drientatii<br>nergy<br>Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n<br>161.984<br>126.055<br>-214.478<br>-104.801<br>-5.798<br>-104.751<br>H<br>00<br>n<br>193.001<br>131.687<br>-189.157<br>-79.45<br>-79.45<br>H<br>00<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                                                                  | LES<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                 | 2 2 2 31 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <p< td=""><td>L</td><td>V</td><td></td><td>11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>F</td></p<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L           | V            |                                                                                                   | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                      | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Cotal Energy<br>van der Wa<br>electrostati                                                                                              | tation<br>ation<br>als<br>c -<br>tation<br>ation<br>/<br>als<br>c -<br>tation<br>/<br>als                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LS1<br>124.222<br>244.528<br>-142.563<br>-12.841<br>134.801<br>H<br>168.37<br>-12.841<br>1-134.801<br>9.755<br>-9.755<br>-9.755<br>-87.868<br>H<br>196.244<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q      | K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                             |   |   | V                     | F<br>LB1<br>LB1<br>CS<br>F<br>LB1<br>CS  | LB<br>LB<br>F<br>F |           | st                                                                                       | Final O Total Ei van dei electro ΔEs Initial C Final O Total Ei Van dei electro ΔEs Initial C Final O Total Ei Van dei C Final O Total Ei Van dei Van | nergy<br>Waals<br>Static<br>Drientati<br>rientatio<br>Vaals<br>Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n<br>161.984 4<br>-214.478<br>-104.80304<br>-5.79794<br>-104.751<br>H<br>00<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-10                                                                                                 | H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                                                                  | L.S. 2                                                                                                    | 2<br>2<br>3<br>3<br>4<br>3<br>3<br>1<br>3<br>1<br>2<br>3<br>1<br>4<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L           | V            |                                                                                                   | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa-<br>electrostati<br>AEs<br>Initial Oriert<br>Final Orient<br>Cotal Energy<br>van der Wa-<br>electrostati<br>AEs<br>Initial Oriert<br>Total Energy<br>van der Wa-<br>electrostati<br>AEs            | tation<br>/ /<br>/ also<br>tation<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LS1<br>124.222<br>244.528<br>142.563<br>-12.841<br>H<br>168.37<br>122.108<br>197.595<br>-87.868<br>H<br>196.244<br>133.714<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H | Image: Amage:  | Q<br>Q | K<br>K<br>K<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81                                       |   |   | V                     | F<br>LB1<br>LB1<br>CS<br>F<br>LB1<br>CS  | F<br>F             |           | S1                                                                                       | Final O Total Ei van dei electro ΔEs Initial C Final O Total Ei Initial C Final O Total Ei electro ΔEs Initial C Final O Total Ei electro ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nergy<br>Waals<br>Static<br>Drientati<br>nergy<br>Waals<br>Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n<br>161.984<br>126.065<br>-214.478<br>-104.80104.5578<br>H<br>104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-103.001<br>-131.687<br>-73.784<br>-109.204.79<br>-122.946<br>-199.204.79<br>-204.79<br>-204.79<br>-204.79<br>-204.79<br>-204.79<br>-204.79<br>-204.79<br>-204.79<br>-204.79<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751<br>-204.751                                                                                                     | H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | α<br>α                                                             | LS.                                                                                                       | 6<br>6<br>8<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>3<br>1<br>1<br>2<br>2<br>3<br>1<br>1<br>2<br>2<br>3<br>1<br>1<br>1<br>2<br>2<br>3<br>1<br>1<br>1<br>2<br>1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L           | v            | LE                                                                                                | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa-<br>electrostati<br>ΔEs<br>Initial Oriert<br>Final Orient<br>Total Energy<br>van der Wa-<br>electrostati<br>ΔEs<br>Initial Oriert<br>Total Energy<br>van der Wa-<br>electrostati<br>ΔEs            | tation<br>i alion<br>i alionno<br>i alionno | LS1<br>124.222<br>244.528<br>142.563<br>-12.841<br>1134.801<br>H<br>168.37<br>-22.841<br>1134.801<br>H<br>197.595<br>-98.415<br>-97.55<br>-87.868<br>H<br>H<br>196.244<br>186.587<br>-70.541<br>1.851                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H | Image: Amage:  | Q.     | K<br>K<br>R81<br>-CH2-<br>K<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81                       |   |   | V                     | F<br>LB1<br>LB1<br>CS                    | F                  |           | s1 ==0 =================================                                                 | Final O Total Ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nergy<br>Waals<br>Static<br>Drientatio<br>Drientatio<br>Waals<br>Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n<br>161.984 X<br>126.065<br>-214.478<br>126.065<br>-214.478<br>104.80145<br>-104.80145<br>-104.80145<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.8015<br>-104.757<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-104.8015<br>-10                                                                                                                                     | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | α                                                                  | 1.5.5                                                                                                     | 4 Control (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) | L           | v            |                                                                                                   | :<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>:<br>: | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Ka                        | tation<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LS1<br>124,222<br>224,528<br>142,553<br>142,553<br>122,841<br>134,801<br>H<br>H<br>168,37<br>122,108<br>H<br>197,595<br>-87,868<br>H<br>196,244<br>186,597<br>-77,564<br>1,851<br>1,851<br>-77,666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q.     | K<br>K<br>R811<br>K<br>R811<br>R811<br>R811<br>R811<br>R811<br>R813<br>R813<br>R813                                     |   |   | V                     | F<br>LB1<br>LB1<br>CS                    | - LB               |           | s1<br>=0<br>al12<br>151<br>101<br>101<br>101<br>101<br>101<br>101<br>101                 | Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs<br>Initial C<br>Final Ο<br>Total Ei<br>Final Ο<br>ΔEs<br>Initial C<br>Final O<br>Total Ei<br>Final O<br>Total Ei<br>Final O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ergy<br>Waals<br>Static<br>Drientati<br>mergy<br>Waals<br>Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>161.984<br>126.065<br>-214.478<br>-104.803<br>-5.79794<br>-104.55<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.7                                                                                                   | B B B B B B B B B B B B B B B B B B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a                                                                  | 1.5.5                                                                                                     | 4 Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Contro) (Contro) | L           | v            | LS                                                                                                | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                      | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Total Energy<br>van der Wa<br>electrostati                        | tation<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LS1<br>124.222<br>224.528<br>1-12.841<br>1-12.841<br>1-134.801<br>H<br>168.37<br>1-12.208<br>H<br>168.37<br>1-2.208<br>H<br>197.595<br>5-37.868<br>H<br>196.244<br>133.714<br>186.587<br>-70.586<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н | Image: Amage:  | ٩      | K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                             |   |   | V                     | F<br>LB1<br>LB1<br>CS<br>F<br>LB1<br>LB1 | F                  |           | s1<br>=0<br>all2<br>s51<br>                                                              | Final Ο<br>Total Ei<br>van dete<br>electro<br>ΔEs<br>Initial Ο<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final Ο<br>Initial O<br>Total Ei<br>Final Ο<br>Initial O<br>Initial O<br>Initia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rientatio Pergy Waals Static Drientati Contentatio Drientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>161.984 4<br>161.984 4<br>-104.8030<br>-214.478<br>-104.804<br>-5.7979<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-104.757<br>-                                                                                                   | H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | α<br>α                                                             | LS.                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L           | v            | LS LS                                                                                             | :: 11                                                                                       | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati        | tation<br>/<br>/ als<br>c<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LS1<br>124.222<br>244.528<br>142.563<br>142.563<br>142.563<br>142.563<br>142.563<br>122.408<br>197.595<br>-98.415<br>-9.755<br>-9.755<br>-9.7568<br>H<br>196.244<br>186.587<br>-70.541<br>1.851<br>-76.86<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H | Image: Amage:  | Q.     | K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                             |   |   | v                     | F<br>LB1<br>CS<br>F<br>LB1<br>CS         | F<br>F             |           | S1                                                                                       | Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs<br>Initial C<br>Final Ο<br>Total Ei<br>Van dei<br>electro<br>ΔEs<br>Initial C<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v Waals<br>static<br>Drientati<br>verspy<br>Waals<br>static<br>Drientatio<br>ergy<br>Waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n<br>161.994 4<br>161.994 4<br>126.065 6<br>-214.478<br>-104.8010-5.7979<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-1                                                                                                     | 3         -           3         -           4         -           5         -           5         -           6         -           7         -           7         -           8         -           9         -           10         -           11         -           12         -           13         -           14         -           15         -           16         -           17         -           18         -           19         -           10         -           10         -           11         -           12         -           13         -           14         -           15         -           16         -           17         -           18         -           19         -           10         -           10         -           11         -           12         -           13<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a<br>a<br>a                                                        |                                                                                                           | 4 Control (Control (Contro) (Control (Contro) (Contro) (Contro) (Contro) (Contro) | L           | v            | LS LS                                                                                             | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                       | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati        | tation<br>/ als<br>c<br>atation<br>/ -<br>atation<br>/ -<br>/ -<br>atation<br>/ -<br>/ -<br>atation<br>/ -<br>/ -<br>/ -<br>/ -<br>/ -<br>/ -<br>/ -<br>/ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LS1<br>124.222<br>244.528<br>142.563<br>142.563<br>142.563<br>142.563<br>142.563<br>122.418<br>134.801<br>H<br>168.37<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.755<br>-9.758<br>-9.755<br>-9.758<br>-9.755<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.758<br>-9.7588<br>-9.7588<br>-9.7588<br>-9.7588<br>-9.7588<br>-9.7588<br>-9.7588<br>-9.758 | н | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٩      | K<br>K<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1                                            |   |   | v                     | F<br>EB1<br>EB1<br>CS<br>F<br>EB1<br>CS  | F                  |           | S1                                                                                       | Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs<br>Initial Ο<br>Final Ο<br>Total Ei<br>Van dei<br>electro<br>ΔEs<br>Initial Ο<br>Total Ei<br>Van dei<br>electro<br>ΔEs<br>Initial O<br>Total Ei<br>Final Ο<br>Total Ei<br>Final Ο<br>Total Ei<br>Final O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vientatio<br>vergy<br>vaals<br>static<br>Drientatio<br>nergy<br>waals<br>static<br>Drientatio<br>nergy<br>waals<br>static<br>Drientatio<br>nergy<br>waals<br>static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n<br>161.994<br>161.994<br>126.065<br>-214.478<br>-104.801<br>-5.797<br>-104.801<br>-5.797<br>-104.801<br>-5.797<br>-104.751<br>-104.801<br>-5.797<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.801<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104                                                                                                 | Image: second        | α<br>α                                                             | L 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                   | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L           | v            | LS LS C                                                                                           | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                      | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati        | tation<br>i als<br>c -<br>tation<br>i als<br>c -<br>i als<br>c -<br>c -<br>c -<br>i als<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -<br>c -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LS1<br>124,222<br>244,528<br>142,563<br>142,563<br>142,563<br>142,563<br>142,563<br>142,563<br>142,563<br>122,814<br>134,801<br>H<br>168,37<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,755<br>-9,758<br>-9,755<br>-9,758<br>-9,755<br>-9,758<br>-9,755<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>-9,758<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٩      | K<br>K<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81                                            |   |   | v                     | F<br>LB1<br>CS<br>F<br>LB1<br>CS         | F                  |           | S1<br>(=0)<br>all 12<br>851<br>851<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs<br>Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs<br>Initial C<br>Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rientatio Pergy Waals Static Drientati Pergy Waals Static Drientatio Pergy Waals Static Drientatio Pergy Waals Static Drientatio Static Drientatio Static Drientatio Static Drientatio Static S | n<br>161.984<br>161.984<br>126.065<br>-214.478<br>126.065<br>-77.44.78<br>-104.801<br>-5.79,79<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.751<br>-104.7                                                                                                   | H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q                                                                  | L S S S S S S S S S S S S S S S S S S S                                                                   | C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L           | v            | LS<br>F<br>F<br>R<br>R<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | ::::::::::::::::::::::::::::::::::::::                                                      | F   |
| Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs<br>Initial Orier<br>Final Orient<br>Total Energy<br>van der Wa<br>electrostati<br>ΔEs | tation<br>i als<br>c<br>tation<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/<br>/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LS1<br>124,222<br>119,022<br>244,528<br>142,563<br>142,563<br>142,563<br>142,563<br>142,563<br>142,563<br>122,408<br>197,595<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,555<br>-97,556<br>-97,555<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,556<br>-97,557<br>-97,556<br>-97,556<br>-97,557<br>-97,556<br>-97,557<br>-97,556<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,557<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577<br>-97,577                                                       | н | <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ٩      | K<br>K<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81                                            |   |   | v<br>v                | F<br>LB1<br>CS<br>F<br>LB1<br>CS         | F                  |           | S1<br>S0<br>S0<br>S0<br>S0<br>S0<br>S0<br>S0<br>S0<br>S0<br>S0                           | Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs<br>Total Ei<br>Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs<br>Initial C<br>Final Ο<br>Total Ei<br>van dei<br>electro<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rientatio Pergy Waals Drientati Drientati Drientati Pergy Waals Static Drientatic Drientatic Drientatic Drientatic Drientatic Drientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n<br>161.984<br>161.984<br>126.065<br>-214.478<br>126.065<br>-214.478<br>-104.801<br>-5.793<br>-104.801<br>-5.793<br>-104.801<br>-131.687<br>-73.78<br>-79.42<br>-139.457<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-73.78<br>-79.42<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-75.05<br>-74.79<br>-74.79<br>-75.05<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>-74.79<br>- | Image: second | α<br>α                                                             | L 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                   | 4 Control (Control (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) (Contro) | L           | v            | LS L                                                          | ::::::::::::::::::::::::::::::::::::::                                                      | F   |

|                                | н                  | н | Q | К           | L   | v | F          | F        |       |       |                                         | н                   | н | Q | к           | L | v | F          | F         | Val 12     |
|--------------------------------|--------------------|---|---|-------------|-----|---|------------|----------|-------|-------|-----------------------------------------|---------------------|---|---|-------------|---|---|------------|-----------|------------|
| Initial Orientation            | n                  |   |   | RB2<br>RB2  |     |   | LB1<br>RB1 |          |       |       | Initial Orientatio<br>Final Orientation | n<br>LS1            |   |   | LB1<br>LS1* |   |   | RB2<br>RS1 |           | LS1        |
|                                |                    |   |   | RS1         |     |   | CS         |          |       |       |                                         |                     |   |   | LNH*        |   |   | RB2        |           | C=O        |
|                                |                    |   |   | RNH         |     |   | LB1        |          |       |       |                                         |                     |   |   | RB1         |   |   |            |           |            |
| Tatal Carson                   | 177 444            |   |   |             |     |   |            |          |       |       | Total Colomb                            | 122 (52             |   |   | RNH         |   |   |            |           |            |
| van der Waals                  | 123.22             |   |   |             |     |   |            |          |       |       | van der Waals                           | 115.562             |   |   |             |   |   |            |           |            |
| electrostatic                  | -191.461           |   |   |             |     |   |            |          |       |       | electrostatic                           | -245.953            |   |   |             |   |   |            |           |            |
| ΔEs                            | -89.341            |   |   |             |     |   |            |          |       |       | ΔEs                                     | -144.132            |   |   |             |   |   |            |           |            |
|                                | -8.643             |   |   |             |     |   |            |          |       |       |                                         | -16.301             |   |   |             |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
|                                | н                  | н | Q | к           | L   | v | F          | F        |       |       |                                         | н                   | н | Q | к           | L | v | F          | F         | Val12      |
| Initial Orientation            | n                  |   |   | LB2         |     |   | RB1        |          |       |       | Initial Orientatio                      | in .                |   |   | RB1         |   |   | LB2        |           | DC1        |
| rinal Offentation              |                    |   |   | LS2         |     |   | CS         |          |       |       | rinaronentation                         |                     |   |   | LB1         |   |   |            |           | RB1        |
|                                |                    |   |   | LNH         |     |   | RB1        |          |       |       |                                         |                     |   |   | RB2         |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Total Energy<br>van der Waals  | 166.004<br>122.824 |   |   |             |     |   |            |          |       |       | Total Energy<br>van der Waals           | 148.754<br>116.267  |   |   |             |   |   |            |           |            |
| electrostatic                  | -206.523           |   |   |             |     |   |            |          |       |       | electrostatic                           | -213.566            |   |   |             |   |   |            |           |            |
| ΔEs                            | -100.781           |   |   |             |     |   |            |          |       |       | ΔEs                                     | -118.031            |   |   |             |   |   |            |           |            |
|                                | -9.039             |   |   |             |     |   |            |          |       |       |                                         | -15.596             |   |   |             |   |   |            |           |            |
|                                | -90.790            |   |   |             |     |   |            |          |       |       |                                         | -105.859            |   |   |             |   |   |            |           |            |
|                                | н                  | н | 0 | к           | 1   | v | F          | F        | His6  | Asn23 |                                         | н                   | н | 0 | к           | 1 | v | F          | F         | Val12      |
| Initial Orientation            | n                  |   |   | LS2         |     |   | RB2        |          |       |       | Initial Orientatio                      | n                   |   |   | RS2         | _ |   | LB2        |           |            |
| Final Orientation              |                    |   |   | LS2         |     |   |            |          | LB2   | RB2   | Final Orientation                       | RB2<br>RS2          |   |   | RB1<br>RNH* |   |   | LB2<br>LS2 |           | RS2<br>C=O |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   | RS2*        |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   | *-CH2-      |   |   |            |           |            |
| Total Energy                   | 164.095            |   |   |             |     |   |            |          |       |       | Total Energy                            | 137.992             |   |   |             |   |   |            |           |            |
| electrostatic                  | -207.194           |   |   |             |     |   |            |          |       |       | electrostatic                           | -230.69             |   |   |             |   |   |            |           |            |
| ΔEs                            | -102 60            |   |   | -           |     |   |            |          |       |       | ΔEs                                     | -128 793            |   |   |             |   |   |            |           |            |
| -                              | -9.215             |   |   |             |     |   |            |          |       |       |                                         | -10.923             |   |   |             |   |   |            |           |            |
|                                | -97.467            |   |   |             |     |   |            |          |       |       |                                         | -120.963            |   |   |             |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   | _          |           |            |
| Initial Orientation            | n                  | н | Q | K<br>LB2    | L   | V | RB2        | F        | Val12 |       | Initial Orientatio                      | n H                 | н | ų | RB2         | L | V | F<br>LB2   | F         |            |
| Final Orientation              |                    |   |   | LB2         |     |   |            |          | LB2   |       | Final Orientation                       | 1                   |   |   | RS1         |   |   |            |           |            |
|                                |                    |   |   | 2           |     |   |            |          |       |       |                                         |                     |   |   | RB2         |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Total Energy                   |                    |   |   |             |     |   |            |          |       |       | Total Energy                            | 187.968             |   |   |             |   |   |            |           |            |
| electrostatic                  |                    |   |   |             |     |   |            |          |       |       | electrostatic                           | -182.32             |   |   |             |   |   |            |           |            |
| 412-                           |                    |   |   |             |     |   |            |          |       |       | 47-                                     | 20.042              |   |   |             |   |   |            |           |            |
| Ars                            | -131.863           |   |   |             |     |   |            |          |       |       | Ars                                     | -78.817             |   |   |             |   |   |            |           |            |
|                                | 109.727            |   |   |             |     |   |            |          |       |       |                                         | -72.593             |   |   |             |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Initial Orientation            | n H                | н | Q | CS          | L   | v | F          | F<br>LB1 | Ala30 |       | Initial Orientatio                      | n H                 | н | Q | CS          | L | V | F          | F<br>RB2  |            |
| Final Orientation              | LS1                |   |   | CS          | LS1 |   | RB1        | LB1      | LS1   |       | Final Orientation                       | RS1                 |   |   | RS2         |   |   |            | RB2       |            |
|                                | LSZ                |   |   | LS2<br>LS1* |     |   | RST        |          |       |       |                                         |                     |   |   | 2<br>RB1*   |   |   |            |           |            |
|                                |                    |   |   | LB1*        |     |   |            |          |       |       |                                         |                     |   |   | RS1*        |   |   |            |           |            |
| Total Energy                   | 126.133            |   |   | Oniz        |     |   |            |          |       |       | Total Energy                            | 140.714             |   |   | - Of IL     |   |   |            |           |            |
| van der Waals<br>electrostatic | -245.26            |   |   |             |     |   |            |          |       |       | van der Waals<br>electrostatic          | 118.665<br>-229.186 |   |   |             |   |   |            |           |            |
| 10                             |                    |   |   |             |     |   |            |          |       |       | 15                                      | 100.074             |   |   |             |   |   |            |           |            |
| ΔES                            | -140.652           |   |   |             |     |   |            |          |       |       | ΔES                                     | -126.071            |   |   |             |   |   |            |           |            |
|                                | -135.533           |   |   |             |     |   |            |          |       |       |                                         | -119.459            |   |   |             |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Initial Orientatio             | н                  | н | Q | K           | L   | v | F          | F<br>LB2 |       |       | Initial Orientatio                      | H                   | н | Q | K<br>LB1    | L | v | F          | F<br>RB1  |            |
| Final Orientation              | LS2                |   |   | LB1         |     |   |            | LS1      |       |       | Final Orientation                       | ı                   |   |   | LB1         |   |   | CS         | RB1       |            |
|                                |                    |   |   | LS1<br>LS2  |     |   |            |          |       |       |                                         |                     |   |   | LS1<br>2    |   |   |            | CS        |            |
|                                |                    |   |   | -CH2-       |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Total Energy                   | 148.612            |   |   |             |     |   |            |          |       |       | Total Energy                            | 176.618             |   |   |             |   |   |            |           |            |
| van der Waals<br>electrostatic | 121.812            |   |   |             |     |   |            |          |       |       | van der Waals<br>electrostatic          | 120.18              |   |   |             |   |   |            |           |            |
| 10                             |                    |   |   |             |     |   |            |          |       |       | 17                                      |                     |   |   |             |   |   |            |           |            |
| ΔES                            | -118.173           |   |   |             |     |   |            |          |       |       | ΔEs                                     | -90.167<br>-11.683  |   |   |             |   |   |            |           |            |
|                                | -108.289           |   |   |             |     |   |            |          |       |       |                                         | -82.792             |   |   |             |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Initial Orientation            | н                  | н | Q | K<br>RR1    | L   | v | F          | F<br>IR1 |       |       | Initial Orientatio                      | н                   | н | Q | K<br>RS1    | L | v | F          | F<br>IR1  |            |
| Final Orientation              |                    |   |   | RB1         |     |   |            |          |       |       | Final Orientation                       | 1                   |   |   | RS1         |   |   |            | CS        |            |
|                                |                    |   |   | RS1<br>2    |     |   |            |          |       |       |                                         |                     |   |   | 2           |   |   |            |           |            |
|                                |                    |   |   | CS          |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Total Energy                   | 190.534            |   |   | -642-       |     |   |            |          |       |       | Total Energy                            | 216.461             |   |   |             |   |   |            |           |            |
| van der Waals<br>electrostatic | 128.431            |   |   |             |     |   |            |          |       |       | van der Waals<br>electrostatic          | 127.89              |   |   | -           |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         | -54.373             |   |   |             |   |   |            |           |            |
| ΔEs                            | -76.251            |   |   |             |     |   |            |          |       |       | ΔEs                                     | -50.324             |   |   |             |   |   |            |           |            |
|                                | -73.114            |   |   |             |     |   |            |          |       |       |                                         | -44.648             |   |   |             |   |   |            |           |            |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Initial Orientation            | н                  | н | Q | K           | L   | v | F          | F<br>RR1 |       |       | Initial Orientatio                      | н                   | н | Q | K<br>RS2    | L | v | F          | F<br>I R1 | Gly29      |
| Final Orientation              |                    |   |   | LS1         |     |   |            |          |       |       | Final Orientation                       | 1                   |   |   | RS2         |   |   |            | LS2       | LS2        |
|                                |                    |   |   | 2<br>LNH    |     |   |            |          |       |       |                                         |                     |   |   | 2           |   |   |            |           | C=O        |
|                                |                    |   |   |             |     |   |            |          |       |       |                                         |                     |   |   |             |   |   |            |           |            |
| Total Energy                   | 191.889            |   |   |             |     |   |            |          |       |       | Total Energy                            | 187.178             |   |   |             |   |   |            |           |            |
| van der Waals<br>electrostatic | 130.73<br>-189.409 |   |   |             |     |   |            |          |       |       | van der Waals<br>electrostatic          | 124.849<br>-184.491 |   |   |             |   |   |            |           |            |
| 412                            |                    |   |   |             |     |   |            |          |       |       | 412                                     |                     |   |   |             |   |   |            |           |            |
| ΔES                            | - /4.896           |   |   |             |     |   |            |          |       |       | ΔES                                     | - /9.607<br>-7.014  |   |   |             |   |   |            |           |            |
|                                | -79.682            |   |   |             |     |   |            |          |       |       |                                         | -74.764             |   |   |             |   |   |            |           |            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | н        | н | Q | К        | L   | v | F   | F        |       |       |       |                   | н        | н | Q        | к        | L | v | F    | F        |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|---|---|----------|-----|---|-----|----------|-------|-------|-------|-------------------|----------|---|----------|----------|---|---|------|----------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initial Orientation | n        |   |   | LS2      |     |   |     | RB1      |       |       |       | Initial Orientati | ion      |   |          | LB1      |   |   |      | RB2      |       |
| image         image <t< td=""><td>Final Orientation</td><td>LS1</td><td></td><td></td><td>RS2</td><td></td><td></td><td></td><td>CS</td><td></td><td></td><td></td><td>Final Orientatio</td><td>on</td><td></td><td></td><td>RB1</td><td></td><td></td><td></td><td>RS1</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final Orientation   | LS1      |   |   | RS2      |     |   |     | CS       |       |       |       | Final Orientatio  | on       |   |          | RB1      |   |   |      | RS1      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |   |   | 1.51     |     |   |     |          |       |       |       |                   |          |   |          | LBI      |   |   |      |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |   |   | -CH2-    |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| Image of the set of                                                                                                |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Energy        | 162.729  |   |   |          |     |   |     |          |       |       |       | Total Energy      | 221.528  |   |          |          |   |   |      |          |       |
| Math         Math <th< td=""><td>electrostatic</td><td>-204 122</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>electrostatic</td><td>-144 274</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | electrostatic       | -204 122 |   |   |          |     |   |     |          |       |       |       | electrostatic     | -144 274 |   |          |          |   |   |      |          |       |
| Am         Am<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| 133         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4         1.4 <th1.4< th=""> <th1.4< th=""> <th1.4< th=""></th1.4<></th1.4<></th1.4<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΔEs                 | -104.056 |   |   |          |     |   |     |          |       |       |       | ΔEs               | -45.257  |   |          |          |   |   |      |          |       |
| Image         Image <th< td=""><td></td><td>-10.288</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-9.947</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | -10.288  |   |   |          |     |   |     |          |       |       |       |                   | -9.947   |   |          |          |   |   |      |          |       |
| No.         No. <td></td> <td>-94.395</td> <td></td> <td>-34.547</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | -94.395  |   |   |          |     |   |     |          |       |       |       |                   | -34.547  |   |          |          |   |   |      |          |       |
| Image matrix         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| micro decision         micro d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | н        | н | Q | К        | L   | v | F   | F        | Lys28 | Gly29 | Ala30 |                   | н        | н | Q        | к        | L | v | F    | F        | Gly29 |
| Image         Image <th< td=""><td>Initial Orientation</td><td>n</td><td></td><td></td><td>RB2</td><td></td><td></td><td></td><td>LB1</td><td>162</td><td>182</td><td>1.82</td><td>Initial Orientati</td><td>ion</td><td></td><td></td><td>LB2</td><td></td><td></td><td>1.01</td><td>RB1</td><td>D01</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Initial Orientation | n        |   |   | RB2      |     |   |     | LB1      | 162   | 182   | 1.82  | Initial Orientati | ion      |   |          | LB2      |   |   | 1.01 | RB1      | D01   |
| Note (resp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Final Orientation   |          |   |   | RS2      |     |   |     | RS2      | -CH2- | C=0   | LDZ   | Final Orientatio  | 511      |   |          | LNH      |   |   | Lai  | CS       | C=O   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |   |   | 2        |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| Note of the sector in the sector i                                                                                               |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| oright of the sector of a sect                                                                                               | Total Enormy        | 191 210  |   |   |          |     |   |     |          |       |       |       | Total Foormy      | 201 970  |   |          |          |   |   |      |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | van der Waals       | 117.983  |   |   |          |     |   |     |          |       |       |       | van der Waals     | 120.153  |   |          |          |   |   |      |          |       |
| Alt         Alt         Con         Con <td>electrostatic</td> <td>-187.109</td> <td></td> <td>electrostatic</td> <td>-167.679</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | electrostatic       | -187.109 |   |   |          |     |   |     |          |       |       |       | electrostatic     | -167.679 |   |          |          |   |   |      |          |       |
| Abs         Abs <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| 1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 <td>ΔES</td> <td>-85.566</td> <td></td> <td>ΔES</td> <td>-64.906</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ΔES                 | -85.566  |   |   |          |     |   |     |          |       |       |       | ΔES               | -64.906  |   |          |          |   |   |      |          |       |
| No.         No. <td></td> <td>-77.382</td> <td></td> <td>-57.952</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     | -77.382  |   |   |          |     |   |     |          |       |       |       |                   | -57.952  |   |          |          |   |   |      |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| number for electronic bin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Initial Orientation | н        | н | Q | R RB1    | L   | v | F   | F<br>182 |       |       |       | Initial Orientati | I H      | н | ų        | K<br>IS1 | L | v | F    | F<br>BB2 |       |
| Image         Image <th< td=""><td>Final Orientation</td><td>LS1</td><td></td><td></td><td>RB1</td><td></td><td></td><td>RB2</td><td>LB2</td><td></td><td></td><td></td><td>Final Orientatio</td><td>or LB2</td><td></td><td></td><td>LS1</td><td></td><td></td><td></td><td>1452</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Final Orientation   | LS1      |   |   | RB1      |     |   | RB2 | LB2      |       |       |       | Final Orientatio  | or LB2   |   |          | LS1      |   |   |      | 1452     |       |
| Image         Image <t< td=""><td></td><td></td><td></td><td></td><td>LB1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>LB2</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |          |   |   | LB1      |     |   |     |          |       |       |       |                   |          |   |          | LB2      |   |   |      |          |       |
| Image         Image <t< td=""><td></td><td></td><td></td><td></td><td>LNH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-CH2-</td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |          |   |   | LNH      |     |   |     |          |       |       |       |                   |          |   |          | -CH2-    |   |   |      |          |       |
| Trans regim bia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |          |   |   | -CH2-    |     |   |     |          |       |       |       |                   |          |   |          | LNH      |   |   |      |          |       |
| winder Water         12.3         winder Water         16.4         Winder Water         Winder Water<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total Energy        | 134.689  |   |   |          |     |   |     |          |       |       |       | Total Energy      | 201.297  |   |          |          |   |   |      |          |       |
| electronic         20.39          N         N         N         electronic         19.3         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N        N         N         N<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | van der Waals       | 122.29   |   |   |          |     |   |     |          |       |       |       | van der Waals     | 124.167  |   |          |          |   |   |      |          |       |
| ABS         13.206         U         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic       | -242.395 |   |   |          |     |   |     |          |       |       |       | electrostatic     | -164.561 |   |          |          |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AEs                 | -132 096 |   |   |          |     |   |     |          |       |       |       | AFs               | -65 488  |   |          |          |   |   |      |          |       |
| 132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65         132.65<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | -9.573   |   |   |          |     |   |     |          |       |       |       |                   | -7.696   |   |          |          |   |   |      |          |       |
| number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     | -132.668 |   |   |          |     |   |     |          |       |       |       |                   | -54.834  |   |          |          |   |   |      |          |       |
| ind         ind         Q         K         L         V         F         F         V         V         F         F         H         Q         K         L         V         F         F         F           Final Orientation         LB1         K         K         LS1         K         K         LS1         K         K         LS2         LS1         K         LS1         K <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| Initial Orientation         No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | н        | н | 0 | к        | 1   | v | F   | F        |       |       |       |                   | н        | н | 0        | к        | 1 | v | F    | F        |       |
| Find Orientation         LB1         MB2         LB1         MB2         LS1         MS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Initial Orientation | n        |   | ų | RS1      | -   |   |     | LB2      |       |       |       | Initial Orientati | ion      |   | <u> </u> | LS2      | - |   |      | RB2      |       |
| Lisi         Lisi <thlisi< th="">         Lisi         Lisi         <thl< td=""><td>Final Orientation</td><td>LB1</td><td></td><td></td><td>RB2</td><td>LS1</td><td></td><td>RB2</td><td>LS1</td><td></td><td></td><td></td><td>Final Orientatio</td><td>on</td><td></td><td></td><td>LS2</td><td></td><td></td><td>LB2</td><td></td><td></td></thl<></thlisi<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Final Orientation   | LB1      |   |   | RB2      | LS1 |   | RB2 | LS1      |       |       |       | Final Orientatio  | on       |   |          | LS2      |   |   | LB2  |          |       |
| Loc         Loc <thloc< th=""> <thloc< th=""> <thloc< th=""></thloc<></thloc<></thloc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | LS1      |   |   | RNH      |     |   |     |          |       |       |       |                   |          |   |          | 2        |   |   |      |          |       |
| Image: state of the s                                                                                              |                     | L52      |   |   | LB1"     |     |   |     |          |       |       |       |                   |          |   |          | LB2      |   |   |      |          |       |
| Teal Free region 19.05 19.04 19.05 19.04 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 19.05 1                                                                             |                     |          |   |   | LS1*     |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| van of vanse         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         107.94         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total Energy        | 109.025  |   |   | *-CH2-   |     |   |     |          |       |       |       | Total Energy      | 191.03   |   |          |          |   |   |      |          |       |
| enclosing         2.002         1.00         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0        0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | van der Waals       | 107.904  |   |   |          |     |   |     |          |       |       |       | van der Waals     | 126.745  |   |          |          |   |   |      |          |       |
| AEs     -127.95<br>-23.95<br>-146.95     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140     -140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | electrostatic       | -230.092 |   |   |          |     |   |     |          |       |       |       | electrostatic     | -175.443 |   |          |          |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΔEs                 | -157.76  |   |   |          |     |   |     |          |       |       |       | ΔEs               | -75.755  |   |          |          |   |   |      |          |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | -23.959  |   |   |          |     |   |     |          |       |       |       |                   | -5.118   |   |          |          |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | -146.965 |   |   |          |     |   |     |          |       |       |       |                   | -69.716  |   |          |          |   |   |      |          |       |
| H         H         Q         K         U         V         F         F         Val2         H         H         Q         K         U         V         F         F           Final Orientation-<br>Final |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| Initial Orientational metal of metal on metal original definitial orientation       Initial Orientation       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | н        | н | Q | к        | L   | v | F   | F        | Val12 |       |       |                   | н        | н | Q        | к        | L | v | F    | F        |       |
| nind Orientation         image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Initial Orientation | n        |   |   | RS2      |     |   |     | LB2      | 000   |       |       | Initial Orientati | ion      |   |          | LB2      |   |   |      | RB2      |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Final Orientation   |          |   |   | R52      |     |   |     |          | RBZ   |       |       | Final Orientatio  | JN       |   |          | 1.52     |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          | 2        |   |   |      |          |       |
| 188.368       199.367       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.373       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375       129.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| Alternation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total Enormy        | 188 269  |   |   | -        |     |   |     | -        | -     |       |       | Total Energy      | 187.012  |   |          |          |   |   |      |          |       |
| electrostate 19201 [ 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | van der Waals       | 129.187  |   |   |          |     |   |     |          |       |       |       | van der Waals     | 130.381  |   |          |          |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | electrostatic       | -192.801 |   |   |          |     |   |     |          |       |       |       | electrostatic     | -194.418 |   |          |          |   |   |      |          |       |
| AFs     -78.47     -78.47     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ΔEs                 | -78.417  |   |   |          |     |   |     |          |       |       |       | ΔEs               | -78.872  |   |          |          |   |   |      |          |       |
| H     H     Q     K     L     V     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F     F <td></td> <td>-2.676</td> <td></td> <td>-1.482</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     | -2.676   |   |   |          |     |   |     |          |       |       |       |                   | -1.482   |   |          |          |   |   |      |          |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |          |   |   |          |     |   | -   | -        |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initial Orientation | н        | н | Q | K<br>PB2 | L   | V | F   | F<br>IB2 | Glu11 |       |       | Initial Orientati | H        | н | Q        | к        | L | v | F    | F        |       |
| Abs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Final Orientation   |          |   |   | RS2      |     |   |     | LB2      | RB2   |       |       | Final Orientatio  | on       |   |          |          |   |   |      |          |       |
| Total Energy<br>van der Waals<br>electrostatic<br>- 98.256<br>AEs<br>- 9.476<br>- 88.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |          |   |   |          |     |   |     |          | C=O   |       |       |                   |          |   |          |          |   |   |      |          |       |
| Total Energy     Image: Constraint on the constraint on th                                                                                                 |                     |          |   |   |          |     |   |     |          |       |       |       |                   | _        |   |          |          |   |   |      |          |       |
| 101 Bargy<br>van der Vaals<br>eetcrostatic<br>- 98.056     102.307     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     -     - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |          |   |   |          |     |   |     |          |       |       |       |                   |          |   |          |          |   |   |      |          |       |
| van der Waals         122.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy        | 169.882  |   |   |          |     |   |     |          |       |       |       | Total Energy      |          |   |          |          |   |   |      |          |       |
| electrostatic     -198.266     -198.276     -198.276     -198.276     -198.276       ΔEs     -96.903     -96.903     -97.90     -97.90     -97.90       -97.6     -97.90     -97.90     -97.90     -97.90       -98.539     -99.90     -99.90     -99.90     -99.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | van der Waals       | 122.387  |   |   |          |     |   |     |          |       |       |       | van der Waals     |          |   |          |          |   |   |      |          |       |
| ΔEs -96.93<br>-9.476<br>-86.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | electrostatic       | -198.266 |   |   |          |     |   |     |          |       |       |       | electrostatic     |          |   |          |          |   |   |      |          |       |
| -9.476<br>-88.539 109 109.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΔEs                 | -96 903  |   |   |          |     |   |     |          | -     |       |       | ΔEs               | -266 785 |   |          |          |   |   |      |          |       |
| -88.539 109.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                   | -9.476   |   |   |          |     |   |     |          |       |       |       |                   | -131.863 |   |          |          |   |   |      |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | -88.539  |   |   |          |     |   |     |          |       |       |       |                   | 109.727  |   |          |          |   |   |      |          |       |

## The gas phase results of solapsone and the 1BA4 conformer of $A\beta$

|                     | н        | н   | Q | К |                    | н        | н     | Q     | К |
|---------------------|----------|-----|---|---|--------------------|----------|-------|-------|---|
| Initial Orientation | RB1      | CS  |   |   | Initial Orientatio | o CS     | RB1   |       |   |
| Final Orientation   | RS1      | RB1 |   |   | Final Orientatio   | r LS1    | RS1   | LS1   |   |
|                     | RS2      | RS2 |   |   |                    | LS2      | LB1   | -CH2- |   |
|                     | -CH2-    | RS1 |   |   |                    |          | LS1   |       |   |
|                     | RB2      |     |   |   |                    |          | -CH2- |       |   |
|                     |          |     |   |   |                    |          |       |       |   |
| Total Energy        | 58.557   |     |   |   | Total Energy       | 51.504   |       |       |   |
| van der Waals       | 89.502   |     |   |   | van der Waals      | 89.289   |       |       |   |
| electrostatic       | -251.858 |     |   |   | electrostatic      | -260.135 |       |       |   |
|                     |          |     |   |   |                    |          |       |       |   |
| ΔEs                 | -114.282 |     |   |   | ΔEs                | -121.335 |       |       |   |
|                     | -12.188  |     |   |   |                    | -12.401  |       |       |   |
|                     | -103.12  |     |   |   |                    | -111.397 |       |       |   |
|                     |          |     |   |   |                    |          |       |       |   |

|                                                                                                                        | н                                                                                                                                                       | н                             | 0 | ĸ |                                                                 | н                                                                                                                          | н               | 0 | ĸ |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---|---|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|---|---|
| Initial Orientation                                                                                                    | 1.01                                                                                                                                                    | CS                            | ų | ĸ | Initial Origotatio                                              | ~~~                                                                                                                        | 1.01            | ų | ĸ |
| Final Orientation                                                                                                      | LBI                                                                                                                                                     | 0.5                           |   |   | Final Orientatio                                                | 101                                                                                                                        | LDI             |   |   |
| Final Orientation                                                                                                      | LS1                                                                                                                                                     | LB1                           |   |   | Final Orientation                                               | LB1                                                                                                                        | LS1             |   |   |
|                                                                                                                        |                                                                                                                                                         | LS1                           |   |   |                                                                 | LB1                                                                                                                        |                 |   |   |
|                                                                                                                        |                                                                                                                                                         | CS                            |   |   |                                                                 | LS2                                                                                                                        |                 |   |   |
|                                                                                                                        |                                                                                                                                                         | RB1                           |   |   |                                                                 | LS1                                                                                                                        |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 | CS                                                                                                                         |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 | RB1                                                                                                                        |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
| Total Energy                                                                                                           | 96 697                                                                                                                                                  |                               |   |   | Total Energy                                                    | 60 492                                                                                                                     |                 |   |   |
| van der Waals                                                                                                          | 95.478                                                                                                                                                  |                               |   |   | van der Waals                                                   | 90.116                                                                                                                     |                 |   |   |
| electrostatic                                                                                                          | -220.32                                                                                                                                                 |                               |   |   | electrostatic                                                   | -249 545                                                                                                                   |                 |   |   |
| ciccuostatic                                                                                                           | -220.52                                                                                                                                                 |                               |   |   | electrostatic                                                   | -245.545                                                                                                                   |                 |   |   |
| AT-                                                                                                                    | 76.442                                                                                                                                                  |                               |   |   | 412-                                                            | 442 247                                                                                                                    |                 |   |   |
| ΔES                                                                                                                    | - 76.142                                                                                                                                                |                               |   |   | ΔES                                                             | -112.347                                                                                                                   |                 |   |   |
|                                                                                                                        | -6.212                                                                                                                                                  |                               |   |   |                                                                 | -11.574                                                                                                                    |                 |   |   |
|                                                                                                                        | -71.582                                                                                                                                                 |                               |   |   |                                                                 | -100.807                                                                                                                   |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        | н                                                                                                                                                       | н                             | Q | к |                                                                 | н                                                                                                                          | н               | Q | К |
| Initial Orientation                                                                                                    | RS1                                                                                                                                                     | CS                            |   |   | Initial Orientatio                                              | CS                                                                                                                         | RS1             |   |   |
| Final Orientation                                                                                                      | RB2                                                                                                                                                     | RS1                           |   |   | Final Orientation                                               | LB1                                                                                                                        | RS1             |   |   |
|                                                                                                                        | RS1                                                                                                                                                     |                               |   |   |                                                                 | LS2                                                                                                                        | RS2             |   |   |
|                                                                                                                        | -CH2-                                                                                                                                                   |                               |   |   |                                                                 | LS1                                                                                                                        |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
| Total Energy                                                                                                           | 93 394                                                                                                                                                  |                               |   |   | Total Energy                                                    | 46 285                                                                                                                     |                 |   |   |
| van der Waals                                                                                                          | 06.00                                                                                                                                                   |                               |   |   | van dar Waals                                                   | 02.471                                                                                                                     |                 |   |   |
|                                                                                                                        | 30.05                                                                                                                                                   |                               |   |   |                                                                 | 32.471                                                                                                                     |                 |   |   |
| electrostatic                                                                                                          | -220.307                                                                                                                                                |                               |   |   | electrostatic                                                   | -207.820                                                                                                                   |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   | 1.5                                                             |                                                                                                                            |                 |   |   |
| ΔES                                                                                                                    | -79.445                                                                                                                                                 |                               |   |   | ΔEs                                                             | -126.554                                                                                                                   |                 |   |   |
|                                                                                                                        | -5.6                                                                                                                                                    |                               |   |   |                                                                 | -9.219                                                                                                                     |                 |   |   |
|                                                                                                                        | -77.629                                                                                                                                                 |                               |   |   |                                                                 | -119.088                                                                                                                   |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        | н                                                                                                                                                       | н                             | Q | к |                                                                 | н                                                                                                                          | н               | Q | К |
| Initial Orientation                                                                                                    | LS1                                                                                                                                                     | CS                            |   |   | Initial Orientatio                                              | CS                                                                                                                         | LS1             |   |   |
| Final Orientation                                                                                                      | 151                                                                                                                                                     | IB1                           |   |   | Final Orientation                                               | CS CS                                                                                                                      | 151             |   |   |
| i mai onemation                                                                                                        | 102                                                                                                                                                     |                               |   |   | i mai onentation                                                | 0.5                                                                                                                        | 2               |   |   |
|                                                                                                                        | 1.02                                                                                                                                                    | 101                           |   |   |                                                                 |                                                                                                                            | 2               |   |   |
|                                                                                                                        | LBZ                                                                                                                                                     | LSI                           |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
| Total Energy                                                                                                           | 76.3                                                                                                                                                    |                               |   |   | Total Energy                                                    | 117.647                                                                                                                    |                 |   |   |
| van der Waals                                                                                                          | 91.861                                                                                                                                                  |                               |   |   | van der Waals                                                   | 99.895                                                                                                                     |                 |   |   |
| electrostatic                                                                                                          | -237.156                                                                                                                                                |                               |   |   | electrostatic                                                   | -202.545                                                                                                                   |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
| ΔEs                                                                                                                    | -96.539                                                                                                                                                 |                               |   |   | ΔEs                                                             | -55.192                                                                                                                    |                 |   |   |
|                                                                                                                        | -9.829                                                                                                                                                  |                               |   |   |                                                                 | -1.795                                                                                                                     |                 |   |   |
|                                                                                                                        | -88 418                                                                                                                                                 |                               |   |   |                                                                 | -53.807                                                                                                                    |                 |   |   |
|                                                                                                                        | -00.410                                                                                                                                                 |                               |   |   |                                                                 | -55.007                                                                                                                    |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               | - |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        | H                                                                                                                                                       | Н                             | Q | ĸ |                                                                 | H                                                                                                                          | H               | Q | К |
| Initial Orientation                                                                                                    | CS                                                                                                                                                      | RS2                           |   |   | Initial Orientatio                                              | RS2                                                                                                                        | CS              |   |   |
| Final Orientation                                                                                                      | RB1                                                                                                                                                     | RS2                           |   |   | Final Orientation                                               | RS2                                                                                                                        | LS2             |   |   |
|                                                                                                                        | RB1                                                                                                                                                     |                               |   |   |                                                                 |                                                                                                                            | CS              |   |   |
|                                                                                                                        | CS                                                                                                                                                      |                               |   |   |                                                                 |                                                                                                                            | RB1             |   |   |
|                                                                                                                        | RS1                                                                                                                                                     |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        | RS2                                                                                                                                                     |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        | -CH2-                                                                                                                                                   |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
| Total Energy                                                                                                           | 67 278                                                                                                                                                  |                               |   |   | Total Energy                                                    | 65 596                                                                                                                     |                 |   |   |
| van dar Waals                                                                                                          | 02.671                                                                                                                                                  |                               |   |   | van dar Waals                                                   | 02.008                                                                                                                     |                 |   |   |
|                                                                                                                        | 35.071                                                                                                                                                  |                               |   |   |                                                                 | 32.038                                                                                                                     |                 |   |   |
| electrostatic                                                                                                          | -250.015                                                                                                                                                |                               |   |   | electrostatic                                                   | -249.302                                                                                                                   |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
| ΔEs                                                                                                                    | -105.561                                                                                                                                                |                               |   |   | ΔEs                                                             | -107.243                                                                                                                   |                 |   |   |
|                                                                                                                        | -8.019                                                                                                                                                  |                               |   |   |                                                                 | -9.592                                                                                                                     |                 |   |   |
|                                                                                                                        | -101.277                                                                                                                                                |                               |   |   |                                                                 | -100.624                                                                                                                   |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 |                                                                                                                            |                 |   |   |
|                                                                                                                        | н                                                                                                                                                       | н                             | Q | к |                                                                 | н                                                                                                                          | н               | Q | К |
| Initial Orientation                                                                                                    | LS2                                                                                                                                                     | CS                            |   |   | Initial Orientatio                                              | CS                                                                                                                         | LS2             |   |   |
| Final Orientation                                                                                                      | LS2                                                                                                                                                     | LB1                           |   |   | Final Orientation                                               | LB1                                                                                                                        | LS2             |   |   |
|                                                                                                                        |                                                                                                                                                         | LS2                           |   |   |                                                                 | LS2                                                                                                                        | LS1             |   |   |
|                                                                                                                        |                                                                                                                                                         | RB1                           |   |   |                                                                 | -CH2-                                                                                                                      |                 |   |   |
|                                                                                                                        |                                                                                                                                                         | RS2                           |   |   |                                                                 | 151                                                                                                                        |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                    |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 | pc2                                                                                                                        |                 |   |   |
|                                                                                                                        |                                                                                                                                                         |                               |   |   |                                                                 | 1132                                                                                                                       |                 |   |   |
| Total Contract                                                                                                         | 10.000                                                                                                                                                  |                               |   |   | Territer                                                        | 40.000                                                                                                                     |                 |   |   |
| Iotal Energy                                                                                                           | 49.668                                                                                                                                                  |                               |   |   | Iotal Energy                                                    | 49.632                                                                                                                     |                 |   |   |
| wan der Waals                                                                                                          | -15:000                                                                                                                                                 |                               |   |   | van der Waals                                                   | 89.955                                                                                                                     |                 |   |   |
| variaci vvaais                                                                                                         | 90.52                                                                                                                                                   |                               |   |   |                                                                 | 262 024                                                                                                                    |                 |   |   |
| electrostatic                                                                                                          | 90.52                                                                                                                                                   |                               |   |   | electrostatic                                                   | -265.924                                                                                                                   |                 |   |   |
| electrostatic                                                                                                          | 90.52                                                                                                                                                   |                               |   |   | electrostatic                                                   | -203.924                                                                                                                   |                 |   |   |
| electrostatic                                                                                                          | 90.52<br>-261.678<br>-123.171                                                                                                                           |                               |   |   | electrostatic<br>ΔEs                                            | -123.207                                                                                                                   |                 |   |   |
| electrostatic<br>ΔEs                                                                                                   | 90.52<br>-261.678<br>-123.171<br>-11.17                                                                                                                 |                               |   |   | electrostatic<br>ΔEs                                            | -123.207<br>-11.735                                                                                                        |                 |   |   |
| electrostatic<br>ΔEs                                                                                                   | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94                                                                                                      |                               |   |   | electrostatic<br>ΔEs                                            | -123.207<br>-11.735<br>-115.186                                                                                            |                 |   |   |
| electrostatic<br>ΔEs                                                                                                   | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94                                                                                                      |                               |   |   |                                                                 | -123.207<br>-11.735<br>-115.186                                                                                            |                 |   |   |
| electrostatic<br>ΔEs                                                                                                   | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94                                                                                                      |                               |   |   | electrostatic<br>ΔEs                                            | -263.924<br>-123.207<br>-11.735<br>-115.186                                                                                |                 |   |   |
| electrostatic                                                                                                          | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94                                                                                                      |                               |   |   | electrostatic<br>ΔEs                                            | -203.924<br>-123.207<br>-11.735<br>-115.186                                                                                | L'              |   |   |
| electrostatic<br>ΔEs                                                                                                   | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H                                                                                                 | Н                             | Q | K |                                                                 | -263.924<br>-123.207<br>-11.735<br>-115.186<br>H                                                                           | Н               | Q | K |
| electrostatic<br>ΔEs<br>Initial Orientation                                                                            | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1                                                                                          | H<br>LB1                      | Q | K | electrostatic                                                   | -203.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1                                                                    | H<br>RB1        | Q | K |
| electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                       | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RS1                                                                                   | H<br>LB1<br>LS1               | Q | K | electrostatic                                                   | -203.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1                                                             | H<br>RB1<br>RS1 | Q | K |
| electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                       | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-11.294<br>                                                                                                  | H<br>LB1<br>LS1<br>LNH        | Q | K | electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientation | -203.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH                                                      | H<br>RB1<br>RS1 | Q | K |
| electrostatic                                                                                                          | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-       | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -203.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1                                               | H<br>RB1<br>RS1 | Q | K |
| electrostatic                                                                                                          | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RS1<br>RB1<br>RB1<br>RNH                                                              | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientation | -203.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1                                               | H<br>RB1<br>RS1 | Q | K |
| electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                       | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RNH<br>96.848                                             | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -203.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1<br>J05.56                                     | H<br>RB1<br>RS1 | Q | K |
| electrostatic electrostatic                                                                                            | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>                                                                                                  | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1<br>105.56<br>99.375                                       | H<br>RB1<br>RS1 | Q | K |
| electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic     | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RS1<br>RS1<br>RNH<br>96.848<br>96.731<br>-220.586                                     | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -203.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1<br>105.56<br>99.375<br>-214.764               | H<br>RB1<br>RS1 | Q | K |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                             | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RS1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB              | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -123.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1<br>105.56<br>99.375<br>-214.764               | H<br>RB1<br>RS1 | Q | K |
| electrostatic electrostatic AEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic AEc     | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RB1<br>RB1<br>RB1<br>RNH<br>96.848<br>96.731<br>-220.586                              | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -123.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1<br>105.56<br>99.375<br>-214.764               | H<br>RB1<br>RS1 | Q | K |
| Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RS1<br>RB1<br>RNH<br>96.848<br>96.731<br>-220.586<br>                                 | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -123.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LS1<br>LNH<br>LB1<br>105.56<br>99.375<br>-214.764<br>-67.279    | H<br>RB1<br>RS1 | Q | K |
| electrostatic electrostatic                                                                                            | 90.52<br>-261.678<br>-123.171<br>-11.17<br>-112.94<br>H<br>RB1<br>RS1<br>RB1<br>RS1<br>RB1<br>RNH<br>96.848<br>96.731<br>-220.586<br>-75.991<br>-75.991 | H<br>LB1<br>LS1<br>LNH<br>LB1 | Q | K | electrostatic                                                   | -123.924<br>-123.207<br>-11.735<br>-115.186<br>H<br>LB1<br>LNH<br>LB1<br>105.56<br>99.375<br>-214.764<br>-67.279<br>-2.355 | H<br>RB1<br>RS1 | Q | K |

|                     | н        | н     | Q   | к  |       |       |                    | н          | н   | Q | к   |       |
|---------------------|----------|-------|-----|----|-------|-------|--------------------|------------|-----|---|-----|-------|
| Initial Orientation | LB1      | RS1   |     |    |       |       | Initial Orientatio | RS1        | LB1 |   |     |       |
| Final Orientation   | LS1      | RS1   |     |    |       |       | Final Orientation  | RS1        | RB1 |   |     |       |
|                     | LB1      |       |     |    |       |       |                    |            | RS1 |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
| Total Energy        | 102,181  |       |     |    |       |       | Total Energy       | 85.121     |     |   |     |       |
| van der Waals       | 98.617   |       |     |    |       |       | van der Waals      | 97.976     |     |   |     |       |
| electrostatic       | -219.235 |       |     |    |       |       | electrostatic      | -234.908   |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
| ΔEs                 | -70.658  |       |     |    |       |       | ΔEs                | -87.718    |     |   |     |       |
|                     | -3.073   |       |     |    |       |       |                    | -3.714     |     |   |     |       |
|                     | -70.497  |       |     |    |       |       |                    | -86.17     |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
|                     | н        | н     | 0   | к  |       |       |                    | н          | н   | 0 | к   |       |
| Initial Orientation | LS1      | RB1   |     |    |       |       | Initial Orientatio | RB1        | LS1 |   |     |       |
| Final Orientation   | LS1      | RB1   |     |    |       |       | Final Orientation  | RB1        | LB1 |   |     |       |
|                     | CS       | RB1   |     |    |       |       |                    | RS1        | LS1 |   |     |       |
|                     | -CH2-    | RS1   |     |    |       |       |                    | CS         |     |   |     |       |
|                     | LB1      | RS2   |     |    |       |       |                    |            |     |   |     |       |
|                     |          | CS    |     |    |       |       |                    |            |     |   |     |       |
| Total Energy        | 209.058  |       |     |    |       |       | Total Energy       | 218.113    |     |   |     |       |
| van der Waals       | 78.677   |       |     |    |       |       | van der Waals      | 84.208     |     |   |     |       |
| electrostatic       | -61.878  |       |     |    |       |       | electrostatic      | -57.123    |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
| ΔEs                 | 36.219   |       |     |    |       |       | ΔEs                | 45.274     |     |   |     |       |
|                     | -23.013  |       |     |    |       |       |                    | -17.482    |     |   |     |       |
|                     | 86.86    |       |     |    |       |       |                    | 91.615     |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
|                     | н        | н     | 0   | К  | Tyr10 | Val12 |                    | н          | н   | 0 | к   | Leu17 |
| Initial Orientation | LB1      | RS2   | ~   |    | .,    |       | Initial Orientatio | RS2        | LB1 | ~ | , n |       |
| Final Orientation   | LB1      | RS2   |     |    | LB2   | LS2   | Final Orientation  | RS2        | LB1 |   |     | LS2   |
|                     | LB2      |       |     |    | LS2   | -CH-  |                    |            | LS2 |   |     | LS1   |
|                     | LS2      |       |     |    |       |       |                    |            | RB1 |   |     |       |
|                     | CS       |       |     |    |       |       |                    |            |     |   |     |       |
|                     | RB1      |       |     |    |       |       |                    |            |     |   |     |       |
| Total Energy        | 208 765  |       |     |    |       |       | Total Energy       | 205 855    |     |   |     |       |
| van der Waals       | 75,665   |       |     |    |       |       | van der Waals      | 76.45      |     |   |     |       |
| electrostatic       | -60.089  |       |     |    |       |       | electrostatic      | -62.094    |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
| ΔEs                 | 35.926   |       |     |    |       |       | ΔEs                | 33.016     |     |   |     |       |
|                     | -26.025  |       |     |    |       |       |                    | -25.24     |     |   |     |       |
|                     | 88.649   |       |     |    |       |       |                    | 86.644     |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
|                     | н        | н     | 0   | к  | Tyr10 | Val12 |                    | н          | н   | 0 | к   | Leu17 |
| Initial Orientation | RB1      | LS2   | _   |    | .,.== |       | Initial Orientatio | LS2        | RB1 |   |     |       |
| Final Orientation   | LS2      | LB1   |     |    | RB1   | CS    | Final Orientation  | LS2        | RB1 |   |     | RS2   |
|                     | CS       | LS2   |     |    | RS1   | C=O   |                    |            | RS2 |   |     |       |
|                     | -CH-     | LS1   |     |    | CS    |       |                    |            | CS  |   |     |       |
|                     | RS2      |       |     |    | RS2   |       |                    |            |     |   |     |       |
| Total Enormy        | 104.27   |       |     |    |       |       | Total Energy       | 214 612    |     |   |     |       |
| van der Waals       | 66.239   |       |     |    |       |       | van der Waals      | 81,186     |     |   |     |       |
| electrostatic       | -68.591  |       |     |    |       |       | electrostatic      | -58.479    |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
| ΔEs                 | 21.431   |       |     |    |       |       | ΔEs                | 41.773     |     |   |     |       |
|                     | -35.451  |       |     |    |       |       |                    | -20.504    |     |   |     |       |
|                     | 80.147   |       |     |    |       |       |                    | 90.259     |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
|                     | н        | н     | 0   | ĸ  | Leu17 |       |                    | н          | н   | 0 | ĸ   | Tyr10 |
| Initial Orientation | RB2      | LB1   | ų   | ĸ  | Leui  |       | Initial Orientatio | LB1        | RB2 | ų | ĸ   | 19110 |
| Final Orientation   | RB2      | LB1   |     |    | LS1   |       | Final Orientation  | LB2        | RB2 |   |     | LB2   |
|                     | RS1      | RB1   |     |    |       |       |                    | RS2        | RS2 |   |     |       |
|                     | RNH      | LNH   |     |    |       |       |                    | RB1        |     |   |     |       |
|                     |          | LS1   |     |    |       |       |                    | LS2        |     |   |     |       |
| Total Enormy        | 72 427   |       |     |    |       |       | Total Energy       | 72.049     |     |   |     |       |
| van der Waals       | 89.365   |       |     | ++ |       |       | van der Waals      | 88.647     |     |   |     |       |
| electrostatic       | -240.78  |       |     |    |       |       | electrostatic      | -242.243   |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
| ΔEs                 | -99.402  |       |     |    |       |       | ΔEs                | -99.791    |     |   |     |       |
|                     | -12.325  |       |     |    |       |       |                    | -13.043    |     |   |     |       |
|                     | -92.042  |       |     |    |       |       |                    | -93.505    |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
|                     | н        | н     | Q   | к  | Tyr10 | Val12 |                    | н          | н   | Q | к   |       |
| Initial Orientation | LB2      | RB1   |     |    |       |       | Initial Orientatio | RB1        | LB2 |   |     |       |
| Final Orientation   | LS2      | LB1   | RS1 |    | LB2   | LB2   | Final Orientation  | LB1        | LB2 |   |     |       |
|                     | LB2      | RS1   |     |    |       | C=O   |                    | LB1        | LS1 |   |     |       |
|                     |          | -CH2- |     |    |       |       |                    | RS1        |     |   |     | -     |
|                     |          | RB1   |     |    |       |       |                    | RNH<br>PB1 |     |   |     |       |
|                     |          | LINH  |     |    |       |       |                    | INH        |     |   |     |       |
|                     |          |       |     | ++ |       |       |                    | LS1        |     |   |     |       |
|                     |          |       |     |    |       |       |                    | -CH2-      |     |   |     |       |
|                     |          |       |     |    |       |       |                    | LB2        |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |
| Total Energy        | 56.516   |       |     |    |       |       | Total Energy       | 55.957     |     |   |     |       |
| van der Waals       | 84.58    |       |     |    |       |       | van der Waals      | 87.039     |     |   |     |       |
| electrostatic       | -255.417 |       |     |    |       |       | electrostatic      | -257.496   |     |   |     |       |
| AFs                 | -116 222 |       |     |    |       |       | ΔFs                | -116 992   |     |   |     | -     |
| 6                   | -110.323 |       |     |    |       |       |                    | -14.651    |     |   |     |       |
|                     | -106.679 |       |     |    |       |       |                    | -108.758   |     |   |     |       |
|                     |          |       |     |    |       |       |                    |            |     |   |     |       |

| L                                |                      |                         |            | Н               | Н          | Q     |    | к     | Leu17 |                     |         |                                       | Н                 | Н          | Q          | К     |       |       |
|----------------------------------|----------------------|-------------------------|------------|-----------------|------------|-------|----|-------|-------|---------------------|---------|---------------------------------------|-------------------|------------|------------|-------|-------|-------|
| ln<br>Fi                         | nitial O<br>inal Ori | rientation<br>ientation |            | LS2<br>LB1      | RS2<br>CS  | cs    |    |       | RS1   |                     | F       | nitial Orientatio<br>inal Orientatior | RS2<br>RS1        | LS2<br>LS2 |            |       |       |       |
|                                  |                      |                         |            | LS2             | -NH-       | -CH2- |    |       |       |                     |         |                                       | RS2               | 2          |            |       |       |       |
|                                  |                      |                         |            |                 | RB1<br>PS1 |       | -  |       |       |                     |         |                                       |                   | LS1        |            |       |       |       |
|                                  |                      |                         |            |                 | RS2        |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| T                                | otal En              | 0.000                   |            | 46 422          |            |       | _  |       |       |                     |         | otal Enormy                           | 24.012            |            |            |       |       |       |
| va                               | an der               | Waals                   |            | 87.705          |            |       |    |       |       |                     |         | an der Waals                          | 94.786            |            |            |       |       |       |
| el                               | lectros              | tatic                   |            | -261.284        |            |       | _  |       |       |                     | e       | lectrostatic                          | -268.751          |            |            |       |       |       |
| Δ                                | Es                   |                         |            | -126.417        |            |       |    |       |       |                     | 2       | ΔEs                                   | -138.827          |            |            |       |       |       |
|                                  |                      |                         |            | -13.985         |            |       |    |       |       |                     |         |                                       | -6.904            |            |            |       |       |       |
|                                  |                      |                         |            | -112.546        |            |       | -  |       |       |                     |         |                                       | -120.013          |            |            |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| In                               | nitial O             | rientation              |            | H<br>LS2        | H<br>RB2   | Q     |    | к     |       |                     | 1       | nitial Orientatio                     | H<br>RB2          | H<br>LS2   | Q          | к     |       |       |
| Fi                               | inal Ori             | ientation               |            | LS2             | RB2        |       |    |       |       |                     | F       | inal Orientation                      | RB2               | LS2        | LB2        |       |       |       |
|                                  |                      |                         |            |                 | RS2        |       | -  |       |       |                     |         |                                       | RS2               |            |            |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| To                               | otal En<br>an der    | ergy<br>Waals           |            | 82.34<br>95.516 |            |       | -  |       |       |                     | 1       | otal Energy<br>an der Waals           | 73.028            |            |            |       |       |       |
| el                               | lectros              | tatic                   |            | -235.324        |            |       |    |       |       |                     | e       | lectrostatic                          | -239.595          |            |            |       |       |       |
| Δ                                | Fs                   |                         |            | -90 499         |            |       |    |       |       |                     |         | \Fs                                   | -99 811           |            |            |       |       |       |
| _                                |                      |                         |            | -6.174          |            |       |    |       |       |                     |         |                                       | -10.605           |            |            |       |       |       |
|                                  |                      |                         |            | -86.586         |            |       | -  |       |       |                     |         |                                       | -90.857           |            |            |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| In                               | aitial O             | rientation              |            | H               | H          | Q     |    | к     |       |                     |         | nitial Orientatio                     | H                 | H          | Q          | к     |       |       |
| Fi                               | inal Ori             | ientation               |            | LB2             | RS1        |       |    |       |       |                     | F       | inal Orientation                      | RB1               | LS1        | RS2        |       |       |       |
|                                  |                      |                         |            | LS2             | RS2        |       |    |       |       |                     |         |                                       | RB1               | LS2        | -CH2-      |       |       |       |
|                                  |                      |                         |            | N32             |            |       |    |       |       |                     |         |                                       | RS1               |            |            |       |       |       |
| _                                |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| l c<br>va                        | otal En<br>an der    | ergy<br>Waals           |            | 55.26<br>89.078 |            |       |    |       |       |                     | \<br>\  | otal Energy<br>an der Waals           | 31.009<br>88.676  |            |            |       |       |       |
| el                               | lectros              | tatic                   |            | -255.213        |            |       |    |       |       |                     | e       | lectrostatic                          | -278.353          |            |            |       |       |       |
| Δ                                | Es                   |                         |            | -117.579        |            |       | -  |       |       |                     | 2       | ΔEs                                   | -141.83           |            |            |       |       |       |
|                                  |                      |                         |            | -12.612         |            |       |    |       |       |                     |         |                                       | -13.014           |            |            |       |       |       |
|                                  |                      |                         |            | -106.475        |            |       | -  |       |       |                     |         |                                       | -129.615          |            |            |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| In                               | nitial O             | rientation              |            | H<br>IB2        | H<br>RB2   | Q     |    | к     |       |                     |         | nitial Orientatio                     | H<br>RB2          | H<br>IB2   | Q          | к     |       |       |
| Fi                               | inal Ori             | ientation               |            | COL             | RS2        |       |    |       |       |                     | F       | inal Orientation                      | LS2               | LS2        | LB2        |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       | -CH2-             | 2          |            |       |       |       |
|                                  |                      |                         |            |                 |            |       | -  |       |       |                     |         |                                       | RNH               |            |            |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       | RB2               |            |            |       |       |       |
| то                               | otal En              | ergy                    |            | 129.247         |            |       | -  |       |       |                     | 1       | otal Energy                           | 45.514            |            |            |       |       |       |
| va                               | an der               | Waals                   |            | 100.869         |            |       |    |       |       |                     | ×       | an der Waals                          | 85.74             |            |            |       |       |       |
| el                               | lectros              | tatic                   |            | -192.59         |            |       | -  |       |       |                     | e       | lectrostatic                          | -262.022          |            |            |       |       |       |
| Δ                                | Es                   |                         |            | -43.592         |            |       |    |       |       |                     | 2       | ΔEs                                   | -127.325          |            |            |       |       |       |
|                                  |                      |                         |            | -0.821          |            |       |    |       |       |                     |         |                                       | -15.95            |            |            |       |       |       |
|                                  |                      |                         |            | -43.032         |            |       |    |       |       |                     |         |                                       | -115.204          |            |            |       |       |       |
|                                  |                      |                         |            |                 |            | 0     |    | v     | Val12 | Dho10               |         |                                       |                   |            | 0          | K     | Val12 |       |
| In                               | nitial O             | rientation              |            | LB2             | п          | ų     | R  | B2    | Valiz | Pliets              | 1       | nitial Orientatio                     | RB2               | п          | ų          | LB2   | Vdl12 |       |
| Fi                               | inal Ori             | ientation               |            | LB2             |            |       |    |       | LB2   | RNH                 | F       | inal Orientation                      | RB2               |            |            |       | RS2   |       |
|                                  |                      |                         |            | LB2             |            |       | -  |       |       | RB1                 |         |                                       | RS2<br>2          |            |            |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| To                               | otal En<br>an der    | ergy<br>Waals           |            | 129.4<br>93.808 |            |       | -  |       |       |                     | 1       | otal Energy<br>an der Waals           | 121.016<br>94.307 |            |            |       |       |       |
| el                               | lectros              | tatic                   |            | -186.148        |            |       |    |       |       |                     | e       | lectrostatic                          | -196.402          |            |            |       |       |       |
| Δ                                | Fs                   |                         |            | -43 439         |            |       | -  |       |       |                     |         | \Fs                                   | -51 823           |            |            |       |       |       |
|                                  |                      |                         |            | -7.882          |            |       |    |       |       |                     | -       |                                       | -7.383            |            |            |       |       |       |
|                                  |                      |                         | V          | -37.41          |            | Hic   | 14 |       |       |                     |         | V                                     | -47.664           | c          | Hic14      |       |       |       |
| Initial Orient                   | tation               | RB1                     | LB1        | · ·             |            | 1113  | 14 |       |       | Initial Orientatio  | LB1     | RB1                                   |                   |            | 111314     |       |       |       |
| Final Orienta                    | ation                | RS1                     | CS         |                 |            | RB    | 31 |       |       | Final Orientation   | LS1     | CS                                    |                   |            | LB2        |       |       |       |
|                                  |                      |                         |            |                 |            | RS    | 51 |       |       |                     | LB1     |                                       |                   |            | LS1<br>LNH |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            | LB1        |       |       |       |
|                                  |                      |                         |            |                 | _          |       |    |       |       |                     |         |                                       |                   |            | -CH2-      |       |       |       |
| Total Energy                     |                      | 118.131                 |            |                 |            |       |    |       |       | Total Energy        | 113.99  | 5                                     |                   |            |            |       |       |       |
| van der Waal                     | ls                   | 92.892                  |            |                 |            |       |    |       |       | van der Waals       | 90.72   | L                                     |                   |            |            |       |       |       |
| electrostatic                    |                      | -194.04                 |            | _               | _          |       |    |       |       | electrostatic       | -198.74 | 15                                    |                   |            |            |       |       |       |
| ΔEs                              |                      | -54.708                 |            |                 |            |       |    |       |       | ΔEs                 | -58.8   | 44                                    |                   |            |            |       |       |       |
|                                  |                      | -8.798                  |            |                 |            |       |    |       |       |                     | -10.9   | 69                                    |                   |            |            |       |       |       |
|                                  |                      | -45.302                 |            | -               | _          |       |    |       |       |                     | -50.0   | U7                                    |                   |            |            |       | -     |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
|                                  |                      | L                       | V          | F               | F          | His   | 13 | His14 |       |                     | L       | V                                     | F                 | F          | Asp1       | His13 | His14 | Lys16 |
| Initial Orienta<br>Final Orienta | tation               | LB1                     | RB2<br>RB2 |                 | _          | 15    | 2  | 152   |       | Initial Orientation | RB1     | LB2                                   |                   | RB2        | RB2        | RS1   | RS1   | RB2   |
| indi offenta                     | , cioni              | 101                     | RS2        |                 |            | C=    | 0  | 101   |       | indi offertation    | RB1     |                                       |                   | no.        | (NH3+)     | C=O   | 101   | 1102  |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     | RNH     |                                       |                   |            |            |       |       |       |
|                                  |                      |                         |            |                 |            |       |    |       |       |                     |         |                                       |                   |            |            |       |       |       |
| Total Energy                     |                      | 86.05                   |            |                 |            |       |    |       |       | Total Energy        | 104.78  | 3                                     |                   |            |            |       |       |       |
| van der Waal                     | ls                   | 88.259                  |            |                 | _          |       |    |       |       | van der Waals       | 80.96   | 5                                     |                   |            |            |       |       |       |
| ciecci Ustall                    |                      | 210.3/3                 |            |                 |            |       |    |       |       | cicciostatit        | -202.43 |                                       |                   |            |            |       |       |       |
| ΔEs                              |                      | -86.789                 |            |                 |            |       |    |       |       | ΔEs                 | -68.0   | 59                                    |                   |            |            |       |       |       |
|                                  |                      | -13.431                 |            |                 |            |       |    |       |       |                     | -20.7   | 24                                    |                   |            |            |       |       |       |
|                                  |                      | -UZ.241                 |            |                 |            |       |    |       |       |                     | -53.6   |                                       |                   |            |            |       |       |       |

|                     | L        | v        | F   | F         | His14 |            |       |       |                                                                                                                | L         | v   | F   | F   | HIs14 |            |       |
|---------------------|----------|----------|-----|-----------|-------|------------|-------|-------|----------------------------------------------------------------------------------------------------------------|-----------|-----|-----|-----|-------|------------|-------|
| Initial Orientation | LB2      | RB2      |     |           |       |            |       |       | Initial Orientatio                                                                                             | RB2       | LB2 |     |     |       |            |       |
| Final Orientation   | LB2      |          |     |           | LS2   |            |       |       | Final Orientation                                                                                              | RB2       |     |     |     | RNH   |            |       |
|                     |          |          |     |           | LB2   |            |       |       |                                                                                                                |           |     |     |     | RS1   |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| Total Energy        | 115.186  |          |     |           |       |            |       |       | Total Energy                                                                                                   | 119.352   |     |     |     |       |            |       |
| van der Waals       | 93.243   |          |     |           |       |            |       |       | van der Waals                                                                                                  | 97.056    |     |     |     |       |            |       |
| electrostatic       | -199.81  |          |     |           |       |            |       |       | electrostatic                                                                                                  | -199.512  |     |     |     |       |            |       |
| ΔEs                 | -57.653  |          |     |           |       |            |       |       | ΔEs                                                                                                            | -53.487   |     |     |     |       |            |       |
|                     | -8.447   |          |     |           |       |            |       |       |                                                                                                                | -4.634    |     |     |     |       |            |       |
|                     | -51.072  |          |     |           |       |            |       |       |                                                                                                                | -50.774   |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     | L        | v        | F   | F         |       |            |       |       |                                                                                                                | L         | v   | F   | F   | His13 | His14      | Gln15 |
| Initial Orientation | LB2      |          | RB2 |           |       |            |       |       | Initial Orientatio                                                                                             | RB2       |     | LB2 |     |       |            |       |
| Final Orientation   |          |          |     |           |       |            |       |       | Final Orientation                                                                                              |           |     |     |     | RS1   | RS2        | RS1   |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     | *N    | H of backb | one   |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| Total Energy        | 142.266  |          |     |           |       |            |       |       | Total Energy                                                                                                   | 90.016    |     |     |     |       |            |       |
| electrostatic       | -163.845 |          |     |           |       |            |       |       | electrostatic                                                                                                  | -224.71   |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| ΔEs                 | -30.573  |          |     |           |       |            |       |       | ΔEs                                                                                                            | -82.823   |     |     |     |       |            |       |
|                     | -6.761   |          |     |           |       |            |       |       |                                                                                                                | -13.977   |     |     |     |       |            |       |
|                     | -13.107  |          |     |           |       |            |       |       |                                                                                                                | -73.972   |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     | L        | v        | F   | F         | His14 |            |       |       |                                                                                                                | L         | v   | F   | F   | His14 |            |       |
| Final Orientation   | LB1      |          |     | RB1<br>CS | 151   |            |       |       | Final Orientatio                                                                                               | KB1<br>CS |     |     | LB1 | RS1   |            |       |
| rind offertation    | LS1      |          |     |           |       |            |       |       | i indi offeritation                                                                                            | RB1       |     |     | LS1 | 1131  |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                | RS1       |     |     | LS1 |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     | CS  |       |            |       |
| Total Energy        | 116 575  |          |     |           |       |            |       |       | Total Energy                                                                                                   | 90 /12    |     |     |     |       |            |       |
| van der Waals       | 95.35    |          |     |           |       |            |       | +     | van der Waals                                                                                                  | 85.8      |     |     |     |       |            |       |
| electrostatic       | -204.571 |          |     |           |       |            |       |       | electrostatic                                                                                                  | -210.786  |     |     |     |       |            |       |
| 15                  |          |          |     |           |       |            |       |       | 17                                                                                                             |           |     |     |     |       |            |       |
| ΔEs                 | -56.264  |          |     |           |       |            |       |       | ΔEs                                                                                                            | -82.426   |     |     |     |       |            |       |
|                     | -55.833  |          |     |           |       |            |       |       |                                                                                                                | -62.048   |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     |          |          |     | -         |       |            |       |       |                                                                                                                |           |     | -   | -   |       |            |       |
| Initial Orientation | L<br>IB1 | v        | F   | F<br>RB2  | HIS14 | Val24      |       |       | Initial Orientatio                                                                                             | RB2       | v   | F   | IB1 | HIS14 |            |       |
| Final Orientation   | LB1      | LB2      |     |           | LS1   | RB2        |       |       | Final Orientation                                                                                              | RS2       |     |     | LB1 | RS2   |            |       |
|                     |          | LS1      |     |           |       |            |       |       |                                                                                                                | RNH       |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                | RB1       |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| Total Energy        | 90.126   |          |     |           |       |            |       |       | Total Energy                                                                                                   | 83.54     |     |     |     |       |            |       |
| van der Waals       | 87.55    |          |     |           |       |            |       |       | van der Waals                                                                                                  | 91.234    |     |     |     |       |            |       |
| electrostatic       | -207.677 |          |     |           |       |            |       |       | electrostatic                                                                                                  | -238.553  |     |     |     |       |            |       |
| ΔEs                 | -82.713  |          |     |           |       |            |       |       | ΔEs                                                                                                            | -89.299   |     |     |     |       |            |       |
|                     | -14.14   |          |     |           |       |            |       |       |                                                                                                                | -10.456   |     |     |     |       |            |       |
|                     | -58.939  |          |     |           |       |            |       |       |                                                                                                                | -89.815   |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     | L        | v        | F   | F         | Ala21 | Val24      | Gly25 | Lys28 |                                                                                                                | L         | v   | F   | F   | His14 |            |       |
| Initial Orientation | LB2      |          |     | RB1       |       |            |       |       | Initial Orientatio                                                                                             | RB1       |     |     | LB2 |       |            |       |
| Final Orientation   |          |          |     | RB1       | LS2   | CS         | LS2   | LS1   | Final Orientation                                                                                              | RB1       | RS2 |     | LB2 | RS2   |            |       |
|                     |          |          |     |           | C=0   | LB1<br>152 |       | 2     |                                                                                                                |           |     |     | LSZ |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| Total Energy        | 106.982  |          |     |           |       |            |       |       | Total Energy                                                                                                   | 85.416    |     |     |     |       |            |       |
| electrostatic       | -205.72  |          |     |           |       |            |       |       | electrostatic                                                                                                  | -224.832  |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| ΔEs                 | -65.857  |          |     |           |       |            |       |       | ΔEs                                                                                                            | -87.423   |     |     |     |       |            |       |
|                     | -12.574  |          |     |           |       |            |       |       |                                                                                                                | -11.084   |     |     |     |       |            |       |
|                     | 30.362   |          |     |           |       |            |       |       |                                                                                                                | 70.094    |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| which out and       | L        | V        | F   | F         | His14 | Val24      |       |       | local de la companya | L         | V   | F   | F   | His14 |            |       |
| Final Orientation   | LB2      |          | -   | KB2       | 182   | RB7        |       |       | Final Orientation                                                                                              | KB2<br>CS |     |     | 1B2 | RB1   |            |       |
| sheritation         |          |          |     |           | LS1   |            |       |       |                                                                                                                | RB1       |     |     |     | RS2   |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                | RS2       |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| Total Energy        | 101.663  |          |     |           |       |            |       |       | Total Energy                                                                                                   | 87.753    |     |     |     |       |            |       |
| van der Waals       | 89.005   |          |     |           |       |            |       |       | van der Waals                                                                                                  | 87.539    |     |     |     |       |            |       |
| electrostatic       | -197.487 |          |     |           |       |            |       |       | electrostatic                                                                                                  | -222.651  |     |     |     |       |            |       |
| AE <sub>0</sub>     | 71 176   |          |     |           |       |            |       |       | AEa                                                                                                            | 9E 096    |     |     |     |       |            |       |
|                     | -12.685  |          | -   |           |       |            |       |       | 41.5                                                                                                           | -65.086   |     |     |     |       |            |       |
|                     | -48.749  |          |     |           |       |            |       |       |                                                                                                                | -73.913   |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
|                     |          | v        | c   | c         | Glo15 | Glupp      |       | +     |                                                                                                                |           | V   | c   | E   | Glo15 |            |       |
| Initial Orientation | L        | v<br>RB1 | LB1 | F         | GIUT2 | 01022      |       |       | Initial Orientatio                                                                                             | n         | LB1 | RB1 | F   | Gints |            |       |
| Final Orientation   |          | RB1      | CS  |           | CS    | CS         |       |       | Final Orientation                                                                                              |           |     |     |     | LB1   |            |       |
|                     |          |          | LB1 |           |       |            |       |       |                                                                                                                |           |     |     |     | RB1   |            |       |
|                     |          |          |     |           |       |            |       | -     |                                                                                                                |           |     |     |     |       |            |       |
|                     |          |          |     |           |       |            |       |       |                                                                                                                |           |     |     |     |       |            |       |
| Total Energy        | 162.268  |          |     |           |       |            |       |       | Total Energy                                                                                                   | 145.532   |     |     |     |       |            |       |
| van der Waals       | 94.02    |          |     |           |       |            |       |       | van der Waals                                                                                                  | 92.425    |     |     |     |       |            |       |
| electrostatic       | -152.466 |          |     |           |       |            |       |       | electrostatic                                                                                                  | -172.129  |     |     |     |       |            |       |
| AEs                 | -10 571  |          |     |           |       |            |       |       | ΔFe                                                                                                            | -77 207   |     |     |     |       |            |       |
|                     | -7.67    |          |     |           |       |            |       |       |                                                                                                                | -9.265    |     |     |     |       |            |       |
|                     | -3.728   |          |     |           |       |            |       |       |                                                                                                                | -23.391   |     |     |     |       |            |       |

|                     | L        | v   | F   | F   | Gln15  |       |        |       |                     | L        | v   | F   | F   |       |            |           |        |
|---------------------|----------|-----|-----|-----|--------|-------|--------|-------|---------------------|----------|-----|-----|-----|-------|------------|-----------|--------|
| Initial Orientation |          | RB2 | LB1 |     |        |       |        |       | Initial Orientation |          | LB2 | RB1 |     |       |            |           |        |
| Final Orientation   |          |     | LB1 |     | RS1    |       |        |       | Final Orientation   |          |     |     |     |       |            |           |        |
|                     |          |     | LNH |     | RNH    |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     | RB1    |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     | -CH2-  |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       | I.F.                | 180.000  |     |     |     |       |            |           |        |
| Total Energy        | 148.005  |     |     |     |        |       |        |       | Iotal Energy        | 158.662  |     |     |     |       |            |           |        |
| electrostatic       | =167.867 |     |     |     |        |       |        |       | electrostatic       | -159 285 |     |     |     |       |            |           |        |
| ciccuostatic        | 107.007  |     |     |     |        |       |        |       | ciccuostatic        | 155.205  |     |     |     |       |            |           |        |
| ΔEs                 | -24.834  |     |     |     |        |       |        |       | ΔEs                 | -14.177  |     |     |     |       |            |           |        |
|                     | -7.627   |     |     |     |        |       |        |       |                     | -5.694   |     |     |     |       |            |           |        |
|                     | -19.129  |     |     |     |        |       |        |       |                     | -10.547  |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     | L        | V   | F   | F   |        |       |        |       |                     | L        | V   | F   | F   | His13 | His14      | Gln15     |        |
| Initial Orientation |          | RB2 | LB2 |     |        |       |        |       | Initial Orientation |          | LB2 | RB2 |     | 102   | 1000       | 162       |        |
| Final Orientation   |          |     |     |     |        |       |        |       | Final Orientation   |          | LB2 |     |     | LSZ   | 182*       | LS2       |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     | *N    | H of backb | one       |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
| Total Energy        | 151.415  |     |     |     |        |       |        |       | Total Energy        | 84.855   |     |     |     |       |            |           |        |
| van der Waals       | 97.767   |     |     |     |        |       |        |       | van der Waals       | 94.306   |     |     |     |       |            |           |        |
| electrostatic       | -170.271 |     |     |     |        |       |        |       | electrostatic       | -214.875 |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
| ΔEs                 | -21.424  |     |     |     |        |       |        |       | ΔEs                 | -87.984  |     |     |     |       |            |           |        |
|                     | -3.923   |     |     |     |        |       |        |       |                     | -7.384   |     |     |     |       |            |           |        |
|                     | -21.355  |     |     |     |        |       |        |       |                     | -00.157  |     |     |     |       |            | -         |        |
|                     |          |     |     |     | -      |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     | L        | v   | F   | F   | His14  | Gln15 |        |       |                     | L        | v   | F   | F   | His13 | Lys16      | Val24     | Lys28  |
| Initial Orientation |          | RB1 |     | LB1 |        |       |        |       | Initial Orientation |          | RB2 |     | LB1 |       |            |           |        |
| Final Orientation   | LB1      | RB1 |     |     | RB1*   | RS1   |        |       | Final Orientation   | LB2      |     |     | LB1 | LB2   | LB2        | RS1       | RS1    |
|                     |          | RS1 |     |     | RNH*   |       |        |       |                     |          |     |     | RB1 | C=O   | -CH2-      |           | 2      |
|                     |          |     |     |     | RS1*   |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     | *-CH2- |       |        |       |                     |          |     |     |     |       |            |           |        |
| Tabel Frances       | 02.202   |     |     |     |        |       |        |       | Tabel Carace        | 02.501   |     |     |     |       |            |           |        |
| Total Energy        | 83.393   |     |     |     |        |       |        |       | iotal Energy        | 83.581   |     |     |     |       |            |           |        |
| electrostatic       | -200.629 |     |     |     |        |       |        |       | electrostatic       | -228 204 |     |     |     |       |            |           |        |
| ciccuostatic        | 205.020  |     |     |     |        |       |        |       | ciccuostatic        | 220.304  |     |     |     |       |            |           |        |
| ΔEs                 | -89,446  |     |     |     |        |       |        |       | ΔEs                 | -89.258  |     |     |     |       |            |           |        |
|                     | -18.284  |     |     |     |        |       |        |       |                     | -17.102  |     |     |     |       |            |           |        |
|                     | -60.89   |     |     |     |        |       |        |       |                     | -79.566  |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     | L        | V   | F   | F   | Lys16  |       |        |       |                     | L        | V   | F   | F   |       |            |           |        |
| Initial Orientation |          | LB2 |     | RB1 | 002    |       |        |       | Initial Orientation |          | RB2 |     | LB2 |       |            |           |        |
| Final Orientation   |          |     |     | NDI | -CH2-  |       |        |       | Final Orientation   |          |     | 1   |     | -     |            |           |        |
|                     | LDI      |     |     |     | -CH2-  |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
| Total Energy        | 116.875  |     |     |     |        |       |        |       | Total Energy        | 163.769  |     |     |     |       |            |           |        |
| van der Waals       | 88.908   |     |     |     |        |       |        |       | van der Waals       | 101.134  |     |     |     |       |            |           |        |
| electrostatic       | -196.447 |     |     |     |        |       |        |       | electrostatic       | -157.239 |     |     |     |       |            |           |        |
| 1.5                 |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
| ΔES                 | -55.964  |     |     |     |        |       |        |       | ΔES                 | -9.07    |     |     |     |       |            |           |        |
|                     | -12.782  |     |     |     |        |       |        |       |                     | -0.556   |     |     |     |       |            |           |        |
|                     | -47.709  |     |     |     |        |       |        |       |                     | -0.301   |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     | L        | v   | F   | F   | His14  | Ala21 | Val24  | Lys28 |                     | L        | v   | F   | F   | His13 | His14      | Gln15     |        |
| Initial Orientation |          | LB2 |     | RB2 |        |       |        |       | Initial Orientation |          |     | LB2 | RB2 |       |            |           |        |
| Final Orientation   | LB1      | LB1 |     |     | LS1    | RB1   | RB2    | RB2   | Final Orientation   |          |     |     |     | LS1   | LS1*       | LS1*      |        |
|                     | LNH      | LB2 |     |     |        | CS    |        | RS2   |                     |          |     |     |     |       | 2          | *NH of ba | ckbone |
|                     |          |     |     |     |        | LB1   |        | 2     |                     |          |     |     |     | *N    | H of backb | one       |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
| Total Energy        | 55 790   |     |     |     |        |       |        |       | Total Foorm         | 60.454   |     |     |     |       |            |           |        |
| van der Waals       | 79 391   |     |     |     |        |       |        |       | van der Waals       | 91 271   |     |     |     |       |            |           |        |
| electrostatic       | -239.524 |     |     |     |        |       |        |       | electrostatic       | -240.247 |     |     |     |       |            | 1         |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
| ΔEs                 | -117.05  |     |     |     |        |       |        |       | ΔEs                 | -112.385 |     |     |     |       |            |           |        |
|                     | -22.299  |     |     |     |        |       |        |       |                     | -10.419  |     |     |     |       |            |           |        |
|                     | -90.786  |     |     |     |        |       |        |       |                     | -91.509  |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          | V   | -   |     | Clo15  | 41021 | Valac  |       |                     |          | V   | -   |     |       |            |           |        |
| Initial Orientation | L        | v   | RR7 | R7  | GIUT2  | AIdZ1 | v dl24 |       | Initial Orientation | L        | v   | F   | F   |       |            | -         |        |
| Final Orientation   |          | RB2 |     | 202 | RB2    | LB2   | LB2    |       | Final Orientation   |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            | 1         |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |
| Total Energy        | 136.813  |     |     |     |        |       |        |       | Total Energy        |          |     |     |     |       |            |           |        |
| van der Waals       | 91.7     |     |     |     |        |       |        |       | van der Waals       |          |     |     |     |       |            |           |        |
| erectrostatic       | -1//.595 |     |     |     |        |       |        |       | electrostatic       |          |     |     |     |       |            | -         |        |
| AFs                 | -36 036  |     |     |     |        |       |        |       | ΔEs                 | -172 920 |     |     |     |       |            | -         |        |
|                     | - 30.020 |     |     |     | -      |       |        |       | 21.0                | -101.69  |     |     |     |       |            |           |        |
|                     | -28.857  |     |     |     |        |       |        |       |                     | 148.738  |     |     |     |       |            | 1         |        |
|                     |          |     |     |     |        |       |        |       |                     |          |     |     |     |       |            |           |        |

|                                |                    |            |       |   |          |      | - | - |       |                                |                    |            |              |   |      |        | - |      |       |
|--------------------------------|--------------------|------------|-------|---|----------|------|---|---|-------|--------------------------------|--------------------|------------|--------------|---|------|--------|---|------|-------|
| Initial Orientation            | H<br>RB2           | н          | Q     | к | L<br>LB1 | v    | F | F |       | Initial Orientatio             | H<br>LB2           | н          | Q            | К | RB1  | v      | F | F    | Val12 |
| Final Orientation              | LB2                | LB1        |       |   | LS1      | CS   |   |   |       | Final Orientation              | LB2                | RB1        |              |   | RS1  |        |   |      | LS1   |
|                                | -CH2-              | KB1        |       |   | LB1      |      |   |   |       |                                | LB2<br>LS1         | LB1        |              |   |      |        |   |      | C=0   |
|                                | RS1                |            |       |   |          |      |   |   |       |                                | LNH                | RNH        |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                | -CH2-              | LNH        |              |   |      |        |   |      |       |
| Total Energy                   | 61.165             |            |       |   |          |      |   |   |       | Total Energy                   | 70.625             |            |              |   |      |        |   |      |       |
| van der Waals<br>electrostatic | 86.679<br>-246.655 |            |       |   |          |      |   |   |       | electrostatic                  | 81.856<br>-240.314 |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
| ΔEs                            | -111.674           |            |       |   |          |      |   |   |       | ΔEs                            | -102.214           |            |              |   |      |        |   |      |       |
|                                | -97.917            |            |       |   |          |      |   |   |       |                                | -91.576            |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
|                                | н                  | н          | Q     | к | L        | v    | F | F |       |                                | н                  | н          | Q            | к | L    | v      | F | F    |       |
| Initial Orientation            | RB1                | 003        | 161   |   | LB2      |      |   |   |       | Initial Orientation            | LB1                | DD 1       |              |   | RB2  |        |   | DD 3 |       |
| i indi offertation             | RNH                | LS1        |       |   | LDL      |      |   |   |       | inter orientation              | -CH-               | RNH        |              |   | TUDE |        |   | 1102 |       |
|                                | RS1                | -CH2-      |       |   |          |      |   |   |       |                                | LB1                | LB1        |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                | -CH2-              | LB2        |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                | LS1                |            |              |   |      |        |   |      |       |
| Total Energy                   | 56.318             |            |       |   |          |      |   |   |       | Total Energy                   | 58.805             |            |              |   |      |        |   |      |       |
| van der Waals                  | 83.38              |            |       |   |          |      |   |   |       | van der Waals                  | 83.758             |            |              |   |      |        |   |      |       |
| ciccuostatic                   | 257.515            |            |       |   |          |      |   |   |       | ciccitostatic                  | LOL.LLO            |            |              |   |      |        |   |      |       |
| ΔEs                            | -116.521           |            |       |   |          |      |   |   |       | ΔEs                            | -114.034           |            |              |   |      |        |   |      |       |
|                                | -108.575           |            |       |   |          |      |   |   |       |                                | -103.488           |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
|                                | н                  | н          | Q     | к | L        | v    | F | F |       |                                | н                  | н          | Q            | к | L    | v      | F | F    |       |
| Initial Orientation            | RS1                | 1.01       | _     |   | LB2      | 161  |   |   |       | Initial Orientatio             | LS2                | DP2        |              |   | RB2  |        |   |      |       |
| Final Orientation              | -CH2-              | RB1        |       |   | 61       | - 51 |   |   |       | Final Orientación              | LB1<br>LB1         | RB2        |              |   |      |        |   |      |       |
|                                | RS1                | LS1        |       |   |          |      |   |   |       |                                | LS1                | RS2        |              |   |      |        |   |      |       |
|                                | ND2                | RNH        |       |   |          |      |   |   |       |                                | 62                 | 1.32       |              |   |      |        |   |      |       |
|                                |                    | RS2        |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
| Total Energy                   | 45.409             |            |       |   |          |      |   |   |       | Total Energy                   | 43.815             |            |              |   |      |        |   |      |       |
| van der Waals<br>electrostatic | 83.151             |            |       |   |          |      |   |   |       | van der Waals                  | 83.7               |            |              |   |      |        |   |      |       |
| ciectiostatic                  | -230.324           |            |       |   |          |      |   |   |       | electrostatic                  | -201.414           |            |              |   |      |        |   |      |       |
| ΔEs                            | -127.43            |            |       |   |          |      |   |   |       | ΔEs                            | -129.024           |            |              |   |      |        |   |      |       |
|                                | -18.539            |            |       |   |          |      |   |   |       |                                | -17.99             |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
|                                | н                  | н          | Q     | к | L        | v    | F | F | Val12 |                                | н                  | н          | Q            | к | L    | v      | F | F    |       |
| Initial Orientation            | RS2                |            |       |   | LB2      |      |   |   |       | Initial Orientatio             | LB2                |            |              |   | RB2  |        |   |      |       |
| Final Orientation              | RB2<br>RS2         | LS1<br>LS2 |       |   |          |      |   |   | RB2   | Final Orientation              | LS1<br>LS2         | LS2        |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                | -CH2-              |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                | LB2                |            |              |   |      |        |   |      |       |
| Total Energy                   | 62.73              |            |       |   |          |      |   |   |       | Total Energy                   | 65.645             |            |              |   |      |        |   |      |       |
| van der Waals<br>electrostatic | 92.683             |            |       |   |          |      |   |   |       | van der Waals<br>electrostatic | 91.462             |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
| ΔEs                            | -110.109           |            |       |   |          |      |   |   |       | ΔEs                            | -107.194           |            |              |   |      |        |   |      |       |
|                                | -105.576           |            |       |   |          |      |   |   |       |                                | -100.1             |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
|                                | н                  | н          | Q     | к | L        | v    | F | F |       |                                | н                  | н          | Q            | к | L    | v      | F | F    |       |
| Initial Orientation            | RB2                |            |       |   | LB2      | 183  |   |   |       | Initial Orientatio             | LB1                | 1.61       |              |   |      | RB1    |   |      |       |
| Final Orientation              | RS2                |            |       |   |          | LDZ  |   |   |       | Final Orientación              | LB2<br>LB2         | 231        |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                | LS1                |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                | -CH2-              |            |              |   |      |        |   |      |       |
| Total Energy                   | 84.994             |            |       |   |          |      |   |   |       | Total Energy                   | 73.304             |            |              |   |      |        |   |      |       |
| electrostatic                  | -231.121           |            |       |   |          |      |   |   |       | electrostatic                  | -238.298           |            |              |   |      |        |   |      |       |
| 15                             |                    |            |       |   |          |      |   |   |       | 15                             |                    |            |              |   |      |        |   |      |       |
| ΔES                            | -87.845            |            |       |   |          |      |   |   |       | ΔES                            | -99.535            |            |              |   |      |        |   |      |       |
|                                | -82.383            |            |       |   |          |      |   |   |       |                                | -89.56             |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
| Initial Origontation           | H                  | н          | Q     | к | L        | V    | F | F |       | Initial Orientatio             | H                  | н          | Q            | К | L    | V I P1 | F | F    |       |
| Final Orientation              | LS1                | RS1        |       |   |          | RD2  |   |   |       | Final Orientation              | RS1                | LS2        | RB1          |   | LS2  | LB1    |   |      |       |
|                                | LB1                | 2          |       |   |          |      |   |   |       |                                | RB2                | LB1*       | -CH2-        |   | LNH  | CS     |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    | *-CH2-     |              |   | LDI  |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    | RB2        |              |   |      |        |   |      |       |
| Total Energy                   | 79.08              |            |       |   |          |      |   |   |       | Total Energy                   | 44.197             |            |              |   |      |        |   |      |       |
| van der Waals                  | 95.775             |            |       |   |          |      |   |   |       | van der Waals                  | 79.605             |            |              |   |      |        |   |      |       |
| ciectiostatic                  | -240.959           |            |       |   |          |      |   |   |       | electrostatic                  | -200.710           |            |              |   |      |        |   |      |       |
| ΔEs                            | -93.759            |            |       |   |          |      |   |   |       | ΔEs                            | -128.642           |            |              |   |      |        |   |      |       |
|                                | -92.221            |            |       |   |          |      |   |   |       |                                | -111.978           |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
|                                | н                  | н          | Q     | к | L        | v    | F | F |       |                                | н                  | н          | Q            | к | L    | v      | F | F    |       |
| Initial Orientation            | RB1                | <b>PD1</b> | 107   |   |          | LB2  |   |   |       | Initial Orientatio             | LS1                |            |              |   |      | RB2    |   |      |       |
| Final Orientation              | RS1                | RNH        | LS1   |   |          |      |   |   |       | Final Orientación              | LS1                |            |              |   |      |        |   |      |       |
|                                |                    | RS1        | -CH2- |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
| Total Energy                   | 74.05              |            |       |   |          |      |   |   |       | Total Energy                   | 94.552             |            |              |   |      |        |   |      |       |
| van der Waals<br>electrostatic | 87.654             |            |       |   |          |      |   |   |       | van der Waals                  | 93.009             |            |              |   |      |        |   |      |       |
|                                | 2.00.044           |            |       |   |          |      |   |   |       | ciccitostatic                  | 431                |            |              |   |      |        |   |      |       |
| ΔEs                            | -98.789            |            |       |   |          |      |   |   |       | ΔEs                            | -78.287            |            |              |   |      |        |   |      |       |
|                                | -14.036            |            |       |   |          |      |   |   |       |                                | -72.693            |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
|                                | н                  | н          | Q     | к | L        | v    | F | F |       |                                | н                  | н          | Q            | к | L    | v      | F | F    |       |
| Initial Orientation            | RS1                |            |       |   |          | LB2  |   |   |       | Initial Orientatio             | LS2                |            |              |   |      | RB2    |   |      |       |
| r inai Orientation             | RB1<br>RNH         | RB2<br>RS2 | LB2   |   |          | LB2  |   |   |       | Final Orientation              | LB1<br>LS1         | LS2<br>RS2 | RS1<br>-CH2- |   |      |        |   |      |       |
|                                | RS1                |            |       |   |          |      |   |   |       |                                | LS2                |            |              |   |      |        |   |      |       |
|                                | RB2                |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
| Total Energy                   | 81.336             |            |       |   |          |      |   |   |       | Total Energy                   | 28.467             |            |              |   |      |        |   |      |       |
| van der Waals<br>electrostatic | 90.921             |            |       |   |          |      |   |   |       | van der Waals<br>electrostatic | 89.315             |            |              |   |      |        |   |      |       |
|                                |                    |            |       |   |          |      |   |   |       |                                |                    |            |              |   |      |        |   |      |       |
| ΔEs                            | -91.503            |            |       |   |          | -    |   |   |       | ΔEs                            | -144.372           |            |              |   |      |        |   |      |       |
|                                | -89.121            |            |       |   |          |      |   |   |       |                                | -134.084           |            |              |   |      |        |   |      |       |

| Initial Orientation<br>Final Orientation              | H<br>RS2<br>RB2<br>RB2<br>RS2                      | H<br>LS2                | Q                              | K | L | V<br>LB2<br>LS2<br>LB2 | F        | F |                     |                     | Initial Orientatio<br>Final Orientatior               | H<br>LB2<br>LS1<br>LS2                             | H<br>LS2          | Q                           | К | L | V<br>RB2 | F               | F |                     |              |
|-------------------------------------------------------|----------------------------------------------------|-------------------------|--------------------------------|---|---|------------------------|----------|---|---------------------|---------------------|-------------------------------------------------------|----------------------------------------------------|-------------------|-----------------------------|---|---|----------|-----------------|---|---------------------|--------------|
| Total Energy<br>van der Waals<br>electrostatic        | 58.363<br>91.724<br>-244.101                       |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals<br>electrostatic        | 66.939<br>92.339<br>-247.012                       |                   |                             |   |   |          |                 |   |                     |              |
| ΔEs                                                   | -114.476<br>-9.966<br>-95.363                      |                         |                                |   |   |                        |          |   |                     |                     | ΔEs                                                   | -105.9<br>-9.351<br>-98.274                        |                   |                             |   |   |          |                 |   |                     |              |
| Initial Orientation<br>Final Orientation              | H<br>RB2<br>RS1<br>RS2                             | H<br>RS2<br>-NH-<br>RS1 | Q<br>RS2<br>-CH2-              | K | L | V<br>LB2               | F        | F |                     |                     | Initial Orientatio<br>Final Orientatior               | H<br>RS1<br>RS2<br>RS1                             | н                 | Q                           | K | L | V        | F<br>LB1        | F |                     |              |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs | 57.193<br>88.596<br>-254.476<br>-115.646           |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs | 102.313<br>94.259<br>-213.006<br>-70.526           |                   |                             |   |   |          |                 |   |                     |              |
|                                                       | -13.094<br>-105.738                                |                         |                                |   |   |                        |          |   |                     |                     |                                                       | -7.431<br>-64.268                                  |                   |                             |   |   |          |                 |   |                     |              |
| Initial Orientation<br>Final Orientation              | H<br>LS1<br>LS1<br>LS2                             | Н                       | Q<br>CS<br>LB1<br>LS1<br>-CH2- | ĸ | L |                        | F<br>RB1 | F | Val12<br>LS1        |                     | Initial Orientatio<br>Final Orientation               | H<br>RS2<br>RB2<br>RS2                             | н                 | Q<br>CS                     | ĸ | L | V        | F<br>LB1        | F |                     |              |
| Total Energy<br>van der Waals<br>electrostatic        | 87.65<br>89.147<br>-224.592                        |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals<br>electrostatic        | 118.472<br>96.917<br>-200.701                      |                   |                             |   |   |          |                 |   |                     |              |
|                                                       | -12.543<br>-75.854                                 |                         |                                |   |   |                        |          |   |                     |                     |                                                       | -4.773                                             |                   |                             |   |   |          |                 |   |                     |              |
| Initial Orientation<br>Final Orientation              | H<br>LS2<br>LB1<br>LS1<br>LS2                      | H<br>LS2<br>-CH2-       | Q                              | ĸ | L | v                      | F<br>RB1 | F | Val12<br>CS         |                     | Initial Orientatio                                    | H<br>LB1<br>RB1<br>LS1<br>RS1*<br>RNH*             | H<br>RS1          | Q<br>RB2<br>RB1<br>-CH2-    | ĸ | L | v        | F<br>RB2        | F | Tyr10<br>LB1<br>LB2 | Val12<br>RB1 |
| Total Energy<br>van der Waals                         | 69.356<br>88.823                                   |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals                         | *-CH2-<br>LNH<br>59.036<br>81.856                  |                   |                             |   |   |          |                 |   |                     |              |
| ΔEs                                                   | -103.483<br>-12.867<br>-90.918                     |                         |                                |   |   |                        |          |   |                     |                     | ΔEs                                                   | -113.803<br>-19.834<br>-103.753                    |                   |                             |   |   |          |                 |   |                     |              |
| Initial Orientation<br>Final Orientation              | H<br>RB2<br>RB2<br>RS2<br>-CH2-                    | H<br>RS2                | Q<br>RB1<br>-CH2-              | K | L | V                      | F<br>LB1 | F |                     |                     | Initial Orientatio<br>Final Orientatior               | H<br>LB2<br>LB2<br>LB2<br>LS1                      | H<br>LS1<br>-CH2- | Q<br>LB1*<br>LS1*<br>*-CH2- | к | L | V        | F<br>RB1        | F |                     |              |
| Total Energy<br>van der Waals<br>electrostatic        | 87.187<br>92.175<br>-223.281                       |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals<br>electrostatic        | 79.02<br>90.268<br>-231.478                        |                   |                             |   |   |          |                 |   |                     |              |
|                                                       | -9.515<br>-74.543                                  |                         |                                |   |   |                        |          |   |                     |                     |                                                       | -11.422<br>-82.74                                  |                   |                             |   |   |          |                 |   |                     |              |
| Initial Orientation<br>Final Orientation              | H<br>RB1<br>RS2<br>RB1<br>LB1<br>LS2               | H<br>LS2<br>-NH-        | Q<br>LS2*<br>LB2*<br>*-CH2-    | K | L | V                      | F<br>LB2 | F | Tyr10<br>RB2<br>RS2 | Val12<br>RS2<br>C=O | Initial Orientatio<br>Final Orientation               | H<br>LS1<br>LS1<br>LNH                             | н                 | Q                           | K | L | V        | F<br>RB2<br>RB2 | F | Tyr10<br>LB2        |              |
| Total Energy<br>van der Waals<br>electrostatic        | 47.983<br>79.444<br>-255.122                       |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals<br>electrostatic        | 122.161<br>95.128<br>-196.864                      |                   |                             |   |   |          |                 |   |                     |              |
| AES                                                   | -124.856<br>-22.246<br>-106.384                    |                         |                                |   |   |                        |          |   |                     |                     |                                                       | -50.878<br>-6.562<br>-48.126                       |                   |                             |   |   |          |                 |   |                     |              |
| Initial Orientation<br>Final Orientation              | H<br>RS1<br>RNH<br>RS1<br>RS2<br>-CH2-             | H<br>RB2<br>RS2         | Q<br>LB2                       | K | L | v                      | F<br>LB2 | F |                     |                     | Initial Orientatio<br>Final Orientation               | H<br>LS2<br>LB2<br>LB2<br>LS2                      | Н                 | Q                           | ĸ | L | V        | F<br>RB2        | F |                     |              |
| Total Energy<br>van der Waals                         | 70.962 89.509                                      |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals                         | 121.95<br>97.295                                   |                   |                             |   |   |          |                 |   |                     |              |
| ΔEs                                                   | -101.877<br>-12.181<br>-95.651                     |                         |                                |   |   |                        |          |   |                     |                     | ΔEs                                                   | -50.889<br>-4.395<br>-47.638                       |                   |                             |   |   |          |                 |   |                     |              |
| Initial Orientation                                   | H<br>RS2                                           | н                       | Q                              | K | L | v                      | F<br>LB2 | F |                     |                     | Initial Orientatio                                    | H<br>LB2                                           | н                 | Q                           | к | L | v        | F<br>RB2        | F |                     |              |
| Final Orientation                                     | LS2<br>RS2                                         | LS2<br>-CH2-            | LS2<br>-CH2-                   |   |   |                        |          |   |                     |                     | Final Orientation                                     | LB2<br>LB2<br>LS2                                  |                   |                             |   |   |          |                 |   |                     |              |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs | 69.706<br>93.609<br>-247.599<br>-103.133<br>-8.081 |                         |                                |   |   |                        |          |   |                     |                     | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs | 125.985<br>97.298<br>-193.075<br>-46.854<br>-4.392 |                   |                             |   |   |          |                 |   |                     |              |

|                      | н        | н    | Q   | к | L   | v    | F    |    | F   |         |       |          |                  |                 | +       | н          | Q   | K   | : L    |            | v | F  | F   |
|----------------------|----------|------|-----|---|-----|------|------|----|-----|---------|-------|----------|------------------|-----------------|---------|------------|-----|-----|--------|------------|---|----|-----|
| Initial Orientation  | RB2      |      |     |   |     |      | LE   | 32 |     |         |       |          | Initial Orien    | tatio Ll        | 31      |            |     |     |        |            |   |    | RB2 |
| Final Orientation    | RB2      |      |     |   |     |      |      |    |     |         |       |          | Final Orienta    | atior R         | B1      | LB1        |     | RS  | 51 RE  | 32         |   |    | RB2 |
|                      | RS2      |      |     |   |     |      |      |    |     |         |       |          |                  | 0               | 0       | LB1        |     | -CF | 12- RS | 51         |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  | 6               | 51      | LNH        |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         | LB2        |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      | _    |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
| van der Waals        | 99 951   |      |     |   |     |      | _    |    |     |         |       |          | van der Waa      | / 52.<br>als 79 | 168     |            |     |     |        |            |   |    | _   |
| electrostatic        | -193.923 |      |     |   |     |      |      |    |     |         |       |          | electrostatio    | -250            | .912    |            |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
| ΔEs                  | -45.92   |      |     |   |     |      | _    |    |     |         |       |          | ΔEs              | -12             | 0.106   |            |     |     |        |            |   |    |     |
|                      | -1.739   |      |     |   |     |      |      |    |     |         |       |          |                  | -2              | 2.522   |            |     |     |        |            |   |    |     |
|                      | -43.185  |      |     |   |     |      |      |    |     |         |       |          |                  | -10             | 2.1/4   |            |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      | н        | н    | Q   | к | L   | v    | F    |    | F   | Val12   |       |          |                  |                 | 4       | н          | Q   | K   | : L    | -          | v | F  | F   |
| Initial Orientation  | LB2      | 101  | _   |   | PD1 |      | _    |    | RB1 | 1.91    |       |          | Initial Orient   | tatio R         | S1      | DD 1       |     |     | 1.6    | 22         |   |    | LB2 |
| indi onendelon       | LNH*     | LS2  |     |   | nor |      |      |    |     | C=0     |       |          | ind onend        | R               | B2      | RNH        |     |     |        | <i>,</i> _ |   |    | LDL |
|                      | LS1*     | LNH  |     |   |     |      |      |    |     |         |       |          |                  |                 |         | RS1        |     |     |        |            |   |    |     |
|                      | LB1*     |      |     |   |     |      | _    |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    | _   |
|                      | °C≡0     |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    | -   |
| Total Energy         | 78.806   |      |     |   |     |      |      |    |     |         |       |          | Total Energy     | / 75.           | 512     |            |     |     |        |            |   |    |     |
| van der Waals        | 85.051   |      |     |   |     |      |      |    |     |         |       |          | van der Waa      | als 83.         | 702     |            |     |     |        |            |   |    |     |
| electrostatic        | -229.886 |      |     |   |     |      |      |    |     |         |       |          | electrostatio    | -236            | 5.505   |            |     |     |        |            |   |    |     |
| AFe                  | 04 022   |      |     |   |     |      |      |    |     |         |       |          | AEc              |                 | 7 2 2 7 |            |     |     |        |            |   |    |     |
| <u>дгэ</u>           | -16.639  |      |     |   |     |      |      |    |     |         |       |          | 11.3             | -1              | 7.988   |            |     |     |        |            |   |    |     |
|                      | -81.148  |      |     |   |     |      |      |    |     |         |       |          |                  | -8              | 7.767   |            |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    | _   |
|                      | н        | н    | 0   | ĸ | 1   | v    |      |    | F   | Tyr10   |       |          |                  |                 | -       | н          | 0   |     |        |            | v | F  | F   |
| Initial Orientation  | LS2      |      | ų   | ĸ |     | v    | 1    |    | RB2 | - yr 10 |       |          | Initial Orien    | tatio L         | 51      |            | ų   | K   |        | -          | • | e. | RB2 |
| Final Orientation    | LB2      | RS2  |     |   | RS2 |      |      |    |     | LB2     |       |          | Final Orienta    | atior L         | 31      | LB1        | _   |     |        |            |   |    |     |
|                      | LS2      | LS2  |     |   |     |      |      |    |     |         |       |          |                  | Ľ               | 51      | LNH        |     |     |        |            |   |    | _   |
|                      | 151      |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         | LS2<br>LB2 |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         | 1.02       |     |     |        |            |   |    |     |
| Total Energy         | 76.833   |      |     |   |     |      |      |    |     |         |       |          | Total Energy     | / 71.           | 035     |            |     |     |        |            |   |    |     |
| van der Waals        | 86.242   |      |     |   |     |      | _    |    |     |         |       |          | van der Waa      | als 87.         | 388     |            |     |     |        |            |   |    |     |
| electrostatic        | -230.882 |      |     |   |     |      | _    |    |     |         |       |          | electrostatio    | c -241          | 853     |            |     |     |        |            |   |    | _   |
| ΔEs                  | -96.006  |      |     |   |     |      |      |    |     |         |       |          | ΔEs              | -10             | 1.804   |            |     |     |        |            |   |    |     |
|                      | -15.448  |      |     |   |     |      |      |    |     |         |       |          |                  | -1              | 4.302   |            |     |     |        |            |   |    |     |
|                      | -82.144  |      |     |   |     |      |      |    |     |         |       |          |                  | -9              | 3.115   |            |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      | н        | н    | 0   | к | 1   | v    | F    |    | F   | Tyr10   | Val12 |          |                  |                 | -       | н          | 0   | K   |        |            | v | F  | F   |
| Initial Orientation  | RS2      |      | _   |   |     |      |      |    | LB2 | .,      |       |          | Initial Orien    | tatio Ll        | 32      |            |     |     |        |            |   |    | RB2 |
| Final Orientation    | LB1      | LB1  |     |   | LB2 |      |      |    | LB2 | CS      | CS    |          | Final Orienta    | atior L         | 52      | LB1        |     |     | RS     | 32         |   |    | RB2 |
|                      | C=O      | RB1  |     |   | LS2 |      |      |    | LS2 |         | C=O   |          |                  | L               | 32      | LS2        |     |     |        |            |   |    |     |
|                      | -CH-     | KS2  |     |   |     |      |      | _  |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    | -   |
|                      | RB1      |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      | RS1      |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      | RS2      |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      | -CH2-    |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
| Total Energy         | 33.253   |      |     |   |     |      |      |    |     |         |       |          | Total Energy     | / 88.           | 918     |            |     |     |        |            |   |    |     |
| van der Waals        | 77.853   |      |     |   |     |      |      |    |     |         |       |          | van der Waa      | als 94.         | 401     |            |     |     |        |            |   |    |     |
| electrostatic        | -267.576 |      |     |   |     |      | _    |    |     |         |       |          | electrostatio    | -225            | .639    |            |     |     |        |            |   |    |     |
| AFe                  | 120 596  |      |     |   |     |      |      |    |     |         |       |          | AEc              |                 | 2 0 2 1 |            |     |     |        |            |   |    |     |
| <u>дгэ</u>           | -23.837  |      |     |   |     |      |      |    |     |         |       |          | 11.3             | -0              | 7.289   |            |     |     |        |            |   |    |     |
|                      | -118.838 |      |     |   |     |      |      |    |     |         |       |          |                  | -7              | 6.901   |            |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      |          |      | 0   |   |     |      |      |    | -   |         |       |          |                  |                 |         |            |     |     |        |            |   | -  | -   |
| Initial Orientation  | RB2      | п    | ų   | ĸ | L   | v    |      |    | LB2 |         |       |          | Initial Orien    | tation          | -       | п          | ų   |     |        | -          | v |    | r   |
| Final Orientation    | RB2      | RS2  |     |   |     |      |      |    | LB2 |         |       |          | Final Orienta    | ation           |         |            |     |     |        |            |   |    |     |
|                      | RB2      | RNH  |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      | RS2      | RB1  |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
| Total Energy         | 93,758   |      |     |   |     |      |      | _  |     |         |       |          | Total Energy     | ,               |         |            |     |     |        |            |   |    |     |
| van der Waals        | 90.425   |      |     |   |     |      |      |    |     |         |       |          | van der Waa      | als             |         |            |     |     |        |            |   |    |     |
| electrostatic        | -219.729 |      |     |   |     |      |      |    |     |         |       |          | electrostatio    | c               |         |            |     |     |        |            |   |    |     |
| AFs                  | -70 /001 |      |     |   |     |      |      |    |     |         |       |          | AFe              |                 | 7 920   |            |     |     |        |            |   |    |     |
|                      | -11.265  |      |     |   |     |      |      |    |     |         |       |          | 41.5             | -1/             | 01.69   |            |     |     |        |            |   |    | 1   |
|                      | -70.991  |      |     |   |     |      |      |    |     |         |       |          |                  | 14              | 8.738   |            |     |     |        |            |   |    |     |
| Initial Orientatio   | on       | RS1  |     |   |     | LE   | 81   |    |     |         |       | In       | itial Orientatio | n               | LS      | 1          |     |     |        | RB1        |   |    |     |
| Final Orientation    | n RS1    | RS1  | CS  |   |     | U    | 31   |    |     | _       |       | Fi       | nal Orientatior  | LS1             | LS      | 2          |     |     |        | CS         |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  | -CH2-           | LS      |            |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
| Total Energy         | 67.177   |      |     |   |     |      |      |    |     |         |       | Т        | otal Energy      | 79.963          |         |            |     |     |        |            |   |    |     |
| van der Waals        | 93.082   |      |     |   |     |      |      |    |     |         |       | Vá       | an der Waals     | 91.367          |         |            |     |     |        |            |   |    |     |
| electrostatic        | -236.645 |      | _   |   |     |      |      |    |     | _       |       | el       | lectrostatic     | -231.204        |         |            |     |     |        |            | _ |    |     |
| AFs                  | -105 66  | ,    |     |   |     |      |      |    |     |         |       | ٨        | Fs               | -97 974         |         |            |     |     |        |            |   |    |     |
| 41.5                 | -105.00  | 3    |     |   | _   |      |      |    |     |         |       |          | 1.3              | -10.323         | ,       |            |     |     |        |            | - |    |     |
|                      | -87.90   | 7    |     |   |     |      |      |    |     |         |       |          |                  | -82.466         | 5       |            |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
|                      |          |      | -   |   |     |      |      | -  | -   |         | ~     |          |                  |                 |         |            | 0   |     |        |            |   | -  | -   |
| Initial Origontation | Н        | H    | Q   | к | L   |      | /    | F  | F   | Ala     | 21    | 1.4      | uitial Orientet' | н               | H       | 1          | Q   | К   | L      | V          |   | F  | F   |
| Final Orientatio     | n        | R52  | 152 |   | po  | 2 0  | 5    |    |     | ~       | s     | In<br>Fi | nal Orientatio   | \$1             | RB      | 1          | IB2 |     |        | LB2        |   |    |     |
| . mar offentation    |          | 1.52 |     |   | RS  | 1 11 | - 31 |    |     |         | -     | 0        | onentatiol       |                 | RB      | 1          |     |     |        |            |   |    |     |
|                      |          |      |     |   | RE  | 1 1  | 52   |    |     |         |       |          |                  |                 | RN      | н          |     |     |        |            |   |    |     |
|                      |          |      |     |   |     |      |      |    |     |         |       |          |                  |                 |         |            |     |     |        |            |   |    |     |
| Total Energy         | 111.273  |      |     | _ |     |      |      |    |     |         |       | Т        | otal Energy      | 68.121          |         |            |     |     |        |            |   |    |     |
| van der Waals        | 87.794   |      | _   |   |     |      |      |    |     |         |       | Vá       | an der Waals     | 91.202          |         |            |     |     |        |            | + |    |     |
| CIECUOSIdUL          | -130.155 |      |     |   |     |      |      |    |     |         |       | e        | ccuosiduit       | 243.595         |         |            |     |     |        |            |   |    |     |
| ΔEs                  | -61.56   | 5    |     |   |     |      |      |    |     |         |       | Δ        | Es               | -104.718        | 3       |            |     |     |        |            |   |    |     |
|                      | -13.89   | 5    |     |   |     |      |      |    |     |         |       |          |                  | -10.488         | 3       |            |     |     |        |            |   |    |     |
|                      | -49.42   | L    |     |   |     |      |      |    |     |         |       |          |                  | -100.657        | 1       |            |     |     |        |            |   |    |     |

|                               | н        | н          | Q     | к | L   | v         | F   | F   |                                | н                 | н     | Q     | к | L   | v        | F   | F   |
|-------------------------------|----------|------------|-------|---|-----|-----------|-----|-----|--------------------------------|-------------------|-------|-------|---|-----|----------|-----|-----|
| Initial Orientation           | 1        | LB2        | _     |   |     | RB1       |     |     | Initial Orientation            | n                 | LB1   |       |   |     | RB2      |     |     |
| Final Orientation             |          | LB2        | RB1   |   | LS1 |           |     |     | Final Orientation              | RS1               | LB1   | RS2*  |   |     |          |     |     |
|                               |          | LNH        |       |   |     |           |     |     |                                |                   | RB1   | RB2*  |   |     |          |     |     |
|                               |          | -CH2-      |       |   |     |           |     |     |                                |                   | RS2   | -CH2- |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   | -NH-  |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   | LNH   |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   | RS2   |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   | -CH2- |       |   |     |          |     |     |
| Total Energy                  | 83.561   |            |       |   |     |           |     |     | Total Energy                   | 38.376            |       |       |   |     |          |     |     |
| van der Waals                 | 91.674   |            |       |   |     |           |     |     | van der Waals                  | 85.242            |       |       |   |     |          |     |     |
| electrostatic                 | -233.95  |            |       |   |     |           |     |     | electrostatic                  | -269.744          |       |       |   |     |          |     |     |
| 10                            |          |            |       |   |     |           |     |     | 10                             |                   |       |       |   |     |          |     |     |
| ΔES                           | -89.278  |            |       |   |     |           |     |     | ΔES                            | -134.463          |       |       |   |     |          |     |     |
|                               | -85.212  |            |       |   |     |           |     |     |                                | -121.006          |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| Initial Orientation           | н        | H<br>PD2   | Q     | к | L   | V<br>I P1 | F   | F   | Initial Orientation            | н                 | H     | Q     | к | L   | V<br>PP2 | F   | F   |
| Final Orientation             | RS1      | RS1        |       |   |     | LB1       |     |     | Final Orientation              | LB2               | LS2   |       |   |     | RB2      |     |     |
|                               | -CH2-    | RNH        |       |   |     |           |     |     |                                | LS2               |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                | LS1               |       |       |   |     |          |     |     |
| Total Factory                 | 400.070  |            |       |   |     |           |     |     | Total Factory                  | 64.005            |       |       |   |     |          |     |     |
| van der Waals                 | 88.86    |            |       |   |     |           |     |     | van der Waals                  | 88 577            |       |       |   |     |          |     |     |
| electrostatic                 | -211.088 |            |       |   |     |           |     |     | electrostatic                  | -247.344          |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| ΔEs                           | -71.963  |            |       |   |     |           |     |     | ΔEs                            | -107.904          |       |       |   |     |          |     |     |
|                               | -12.83   |            |       |   |     |           |     |     |                                | -13.113           |       |       |   |     |          |     |     |
|                               | 32.33    |            |       |   |     |           |     |     |                                | 33.000            |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| Initial Orientet'             | н        | H          | Q     | к | L   | V         | F   | F   | Initial Orleaster'             | н                 | H     | Q     | к | L   | V        | F   | F   |
| Final Orientation             | RP2      | K52<br>R52 |       |   |     | LB2       |     |     | Final Orientation              | 151               | 1.82  |       |   |     | RB2      |     |     |
|                               | RB2      | RB1        |       |   |     |           |     |     | onentation                     | LS2               | 2.52  |       |   |     |          |     |     |
|                               | RS2      |            |       |   |     |           |     |     |                                | -CH2-             |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| Total Energy                  | 99.026   |            |       |   |     |           |     |     | Total Energy                   | 72.003            |       |       |   |     |          |     |     |
| electrostatic                 | -217.4   |            |       |   |     |           |     |     | electrostatic                  | -245.075          |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| ΔEs                           | -73.813  |            |       |   |     |           |     |     | ΔEs                            | -100.836          |       |       |   |     |          |     |     |
|                               | -8.228   |            |       |   |     |           |     |     |                                | -6.334            |       |       |   |     |          |     |     |
|                               | -08.002  |            |       |   |     |           |     |     |                                | -90.337           |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
|                               | н        | н          | Q     | к | L   | v         | F   | F   |                                | Н                 | н     | Q     | к | L   | V        | F   | F   |
| Initial Orientation           | 1        | RB2        |       |   |     | LB2       |     |     | Initial Orientation            | n<br>101          | RS1   | 102   |   | 004 | LB2      |     |     |
| Final Orientation             | RS1      | RB2<br>RS1 |       |   |     |           |     |     | Final Orientation              | LSI               | RB1   | LBZ   |   | RB1 |          |     |     |
|                               |          | 101        |       |   |     |           |     |     |                                |                   | RS1   |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   | RNH   |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| Total Energy<br>van der Waals | 87.313   |            |       |   |     |           |     |     | Iotal Energy<br>van der Waals  | 59.375            |       |       |   |     |          |     |     |
| electrostatic                 | -229.453 |            |       |   |     |           |     |     | electrostatic                  | -253.898          |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| ΔEs                           | -85.526  |            |       |   |     |           |     |     | ΔEs                            | -113.464          |       |       |   |     |          |     |     |
|                               | -7.961   |            |       |   |     |           |     |     |                                | -14.738           |       |       |   |     |          |     |     |
|                               | -00.715  |            |       |   |     |           |     |     |                                | -105.10           |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
|                               | н        | н          | Q     | к | L   | V         | F   | F   |                                | н                 | н     | Q     | к | L   | V        | F   | F   |
| Final Orientation             | 1.52     | 152        | RB2   |   |     |           | RB2 |     | Final Orientation              | n<br>RB1          | RB2   | 182   |   |     |          | LB2 |     |
|                               |          | -NH-       | -CH2- |   |     |           |     |     |                                | RNH               | RS2   |       |   |     |          |     |     |
|                               |          | LB2        |       |   |     |           |     |     |                                | RS2               | 2     |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                | RB2               |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| Total Energy                  | 75.776   |            |       |   |     |           |     |     | Total Energy                   | 84.008            |       |       |   |     |          |     |     |
| van der Waals                 | 92.442   |            |       |   |     |           |     |     | van der Waals                  | 93.357            |       |       |   |     |          |     |     |
| electrostatic                 | -244.431 |            |       |   |     |           |     |     | electrostatic                  | -234.649          |       |       |   |     |          |     |     |
| ΔEs                           | -97.063  |            |       |   |     |           |     |     | ΔEs                            | -88.831           |       |       |   |     |          |     |     |
|                               | -9.248   |            |       |   |     |           |     |     |                                | -8.333            |       |       |   |     |          |     |     |
|                               | -95.693  |            |       |   |     |           |     |     |                                | -85.911           |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
|                               | н        | н          | Q     | к | L   | v         | F   | F   |                                | н                 | н     | Q     | к | L   | v        | F   | F   |
| Initial Orientation           | ı        | LB2        |       |   |     |           | RB2 |     | Initial Orientation            | n                 | RS1   |       |   |     |          |     | LB1 |
| Final Orientation             | LS2      | LB2        |       |   |     |           |     |     | Final Orientation              |                   | RS1   |       |   |     |          |     | LS1 |
|                               |          | LSZ        |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     | LBI |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| Total Energy                  | 90.738   |            |       |   |     |           |     |     | Total Energy                   | 120.925           |       |       |   |     |          |     |     |
| van der Waals                 | 99.005   |            |       |   |     |           |     |     | van der Waals                  | 96.663            |       |       |   |     |          |     |     |
| electrostatic                 | -230.815 |            |       |   |     |           |     |     | electrostatic                  | -197.517          |       |       |   |     |          |     |     |
| ΔEs                           | -82.101  |            |       |   |     |           |     |     | ΔEs                            | -51.914           |       |       |   |     |          |     |     |
|                               | -2.685   |            |       |   |     |           |     |     |                                | -5.027            |       |       |   |     |          |     |     |
|                               | -82.075  |            |       |   |     |           |     |     |                                | -48.579           |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
|                               | н        | н          | Q     | к | L   | v         | F   | F   |                                | н                 | н     | Q     | К | L   | v        | F   | F   |
| Initial Orientation           | 1        | LS1        |       |   |     |           |     | RB1 | Initial Orientation            | n                 | RS2   |       |   |     |          |     | LB1 |
| Final Orientation             |          | LS1        |       |   | LB1 |           |     | RB1 | Final Orientation              |                   | RS2   |       |   |     |          |     | CS  |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     | LS2 |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| Total Energy                  | 103.22   |            |       |   |     |           |     |     | Total Energy                   | 110.769           |       |       |   |     |          |     |     |
| electrostatic                 | 95.435   |            |       |   |     |           |     |     | van der Waals<br>electrostatic | 92.29<br>-206.669 |       |       |   |     |          |     |     |
|                               |          |            |       |   |     |           |     |     |                                |                   |       |       |   |     |          |     |     |
| ΔEs                           | -69.619  |            |       |   |     |           |     |     | ΔEs                            | -62.07            |       |       |   |     |          |     |     |
|                               | -8.255   |            |       |   |     |           |     |     |                                | -9.4              |       |       |   |     |          |     |     |
|                               | -02.994  |            |       |   |     |           |     |     |                                | -37.925           |       |       |   |     |          |     |     |

|                          | н        | н   | 0 | к   | 1   | v | F   | F   |       |                     |               | н        | н   | 0   | к | 1   | v   | F | F     |
|--------------------------|----------|-----|---|-----|-----|---|-----|-----|-------|---------------------|---------------|----------|-----|-----|---|-----|-----|---|-------|
| Initial Orientation      | 1        | LS2 |   |     |     |   |     | RB1 |       | Initia              | al Orientatio | n        | RB2 | _   |   |     |     |   | LB1   |
| Final Orientation        |          | LS2 |   |     | CS  |   |     | CS  |       | Final               | Orientation   | 1        | RS1 |     |   | RS1 |     |   | LS1   |
|                          |          |     |   |     |     |   |     | RB1 |       |                     |               |          | RNH |     |   | RB1 |     |   |       |
|                          |          |     |   |     |     |   |     | RS1 |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     | RS2 |       |                     |               |          |     |     |   |     |     |   |       |
| Total Energy             | 97.658   |     |   |     |     |   |     |     |       | Total               | l Energy      | 118.235  |     |     |   |     |     |   |       |
| van der Waals            | 91.722   |     |   |     |     |   |     |     |       | van d               | der Waals     | 93.997   |     |     |   |     |     |   |       |
| electrostatic            | -215.972 |     |   |     |     |   |     |     |       | elect               | trostatic     | -200.757 |     |     |   |     |     |   |       |
| AFe                      | -75 191  |     |   |     |     |   |     |     |       | AFe                 |               | -54 604  |     |     |   |     |     |   |       |
| 415                      | -75.161  |     |   |     |     |   |     |     |       | 41.5                |               | - 34.004 |     |     |   |     |     |   |       |
|                          | -67.234  |     |   |     |     |   |     |     |       |                     |               | -52.019  |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          | н        | н   | Q | к   | L   | v | F   | F   |       |                     |               | н        | н   | Q   | К | L   | V   | F | F     |
| Initial Orientation      | n        | LB1 |   |     |     |   |     | RB2 |       | Initia              | al Orientatio | n        | LB2 |     |   |     |     |   | RB1   |
| Final Orientation        |          | LS1 |   |     | RS1 |   |     | RS1 |       | Final               | Orientation   |          | LB2 |     |   | LNH |     |   | RB1   |
|                          |          | LB1 |   |     |     |   |     |     |       |                     |               |          | LB2 |     |   | LS1 |     |   | LB1   |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          | LS1 |     |   |     |     |   |       |
| Total Factory            | 106 254  |     |   |     |     |   |     |     |       | Total               | Enermy        | 100 769  |     |     |   |     |     |   |       |
| van der Waals            | 93 124   |     |   |     |     |   |     |     |       | vand                | der Waals     | 88.499   |     |     |   |     |     |   |       |
| electrostatic            | -207.283 |     |   |     |     |   |     |     |       | elect               | trostatic     | -212.689 |     |     |   |     |     |   |       |
| ciccitostatic            | 207.205  |     |   |     |     |   |     |     |       | ciece               | aostate       | 212.005  |     |     |   |     |     |   |       |
| ΔEs                      | -66.485  |     |   |     |     |   |     |     |       | AEs                 |               | -72.071  |     |     |   |     |     |   |       |
|                          | -8.566   |     |   |     |     |   |     |     |       |                     |               | -13.191  |     |     |   |     |     |   |       |
|                          | -58.545  |     |   |     |     | 1 |     |     |       |                     |               | -63.951  |     |     |   | 1   | -   |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          | н        | н   | Q | к   | L   | v | F   | F   |       |                     |               | н        | н   | Q   | к | L   | V   | F | F     |
| Initial Orientation      | ı        | RB1 |   |     |     |   |     | LB2 |       | Initia              | al Orientatio | n        | LS1 |     |   |     |     |   | RB2   |
| Final Orientation        | RS1      | RS1 |   |     | LS1 |   |     | LB2 | -     | Final               | Orientation   |          | LB1 |     |   |     |     |   | RB2   |
|                          |          | RNH |   |     |     |   |     |     |       |                     |               |          | LNH |     |   |     |     |   |       |
|                          |          | кВ1 | - | -   | -   |   | -   |     |       |                     |               |          | LS1 |     |   |     |     |   |       |
| Total Energy             | 003 88   |     |   |     |     |   |     |     |       | Tetal               | l Energy      | 108 597  |     |     |   |     |     |   |       |
| van der Maale            | 97 401   |     |   |     |     |   |     |     |       | Iotal               | der Waale     | 94 042   |     |     |   | +   |     |   |       |
| electrostatic            | -225 716 |     | - |     |     |   |     |     |       |                     | trostatic     | -202 537 |     |     |   | -   |     |   |       |
| electrostatic            | -223.710 |     |   |     |     |   |     |     |       | eiect               | uostatic      | -202.337 |     |     |   |     |     |   |       |
| ΔFs                      | -84 15   |     |   |     |     |   |     |     |       | AFs                 |               | -64 257  |     |     |   | -   |     |   |       |
|                          | -9.289   |     |   |     |     |   |     |     |       | 1115                |               | -7.648   |     |     |   | -   |     |   |       |
|                          | -76.978  |     |   |     |     |   |     |     |       |                     |               | -53,799  |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          | н        | н   | Q | к   | L   | v | F   | F   | Tyr10 |                     |               | н        | н   | Q   | к | L   | V   | F | F     |
| Initial Orientation      | n        | RS1 |   |     |     |   |     | LB2 |       | Initia              | al Orientatio | n        | LS2 |     |   |     |     |   | RB2   |
| Final Orientation        |          | RS1 |   |     |     |   |     |     | RB2   | Final               | l Orientation |          | LB2 |     |   |     |     |   |       |
|                          |          | RNH |   |     |     |   |     |     | -CH2- |                     |               |          | LS2 |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
| Total Factory            | 122 702  |     |   |     |     |   |     |     |       | Total               | I Enormi      | 124 970  |     |     |   |     |     |   |       |
| van der Waals            | 04 602   |     |   |     |     |   |     |     |       | TOLA                | dor Waals     | 07 159   |     |     |   |     |     |   |       |
| electrostatic            | -195 088 |     |   |     |     |   |     |     |       | elect               | trostatic     | -184 045 |     |     |   | -   |     |   |       |
| cicerostatic             | 155.000  |     |   |     |     |   |     |     |       | ciece               | liostatic     | 104.045  |     |     |   |     |     |   |       |
| ΔEs                      | -50.056  |     |   |     |     |   |     |     |       | ΔEs                 |               | -37.96   |     |     |   |     |     |   |       |
|                          | -6.997   |     |   |     |     |   |     |     |       |                     |               | -4.532   |     |     |   |     |     |   |       |
|                          | -46.35   |     |   |     |     |   |     |     |       |                     |               | -35.307  |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          | н        | н   | Q | к   | L   | v | F   | F   |       |                     |               | н        | н   | Q   | К | L   | v   | F | F     |
| Initial Orientation      | n        | RS2 |   |     |     |   |     | LB2 |       | Initia              | al Orientatio | n        | LB2 |     |   |     |     |   | RB2   |
| Final Orientation        | RS1      | LB1 |   |     |     |   |     |     |       | Final               | Orientation   |          | LB2 |     |   |     |     |   |       |
|                          |          | RB1 |   |     |     |   |     |     |       |                     |               |          | LS2 |     |   |     |     |   |       |
|                          |          | RS1 |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          | RS2 |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
| Total Energy             | 69 702   |     |   |     |     |   |     |     |       | Total               | Enermy        | 122.275  |     |     |   |     |     |   |       |
| van der Waals            | 00.703   |     |   |     |     |   |     |     |       | vand                | dor Waals     | 09.64    |     |     |   |     |     |   |       |
| electrostatic            | -244.829 |     |   |     |     |   |     |     |       | elect               | trostatic     | -188.44  |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
| ΔEs                      | -104.136 |     |   |     |     |   |     |     |       | ΔEs                 |               | -40.564  |     |     |   |     |     |   |       |
|                          | -10.741  |     |   |     |     |   |     |     |       |                     |               | -3.05    |     |     |   |     |     |   |       |
|                          | -96.091  |     |   |     |     |   |     |     |       |                     |               | -39.702  |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
| Institution in the       | н        | H   | Q | к   | L   | V | F   | F   |       |                     | 1044          | н        | н   | Q   | К | L   | V   | F | F     |
| Initial Orientation      | 1        | KB2 |   | 1   | 1   |   | L   | LB2 |       | Initia              | a Orientatio  | n        |     |     |   |     |     |   |       |
| rinal Urientation        |          |     |   |     |     |   |     |     | -     | Final               | unentation    |          |     |     |   |     |     |   |       |
| Total Engrav             | 161 765  |     |   |     |     |   |     |     |       | Tatel               | Energy        |          |     |     |   |     |     |   |       |
| van der Waals            | 101.705  |     |   |     |     |   |     |     |       | rotal               | der Waals     |          |     |     |   |     |     |   |       |
| electrostatic            | -159 20  |     |   |     |     |   |     |     |       | van c               | trostatic     |          |     |     |   |     |     |   |       |
|                          | 1.3.23   |     | - | -   | -   |   |     |     |       | eiect               |               |          |     |     |   | +   |     |   |       |
| ΔEs                      | -11.074  |     |   |     |     |   |     |     |       | ΔFs                 |               | -172.839 |     |     |   |     |     |   |       |
|                          | -0.365   |     |   |     |     |   |     |     |       |                     |               | -101.69  |     |     |   |     |     |   |       |
|                          | -10.552  |     |   |     |     |   |     |     |       |                     |               | 148.738  |     |     |   | 1   | -   |   |       |
|                          | н        | н   | Q | К   | L   | v | F   | F   |       |                     | н             | н        | Q   | к   | L | v   | F   | F | Glu11 |
| Initial Orientation      | 1        |     |   | LB2 |     |   | RB2 |     |       | Initial Orientation | on            |          |     | RB2 |   |     | LB2 |   |       |
| <b>Final Orientation</b> |          |     |   |     |     |   |     |     |       | Final Orientatio    | on            |          |     |     |   |     |     |   | RB2   |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   | -CH2- |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
| Total Energy             | 165.398  |     |   |     |     |   |     |     |       | Total Energy        | 163.082       |          |     |     |   |     |     |   |       |
| van der Waals            | 96.469   |     |   |     |     |   |     |     |       | van der Waals       | 98.685        |          |     |     |   |     |     |   |       |
| electrostatic            | -153.822 |     |   |     |     |   |     |     |       | electrostatic       | -156.454      |          |     |     |   |     |     |   |       |
|                          |          |     |   |     |     |   |     |     |       |                     |               |          |     |     |   |     |     |   |       |
| ΔEs                      | -7.441   |     |   |     |     |   |     |     |       | ΔEs                 | -9.757        |          |     |     |   |     |     |   |       |
|                          | -5.221   |     |   |     |     |   |     |     |       |                     | -3.005        |          |     |     |   |     |     |   |       |
|                          | -5.084   |     |   |     |     |   |     |     |       |                     | -7.716        |          |     |     |   |     |     |   |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                           | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                      | Q      | к                             |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                              | Q      | к                 | Leu17                                                                                     |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------|---------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------|-------------------|-------------------------------------------------------------------------------------------|-------|-------|
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                        | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RB1                                                                                                                    |        |                               |                                                                    |                                                             |                     |       | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS                                             |        |                   |                                                                                           |       |       |
| <b>Final Orientation</b>                                                                                                                                                                                                                                                                                                                                                                                                                  | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS1                                                                                                                    |        |                               |                                                                    |                                                             |                     |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS                                             |        |                   | RS1                                                                                       |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                              | 79.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69.833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 88.674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                             | -227.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -238.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                       | -54.132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -64.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -7.596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -48.506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -58.898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                      | Q      | К                             | Leu17                                                              |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                              | Q      | К                 | His6                                                                                      | Tyr10 |       |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                        | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1                                                                                                                    |        |                               |                                                                    |                                                             |                     |       | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS                                             |        |                   |                                                                                           |       |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                         | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RS1                                                                                                                    |        |                               | RB1                                                                |                                                             |                     |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS                                             |        |                   |                                                                                           | CS    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                        |        |                               | CS                                                                 |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   | RS1                                                                                       | RB1   |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                              | 64.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                             | 85.112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80.399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                             | -236.159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -256.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                       | -69.181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -90.557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -11.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -15.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -56.712                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -76.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                      | Q      | К                             | Leu17                                                              |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                              | Q      | К                 | His6                                                                                      | Tyr10 | Leu17 |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                        | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LS1                                                                                                                    |        |                               |                                                                    |                                                             |                     |       | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS                                             |        |                   |                                                                                           |       |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                         | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LS1                                                                                                                    |        | RS2                           | CS                                                                 |                                                             |                     |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS                                             |        |                   | LS2                                                                                       | CS    | RS1   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                                                                                      |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                              | 29.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                             | 82.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |        |                   |                                                                                           |       |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                             | -283.223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -275.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                       | -104.875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -112.824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -14.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -17.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -103.776                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -95.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                      | ų      | ĸ                             | Giy9                                                               | Tyr10                                                       |                     |       | Initial Onlandadia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                              | ų      | ĸ                 | Tyriu                                                                                     |       |       |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                        | CS CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R52                                                                                                                    |        |                               | 004                                                                | DCA                                                         |                     |       | Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS CC                                          |        |                   |                                                                                           |       |       |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                         | LS .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K52                                                                                                                    |        |                               | RS1<br>C=0                                                         | RSI                                                         |                     |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | US .                                           |        |                   | CS                                                                                        |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               | C=0                                                                |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |        |                   |                                                                                           |       |       |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | Total Epermy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52 946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
| von der Maale                                                                                                                                                                                                                                                                                                                                                                                                                             | 90.940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | von der Maale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0E 04E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |        |                   |                                                                                           |       |       |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                             | -225 077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -251 601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |        |                   |                                                                                           |       |       |
| ciccuostatic                                                                                                                                                                                                                                                                                                                                                                                                                              | 233.377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | ciccitostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 201.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
| AFe                                                                                                                                                                                                                                                                                                                                                                                                                                       | -62 701                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | AFe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -90 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
| 41.3                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -56 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10.425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | -30.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -72.1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        |        |                               |                                                                    |                                                             |                     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |        |                   |                                                                                           |       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                        | 0      | к                             | Glv9                                                               | Tyr10                                                       | Val12               | Leu17 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                              | 0      | к                 | Glv9                                                                                      | Tyr10 | Leu17 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                           | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н                                                                                                                      |        | 15                            | Giyo                                                               | IJIIO                                                       | VUITZ               | Louin | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB2                                            | ~~~    |                   | Giys                                                                                      | 19120 | 20017 |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H<br>LS2                                                                                                               | ų      |                               |                                                                    |                                                             |                     | 161   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                |        |                   | RS1                                                                                       | RS1   | RS2   |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>CS<br>RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>LS2                                                                                                               | ų      | RS1                           | 1.52                                                               | 1.52                                                        | RS2                 | 1.31  | Einal Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS2                                            |        |                   |                                                                                           |       |       |
| Initial Orientatio<br>Final Orientatior                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>CS<br>RB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>LS2<br>LS1                                                                                                        | ų      | RS1<br>RS2                    | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 | 131   | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS2                                            |        |                   | C=O                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientatior                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>CS<br>RB1<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=O                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS2                                            |        |                   | C=O                                                                                       | -CH-  |       |
| Initial Orientatio<br>Final Orientatior                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>CS<br>RB1<br>LB1<br>LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=O                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS2                                            |        |                   | C=O                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientatior                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>CS<br>RB1<br>LB1<br>LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>CS<br>RB1<br>LB1<br>LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=O                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>CS<br>52.193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                  | H<br>CS<br>RB1<br>LB1<br>LB1<br>LS1<br>-12.899<br>75.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RS1<br>CS<br>52.193<br>82.429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                 | H<br>CS<br>RB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RS1<br>CS<br>52.193<br>82.429<br>-247.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS2                                            |        |                   | C=O                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                 | H<br>CS<br>RB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=O                                                         | LS2<br>-CH-                                                 | RS2                 |       | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RS1<br>CS<br>52.193<br>82.429<br>-247.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                          | H<br>CS<br>RB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=O                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                          | H<br>CS<br>RB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                          | H<br>CS<br>RB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                         | H<br>CS<br>RB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                          | H<br>CS<br>RB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LS2<br>LS1                                                                                                        |        | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS2                                            |        |                   | C=0                                                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                          | H<br>CS<br>RB1<br>LB1<br>IS1<br>-12.899<br>-5.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H<br>LS2<br>LS1                                                                                                        | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS2                                            | Q      | K                 | C=0                                                                                       | -CH-  |       |
| Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                          | H<br>CS<br>RB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>LS2<br>LS1<br>H<br>LB2                                                                                            | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-                                                 | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                           | RS2<br>H<br>RB1                                | Q      | K                 | C=0                                                                                       | -CH   |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic                                                                                                                                                                                                                                                                                                | H<br>CS<br>RB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>H<br>H<br>CS<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-<br>Tyr10<br>LS2                                 | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                    | RS2<br>H<br>RB1<br>RS1                         | Q      | K<br>LS2          | C=0<br>Phe20<br>LB2                                                                       | -CH   |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation                                                                                                                                                                                                                                                                                               | H<br>CS<br>RB1<br>LB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>H<br>H<br>CS<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                               | RS2<br>H<br>RB1<br>RS1                         | Q      | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2                                                                       | -CH   |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                   | H<br>CS<br>RB1<br>LB1<br>LB1<br>-12,899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS1<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1                                                                                                                                                                                                                                                                                                                                                                                               | RS2<br>H<br>RB1<br>RS1                         | Q      | K<br>LS2<br>-CH2- | C=O<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       | -CH   |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                   | H<br>CS<br>RB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>CS<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2<br>Leu17<br>LS1 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LS1<br>LS1<br>RB1<br>RB1                                                                                                                                                                                                                                                                                                                                                                                 | RS2<br>H<br>RB1<br>RS1                         | Q      | K<br>LS2<br>-CH2- | C=O<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       | -CH   |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                  | H<br>CS<br>RB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>K<br>LB1<br>LB1<br>LB1<br>LB1<br>LS2<br>LS2<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2<br>Leu17<br>LS1 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>RB1<br>RB1                                                                                                                                                                                                                                                                                                                                                                   | H<br>RB1<br>RS1                                | Q      | K<br>LS2<br>-CH2- | C=O<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       | -CH-  |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation                                                                                                                                                                                                                                                                                               | H<br>CS<br>RB1<br>LB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LS2<br>LS1<br>RB1<br>LS2<br>LS1<br>RB1<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                 | H<br>H<br>RB1<br>RS1                           | Q      | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>CS<br>RB1<br>LB1<br>IS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>CS<br>LS2<br>LS1<br>-CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2- | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q.     | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LS1<br>LS1<br>RB1<br>RS1<br>RB1<br>RS1<br>RB1<br>RS1<br>AC2                                                                                                                                                                                                                                                                                                                                              | H<br>RB1<br>RS1                                | Q      | K<br>LS2<br>-CH2- | C=O<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       | CH    |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>CS<br>RB1<br>LB1<br>IS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>-12.899<br>-20.366<br>-12.5789<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | Leu17               |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         Total Energy         Total Energy         Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>-CH2-<br>-4.182<br>TC 52                                                                                                                                                                                                                                                                                                           | H<br>RB1<br>RS1                                | Q.     | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                             | H<br>CS<br>RB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>H<br>CS<br>LB1<br>LB1<br>LB1<br>CS<br>LS2<br>LS1<br>LB1<br>CS<br>LS2<br>LS1<br>LS1<br>LS1<br>LB1<br>LB1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Giy9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | Leu17               |       | Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy Van der Waals electrostation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB2<br>LS1<br>RB1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>-CH2-<br>-4.182<br>75.97                                                                                                                                                                                                                                                                                                                                | H<br>RB1<br>RS1                                | Q      | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                           | H<br>-R81<br>LB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>-146.95<br>-20.366<br>-125.789<br>-146.95<br>-20.366<br>-125.789<br>-20.366<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>-20.366<br>-125.789<br>LS1<br>-20.366<br>-125.789<br>-20.366<br>-20.366<br>-125.789<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-20.366<br>-                                                                                                                                                                                                                        | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q.     | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | Leu17<br>LS1        |       | Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>-CH2-<br>CH2-<br>S75.97<br>-292.821                                                                                                                                                                                                                                                                                                       | H<br>RB1<br>RS1                                | Q      | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                            | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>C<br>S<br>LB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-126.789<br>H<br>C<br>S<br>LB1<br>LB1<br>LB1<br>LB1<br>-12.899<br>75.904<br>-126.789<br>H<br>C<br>S<br>LB1<br>LB1<br>LB1<br>LB1<br>-126.95<br>-126.366<br>-125.789<br>H<br>C<br>S<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>R52<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>LS2<br>LS1<br>RB1<br>LS2<br>LS1<br>RB1<br>-CH2-<br>-41.82<br>75.97<br>-292.821                                                                                                                                                                                                                                                                                                             | H<br>RB1<br>RS1                                | Q.     | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                    | H<br>CS<br>RB1<br>LB1<br>LB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>S<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LB1<br>CS<br>LS1<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.375<br>-255.3                                                                                                                                          | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-83.397<br>-83.397<br>-83.397<br>-042<br>-042<br>-042<br>-4.182<br>75.97<br>-292.821<br>-138.233                                                                                                                                                                                                                                                                                                                                              | H<br>RB1<br>RS1                                | Q      | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q.     | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         Van der Waals         electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>LS2<br>LS1<br>RS1<br>-CH2-<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-1132.274                                                                                                                                                                                                                                                                                                | H<br>RB1<br>RS1                                | Q      | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                     | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>H<br>K<br>H<br>CS<br>LB1<br>LB1<br>CS<br>LS2<br>LS1<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>-125.789<br>H<br>CS<br>-125.789<br>H<br>CS<br>-125.789<br>-126.373<br>-245.373<br>-80.139<br>-245.373<br>-80.139<br>-12.639<br>-80.139<br>-12.639<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.528<br>-80.5288<br>-80.528<br>-80.528<br>-80.5288<br>-80.528                                                                                                                                                                                                        | н<br>LS2<br>LS1<br>LS1<br>LS1<br>LS2<br>LS1                                                                            | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-66.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RS1<br>RS1<br>-CH2-<br>-CH2-<br>-CH2-<br>-CH2-<br>-CH2-<br>-292.821<br>-13.823<br>-20.3<br>-113.374                                                                                                                                                                                                                                                            | H<br>RB1<br>RS1                                | Q.     | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                    | H<br>CS<br>RB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>-12.899<br>75.904<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>LB1<br>CS<br>LS1<br>-CH2<br>S3.912<br>S3.912<br>S3.912<br>-83.631<br>-245.373<br>-80.139<br>-12.639<br>-65.956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н<br>LS2<br>LS1<br>H<br>LB2<br>LS1                                                                                     | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Giy9<br>LS2<br>C=0                                   | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>LS2<br>LS1<br>RB1<br>CH2-<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.374                                                                                                                                                                                                                                                                                                     | H<br>R81<br>R51                                | Q      | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                     | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>LB1<br>CS<br>LS2<br>LS2<br>LS2<br>LS1<br>-746.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS1<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-146.95<br>-125.789<br>H<br>CS<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS3<br>-125.373<br>-80.139<br>-125.373<br>-80.139<br>-125.299<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125.297<br>-125                                                                                                                                                                                    | H<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                            | Q<br>Q | RS1<br>RS2<br>-CH2-           | LS2<br>C=0                                                         | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-                         | RS2                 |       | Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                            | H<br>H<br>RS1                                  | Q      | K<br>LS2<br>-CH2- | C=0                                                                                       |       |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>CS<br>RB1<br>LB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>-146.95<br>-20.366<br>-125.789<br>-20.526<br>-125.789<br>-20.526<br>H<br>RB1<br>-245.971<br>-6.926<br>H<br>RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                              | Q<br>Q | KS1 RS1 RS2 -CH2-             | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9                           | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10                | Leu17               |       | Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-66.397<br>-81.858<br>-13.841<br>-66.397<br>-81.851<br>LS1<br>RS1<br>-CH22<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.374<br>H<br>RS1                                                                                                                                                                                                                                                                                        | H<br>R81<br>R81<br>R81                         | Q<br>Q | К<br>К<br>К       | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-                                                       |       |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>H<br>LB2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1 | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>C=0                    | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH- | Leu17<br>LS1        |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         ΔEs         Initial Orientation         ΔEs         Initial Orientation         Initial Orientation         ΔEs         Initial Orientation         Initial Orientation         Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LS2<br>LS1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>-CH2-<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.374<br>H<br>RS1<br>RB1<br>RB1<br>RB1                                                                                                                                                                                                                                                  | H<br>H<br>R81<br>R81<br>H<br>L81<br>L81<br>L81 | Q<br>Q | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>Gly9<br>CS                                         |       |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>R81<br>LB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-126.5789<br>H<br>CS<br>LB1<br>LB1<br>CS<br>LS2<br>LS1<br>-CH2-<br>53.912<br>83.631<br>-245.373<br>-80.139<br>-12.639<br>-65.926<br>H<br>RB1<br>RB1<br>CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>LS2<br>LS1<br>H<br>HB2<br>LS1<br>H<br>HB1<br>LS1                                                                  | Q<br>Q | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Gly9<br>LS2<br>C=0<br>C=0<br>Gly9<br>CS<br>C=0       | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | Leu17               |       | Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientat | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-66.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>RS1<br>-CH2-<br>-292.821<br>-138.233<br>-20.3<br>-113.374<br>H<br>RS1<br>RS1<br>RB1<br>RS1<br>RS1                                                                                                                                                                                                                                                                     | H<br>R81<br>R51<br>H<br>L81<br>L81             | Q<br>Q | к<br>LS2<br>-СH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>CH2-<br>CS<br>CS<br>C=C                    |       |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>H<br>LB2<br>LS1<br>LS1                                                         | Q      | K S1 RS1 RS2 -CH2-            | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>CS<br>C=0              | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | Leu17               |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Initial Orientatic         ΔEs         Initial Orientatic         ΔEs         Initial Orientatic         ΔEs         Initial Orientatic         ΔEs         Initial Orientatic         Final Orientatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LS1<br>LS1<br>RB1<br>RS1<br>RS1<br>RB1<br>RB1<br>RB1<br>RS1<br>RB1<br>RS1<br>RB1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1                                                                                                                                                                                                                                                   | H<br>R81<br>R81<br>R81<br>L81<br>L81           | Q.     | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2<br>-<br>CH2<br>-<br>CH2<br>-<br>CH2<br>-<br>CS<br>C=0  |       |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                     | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>K<br>H<br>CS<br>LS2<br>LS1<br>LS1<br>-146.95<br>-20.366<br>-125.789<br>H<br>CS<br>LS2<br>LS1<br>-33.912<br>83.631<br>-245.373<br>-80.139<br>-12.639<br>-65.926<br>H<br>RB1<br>CS<br>CS<br>-80.139<br>-12.639<br>-65.926<br>H<br>RB1<br>CS<br>-80.139<br>-12.637<br>-80.139<br>-65.926<br>H<br>RB1<br>CS<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-65.926<br>H<br>RB1<br>CS<br>-80.139<br>-12.637<br>-80.139<br>-65.926<br>H<br>RB1<br>CS<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-12.637<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.139<br>-80.526<br>-80.252<br>-80.252<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.526<br>-80.556<br>-80.556<br>-80.556<br>-80.556<br>-80.556<br>-80.556<br>-80.556<br>-80.556                                                                                                                                                                                            | H<br>LS2<br>LS1<br>H<br>LB2<br>LS1<br>H<br>LS1                                                                         | Q      | RS1<br>RS2<br>-CH2-<br>К      | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>C=0<br>C=0             | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | Leu17               |       | Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                            | H<br>RB1<br>RS1<br>LB1<br>LS1                  | Q.     | K<br>LS2<br>CH2-  | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH |       |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H R81<br>-12.899<br>-75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H CS<br>LB1<br>LB1<br>CS<br>LS1<br>-CH2<br>S3.912<br>83.631<br>-245.373<br>-80.139<br>-12.639<br>-65.926<br>H R81<br>CS<br>LS1<br>-CH2<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.346<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.347<br>-20.3                                                                                                                                                                                                                          | н<br>LS2<br>LS1<br>H<br>LB2<br>LS1<br>LS1<br>H<br>LB1<br>LS1                                                           | Q      | KS1 RS1 RS2 -CH2-             | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>CS<br>C=0<br>CS<br>C=0 | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | RS2                 |       | Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-66.397<br>-81.858<br>-13.841<br>-66.397<br>-13.841<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RS1<br>-CH2<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.374<br>H<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1                                                                                                                                                                                | H<br>R81<br>R51<br>H<br>L81<br>LS1             | Q      | К<br>К<br>К       | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>Giy9<br>Giy9<br>CS<br>C=0                          |       |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                 | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>H<br>H<br>C<br>H<br>H<br>C<br>S<br>LB1<br>LB1<br>CS<br>LS1<br>-146.95<br>-20.366<br>-125.789<br>H<br>C<br>S<br>LB1<br>LB1<br>CS<br>LS1<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.373<br>-245.374<br>-245.374<br>-245.374<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.275<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.375<br>-245.3                                                                                                                                                                                                                                            | н<br>LS2<br>LS1<br>LS1<br>LS1<br>H<br>LB2<br>LS1<br>H<br>LB1<br>LS1                                                    | Q      | RS1<br>RS2<br>-CH2-           | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>C=0<br>C=0             | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | RS2                 |       | Final Orientation         Γotal Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Initial Orientation         Initial Orientation         Initial Orientation         Initial Orientation         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LS2<br>LS1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>-CH2-<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.374<br>H<br>RS1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB                                                                                                                                                                                    | H<br>H<br>R81<br>R81<br>H<br>L81<br>L81        | Q<br>Q | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>Gly9<br>CS<br>C=0                                  |       |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                         | H<br>R81<br>LB1<br>LB1<br>LS1<br>-12.899<br>75.904<br>-305.236<br>-125.789<br>H<br>K<br>LB1<br>LB1<br>CS<br>LS2<br>LS1<br>-CH2<br>-33.912<br>83.631<br>-245.373<br>-80.139<br>-12.639<br>-65.926<br>H<br>RB1<br>CS<br>-20.52<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.12<br>-81.                                                                                                                                                              | н<br>LS2<br>LS1<br>H<br>LB2<br>LS1<br>H<br>H<br>B1<br>LS1                                                              | Q<br>Q | KS1 RS1 RS2 -CH2-             | LS2<br>C=0<br>Gly9<br>LS2<br>C=0<br>Gly9<br>Gly9<br>CS<br>C=0      | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | Leu17               |       | Final Orientation         Initial Orientation         ΔEs         Initial Orientation         Initial Orientation         Initial Orientation         Distribution         Distribution         Initial Orientation         Distribution         Distrion<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-66.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LS2<br>LS1<br>RB1<br>RS1<br>-CH2-<br>-CH2-<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.374<br>H<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1<br>RS1                                                                                                                                                                                                             | H<br>R81<br>R81<br>R81<br>L81<br>L81           | Q.     | к<br>LS2<br>-СH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>CH2-<br>CH2-<br>CH2-<br>CS<br>CS-<br>C=0           |       |       |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                       | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>H<br>LB2<br>LS1<br>LS1                                                         | Q      | RS1<br>RS2<br>CH2-            | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>CS<br>C=0              | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | RS2                 |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Initial Orientation         Final Orientation         Final Orientation         Total Energy         Van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>-CH2-<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.74<br>R51<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>R8                                                                                                                                                                                                                             | H<br>RB1<br>RS1<br>H<br>LB1<br>LS1             | Q.     | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>Gly9<br>CS<br>C=0                                  |       |       |
| Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                         | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>-12.899<br>75.904<br>-305.236<br>-146.95<br>-20.366<br>-125.789<br>H<br>K<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>LS2<br>LS1<br>-042<br>53.912<br>83.631<br>-245.373<br>-80.139<br>-65.926<br>H<br>RB1<br>RB1<br>RB1<br>CS<br>-225.871<br>-235.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.871<br>-245.8771<br>-245.8771<br>-245.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.8777<br>-255.87777<br>-255.87777<br>-255.877777<br>-255.877777777777777777777777777777777777                                                                                                                                                                                                                                                                                             | н<br>LS2<br>LS1<br>H<br>LB2<br>LS1<br>H<br>LB2<br>LS1                                                                  | Q      | KS1 RS1 RS2 -CH2-             | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>C=0<br>C=0             | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | Leu17               |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Distribution         Distribution <td>R51<br/>CS<br/>22.193<br/>82.429<br/>-247.844<br/>-81.858<br/>-13.841<br/>-68.397<br/>H<br/>LB1<br/>LB1<br/>LB1<br/>LB1<br/>LB1<br/>LB1<br/>LB1<br/>LB1<br/>LB1<br/>LB1</td> <td>H<br/>RB1<br/>RS1<br/>LB1<br/>LS1</td> <td>Q.</td> <td>K<br/>LS2<br/>CH2-</td> <td>C=0<br/>Phe20<br/>LB2<br/>LS2<br/>-CH2-<br/>Giy9<br/>Giy9<br/>CS<br/>C=0</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R51<br>CS<br>22.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1                                                                                                                                                                                                                                                                                                                                                            | H<br>RB1<br>RS1<br>LB1<br>LS1                  | Q.     | K<br>LS2<br>CH2-  | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>Giy9<br>Giy9<br>CS<br>C=0                          |       |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Cotal Energy<br>van der Waals<br>electrostatic<br>ΔEs | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>C<br>H<br>H<br>C<br>S<br>L<br>H<br>C<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>S<br>C<br>H<br>Z<br>S<br>S<br>C<br>H<br>Z<br>S<br>S<br>C<br>H<br>C<br>R<br>S<br>C<br>H<br>Z<br>R<br>S<br>L<br>S<br>S<br>C<br>H<br>Z<br>R<br>S<br>L<br>S<br>S<br>C<br>H<br>Z<br>R<br>S<br>S<br>S<br>C<br>C<br>Z<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>LS2<br>LS1<br>H<br>H<br>LB2<br>LS1<br>LS1                                                                         | Q      | KS1 RS1 RS2 -CH2-             | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>CS<br>C=0              | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | RS2                 |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Initial Orientation         Initial Orientation         Initial Orientation         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R51<br>CS<br>52.193<br>82.429<br>-247.844<br>-81.858<br>-13.841<br>-68.397<br>H<br>LB1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>-CH2-<br>-4.182<br>75.97<br>-292.821<br>-138.233<br>-20.3<br>-113.374<br>H<br>RS1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB1<br>RB                                                                                                                                                                                                                       | H<br>R81<br>R51<br>H<br>L81<br>LS1             | Q      | К<br>К<br>К       | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>Gly9<br>CS<br>C=0                                  |       |       |
| Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs         | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>-12.899<br>-305.236<br>-125.789<br>-146.95<br>-20.366<br>-125.789<br>H<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>H<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н<br>LS2<br>LS1<br>LS1<br>H<br>LB2<br>LS1<br>H<br>LB1<br>LS1                                                           | Q      | RS1<br>RS2<br>-CH2-<br>К<br>К | LS2<br>C=0<br>Giy9<br>LS2<br>C=0<br>Giy9<br>C=0<br>C=0             | LS2<br>-CH-<br>Tyr10<br>LS2<br>-CH-<br>Tyr10<br>LS1         | RS2                 |       | Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Initial Orientation         Final Orientation         Final Orientation         Initial Orientation         Final Orientation         Initial Orientation         Final Orientation         Grad Energy         van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RS1           CS           52.193           82.429           -247.844           -81.858           -13.841           -68.397           H           LB1           LB2           LS1           RB1           RS1           -CH2           -4.182           75.97           -292.821           -138.233           -20.3           -113.374           H           RS1           RS1           RS1           RNH           RS1           S5.058           87.365           -252.526           -78.993           -8.905 | H<br>RB1<br>RS1<br>LB1<br>LS1                  | Q.     | K<br>LS2<br>-CH2- | C=0<br>Phe20<br>LB2<br>LS2<br>-CH2-<br>Giy9<br>CS<br>C=0                                  |       |       |

## The gas phase results of solapsone and the 1IYT conformer of $A\beta$

|                    | н                                        | н   | 0 | к   |       |       |                    | н                             | н   | 0                                      | к      | Tyr10 |       |          |       |
|--------------------|------------------------------------------|-----|---|-----|-------|-------|--------------------|-------------------------------|-----|----------------------------------------|--------|-------|-------|----------|-------|
| Initial Orientatio | IB1                                      | RS1 | ų | N   |       |       | Initial Orientatio | 1.51                          | RB1 | ų                                      | N.     | ijiio |       |          |       |
| Final Orientation  | LS1                                      | RS1 |   |     |       |       | Final Orientation  | 1.51                          | RS1 |                                        |        | RS1   |       |          |       |
|                    | LB1                                      |     |   |     |       |       |                    | INH                           | 2   |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    | 1.01                          | -   |                                        |        |       |       |          |       |
|                    | ENIT                                     |     |   |     |       |       |                    | LDT                           |     |                                        |        |       |       |          |       |
| Total Energy       | 57 922                                   |     |   |     |       |       | Total Energy       | 52 470                        |     |                                        |        |       |       |          |       |
| van der Waals      | 90.694                                   |     |   |     |       |       | van der Waals      | 90 318                        |     |                                        |        |       |       |          |       |
| electrostatic      | -251 347                                 |     |   |     |       |       | electrostatic      | -257.083                      |     |                                        |        |       |       |          |       |
| ciccitostutic      | 232.347                                  |     |   |     |       |       | ciccitostatic      | 237.003                       |     |                                        |        |       |       |          |       |
| AFe                | -76 219                                  |     |   |     |       |       | AFe                | -90 572                       |     |                                        |        |       |       |          |       |
|                    | -5 576                                   |     |   |     |       |       |                    | -5.952                        |     |                                        |        |       |       |          |       |
|                    | -71.9                                    |     |   |     |       |       |                    | -77 636                       |     |                                        |        |       |       |          |       |
|                    | 71.5                                     |     |   |     |       |       |                    | 77.050                        |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    | н                                        | н   | 0 | к   | Glv9  |       |                    | н                             | н   | 0                                      | к      | Tyr10 | Val12 | 10117    |       |
| Initial Orientatio | RB1                                      | 151 | ų | ĸ   | Giys  |       | Initial Orientatio | R\$2                          | IB1 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | N.     | 19120 | VUILL | LC U I / |       |
| Final Orientation  | RB1                                      | 231 |   |     | CS    |       | Final Orientation  | RB1                           | IB1 |                                        |        | 152   | R\$2  | CS       |       |
|                    | RB1                                      |     |   |     |       |       |                    | RB1                           | 152 |                                        |        |       |       |          |       |
|                    | RS1                                      |     |   |     |       |       |                    | RS1                           |     |                                        |        |       |       |          |       |
|                    | 2                                        |     |   |     |       |       |                    | RS2                           |     |                                        |        |       |       |          |       |
|                    | CS.                                      |     |   |     |       |       |                    | CS                            |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| Total Energy       | 62.64                                    |     |   |     |       |       | Total Energy       | 24.131                        |     |                                        |        |       |       |          |       |
| van der Waals      | 89.396                                   |     |   |     |       |       | van der Waals      | 80.617                        |     |                                        |        |       |       |          |       |
| electrostatic      | -245.465                                 |     |   |     |       |       | electrostatic      | -275.346                      |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| ΔEs                | -71.411                                  |     |   |     |       |       | ΔEs                | -109.92                       |     |                                        |        |       |       |          |       |
|                    | -6.874                                   |     |   |     |       |       |                    | -15.653                       |     |                                        |        |       |       |          |       |
|                    | -66.018                                  |     |   |     |       |       |                    | -95.899                       |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    | Н                                        | н   | Q | к   |       |       |                    | н                             | н   | Q                                      | К      | Val12 | Leu17 |          |       |
| Initial Orientatio | LB1                                      | RS2 |   |     |       |       | Initial Orientatio | RB1                           | LS2 |                                        |        |       |       |          |       |
| Final Orientation  | LB1                                      | RS2 |   | LS2 |       |       | Final Orientation  | RB1                           | LB2 |                                        | RS1    | RS2   | LS2   |          |       |
|                    | LS2                                      |     |   |     |       |       |                    | LS2                           | LS2 |                                        | RS2    |       | LB1   |          |       |
|                    | RB1                                      |     |   |     |       |       |                    | LB1                           |     |                                        | -CH2-  |       | CS    |          |       |
|                    |                                          |     |   |     |       |       |                    | RNH                           |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    | RS2                           |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| Total Energy       | 16.144                                   |     |   |     |       |       | Total Energy       | 1.033                         |     |                                        |        |       |       |          |       |
| van der Waals      | 81.2                                     |     |   |     |       |       | van der Waals      | 76.119                        |     |                                        |        |       |       |          |       |
| electrostatic      | -291.016                                 |     |   |     |       |       | electrostatic      | -294.243                      |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| ΔEs                | -117.907                                 |     |   |     |       |       | ΔEs                | -133.018                      |     |                                        |        |       |       |          |       |
|                    | -15.07                                   |     |   |     |       |       |                    | -20.151                       |     |                                        |        |       |       |          |       |
|                    | -111.569                                 |     |   |     |       |       |                    | -114.796                      |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    | н                                        | н   | Q | к   | Tyr10 | Leu17 |                    | н                             | н   | Q                                      | К      | Gly9  | Tyr10 | Leu17    | Phe20 |
| Initial Orientatio | LS2                                      | RB1 |   |     |       |       | Initial Orientatio | LB1                           | RB2 |                                        |        |       |       |          |       |
| Final Orientation  | LB2                                      |     |   |     | RS2   | LB2   | Final Orientation  | LB1                           | RB2 |                                        | LS2*   | RS2   | RS2   | LS2      | LB2   |
|                    | LS2                                      | RS2 |   |     |       |       |                    | RB1                           | RS2 |                                        | LS1*   | C=O   |       |          | LS2   |
|                    |                                          |     |   |     |       |       |                    | RB1                           |     |                                        | *-CH2- |       |       |          | -CH2- |
|                    |                                          |     |   |     |       |       |                    | LS2                           |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| Total Energy       | 62.674                                   |     |   |     |       |       | Total Energy       | -4.977                        |     |                                        |        |       |       |          |       |
| van der Waals      | 86.64                                    |     |   |     |       |       | van der Waals      | 68.419                        |     |                                        |        |       |       |          |       |
| electrostatic      | -241.725                                 |     |   |     |       |       | electrostatic      | -293.092                      |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| ΔEs                | -71.377                                  |     |   |     |       |       | ΔEs                | -139.028                      |     |                                        |        |       |       |          |       |
|                    | -9.63                                    |     |   |     |       |       |                    | -27.851                       |     |                                        |        |       |       |          |       |
|                    | -62.278                                  |     |   |     |       |       |                    | -113.645                      |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    | н                                        | н   | Q | к   | Gly9  | Tyr10 |                    | н                             | н   | Q                                      | К      | Leu17 | Phe20 |          |       |
| Initial Orientatio | RB2                                      | LB1 |   |     |       |       | Initial Orientatio | RB1                           | LB2 |                                        |        |       |       |          |       |
| Final Orientation  | RB1                                      | LB1 |   |     | RS1   | RS1   | Final Orientation  | RB1                           | LB2 |                                        | RS1    | LB2   | RB2   |          |       |
|                    | -CH2-                                    | LNH |   |     | C=O   | LB1   |                    | LB1                           |     |                                        | 2      |       | RS1   |          |       |
|                    | RNH                                      |     |   |     |       |       |                    | LB1                           |     |                                        |        |       | -CH2- |          |       |
|                    | RS1                                      |     |   |     |       |       |                    | RS1                           |     |                                        |        |       |       |          |       |
|                    | RB2                                      |     |   |     |       |       |                    | LNH                           |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| Total Energy       | 52.512                                   |     |   |     |       |       | Total Energy       | 10.046                        |     |                                        |        |       |       |          |       |
| van der Waals      | 83.921                                   |     |   |     |       |       | van der Waals      | 76.225                        |     |                                        |        |       |       |          |       |
| electrostatic      | -250.131                                 |     |   |     |       |       | electrostatic      | -284.797                      |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| ΔEs                | -81.539                                  |     |   |     |       |       | ΔEs                | -124.005                      |     |                                        |        |       |       |          |       |
|                    | -12.349                                  |     |   |     |       |       |                    | -20.045                       |     |                                        |        |       |       |          |       |
|                    | -70.684                                  |     |   |     |       |       |                    | -105.35                       |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    | н                                        | н   | Q | К   | Tyr10 | Leu17 |                    | н                             | н   | Q                                      | К      | Tyr10 | Leu17 | Phe20    |       |
| Initial Orientatio | LB2                                      | RB1 |   |     |       |       | Initial Orientatio | LS2                           | RS2 |                                        |        |       |       |          |       |
| Final Orientation  | LS2                                      | RB1 |   |     | RS2   | LB2   | Final Orientation  | LB1                           | RB2 |                                        | LS2    | RS2   | LS2   | LB2      |       |
|                    |                                          | RS2 |   |     |       |       |                    | LS2                           | RS2 |                                        | -CH2-  |       | RB2   | LS2      |       |
|                    |                                          |     |   |     |       |       |                    | LS1                           |     |                                        |        |       |       | -CH2-    |       |
|                    |                                          |     |   |     |       |       |                    | RB1                           |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| Total Energy       | 57.831                                   |     |   |     |       |       | Total Energy       | -10.185                       |     |                                        |        |       |       |          |       |
| van der Waals      | 82.263                                   |     |   |     |       |       | van der Waals      | 70.925                        |     |                                        |        |       |       |          |       |
| electrostatic      | -245.693                                 |     |   |     |       |       | electrostatic      | -295.197                      |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| ΔEs                | -76.22                                   |     |   |     |       |       | ΔEs                | -144.236                      |     |                                        |        |       |       |          |       |
|                    | -14.007                                  |     |   |     |       |       |                    | -25.345                       |     |                                        |        |       |       |          |       |
|                    | -66.246                                  |     |   |     |       |       |                    | -115.75                       |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    | н                                        | н   | Q | К   | Tyr10 |       |                    | н                             | н   | Q                                      | к      | Tyr10 | Leu17 |          |       |
| Initial Orientatio | RS2                                      | LS2 |   |     |       |       | Initial Orientatio | RB2                           | LS2 |                                        |        |       |       |          |       |
| Final Orientation  | RS1                                      | LS2 |   |     | LB2   |       | Final Orientation  | RS2                           | LS2 |                                        | RS2    | LS2   | RS2   |          |       |
|                    | RS2                                      |     |   |     |       |       |                    | RB1                           |     |                                        | -CH2-  | LB2   |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    |                                          |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| Total Energy       | 48.454                                   |     |   |     |       |       | Total Energy       | 42.699                        |     |                                        |        |       |       |          |       |
| van der Waals      | 89.394                                   |     |   |     |       |       | van der Waals      | 82.431                        |     |                                        |        |       |       |          |       |
| electrostatic      |                                          |     |   |     |       |       | electrostatic      | -256.771                      |     |                                        |        |       |       |          |       |
|                    | -258.855                                 |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
|                    | -258.855                                 |     |   |     |       |       |                    |                               |     |                                        |        |       |       |          |       |
| ΔEs                | -258.855<br>-85.597                      |     |   |     |       |       | ΔEs                | -91.352                       |     |                                        |        |       |       |          |       |
| ΔEs                | -258.855<br>-85.597<br>-6.876            |     |   |     |       |       | ΔEs                | -91.352<br>-13.839            |     |                                        |        |       |       |          |       |
| ΔEs                | -258.855<br>-85.597<br>-6.876<br>-79.408 |     |   |     |       |       | ΔEs                | -91.352<br>-13.839<br>-77.324 |     |                                        |        |       |       |          |       |

|                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н        | Q   | К                                                                                                          | Gly9                | Tyr10        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н        | Q  | к                                                                                                                                   | Tyr10        |       |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|------------------------------------------------------------------------------------------------------------|---------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|-------|
| Initial Orientatio                                                                                                                                                                                                                                            | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB2      |     |                                                                                                            |                     |              | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS2      |    |                                                                                                                                     |              |       |       |
| Final Orientation                                                                                                                                                                                                                                             | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB2      |     | LS2                                                                                                        | RS2                 | RSZ          | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RB2      |    |                                                                                                                                     | RSZ          |       |       |
|                                                                                                                                                                                                                                                               | LDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.52    |     | -0112-                                                                                                     | 0                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 102      |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |                                                                                                                                     |              |       |       |
| Total Energy                                                                                                                                                                                                                                                  | 15 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |                                                                                                            |                     |              | Total Eporty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77 /00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
| van der Waals                                                                                                                                                                                                                                                 | 78.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |                                                                                                            |                     |              | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 81.765                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
| electrostatic                                                                                                                                                                                                                                                 | -281.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |                                                                                                            |                     |              | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -271.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
| ΔES                                                                                                                                                                                                                                                           | -118.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |                                                                                                            |                     |              | ΔES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -106.563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | -101.733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -91.683                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | -   |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | -  |                                                                                                                                     |              |       |       |
| Initial Orientatio                                                                                                                                                                                                                                            | H<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>182 | Q   | К                                                                                                          | Val12               | Leu1/        | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H<br>RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H<br>182 | Q  | ĸ                                                                                                                                   | Tyr10        | Val12 | Leu1/ |
| Final Orientation                                                                                                                                                                                                                                             | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LS2      |     | RS2                                                                                                        | RS2                 | CS           | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LB2      |    | RB2                                                                                                                                 | LB2          | RB2   | LS2   |
|                                                                                                                                                                                                                                                               | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB2      |     | -CH2-                                                                                                      |                     | LB1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LS2      |    | RS2                                                                                                                                 |              |       |       |
|                                                                                                                                                                                                                                                               | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     | RS1                                                                                                        |                     | LS2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
| Total Energy                                                                                                                                                                                                                                                  | 1.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |                                                                                                            |                     |              | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
| electrostatic                                                                                                                                                                                                                                                 | -289.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |                                                                                                            |                     |              | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -289.395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
| ΔEs                                                                                                                                                                                                                                                           | -132.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |                                                                                                            |                     |              | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -120.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | -21.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -13.768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | -110.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -109.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н        | Q   | к                                                                                                          | Leu17               | Phe20        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н        | Q  | к                                                                                                                                   | Gly9         |       |       |
| Initial Orientatic                                                                                                                                                                                                                                            | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB2      |     | 107                                                                                                        | 107                 | 182          | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LS1      |    |                                                                                                                                     | ~~           |       |       |
| . mai unentatior                                                                                                                                                                                                                                              | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND2      |     | -CH2-                                                                                                      | 62                  | 102          | i inal orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 131      |    |                                                                                                                                     | C=0          |       |       |
|                                                                                                                                                                                                                                                               | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     | LS1                                                                                                        |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |    |                                                                                                                                     |              |       |       |
| Total Energy                                                                                                                                                                                                                                                  | 29.373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |                                                                                                            |                     |              | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 62.646                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
| van der Waals                                                                                                                                                                                                                                                 | 81.394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |                                                                                                            |                     |              | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 89.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
| electrostatic                                                                                                                                                                                                                                                 | -274.649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |                                                                                                            |                     |              | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -246.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |                                                                                                                                     |              |       |       |
| 15                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
| ΔES                                                                                                                                                                                                                                                           | -104.678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |                                                                                                            |                     |              | ΔES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - /1.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | -95.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -66.675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
| Initial Orientatio                                                                                                                                                                                                                                            | H<br>151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H<br>PC1 | Q   | К                                                                                                          | Tyr10               |              | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н        | Q  | K<br>PP1                                                                                                                            | Phe20        |       |       |
| Final Orientation                                                                                                                                                                                                                                             | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS1      |     |                                                                                                            | RS1                 |              | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    | RB1                                                                                                                                 | CS           |       |       |
|                                                                                                                                                                                                                                                               | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2        |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    | RS1                                                                                                                                 |              |       |       |
|                                                                                                                                                                                                                                                               | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |    | CS                                                                                                                                  |              |       |       |
|                                                                                                                                                                                                                                                               | LNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    | -CH2-                                                                                                                               |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    | RNH                                                                                                                                 |              |       |       |
| Total Energy                                                                                                                                                                                                                                                  | 54.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |     |                                                                                                            |                     |              | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56.401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
| van der Waals                                                                                                                                                                                                                                                 | 90.727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |                                                                                                            |                     |              | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88.369                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
| electrostatic                                                                                                                                                                                                                                                 | -255.316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     |                                                                                                            |                     |              | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -253.717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |    |                                                                                                                                     |              |       |       |
| AFs                                                                                                                                                                                                                                                           | -79 801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |                                                                                                            |                     |              | AFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -77.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | -5.543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -7.901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | -75.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -74.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     |                                                                                                            |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     |              |       |       |
|                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н        | 0   | к                                                                                                          | Val12               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н        | 0  | к                                                                                                                                   | His6         | Glv9  | Val12 |
| Initial Orientatio                                                                                                                                                                                                                                            | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |     | CS                                                                                                         |                     |              | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | _  | LB1                                                                                                                                 |              |       |       |
| Final Orientation                                                                                                                                                                                                                                             | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | LS1 | LS2                                                                                                        | LS1                 |              | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    | 152                                                                                                                                 | RS1          | RB1   | LS1   |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     | 2                                                                                                          | 104                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |                                                                                                                                     | 101          | 1101  |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     | 101                                                                                                        | LB1                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |    | LS1                                                                                                                                 | 2            | ND1   |       |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     | LS1<br>-CH2-                                                                                               | LBI                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |    | LS1<br>-CH2-                                                                                                                        | 2            | nor   |       |
| Total Energy                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |     | LS1<br>-CH2-                                                                                               | LBI                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |    | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| a second and a second data and a                                                                                                                                                                                                                              | 24.174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |     | LS1<br>-CH2-                                                                                               | LBI                 |              | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CS<br>LS1<br>16.137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |    | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| electrostatio                                                                                                                                                                                                                                                 | 24.174<br>86.919                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |     | LS1<br>-CH2-                                                                                               |                     |              | Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CS<br>LS1<br>16.137<br>82.946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |    | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| electrostatic                                                                                                                                                                                                                                                 | 24.174<br>86.919<br>-276.744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     | LS1<br>-CH2-                                                                                               |                     |              | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CS<br>LS1<br>16.137<br>82.946<br>-290.213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |    | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| electrostatic<br>ΔEs                                                                                                                                                                                                                                          | 24.174<br>86.919<br>-276.744<br>-109.877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |     | 2<br>LS1<br>-CH2-                                                                                          |                     |              | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |    | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| electrostatic                                                                                                                                                                                                                                                 | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |     | 2<br>LS1<br>-CH2-                                                                                          |                     |              | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| van der waars<br>electrostatic<br>ΔEs                                                                                                                                                                                                                         | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |     | 2<br>LS1<br>-CH2-                                                                                          |                     |              | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| electrostatic<br>ΔEs                                                                                                                                                                                                                                          | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |     | 2<br>LS1<br>-CH2-                                                                                          |                     |              | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    | LS1<br>-CH2-                                                                                                                        |              |       |       |
| van der waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                         | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н        | Q   | LS1<br>-CH2-                                                                                               | Val12               | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н        | Q  | LS1<br>-CH2-                                                                                                                        | 2            |       |       |
| van der waais<br>electrostatic<br>ΔEs                                                                                                                                                                                                                         | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н        | Q   | LS1<br>-CH2-                                                                                               | Val12               | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>H<br>CSS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н        | Q  | K<br>K<br>K<br>K                                                                                                                    |              |       |       |
| Van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation                                                                                                                                                                              | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H        | Q   | LS1<br>-CH2-<br>K<br>CS<br>RB1                                                                             | Val12               | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н        | Q  | LS1<br>-CH2-                                                                                                                        |              |       |       |
| Van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation                                                                                                                                                                              | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H        | Q   | LS1<br>-CH2-<br>K<br>CS<br>RB1<br>RS1<br>CS                                                                | Val12               | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS<br>151<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation                                                                                                                                                                              | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H        | Q   | <br>LS1<br>-СH2-<br>К<br>СS<br>RB1<br>RS1<br>CS                                                            | Val12               | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CS<br>151<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| Van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy                                                                                                                                                              | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LB1<br>LS1<br>LNH<br>54.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H        | Q   | <br>LS1<br>-СH2-<br>К<br>СS<br>RB1<br>RS1<br>CS                                                            | Val12<br>LS1        | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>S3.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| van der Waals<br>electrostatic<br>AEs<br>Initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                             | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>H<br>E81<br>LS1<br>LNH<br>54.842<br>86.058<br>-252 337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H        | Q   | K<br>CS<br>RB1<br>CS                                                                                       | Val12               | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>-<br>S3.008<br>92.514<br>-260.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                           | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH<br>54.842<br>86.058<br>-252.337                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H        | Q   | <br>LS1<br>-CH2-<br>-СН2-<br>К<br>К<br>С<br>С<br>К<br>В<br>В<br>1<br>RS1<br>С<br>S                         | Val12<br>LS1        | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>-<br>S3.008<br>92.514<br>-260.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                     | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H        | Q   | LS1<br>-CH2-<br>K<br>CS<br>RB1<br>RS1<br>CS                                                                | Val12<br>LS1        | Phe20<br>R51 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientatio<br>Final Orientatio<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS<br>L5<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-13.324<br>-13.0766<br>KS<br>S3.008<br>92.514<br>-260.178<br>-81.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                     | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H        | Q   | LS1<br>-CH2-<br>K<br>CS<br>RB1<br>RS1<br>CS                                                                | Val12               | Phe20<br>R51 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CS<br>IS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.264<br>H<br>CS<br>RS1<br>-13.666<br>-290.178<br>-3.5008<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556<br>-3.556                                                                                                                                                                                                                                                                                                                                                                                           | Η        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                     | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>HB1<br>LS1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H        | Q   | ц<br>LS1<br>-СН2-<br>К<br>С<br>К<br>К<br>С<br>К<br>К<br>С<br>С<br>S                                        | Val12               | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CS<br>IS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>H<br>CS<br>RS1<br>-200.218<br>-8.3.008<br>92.514<br>-260.781<br>-3.756<br>-80.731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Η        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                     | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H        | Q   | с<br>к<br>с<br>к<br>с<br>к<br>с<br>с<br>к<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с | Val12               | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CS<br>16.137<br>82.946<br>-290.213<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>-<br>-<br>-<br>RS1<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RS1<br>RB2                                                                                              |              |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                    | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H        | Q   | LS1<br>LS1<br>-CH2-<br>К<br>К<br>К<br>К<br>К                                                               | Val12<br>LS1        | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientatio<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-113.324<br>-110.766<br>H<br>CS<br>RS1<br>-200.178<br>-3.756<br>-80.043<br>-3.756<br>-80.731<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н        | Q  | LS1<br>-CH2-<br>K<br>RS1<br>RB2<br>K                                                                                                | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                     | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LS1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89<br>H<br>H<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H        | Q   | K<br>K<br>CS<br>RB1<br>CS<br>K<br>K<br>CS                                                                  | Val12<br>LS1        | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CS<br>LS1<br>16.137<br>82.940.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>-260.78<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>H<br>LS1<br>-3.756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н        | Q  | K<br>K<br>K<br>K<br>K<br>S<br>1<br>R<br>S<br>1<br>R<br>B<br>2<br>K<br>C<br>S                                                        | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                         | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>H<br>L<br>LNH<br>-54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89<br>H<br>H<br>S51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H        | Q   | 2<br>LS1<br>LS1<br>CH2-<br>CH2-<br>K<br>K<br>S<br>CS<br>CS<br>CS<br>CS<br>CS                               | Val12               | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>-<br>H<br>CS<br>RS1<br>-<br>CS<br>RS1<br>-<br>S3.008<br>92.514<br>-260.178<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756 | Н        | Q  | LS1<br>-CH2-<br>K<br>K<br>S1<br>RS1<br>RS1<br>RB2<br>K<br>CS<br>LB1<br>LS1                                                          | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                        | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89<br>H<br>RS1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H        | Q   | 2<br>-CH2-<br>К<br>СS<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К | Val12<br>LS1        | Phe20<br>R51 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientatio<br>Final Orientatio<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>H<br>S3.008<br>92.514<br>-260.178<br>-81.043<br>-3.756<br>-80.731<br>H<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н        | Q  | K<br>K<br>K<br>K<br>K<br>K<br>K<br>C<br>S<br>L<br>L<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S<br>L<br>S | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientatic                                                                           | 24.174<br>86.919<br>-276.744<br>-109.877<br>-97.297<br>H<br>H<br>E81<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89<br>H<br>RS1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н        | Q.  | 2<br>LS1<br>LS1<br>LS1<br>CH2-<br>К<br>К<br>СS<br>RB1<br>RS1<br>CS                                         | Val12               | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CS<br>LS<br>16.137<br>82.946<br>117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>-853.008<br>92.514<br>-260.178<br>-3.756<br>-80.731<br>H<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н        | Q  | K<br>K<br>RS1<br>RS1<br>RS2<br>K<br>CS<br>LB1<br>LS1<br>CJ2-<br>CH2-                                                                | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation                                                                                              | 24.174<br>86.919<br>-276.744<br>-109.877<br>-9.351<br>-97.297<br>H<br>LB1<br>LNH<br>54.842<br>86.058<br>-252.337<br>-79.209<br>-10.212<br>-72.89<br>H<br>RS1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H        | Q   | LS1<br>CH2-<br><br>K<br>CS<br><br>KB1<br><br>RB1                                                           | Val12<br>LS1        | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>H<br>CS<br>RS1<br>CS<br>RS1<br>-10.766<br>-25.3008<br>92.514<br>-260.178<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3       | н        | Q  | K<br>-CH2-<br>K<br>RS1<br>RB2<br>K<br>K<br>CS<br>LB1<br>-CH2-<br>CH2-                                                               | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                        | 24.174<br>86.919<br>-276.744<br>-3.515<br>-97.297<br>-97.297<br>-97.297<br>-10.121<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-10.212<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75.20<br>-75. | Н        | Q   | LS1<br>-CH2-<br>K<br>CS<br>RB1<br>CS<br>K<br>CS<br>K<br>LB1<br>RB1                                         | Val12<br>LS1        | Phe20        | Total Energy Van der Waals electrostatic ΔEs initial Orientatio Final Orientatio Total Energy Van der Waals electrostatic ΔEs Initial Orientatior Initial Orientatior Final Orientatior Total Energy Van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>-85<br>RS1<br>-85<br>S3.008<br>92.514<br>-260.178<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.045<br>-81.04                                                                                                                | н        | Q  | K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K<br>K                                         | Val12<br>L51 |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic | 24.174<br>86.319<br>-276.744<br>-0.9.857<br>-9.7.297<br>H<br>UB1<br>US1<br>US1<br>UNH<br>-54.842<br>-752.337<br>-79.209<br>-79.209<br>-10.212<br>-72.89<br>H<br>RS1<br>RS1<br>S51.602<br>91.329<br>-553.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H        | Q.  | 2<br>LS1<br>-CH2-<br>K<br>K<br>CS<br>RB1<br>RB1<br>RB1                                                     | Val12<br>LS1        | Phe20 RS1    | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CS<br>LS1<br>16.137<br>82.946<br>117.914<br>-13.324<br>-117.914<br>-13.324<br>-10.0766<br>-85<br>-85<br>-85<br>-85<br>-85<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-81.043<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-3.756<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.731<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751<br>-80.751                                                                                               | н        | Q  | K<br>K<br>RS1<br>R81<br>R82<br>K<br>CS<br>UB1<br>LS1<br>-CH2-                                                                       | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientatic<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                    | 24.174<br>86.519<br>-276.744<br>-3.51<br>-9.7297<br>H<br>EB1<br>ES1<br>-97.297<br>-10.212<br>-79.209<br>-10.212<br>-79.209<br>-10.212<br>-79.209<br>-10.212<br>-79.209<br>-10.212<br>-79.209<br>-10.212<br>-79.209<br>-10.212<br>-75.860<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.751<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.751<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851<br>-75.851                                                                                           | н        | Q   | 2<br>LS1<br>-CH2-<br>CH2-<br>CS<br>RB1<br>CS<br>CS<br>KB1<br>RB1<br>RB1                                    | Val12<br>LS1        | Phe20<br>RS1 | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>-200.178<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.756<br>-3.757<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.2577<br>-3.25777<br>-3.25777<br>-3.257777<br>-3.25777777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н        | Q. | K<br>-CH2-<br>K<br>RS1<br>R81<br>R82<br>K<br>CS<br>L81<br>L51<br>-CH2-                                                              | Val12        |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                  | 24.174<br>86.919<br>-276.744<br>-3.515<br>-97.297<br>-97.297<br>-97.297<br>-97.297<br>-10.1212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-10.212<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.99<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89<br>-72.89          | н        | Q   | 2<br>LS1<br>LS1<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-<br>CH2-                            | Usi<br>Vali2<br>LSi | Phe20        | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Initial Orientation         Total Energy         van der Waals         electrostatic         Einal Orientation         Initial Orientation <td< td=""><td>CS<br/>LS1<br/>16.137<br/>82.946<br/>-290.213<br/>-117.914<br/>-13.324<br/>-110.766<br/>-<br/>KS1<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S<br/>S</td><td>н</td><td>Q</td><td>Б1<br/>-СH2.<br/>К<br/>К<br/>К<br/>К<br/>К<br/>К<br/>К<br/>С<br/>С<br/>С<br/>Ц<br/>В1<br/>Ц<br/>Б1<br/>-СH2.</td><td>Val12<br/>L51</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CS<br>LS1<br>16.137<br>82.946<br>-290.213<br>-117.914<br>-13.324<br>-110.766<br>-<br>KS1<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | н        | Q  | Б1<br>-СH2.<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>С<br>С<br>С<br>Ц<br>В1<br>Ц<br>Б1<br>-СH2.                                        | Val12<br>L51 |       |       |
| Van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs               | 24.174<br>86.319<br>-276.744<br>-0.9.857<br>-9.7.297<br>H<br>UB1<br>US1<br>US1<br>US1<br>-97.297<br>H<br>S4.842<br>-752.337<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-79.209<br>-                                                                                     | H        | Q.  | 2<br>LS1<br>LS1<br>CH2-<br>CH2-<br>K<br>RS1<br>CS<br>RB1<br>RS1<br>CS<br>RB1<br>RB1<br>RB1                 | Usi<br>Vali2<br>LSi | Phe20        | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Example Complexity of the second sec | CS<br>LS<br>16.137<br>82.946<br>117.914<br>-13.324<br>-117.914<br>-13.324<br>-10.0766<br>-8<br>53.008<br>92.514<br>-260.178<br>-80.731<br>-80.731<br>-80.731<br>LS<br>1<br>LS<br>1<br>LS<br>1<br>LS<br>1<br>LS<br>1<br>LS<br>1<br>LS<br>1<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н        | Q  | K<br>K<br>R51<br>R81<br>R82<br>K<br>C5<br>L81<br>L51<br>-CH2-                                                                       | Val12        |       |       |
|                    | н                  | н | Q | К     | His6  | Gly9 | Val12 |           |                     | н                | н | Q | К          | Val12 |        |
|--------------------|--------------------|---|---|-------|-------|------|-------|-----------|---------------------|------------------|---|---|------------|-------|--------|
| Initial Orientatio | CS                 |   |   | LS1   |       |      |       |           | Initial Orientatio  | RS2              |   |   | CS         |       |        |
| Final Orientation  | LB1                |   | - | LS1   | RS1   | RB1  | LS1   |           | Final Orientation   | RB2              |   |   | CS<br>PS 2 | RS1   |        |
|                    | 151                |   |   | -CH2- |       |      |       |           |                     | RSZ              |   |   | -CH2-      | K52   |        |
|                    | 631                |   |   | 102   |       |      |       |           |                     |                  |   |   | -0112-     |       |        |
| Total Energy       | 32.293             |   |   |       |       |      |       |           | Total Energy        | 55.155           |   |   |            |       |        |
| van der Waals      | 85.296             |   |   |       |       |      |       |           | van der Waals       | 85.409           |   |   |            |       |        |
| electrostatic      | -272.405           |   |   |       |       |      |       |           | electrostatic       | -249.43          |   |   |            |       |        |
| AT-                | 404 750            |   |   |       |       |      |       |           | 417-                | 70.000           |   |   |            |       |        |
| ΔES                | -101.758           |   |   |       |       |      |       |           | ΔES                 | -78.896          |   |   |            |       |        |
|                    | -92.958            |   |   |       |       |      |       |           |                     | -69,983          |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    | н                  | н | Q | К     | Arg5  | His6 | Gly9  | Val12     |                     | н                | Н | Q | к          | Val12 | Leu17  |
| Initial Orientatio | 0.01               |   |   | RS2   | 163   | 100  | 1.01  | <i>CS</i> | Initial Orientation | CS<br>DD1        |   |   | 152        | 101   | 000    |
| i mai onentatioi   | RS1                |   |   | 11.52 | -CH2- | 151  | CS    | RS2       | i mai orientation   | CS               |   |   | 151        |       | NDZ    |
|                    | CS                 |   |   |       |       |      | C=O   |           |                     | RS2              |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
| Total Energy       | 6.904              |   |   |       |       |      |       |           | Total Energy        | 22.546           |   |   |            |       |        |
| van der Waals      | 78.723             |   |   |       |       |      |       |           | van der Waals       | 81.632           |   |   |            |       |        |
| electrostatic      | -234.440           |   |   |       |       |      |       |           | electrostatic       | -275.505         |   |   |            |       |        |
| ΔEs                | -127.147           |   |   |       |       |      |       |           | ΔEs                 | -111.505         |   |   |            |       |        |
|                    | -17.547            |   |   |       |       |      |       |           |                     | -14.638          |   |   |            |       |        |
|                    | -114.999           |   |   |       |       |      |       |           |                     | -95.916          |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    | U                  |   | 0 | v     |       |      |       |           |                     |                  |   | 0 | v          | Hick  | Val17  |
| Initial Orientatio | LS2                |   | ų | CS    |       |      |       |           | Initial Orientatio  | CS               |   | ų | RB2        | 11130 | Valiz  |
| Final Orientation  | LS2                |   |   | RB1   |       |      |       |           | Final Orientation   | RB1              |   |   | RS1*       | LS2   | RS2    |
|                    |                    |   |   | RS2   |       |      |       |           |                     | CS               |   |   | RS2*       | LB2   |        |
|                    |                    |   |   |       |       |      |       |           |                     | RS1              |   |   | *-CH2-     |       |        |
|                    |                    |   |   |       |       |      |       |           |                     | RS2              |   |   |            |       |        |
| Total Energy       | 44 000             |   |   |       |       |      |       |           | Total Energy        | 2 800            |   |   |            |       |        |
| van der Waals      | 93,035             |   | - |       |       |      |       |           | van der Waals       | 2.009            |   |   |            |       |        |
| electrostatic      | -264.15            |   |   |       |       |      |       |           | electrostatic       | -292.317         |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
| ΔEs                | -89.063            |   |   |       |       |      |       |           | ΔEs                 | -131.242         |   |   |            |       |        |
|                    | -3.235             |   |   |       |       |      |       |           |                     | -17.287          |   |   |            |       |        |
|                    | -84.703            |   |   |       |       |      |       |           |                     | -112.87          |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    | н                  | н | Q | К     | Val12 |      |       |           |                     | н                | н | 0 | к          | Val12 |        |
| Initial Orientatio | RB2                |   |   | CS    |       |      |       |           | Initial Orientatio  | LB2              |   |   | CS         |       |        |
| Final Orientation  | RB2                |   |   | RB1   | RS1   |      |       |           | Final Orientation   | LS1              |   |   | LB1        | LS2   |        |
|                    | RS2                |   |   | RS2   |       |      |       |           |                     | LS2              |   |   | CS         |       |        |
|                    | RS1                |   |   | -CH2- |       |      |       |           |                     | LB2              |   |   | LS1        |       |        |
|                    |                    |   |   | C3    |       |      |       |           |                     |                  |   |   | -CH2-      |       |        |
| Total Energy       | 41.649             |   |   |       |       |      |       |           | Total Energy        | 43.22            |   |   |            |       |        |
| van der Waals      | 83.75              |   |   |       |       |      |       |           | van der Waals       | 83.588           |   |   |            |       |        |
| electrostatic      | -262.5             |   |   |       |       |      |       |           | electrostatic       | -258.689         |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
| ΔES                | -92.402            |   |   |       |       |      |       |           | ΔES                 | -90.831          |   |   |            |       |        |
|                    | -83.053            |   |   |       |       |      |       |           |                     | -79.242          |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    | н                  | н | Q | К     | Val12 |      |       |           |                     | н                | н | Q | к          | Phe20 |        |
| Initial Orientatio | CS                 |   |   | LB2   | 164   |      |       |           | Initial Orientatio  | RB1              |   |   | LB1        | 1.04  |        |
| Final Orientation  | CS                 |   |   | 151   | 1.51  |      |       |           | Final Orientation   | RB1              |   |   | 152        | LDI   |        |
|                    |                    |   |   | -CH2- |       |      |       |           |                     | no1              |   |   | 2          |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   | CS         |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   | -CH2-      |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   | LS1        |       |        |
| Tabel Factors      | 54.340             |   |   |       |       |      |       |           | Total Canada        | 54.042           |   |   |            |       |        |
| van der Waals      | 31.248             |   |   |       |       |      |       |           | van der Waals       | 54.912<br>84.584 |   |   |            |       |        |
| electrostatic      | -252.954           |   |   |       |       |      |       |           | electrostatic       | -251.043         |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
| ΔEs                | -82.803            |   |   |       |       |      |       |           | ΔEs                 | -79.139          |   |   |            |       |        |
|                    | -8.902             |   |   |       |       |      |       |           |                     | -11.686          |   |   |            |       |        |
|                    | -75.50/            |   |   |       |       |      |       |           |                     | -11.390          |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    | Н                  | Н | Q | К     | Val12 |      |       |           |                     | н                | н | Q | к          | Leu17 |        |
| Initial Orientatio | LB1                |   |   | RB1   |       |      |       |           | Initial Orientatio  | LB1              |   |   | RS1        |       |        |
| rinal Urientation  | LS1<br>IR1         |   |   | RB1   | US .  |      |       |           | Final Orientation   | 152              |   |   | KB2<br>RS1 | 151   |        |
|                    | 201                |   |   | -CH2- |       |      |       |           |                     | LB1              |   |   | 1.01       |       |        |
|                    |                    |   |   | RNH   |       |      |       |           |                     | -                |   |   |            |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
| Total Energy       | 50.425             |   |   |       |       |      |       |           | Total Energy        | 38.73            |   |   |            |       |        |
| van der Waals      | 85.324<br>-749.965 |   |   |       |       |      |       |           | van der Waals       | -268 3/1         |   |   |            |       |        |
| ciectiostduc       | 243.003            |   |   |       |       |      |       |           | erectOstatic        | 200.341          |   |   |            |       |        |
| ΔEs                | -83.626            |   |   |       |       |      |       |           | ΔEs                 | -95.321          |   |   |            |       |        |
|                    | -10.946            |   |   |       |       |      |       |           |                     | -9.51            |   |   |            |       |        |
|                    | -70.418            |   |   |       |       |      |       |           |                     | -88.894          |   |   |            |       |        |
|                    |                    |   | - |       |       |      |       |           |                     |                  |   |   |            |       |        |
|                    | н                  | н | 0 | к     |       |      |       |           |                     | н                | н | 0 | к          | Val12 | Phe 20 |
| Initial Orientatio | RS1                |   | _ | LB1   |       |      |       |           | Initial Orientatio  | RB1              |   | _ | LS1        |       |        |
| Final Orientation  | RS1                |   |   | LS1   |       |      |       |           | Final Orientation   | RS1              |   |   | LB1        |       | CS     |
|                    |                    |   |   |       |       |      |       |           |                     | RB1              |   |   | LS2        |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   | 2          |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   | 151*       |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   | *-CH2-     |       |        |
|                    |                    |   |   |       |       |      |       |           |                     |                  |   |   |            |       |        |
| Total Energy       | 55.039             |   |   |       |       |      |       |           | Total Energy        | 24.879           |   |   |            |       |        |
| van der Waals      | 90.879             |   |   |       |       |      |       |           | van der Waals       | 81.741           |   |   |            |       |        |
| erectrostatic      | -256.152           |   | - |       |       |      |       |           | erectrostatic       | -274.183         |   |   |            |       |        |
| ΔEs                | -79.012            |   |   |       |       |      |       |           | ΔEs                 | -109 172         |   |   |            |       |        |
|                    | -5.391             |   |   |       |       |      |       |           |                     | -14.529          |   |   |            |       |        |
|                    | -76.705            |   |   |       |       |      |       |           |                     | -94.736          |   |   |            |       |        |

| Back Second<br>Normal         No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | н        | н | 0 | к     | Phe 20  |       |       |       |                         | н        | н   | 0 | к     | Val12  |       |        |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|---|---|-------|---------|-------|-------|-------|-------------------------|----------|-----|---|-------|--------|-------|--------|-------|
| Indecision    Indec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Initial Orientatio     | 151      |   | Q | RB1   | riie20  |       |       |       | Initial Orientatio      | IB1      |     | ų | RS2   | Valiz  |       |        |       |
| number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Final Orientation      | 1.01     |   |   | DC1   | DC1     |       |       |       | Final Orientation       | 163      |     |   | DC1   | 000    |       |        |       |
| Image         Image <t< td=""><td>Final Orientation</td><td>LBI</td><td></td><td></td><td>RSI</td><td>KSI</td><td></td><td></td><td></td><td>Final Orientation</td><td>152</td><td></td><td></td><td>RSI</td><td>RSZ</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Final Orientation      | LBI      |   |   | RSI   | KSI     |       |       |       | Final Orientation       | 152      |     |   | RSI   | RSZ    |       |        |       |
| 10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 <th10< th="">         10         10         10&lt;</th10<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | LNH      |   |   |       |         |       |       |       |                         |          |     |   | RS2   |        |       |        |       |
| Name         Name <t< td=""><td></td><td>LS1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-CH2-</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        | LS1      |   |   |       |         |       |       |       |                         |          |     |   | -CH2- |        |       |        |       |
| Indictory<br>matcher<br>matcher<br>matcher<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| warder     Bars     Warder     Bars     Warder     Bars     Warder     Bars     Warder     Bars     Warder     Bars     Warder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Energy           | 64.891   |   |   |       |         |       |       |       | Total Energy            | 27.089   |     |   |       |        |       |        |       |
| etacom       1298       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | van der Waals          | 88.925   |   |   |       |         |       |       |       | van der Waals           | 87.617   |     |   |       |        |       |        |       |
| Matrix     Matrix    Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix     Matrix <td>electrostatic</td> <td>-239.909</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>electrostatic</td> <td>-276.079</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | electrostatic          | -239.909 |   |   |       |         |       |       |       | electrostatic           | -276.079 |     |   |       |        |       |        |       |
| Mat         Mat <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| 3.33         1.3         3.33         3.33         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34         3.34 <th< td=""><td>AEs</td><td>-69.16</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>AEs</td><td>-106.962</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AEs                    | -69.16   |   |   |       |         |       |       |       | AEs                     | -106.962 |     |   |       |        |       |        |       |
| 40.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0     10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | -7 345   |   |   |       |         |       |       |       |                         | -8 653   |     |   |       |        |       |        |       |
| into the set of the    |                        | -60.462  |   |   |       |         |       |       |       |                         | -96 632  |     |   |       |        |       |        |       |
| No.     No. </td <td></td> <td>-00.402</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-30.032</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | -00.402  |   |   |       |         |       |       |       |                         | -30.032  |     |   |       |        |       |        |       |
| Not set in the set in  |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| Image         Image <t< td=""><td></td><td></td><td></td><td>0</td><td>~</td><td>Db - 10</td><td>0120</td><td>4 22</td><td></td><td></td><td></td><td></td><td>0</td><td></td><td>ch-0</td><td>1</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |          |   | 0 | ~     | Db - 10 | 0120  | 4 22  |       |                         |          |     | 0 |       | ch-0   | 1     |        |       |
| Nate         Note         Note <t< td=""><td>In this I Only what is</td><td>H DC2</td><td>н</td><td>ų</td><td>K ID1</td><td>Phe 19</td><td>Phe20</td><td>Asp23</td><td></td><td>In this I Only a statis</td><td>H</td><td>н</td><td>ų</td><td>K ICO</td><td>Giya</td><td>Leu17</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | In this I Only what is | H DC2    | н | ų | K ID1 | Phe 19  | Phe20 | Asp23 |       | In this I Only a statis | H        | н   | ų | K ICO | Giya   | Leu17 |        |       |
| Main procession         No.         No.        No.         No.        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initial Orientatio     | RSZ      |   |   | LBI   | 100     | 100   | 100   |       | Initial Orientatio      | RBI      |     |   | LSZ   |        |       |        |       |
| Image         Image <th< td=""><td>Final Orientation</td><td>R52</td><td></td><td></td><td>LBZ</td><td>LBZ</td><td>LB2</td><td>LB2</td><td></td><td>Final Orientation</td><td>RB1</td><td>RS2</td><td></td><td>LS2</td><td>RS1</td><td>RS2</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Final Orientation      | R52      |   |   | LBZ   | LBZ     | LB2   | LB2   |       | Final Orientation       | RB1      | RS2 |   | LS2   | RS1    | RS2   |        |       |
| Note         Note <t< td=""><td></td><td></td><td></td><td></td><td>LS2</td><td></td><td></td><td></td><td></td><td></td><td>RS1</td><td></td><td></td><td>LS1</td><td>C=O</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |          |   |   | LS2   |         |       |       |       |                         | RS1      |     |   | LS1   | C=O    |       |        |       |
| Cond         Cond <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>RS2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          |   |   |       |         |       |       |       |                         | RS2      |     |   |       |        |       |        |       |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-CH2-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |          |   |   |       |         |       |       |       |                         | -CH2-    |     |   |       |        |       |        |       |
| Normal         Normal<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |          |   |   |       |         |       |       |       |                         | RB2      |     |   |       |        |       |        |       |
| Indeference<br>relations<br>relations<br>relations<br>relations<br>relations<br>relations<br>relations<br>relationsIndeference<br>relations<br>relations<br>relationsIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndInd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| order worder         97.3         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U         U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Energy           | 47.257   |   |   |       |         |       |       |       | Total Energy            | -1.703   |     |   |       |        |       |        |       |
| etertorie     30.30                                                                                                                          <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | van der Waals          | 87.375   |   |   |       |         |       |       |       | van der Waals           | 78.302   |     |   |       |        |       |        |       |
| Alt         Alt <td>electrostatic</td> <td>-262.318</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>electrostatic</td> <td>-301.325</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | electrostatic          | -262.318 |   |   |       |         |       |       |       | electrostatic           | -301.325 |     |   |       |        |       |        |       |
| MAP     MAP <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| non-         non- <t< td=""><td>AEs</td><td>-86 794</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>AFs</td><td>-135 754</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AEs                    | -86 794  |   |   |       |         |       |       |       | AFs                     | -135 754 |     |   |       |        |       |        |       |
| Normal sector     Nor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | -9 905   |   |   |       |         |       |       |       |                         | -17 969  |     |   |       |        |       |        |       |
| 1960         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th="">         1         1         1</th1<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | 0.035    |   |   |       |         |       |       |       |                         | 121 979  |     |   |       |        |       |        |       |
| No.         No. <td></td> <td>02.0/1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>121.0/8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | 02.0/1   |   |   |       |         |       |       |       |                         | 121.0/8  |     |   |       |        |       |        |       |
| M         M         O         K         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| non-state         non-state <t< td=""><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>C</td><td></td><td>11-1-0</td><td>1</td><td>01. 07</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |          |   | • |       |         |       |       |       |                         |          |     | C |       | 11-1-0 | 1     | 01. 07 |       |
| mate ortenate         L2         L3         L3 <thl3< th="">         L3         <thl3< th="">         L3         <thl3< th=""></thl3<></thl3<></thl3<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        | H        | н | ų | K     |         |       |       |       |                         | H        | н   | ų | K     | val12  | Leu1/ | Pne20  |       |
| measuremany         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b <th< td=""><td>Initial Orientatio</td><td>LS2</td><td></td><td></td><td>RB1</td><td></td><td></td><td></td><td> </td><td>Initial Orientatio</td><td>LB1</td><td></td><td></td><td>RB2</td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Initial Orientatio     | LS2      |   |   | RB1   |         |       |       |       | Initial Orientatio      | LB1      |     |   | RB2   |        |       |        |       |
| Image: sector         Image: s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Final Orientation      | LS2      |   |   | RS2   |         |       |       |       | Final Orientation       | RB1      |     |   | RB2   | RS1    | LS1   | RB2    |       |
| Note         Note <t< td=""><td></td><td></td><td></td><td></td><td>RB1</td><td></td><td></td><td></td><td></td><td></td><td>LB1</td><td></td><td></td><td>RS1</td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |          |   |   | RB1   |         |       |       |       |                         | LB1      |     |   | RS1   |        |       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |          |   |   |       |         |       |       |       |                         | LS1      |     |   | -CH2- |        |       |        |       |
| Non-ner-<br>base of the second is an analysis of the second is an analysis of the second is analysis |                        |          |   |   |       |         |       |       |       |                         | LNH      |     |   |       |        |       |        |       |
| Total herey         32.35             Total herey         32.27 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total Energy           | 52.185   |   |   |       |         |       |       |       | Total Energy            | 27.217   |     |   |       |        |       |        |       |
| electroster         28.20          L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L         L <thl< th="">         L         L</thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | van der Waals          | 92.676   |   |   |       |         |       |       |       | van der Waals           | 77.044   |     |   |       |        |       |        |       |
| Ans         41.56<br>(1.5.7)         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.         1.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | electrostatic          | -256.223 |   |   |       |         |       |       |       | electrostatic           | -274.204 |     |   |       |        |       |        |       |
| Also<br>-0.00         Also<br>-0                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| 1.394 $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ $1.397$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ΔEs                    | -81.866  |   |   |       |         |       |       |       | ΔEs                     | -106.834 |     |   |       |        |       |        |       |
| No.76.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | -3.594   |   |   |       |         |       |       |       |                         | -19.226  |     |   |       |        |       |        |       |
| No.         No. <td></td> <td>-76,776</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-94,757</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | -76,776  |   |   |       |         |       |       |       |                         | -94,757  |     |   |       |        |       |        |       |
| No.         No. <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| H         H         Q         K         Pred         L         L         L         H         H         Q         K         See         Op<         V12         Pred           Pred         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| Initial Generation         RE2         RE2         RE3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        | н        | н | 0 | к     | Phe19   |       |       |       |                         | н        | н   | 0 | К     | Ser8   | Glv9  | Val12  | Phe20 |
| nual Orientatio         853         100         100         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Initial Orientatio     | RB2      |   |   | IB1   |         |       |       |       | Initial Orientatio      | RB1      |     | _ | 182   |        |       |        |       |
| Non-service         No.         No. <th< td=""><td>Final Orientation</td><td>RS1</td><td></td><td></td><td>IB1</td><td>151</td><td></td><td></td><td></td><td>Final Orientation</td><td>RB1</td><td></td><td></td><td>182</td><td>RB2</td><td>RS1</td><td>RB2</td><td>182</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation      | RS1      |   |   | IB1   | 151     |       |       |       | Final Orientation       | RB1      |     |   | 182   | RB2    | RS1   | RB2    | 182   |
| Image: Market of the second   | indi offentation       | 101      |   |   | DC1   |         |       |       |       | i indi offertation      | 151      |     |   | 151   | TIDE   | C-0   | noz    | LUL   |
| Total Energy         42.64         Corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |          |   |   | CH3   |         |       |       |       |                         | 1.01     |     |   | CHD   |        | 000   |        |       |
| Cold Foregree         Cold Fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |          |   |   | -CH2- |         |       |       |       |                         | LD1      |     |   | -CH2- |        | ND2   |        |       |
| Note for the Name         4.2.45         Constraints         Solution         Solution </td <td></td> <td></td> <td></td> <td></td> <td>LNH</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |          |   |   | LNH   |         |       |       |       |                         |          |     |   |       |        |       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| winder Wasis         92.26         Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Energy           | 42.634   |   |   |       |         |       |       |       | Total Energy            | 33.825   |     |   |       |        |       |        |       |
| electrostatic $-20035$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$ $-10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | van der Waals          | 86.276   |   |   |       |         |       |       |       | van der Waals           | 77.079   |     |   |       |        |       |        |       |
| Als         -91.47         -9.47         -9.47         -9.47         -9.47         -9.47         -9.47         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19         -9.19 <th< td=""><td>electrostatic</td><td>-260.555</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>electrostatic</td><td>-266.754</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | electrostatic          | -260.555 |   |   |       |         |       |       |       | electrostatic           | -266.754 |     |   |       |        |       |        |       |
| Abis         -91.47         -954         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -        - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ΔEs                    | -91.417  |   |   |       |         |       |       |       | ΔEs                     | -100.226 |     |   |       |        |       |        |       |
| network         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | -9.994   |   |   |       |         |       |       |       |                         | -19.191  |     |   |       |        |       |        |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | -81.108  |   |   |       |         |       |       |       |                         | -87.307  |     |   |       |        |       |        |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| H         H         Q         K         Seed         Gip         Value         Pheco         H         H         Q         K         Value         Intel of centation           Final Orientation         LS         RS1         LS1         LS1         LS1         RS2         Final Orientation         LS2         LS1         RS2         RS2         RS2         RS2         RS2         RS3         LS1         LS1         LS1         RS2         RS3         RS3         RS3         LS1         LS1         LS1         RS2         RS3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| Initial Orientatio         Is2         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | н        | н | 0 | к     | Ser8    | Glv9  | Val12 | Phe20 |                         | н        | н   | 0 | К     | Val12  |       |        |       |
| Final Orientation         NB3         US1         US1         US1         RB2         Final Orientation         US2         NB3         RS2         NB3         RS3         NB3         NB3 <th< td=""><td>Initial Orientatio</td><td>182</td><td></td><td></td><td>RB1</td><td></td><td></td><td></td><td></td><td>Initial Orientatio</td><td>152</td><td></td><td>_</td><td>RS2</td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Initial Orientatio     | 182      |   |   | RB1   |         |       |       |       | Initial Orientatio      | 152      |     | _ | RS2   |        |       |        |       |
| Total Energy<br>wan der Waals       32.59<br>34.773<br>246.673       Image: Marking M                    | Final Orientation      | 1        |   |   | RS1   | 151     | 151   | 151   | RB2   | Einal Orientation       | 152      |     |   | 182   | RS2    |       |        |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |          |   |   |       |         | 182   |       |       |                         |          |     |   | RS1   |        |       |        |       |
| Total Energy         S5.29         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         C</thc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |          |   |   |       |         | C-0   |       |       |                         |          |     |   | DC2   |        |       |        |       |
| Total Energy<br>wan der Waals<br>electrostatic         45.29<br>-236.673         Image: second s           |                        |          |   |   |       |         | 0-0   |       |       |                         |          |     |   | 1152  |        |       |        |       |
| Numery of Value Va   | Total Epermy           | 45 250   |   |   |       |         |       |       |       | Total Energy            | 37 844   |     |   |       |        |       |        |       |
| Van der Walls         Bes, 1/1         C         C         Dar der Walls         Bes, 1/2         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C         C <thc< th="">         C         C         C</thc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total Energy           | 43.239   |   |   |       |         |       |       |       | Total Ellergy           | 57.044   |     |   |       |        |       |        |       |
| erectrostator         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07         -200.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vanuer waals           | 04.//1   |   |   |       |         |       |       |       | van der Waals           | 08.41    |     |   |       |        |       |        |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | electrostatic          | -204.673 |   | - | -     |         |       |       |       | electrostatic           | -208.524 |     |   |       |        |       |        |       |
| Ats       -98,27       Image: Second                             | 10                     |          |   |   |       |         |       |       |       | 1.7                     |          |     |   |       |        |       |        |       |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ΔEs                    | -88.792  |   |   | -     |         |       |       |       | ΔEs                     | -96.207  |     |   |       |        |       |        |       |
| -85.226         -85.276         -85.276         -85.077         -85.077         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -87.07         -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        | -11.499  |   |   |       |         |       |       |       |                         | -7.86    |     |   |       |        |       |        |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | -85.226  |   |   |       |         |       |       |       |                         | -89.077  |     |   |       |        |       |        |       |
| H         H         Q         K         Give         LS2         LS2 <thls3< th=""> <thls3< th=""> <thls3< th=""></thls3<></thls3<></thls3<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |          |   | - |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| Initial Orientatio       R52       L52       L52       Initial Orientatio       L52       R82       R83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        | н        | н | Q | К     |         |       |       |       |                         | н        | н   | Q | К     | Gly9   | Phe20 | Asp23  |       |
| Final Orientation       RS2       LS2       KB2       LB2       RS2       RS2 <thr2< th="">       RS2       <thr2< th=""></thr2<></thr2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Initial Orientatio     | RS2      |   |   | LS2   |         |       |       |       | Initial Orientatio      | LS2      |     |   | RB2   |        |       |        |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Final Orientatior      | RS2      |   |   | LS2   |         |       |       |       | Final Orientatior       | LS2      |     |   | RB2   | LB2    | RS2   | RB2    |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |          |   |   |       |         |       |       |       |                         |          |     |   | RS2   |        | RB2   |        |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |          |   |   |       |         |       |       |       |                         |          |     |   | 2     |        |       |        |       |
| Total Energy         56.12         Image: Marcine Ma                     |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| van der Walls         93.366         van der Walls         98.319         van der Valls         88.319         van der Valls         van der Valls         88.319         van der Valls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total Energy           | 50.319   |   |   |       |         |       |       |       | Total Energy            | 56.112   |     |   |       |        |       |        |       |
| electrostatic       -258.572       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M       M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | van der Waals          | 93.366   |   |   |       |         |       |       |       | van der Waals           | 88.319   |     |   |       |        |       |        |       |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | electrostatic          | -258.572 |   |   |       |         |       |       |       | electrostatic           | -249.953 |     |   |       |        |       |        |       |
| ΔEs     -83.732     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L     L <thl< th=""> <thl< th="">     L     <thl< th=""> <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></thl<></thl<></thl<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| -2.904     -2.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ΔEs                    | -83.732  |   |   |       |         |       |       |       | ΔEs                     | -77.939  |     |   |       |        |       |        |       |
| -79.125       -79.125       -79.125       -79.125       -79.125       -79.126       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.506       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       -79.50       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | -2.904   |   |   |       |         |       |       |       |                         | -7.951   |     |   |       |        |       |        |       |
| H         H         Q         K         Gly9         Val12         Asp23         H         H         Q         K         Phe20           Initial Orientatio         R82         Is2         RS2         Is2         RS2         Is2         Is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | -79.125  |   |   |       |         |       |       |       |                         | -70.506  |     |   |       |        |       |        |       |
| H         H         Q         K         Gly9         Val12         Asp23         H         H         H         Q         K         Phe20         M         H         H         Q         K         Phe20         M         M         H         H         Q         K         Phe20         M         M         H         H         Q         K         Phe20         M         M         M         H         H         H         H         Q         K         Phe20         M         M         M         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H         H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| H         H         Q         K         Giy9         Val12         Asp23         m         H         H         Q         K         Phe20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| Initial Orientatio         R62         L52         N         Initial Orientatio         R52         LB2         LB2 <thlb2< th="">         LB2         LB2         <thlb< td=""><td></td><td>н</td><td>н</td><td>Q</td><td>к</td><td>Gly9</td><td>Val12</td><td>Asp23</td><td></td><td></td><td>н</td><td>н</td><td>Q</td><td>К</td><td>Phe20</td><td></td><td></td><td></td></thlb<></thlb2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        | н        | н | Q | к     | Gly9    | Val12 | Asp23 |       |                         | н        | н   | Q | К     | Phe20  |       |        |       |
| Final Orientation     RS2     LS2     RS2     RS2     RS2     LB2     Final Orientation     RS2     LB2     LB2     LB2       RB2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Initial Orientatio     | RB2      |   |   | LS2   |         |       |       |       | Initial Orientatio      | RS2      |     |   | LB2   |        |       |        |       |
| RB2         2         LB2         LB2 <thlb2< th=""> <thlb2< th=""> <thlb2< th=""></thlb2<></thlb2<></thlb2<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Final Orientation      | RS2      |   |   | LS2   | RS2     | RS2   | LB2   |       | Final Orientation       | RS2      |     |   | LS2   | LB2    |       |        |       |
| LB2         LB2         Total Energy         52.996         Component of the second secon                                       |                        | RB2      |   |   | 2     |         |       |       |       |                         |          |     |   | LB2   |        |       |        |       |
| Contact Lensery     Sol. 79     Contact Lensery     Sol. 992     Contact Lensery     Contact Lensery     Sol. 992     Contact Lensery     Contact Lensery <thc< td=""><td></td><td></td><td></td><td></td><td>LB2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |          |   |   | LB2   |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| Total Energy         50.179         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96         52.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| van der Waals         87.529         van der Waals         89.688         ele         ele         ele           -253.992         -253.992         -253.992         -253.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992         -252.992 </td <td>Total Energy</td> <td>50.179</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Total Energy</td> <td>52.996</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total Energy           | 50.179   |   |   |       |         |       |       |       | Total Energy            | 52.996   |     |   |       |        |       |        |       |
| electrostatic     -253.992     -253.992     -253.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209     -252.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | van der Waals          | 87.529   |   |   |       |         |       |       |       | van der Waals           | 89.688   |     |   |       |        |       |        |       |
| ΔEs         -83.872         ΔEs         -81.055            -74.545         -77.862         -77.862         -77.862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | electrostatic          | -253.992 |   |   |       |         |       |       |       | electrostatic           | -252.309 |     |   |       |        |       |        |       |
| ΔEs         -83.872         ΔEs         -81.055           -8.741         -6.582         -6.582           -74.545         -7.7.862         -7.2.862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |          |   |   |       |         |       |       |       |                         |          |     |   |       |        |       |        |       |
| -8.741         -6.582           -74.545         -72.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ΔEs                    | -83.872  |   |   |       |         |       |       |       | ΔEs                     | -81.055  |     |   |       |        |       |        |       |
| -74.545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | -8.741   |   |   |       |         |       |       |       |                         | -6.582   |     |   |       |        |       |        |       |
| ( LIGHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | -74.545  |   |   |       |         |       |       |       |                         | -72.862  |     |   |       |        |       |        |       |

|                                |                            |                    | н                  | н   | Q  | к         |          |      |                                         | н                  | н   | Q | К          | Val12         | Phe1   | 9 Phe      | 20    |        |
|--------------------------------|----------------------------|--------------------|--------------------|-----|----|-----------|----------|------|-----------------------------------------|--------------------|-----|---|------------|---------------|--------|------------|-------|--------|
|                                | Initial Orie<br>Final Orie | entatio<br>ntatior | LB2<br>LS2         |     |    | RS        | 2        |      | Initial Orientatio<br>Final Orientation | LB2<br>LS1         |     |   | RB2<br>RS2 | LS2           | RB2    | RS         | 2     |        |
|                                |                            |                    | LB2                |     |    |           |          |      |                                         | LS2                |     |   |            | LB2           |        |            |       |        |
|                                |                            |                    |                    |     |    | _         |          |      |                                         | LB2                |     |   |            |               |        | _          |       |        |
|                                | Total Ener                 | gy                 | 38.652             |     |    |           |          |      | Total Energy                            | 36.741             |     |   |            |               |        |            |       |        |
|                                | van der W<br>electrosta    | aals<br>tic        | 89.765<br>-273.567 |     |    |           |          |      | van der Waals<br>electrostatic          | 81.336<br>-260.261 |     |   |            |               | _      |            |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        |            |       |        |
|                                | ΔEs                        |                    | -95.399<br>-6.505  |     |    | _         |          |      | ΔEs                                     | -97.31<br>-14.934  |     |   |            |               |        |            |       |        |
|                                |                            |                    | -94.12             |     |    |           |          |      |                                         | -80.814            |     |   |            |               |        |            |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        | _          |       |        |
|                                |                            |                    | н                  | н   | Q  | К         | Le       | u17  |                                         | н                  | н   | Q | к          | Gly9          | Tyr1   | 0          |       |        |
|                                | Initial Orie               | entatio<br>ntatior | RB2<br>RB1         |     |    | LB        | 2<br>1 R | B2   | Initial Orientatio                      | n<br>RB1           | LB2 | - | RB2<br>RB2 | IB1           | 151    | _          |       |        |
|                                |                            |                    | RS2                |     |    | :LS       | 2        |      |                                         |                    |     |   | RS2        | LNH*          | -CH-   |            |       |        |
|                                |                            |                    | RNH<br>LS2         |     |    | _         |          |      |                                         |                    |     |   | -          | LS1*<br>*-C=0 |        |            |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        |            |       |        |
|                                | van der W                  | gy<br>aals         | 22.304<br>82.649   |     |    |           |          |      | van der Waals                           | 21.104<br>82.649   |     |   |            |               |        |            |       |        |
|                                | electrosta                 | tic                | -279.982           |     |    |           |          |      | electrostatic                           | -280.512           |     |   |            |               |        |            |       |        |
|                                | ΔEs                        |                    | -111.747           |     |    |           |          |      | ΔEs                                     | -112.947           |     |   |            |               |        |            |       |        |
|                                |                            |                    | -13.621            |     |    |           |          |      |                                         | -13.621            |     |   |            |               |        |            |       |        |
|                                |                            |                    | -100.535           |     |    |           |          |      |                                         | -101.065           |     |   |            |               |        |            |       |        |
|                                |                            |                    | U                  | P   | ~  |           | Ph       | e 20 |                                         |                    |     |   |            |               |        |            |       |        |
|                                | Initial Orie               | entatio            | n                  | RB2 | ų  | LB        | 2        | -20  |                                         |                    |     |   |            |               |        |            |       |        |
|                                | Final Orie                 | ntatior            | RB1<br>RB1         | RB2 |    | LB        | 2 L      | B2   |                                         |                    |     |   |            |               |        |            |       |        |
|                                |                            |                    | LB1                |     |    | -CH       | 2-       |      |                                         |                    |     |   |            |               |        |            |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        |            |       |        |
|                                | Total Ener                 | gy                 | 32.459             |     |    |           |          |      |                                         |                    |     |   |            |               | _      |            |       |        |
|                                | van der W                  | aals<br>tic        | 85.255             |     |    |           |          |      |                                         |                    |     |   |            | -             | _      |            |       |        |
|                                | Licenosta                  |                    | 270.334            |     |    |           |          |      |                                         |                    |     |   |            |               |        |            |       |        |
|                                | ΔEs                        |                    | -101.592           |     |    | _         |          |      |                                         |                    |     |   |            |               |        |            |       |        |
|                                |                            |                    | -91.487            |     |    |           |          |      |                                         |                    |     |   |            |               |        |            |       |        |
| Initial Orientatio             | RB1                        | LB                 | 1                  |     |    | DC1       | 001      |      | Initial Orientation                     | LB1                | RB  | 1 |            |               | 162    |            |       |        |
| Final Orientation              | KINT                       |                    |                    |     |    | K51       | RS1      |      | Final Orientation                       | LS2<br>LB1         |     |   |            |               | 152    |            |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         | CS                 |     |   |            |               |        |            |       |        |
| Total Energy                   | 53.292                     |                    |                    |     |    |           |          |      | Total Energy                            | 58.90              | 1   |   |            |               |        |            |       |        |
| van der Waals                  | 86.839                     |                    |                    |     |    |           |          |      | van der Waals                           | 84.74              | 5   |   |            |               |        |            |       |        |
| electrostatic                  | -250.126                   |                    |                    |     |    |           |          |      | electrostatic                           | -244.34            | 14  |   |            |               |        |            |       |        |
| ΔEs                            | -80.759                    |                    |                    |     |    |           |          |      | ΔEs                                     | -75.               | 15  |   |            |               |        |            |       |        |
|                                | -9.431                     |                    |                    |     |    |           |          |      |                                         | -11.5              | 24  |   |            |               |        |            |       |        |
|                                | -70.679                    |                    |                    |     |    |           |          | _    |                                         | -04.8              | 97  |   |            |               |        |            |       |        |
|                                |                            |                    | _                  |     | _  |           |          |      |                                         |                    |     |   | _          | _             |        |            |       |        |
| Initial Orientatio             | L<br>LB2                   | RB                 | 2                  |     | F  |           |          |      | Initial Orientation                     | 1 RB2              | LB  | 2 | F          | F             |        |            |       |        |
| Final Orientation              |                            |                    |                    |     |    |           |          |      | Final Orientation                       |                    |     |   |            |               |        |            |       |        |
| Total Energy                   | 125,239                    |                    |                    |     |    |           |          | _    | Total Energy                            | 128.19             | 1   |   |            |               |        |            |       |        |
| van der Waals                  | 95.226                     |                    |                    |     |    |           |          |      | van der Waals                           | 96.22              | 1   |   |            |               |        |            |       |        |
| electrostatic                  | -187.076                   |                    |                    |     |    |           |          |      | electrostatic                           | -185.22            | 26  |   |            |               |        |            |       |        |
| ΔEs                            | -8.812                     |                    |                    |     |    |           |          |      | ΔEs                                     | -5.                | 86  |   |            |               |        |            |       |        |
|                                | -1.044                     |                    |                    |     |    |           |          |      |                                         | -0.0               | 49  |   |            |               |        |            |       |        |
|                                | -7.629                     |                    |                    |     |    |           |          | _    |                                         | -5.7               | 79  |   |            |               |        |            |       |        |
|                                |                            |                    |                    |     | _  |           |          |      |                                         |                    |     |   | _          | _             |        |            |       |        |
| Initial Orientatio             | L<br>RB2                   | V                  | F<br>LB2           | 2   | r  |           |          | _    | Initial Orientation                     | 1 LB2              | V   | R | F 82       | r             | riis14 |            |       |        |
| Final Orientation              |                            |                    |                    |     |    |           |          |      | Final Orientation                       | LB2                |     |   |            |               | LB2    |            |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               | -CH-   |            |       |        |
| Total Energy                   | 118.778                    |                    |                    |     |    |           |          |      | Total Energy                            | 118.5              | 9   |   |            |               |        |            |       |        |
| van der Waals<br>electrostatic | 87.812                     |                    |                    |     |    |           |          |      | van der Waals<br>electrostatic          | -190.49            | 7   |   |            |               |        |            |       |        |
|                                | -30.442                    |                    |                    |     |    |           |          |      |                                         | 1.50.40            |     |   |            |               |        |            |       |        |
| ΔEs                            | -15.273                    |                    |                    |     |    |           |          |      | ΔEs                                     | -15.4              | 61  |   |            |               |        |            |       |        |
|                                | -8.995                     |                    |                    |     |    |           |          |      |                                         | -11.0              | 35  |   |            |               |        |            |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        |            |       |        |
|                                | L                          | v                  | F                  |     | F  | His13     | Lvs16    |      |                                         | L                  | v   |   | F          | F             | Val 12 | His13      | His14 | Lys16  |
| Initial Orientatio             | LB1                        |                    |                    | R   | B1 |           | ,==0     |      | Initial Orientation                     | n RB1              |     |   |            | B1            |        |            |       | ,      |
| Final Orientation              | LB1                        |                    |                    | R   | B1 | LB1<br>CS | -CH2-    |      | Final Orientation                       | CS<br>RB1          | _   |   |            | LS2           | LS1    | LB1<br>LS1 | RS1   | LS2*   |
|                                |                            |                    |                    |     |    | LS1       | CHZ      |      |                                         | NOT                |     |   |            |               |        | LNH        |       | *-CH2- |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        | RB1        |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        | -CH2-      |       |        |
|                                |                            |                    |                    |     |    |           |          |      |                                         |                    |     |   |            |               |        |            |       |        |
| van der Waals                  | 75.191<br>83.098           |                    |                    |     |    |           |          |      | van der Waals                           | 1.575              | 5   |   |            |               |        |            |       |        |
| electrostatic                  | -222.942                   |                    |                    |     |    |           |          |      | electrostatic                           | -287.0             | 32  |   |            |               |        |            |       |        |
| ΔEs                            | -58.86                     |                    |                    |     |    |           |          |      | AFs                                     | -132 /             | 76  |   |            |               |        |            |       |        |
|                                | -13.172                    |                    |                    |     |    |           |          |      |                                         | -21.3              | 35  |   |            |               |        |            |       |        |
|                                | -43.495                    |                    |                    |     |    |           |          |      |                                         | -107.5             | 85  |   |            |               |        |            |       |        |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v             | F                                       | F                                            | His13                                    | Lys16               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v             | F                                                                                                                                                                                                                               | F                                                           | Val12                        | His13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lys16                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------|----------------------------------------------|------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         | RB2                                          |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                 | LB1                                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         |                                              | RS2                                      | RS1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                 | CS<br>LB1                                                   | LS2                          | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LS1                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         |                                              | RNH                                      | -CH2-               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                 | LDI                                                         | LDZ                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INH                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -261.466                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -267.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| ciccuostate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 201.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ciccitostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 207.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -93.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -104.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -14.208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -18.758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -82.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -88.383                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v             | F                                       | F                                            | His13                                    | His14               | Lys16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v             | F                                                                                                                                                                                                                               | F                                                           | Val12                        | His13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lys16                       |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         | LB2                                          |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                 | RB1                                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         | LS2                                          | LB1                                      | RS2                 | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                                                                                                                                                 |                                                             | RS2                          | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RS1                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RBI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         | LBZ                                          | LSI<br>CS                                |                     | -CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                 |                                                             |                              | KB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -CH2-                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              | LS2                                      |                     | CITZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIT                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11.655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /3./02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| ciccuostate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 202.131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ciccitostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 203.344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -121.553                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -122.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -22.568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -19.566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -102.684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -106.497                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V             | F                                       | F                                            | His13                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V             | F                                                                                                                                                                                                                               | F                                                           | His13                        | Leu34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         | LB2                                          |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                 | RB2                                                         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                         |                                              | RS2                                      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             | LS1                          | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 88.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98.232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.856                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.396                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -222.142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -212.502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -45.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -35,819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4.414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -42.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -33.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v             | F                                       | F                                            |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v             | F                                                                                                                                                                                                                               | F                                                           | Gin15                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LB1           | RB1                                     |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB1           | LB1                                                                                                                                                                                                                             |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               | RS2                                     |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RB1           | LS1                                                                                                                                                                                                                             |                                                             | CS                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 91.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 90.158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -185.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -185.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 415-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -9.297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5.723                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v             | F                                       | F                                            |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | v             | F                                                                                                                                                                                                                               | F                                                           |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RB2           | LB2                                     |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LB2           | RB2                                                                                                                                                                                                                             |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Final Orignitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 126.202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128.667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 94.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.667<br>95.046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128.667<br>95.046<br>-183.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -186.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128.667<br>95.046<br>-183.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -186.161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -186.161<br>-7.849<br>-1.769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -186.161<br>-7.849<br>-1.769<br>-6.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                                         |                                              |                                          |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -186.161<br>-7.849<br>-1.769<br>-6.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                                                                                                                                                                                                                                 |                                                             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v             | F                                       | F                                            | Val24                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -186.161<br>-7.849<br>-1.769<br>-6.714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | v             | F                                                                                                                                                                                                                               | F                                                           | Val24                        | Lys28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Met35                       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V<br>LB2      | F                                       | F<br>RB2                                     | Val24                                    |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24                        | Lys28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Met35                       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Met35<br>LS1                |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35<br>LS1                |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>L<br>n<br>105.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35                       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>L<br>n<br>105.84<br>90.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35<br>LS1                |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>L<br>n<br>105.84<br>90.737<br>-204.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35                       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>L<br>105.84<br>90.737<br>-204.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35                       |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>L<br>L<br>105.84<br>90.737<br>-204.134<br>-28.211<br>-5.533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -126.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35                       |
| Total Energy<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>L<br>D<br>90.737<br>-204.134<br>-2.8211<br>-5.533<br>-24.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -126.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35                       |
| Total Energy<br>Total Energy<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>L<br>105.84<br>90.737<br>-204.134<br>-5.533<br>-24.687                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2                             |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>RB2      | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2                 | Lys28<br>LS1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35                       |
| Total Energy<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.234<br>-4.048<br>L<br>L<br>105.84<br>90.737<br>-204.134<br>-2.82.211<br>-5.533<br>-2.4.687<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V<br>LB2<br>V | F                                       | F<br>RB2<br>F                                | Val24<br>RB2                             | Ala30               | -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V<br>RB2<br>V | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2<br>His13        | Lys28<br>LS1<br>2<br>Lys16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Met35<br>LS1                |
| Total Energy<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>105.84<br>90.737<br>-204.134<br>-28.211<br>-5.533<br>-24.687<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB2<br>V | F                                       | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16                    | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V<br>RB2<br>V | F                                                                                                                                                                                                                               | F<br>LB2                                                    | Val24<br>LB2<br>His13        | Lys28<br>LS1<br>2<br>Lys16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Met35<br>LS1<br>Asp23       |
| Total Energy<br>Total Energy<br>and et Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.667<br>95.046<br>-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>n<br>105.84<br>90.737<br>-204.134<br>-28.211<br>-5.533<br>-24.687<br>L<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V<br>LB2<br>V | F<br>F<br>RB1<br>RNH                    | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2        | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V<br>RB2<br>V | F<br>F<br>LB1<br>LS1                                                                                                                                                                                                            | F<br>LB2<br>F<br>RB1<br>CS<br>RB1                           | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>Lys16<br>LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Met35<br>LS1<br>Asp23<br>CS |
| Initial Orientation Total Energy van der Waals electrostatic ΔĒs Initial Orientation Total Energy van der Waals electrostatic ΔĒs Initial Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 128.667<br>95.046<br>-183.494<br>-1.224<br>-4.048<br>-<br>105.84<br>90.737<br>-204.134<br>-5.533<br>-24.687<br>L<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V<br>LB2<br>V | F<br>F<br>RB1<br>RNH<br>RS1             | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -186.161<br>-7.849<br>-1.769<br>-6.714<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>280.593<br>-<br>86.676<br>-226.071<br>-<br>-<br>-<br>23.658<br>-9.594<br>-<br>-<br>46.624<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V<br>RB2      | F<br>F<br>LB1<br>LS2<br>LS1<br>LB1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>CS<br>RB1<br>RS2                    | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>Lys16<br>LB1<br>LS1<br>LNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Met35<br>L51<br>Asp23<br>CS |
| Total Energy<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.667<br>95.046<br>-183.495<br>-1.83.495<br>-1.224<br>-4.048<br>L<br>n<br>105.84<br>90.737<br>-204.134<br>-28.211<br>-5.533<br>-24.687<br>L<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V<br>LB2<br>V | F<br>F<br>RB1<br>RNH<br>RS1             | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-1.6<br>-6.714<br>-6.714<br>-6.714<br>-6.714<br>-4.6.674<br>-226.071<br>-53.458<br>-9.594<br>-4.6.624<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V<br>RB2<br>V | F<br>F<br>IB1<br>IS2<br>IS1<br>IB1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>RS2                                 | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>LB1<br>LS1<br>LNH<br>RB1<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Met35<br>LS1<br>Asp23<br>CS |
| Initial Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic AEs Initial Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128.667<br>95.046<br>-183.495<br>-5.334<br>-1.224<br>-4.048<br>L<br>L<br>n<br>105.84<br>90.737<br>-204.135<br>-24.687<br>L<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V<br>LB2      | F                                       | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V<br>RB2      | F<br>F<br>LB1<br>LS2<br>LS1<br>LB1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>CS<br>RB1<br>RS2                    | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>L81<br>LS1<br>LNH<br>RB1<br>RS1<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.667<br>95.066<br>95.064<br>138.055<br>5.384<br>1.224<br>-6.048<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V<br>LB2      | F<br>F<br>RB1<br>RNH<br>RS1             | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Wals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V<br>RB2      | F<br>F<br>UB1<br>US2<br>US1<br>UB1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>RS2                                 | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>L81<br>LS1<br>LNH<br>RS1<br>-CH2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.667<br>95.066<br>1-183.495<br>-5.384<br>-1.224<br>-4.048<br>L<br>105.84<br>-2.24<br>-2.04134<br>-2.8.211<br>-5.533<br>-2.4.687<br>L<br>n<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V<br>182<br>V | F                                       | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientatio | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>L<br>-53.458<br>-9.594<br>-46.624<br>-53.458<br>-9.594<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5.595<br>-5. | V<br>RB2      | F<br>F<br>LB1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>CS<br>RB1<br>RS1<br>RB1<br>RS2      | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>LB1<br>LS1<br>LNH<br>R81<br>R51<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic Total Energy Van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128.667<br>95.060<br>138.495<br>-5.384<br>-1.224<br>-4.048<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V<br>LB2      | F<br>F<br>RB1<br>RNH<br>RS1             | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30<br>LB2<br>L51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic Initial Orientation Final Orientation Total Energy van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-5.3.458<br>-9.594<br>-46.624<br>L<br>L<br>37.833<br>75.397<br>-261 171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V<br>RB2<br>V | F<br>F<br>LB1<br>LS2<br>LS1<br>LB1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>CS<br>RB1<br>RS2                    | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>LB1<br>LS1<br>LB1<br>LS1<br>LMH<br>RB1<br>RS1<br>S1<br>CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>Total Energy<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128.667<br>95.046<br>138.495<br>-5.384<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-2.25.848<br>-2.25.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB2      | F                                       | F<br>RB2                                     | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic Total Energy Total Energy van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>-37.833<br>75.397<br>-261.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V<br>RB2      | F<br>F<br>LB1<br>LS2<br>LS3<br>LB1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>RS1<br>RS2                          | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>LB1<br>LS1<br>NH<br>RB1<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>Total Energy<br>van der Waals<br>electrostatic<br>AES<br>Initial Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AES<br>Total Energy<br>van der Waals<br>electrostatic<br>AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 128.667<br>95.064<br>55.384<br>-1.224<br>-4.048<br>L<br>L<br>n<br>-28.211<br>-5.533<br>-24.687<br>-28.211<br>-5.533<br>-24.687<br>-28.211<br>-5.533<br>-24.687<br>-25.533<br>-24.687<br>-25.533<br>-25.534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB2      | F<br>RB1<br>RNH<br>RS1                  | F<br>R82<br>F<br>LB1                         | Val24<br>R82<br>Lys16<br>R81             | Ala30<br>LB2<br>L51 | -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | electrostatic ΔEs Initial Orientation Final Orientation Total Energy Van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>L<br>37.833<br>75.397<br>-261.177<br>-96.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V<br>RB2      | F<br>B1<br>L51<br>L52<br>L53<br>L81                                                                                                                                                                                             | F<br>LB2<br>F<br>RB1<br>RS1<br>RS1<br>RS2                   | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>Lys16<br>LS1<br>LNH<br>RB1<br>CH2-<br>CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.667<br>95.060<br>138.365<br>-5.384<br>-1.224<br>-4.048<br>-4.048<br>-4.048<br>-0.277<br>-204.134<br>-28.213<br>-24.687<br>-24.687<br>-24.687<br>-2.523<br>-24.687<br>-2.523<br>-2.523<br>-2.525<br>-2.5284<br>-2.529<br>-2.55844<br>-3.529<br>-2.55844<br>-3.529<br>-2.55844<br>-3.529<br>-2.55844<br>-3.529<br>-2.55844<br>-3.5584<br>-3.55844<br>-3.55844<br>-3.55844<br>-3.55844<br>-3.55844<br>-3.55844<br>-3.55844<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.55844<br>-3.5584<br>-3.5584<br>-3.5584<br>-3.55844<br>-3.5584                                                                                                                                                                                                                                                          | V<br>LB2<br>V | F<br>F<br>RB1<br>RNH<br>RS1             | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30<br>LB2<br>L51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Total Energy Total Energy Total Energy Comparison of the temperature of the temperature of temperature | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-80.593<br>86.676<br>-26.677<br>-53.458<br>-9.594<br>-46.624<br>L<br>-37.833<br>75.397<br>-261.177<br>-96.218<br>-9.0873<br>-9.0873<br>-9.0873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V<br>RB2      | F<br>F<br>L81<br>L52<br>L53<br>L81                                                                                                                                                                                              | F<br>F<br>RB1<br>CS<br>RB1<br>RS2                           | Val24<br>UB2<br>His13<br>RS1 | Lys28<br>Lys16<br>Lys16<br>LS1<br>Lys16<br>LS1<br>LNH<br>R81<br>R81<br>R81<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Met35                       |
| Total Energy<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 128.667<br>95.066<br>138.495<br>-5.384<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-2.224<br>-2.25.211<br>-2.25.211<br>-2.25.211<br>-2.25.211<br>-2.25.255<br>-2.25.555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V<br>L82      | F<br>F<br>RB1<br>RRM<br>RS1             | F<br>R82<br>F<br>L81                         | Val24<br>RB2<br>Lys16<br>RS1<br>RB1      | Ala30<br>LB2<br>L51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Total Energy AEs Ditital Orientation Total Content Vals electrostatic Ditital Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs ΔEs ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>L<br>-37.833<br>75.397<br>-26.1177<br>-96.218<br>-20.873<br>-81.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V<br>RB2      | F<br>B<br>B<br>B<br>B<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                                                                                                                | F<br>LB2<br>F<br>RB1<br>CS<br>RB1<br>RB1<br>RB1<br>RB1      | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>Lys16<br>L31<br>L51<br>LNH<br>R81<br>R81<br>R81<br>R81<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Met35                       |
| Total Energy         Total Energy         van der Waals         electrostatic         ΔĒs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔĒs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔĒs         Total Energy         van der Waals         electrostatic         ΔĒs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128.667<br>95.046<br>95.046<br>-5.384<br>-1.284<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-2.24<br>-2.25<br>-2.24<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.55<br>-2.55<br>-2.55<br>-2.55<br>-2.57<br>-2.55<br>-2.57<br>-2.55<br>-2.57<br>-2.55<br>-2.57<br>-2.55<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57<br>-2.57  | V<br>LB2      | F<br>F<br>R81<br>RNH<br>R51             | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic Total Energy van der Waals electrostatic ΔEs Total Energy van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>L<br>-53.458<br>-9.594<br>-46.624<br>-7.537<br>-261.177<br>-96.218<br>-20.873<br>-8.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V<br>RB2      | F<br>F<br>LB1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                              | F<br>RB1<br>RB1<br>RS2                                      | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>L81<br>L81<br>L81<br>R81<br>R81<br>R81<br>R91<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Met35                       |
| Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientation<br>Final | 128.667<br>95.060<br>138.495<br>-5.384<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-1.224<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.241<br>-2.245<br>-2.4587<br>-2.2535<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.2555<br>-2.555844<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.55584<br>-2.555844<br>-2.55584<br>-2.55584<br>-2.555844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V<br>LB2      | F<br>F<br>Rel<br>RNH<br>RS1             | F<br>RB2<br>F<br>LB1                         | Val24<br>R82<br>Lys16<br>R51<br>2<br>R81 | Ala30<br>LB2<br>L51 | Image: Section of the sectio | electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Total Energy van der Waals electrostatic ΔEs Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>37.833<br>75.397<br>-261.177<br>-96.218<br>-20.873<br>-81.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V<br>RB2<br>V | F<br>F<br>UB1<br>US2<br>US1<br>UB1                                                                                                                                                                                              | F<br>LB2<br>F<br>RB1<br>RS1<br>RS2                          | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>L81<br>L51<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals Initial Orientation Initial Ori                                                                                                                                                                                                                                                                                                                                                            | 128.667<br>95.060<br>138.495<br>-5.384<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-2.24<br>-2.0487<br>-2.04134<br>-2.2513<br>-2.4687<br>-2.513<br>-2.4687<br>-2.513<br>-2.4687<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.513<br>-2.515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V<br>LB2<br>V | F<br>RB1<br>RS1<br>RS1<br>F<br>LB2      | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>RB1      | Ala30<br>LB2<br>L51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Total Energy Van der Waals electrostatic ΔEs Initial Orientation In | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>L<br>37.833<br>75.397<br>-261.177<br>-96.218<br>-20.873<br>-81.73<br>-1.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.73<br>-9.51.75<br>-9.51.75<br>-9.51.75<br>-9.51.75<br>-9.51.75<br>-9.51.75<br>-9                                                                                               | V<br>RB2<br>V | F<br>F<br>LB1<br>LS2<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS2<br>LS1<br>LS1<br>LS2<br>LS1<br>LS1<br>LS2<br>LS1<br>LS1<br>LS2<br>LS1<br>LS2<br>LS1<br>LS2<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3<br>LS3 | F<br>LB2<br>F<br>RB1<br>RS2<br>F<br>F<br>LB2                | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>L91<br>LS1<br>LNH<br>RS1<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy Total Energy Total Energy Van der Waals electrostatic AEs Initial Orientation Final Orien                                                                                                                                                                                                                                                                                                                                                            | 128.667<br>95.046<br>138.495<br>-5.384<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-2.225<br>-2.25.03<br>-2.25.05<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-5.584<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.25.705<br>-2.                                                                                                                                                                                                                                                                                                                                                                                        | V<br>L82<br>V | F<br>F<br>R81<br>RNH<br>RS1<br>F<br>LB2 | F<br>RB2<br>F<br>LB1<br>F<br>RB2<br>RB2      | Val24<br>RB2<br>Lys16<br>RS1<br>RB1      | Ala30<br>L82<br>L51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         ΔEs         ΔEs         Initial Orientation         Final Orientation         Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-80.593<br>86.670<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>L<br>-53.458<br>-9.594<br>-46.624<br>L<br>-53.458<br>-9.593<br>-226.177<br>-9.62.18<br>-2.0873<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.73<br>-81.74<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81.75<br>-81 | V<br>RB2<br>V | F<br>F<br>L81<br>L81<br>L81<br>L81<br>F<br>R82                                                                                                                                                                                  | F<br>LB2<br>F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>LB2        | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Met35                       |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 128.667<br>95.060<br>95.060<br>-5.384<br>-1.224<br>-4.088<br>-1.224<br>-2.24.087<br>-2.24.087<br>-2.24.087<br>-2.24.087<br>-2.24.087<br>-2.25.075<br>-55.844<br>-9.872<br>-9.872<br>-55.844<br>-9.872<br>-2.55.844<br>-9.872<br>-2.55.844<br>-1.25.847<br>-2.55.844<br>-1.25.847<br>-2.55.844<br>-1.25.847<br>-2.55.844<br>-1.25.847<br>-2.55.844<br>-1.25.847<br>-2.55.844<br>-1.25.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2.55.847<br>-2                                                                                                                                                                                                                                                                                                                                                                                                       | V<br>LB2<br>V | F<br>RB1<br>RNH<br>RS1                  | F<br>RB2<br>F<br>LB1<br>F<br>F<br>RB2<br>RB2 | Val24<br>R82<br>Lys16<br>R81             | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         AEs         Otal Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Initial Orientation         AEs         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>-80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>L<br>-37.833<br>75.397<br>-261.177<br>-96.218<br>-20.873<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.173<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-8.174<br>-9.574<br>-8.174<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.574<br>-9.577<br>-9.575<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.577<br>-9.5777<br>-9.5777<br>-9.5777<br>-9.5777<br>-9.5777<br>-9.5777<br>-9.5777<br>-9.5777<br>-9.5777<br>-9.57777<br>-9.57777<br>-9.57777<br>-9.5777777777777777777777777777777777777                                                                                                                     | V<br>RB2<br>V | F<br>F<br>LB1<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                      | F<br>LB2<br>F<br>RB1<br>R51<br>C5<br>RB1<br>R52<br>F<br>LB2 | Val24<br>LB2<br>Hist3<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy Total Energy Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic AEs Initial Orientation Total Energy Van der Waals electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 128.667<br>95.060<br>138.365<br>-5.384<br>-1.224<br>-4.048<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V<br>LB2<br>V | F<br>RB1<br>RNH<br>RS1                  | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30<br>LB2<br>L51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>37.833<br>75.397<br>-261.177<br>-96.218<br>-20.873<br>-81.73<br>L<br>130.336<br>96.283<br>-183.672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V<br>RB2<br>V | F<br>F<br>LB1<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                | F<br>LB2<br>F<br>RB1<br>RS1<br>CS<br>RB1<br>RS2<br>F<br>LB2 | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys28<br>Lys28<br>Lys28<br>Lys28<br>Lys28<br>Lys28<br>Lys28<br>Lys28<br>Lys28<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16<br>Lys16 | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 128.667<br>95.066<br>128.365<br>128.365<br>128.365<br>1224<br>4.048<br>0.737<br>-2.04134<br>0.737<br>-2.04134<br>-2.2511<br>3.24687<br>-2.2513<br>-2.4687<br>-2.2513<br>-2.4687<br>-2.2513<br>-2.4687<br>-2.2513<br>-2.4687<br>-2.5534<br>-2.2575<br>-2.5544<br>-2.5584<br>-2.5575<br>-2.5545<br>-2.5575<br>-2.5545<br>-2.5575<br>-2.5545<br>-2.5575<br>-2.5545<br>-2.5575<br>-2.5545<br>-2.5575<br>-2.5545<br>-2.5575<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.5545<br>-2.555                                                                                                                                                                                                                                                       | V<br>LB2<br>V | F<br>RB1<br>RB1<br>RB4<br>RS1           | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>RB1      | Ala30<br>LB2<br>L51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         AEs         Initial Orientation         Final Orientation         Distribution         Distribution         Initial Orientation         Total Energy         van der Waals         electrostatic         Distribution         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-5.3.458<br>-9.594<br>-46.624<br>L<br>L<br>37.833<br>75.397<br>-261.177<br>-96.218<br>-20.873<br>-81.73<br>L<br>L<br>130.336<br>96.283<br>-183.672                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V<br>RB2<br>V | F<br>F<br>L81<br>L82<br>L81<br>L81<br>L81<br>F<br>R82                                                                                                                                                                           | F<br>LB2<br>F<br>RB1<br>CS<br>RB2<br>F<br>LB2               | Val24<br>LB2<br>His13<br>RS1 | Lys28<br>LS1<br>2<br>Lys16<br>LS1<br>LS1<br>LNH<br>RS1<br>-CH2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔĒs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔĒs<br>Initial Orientation<br>Final O | 128.667<br>95.066<br>95.066<br>-5.384<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-4.048<br>-1.224<br>-2.224<br>-2.24<br>-2.24<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25<br>-2.25 | V<br>LB2<br>V | F<br>F<br>RB1<br>RS1<br>RS1<br>F<br>LB2 | F<br>RB2<br>F<br>LB1                         | Val24<br>R82<br>Lys16<br>R81             | Ala30               | -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>1<br>37.833<br>75.397<br>-261.177<br>-96.218<br>-20.873<br>-81.73<br>L<br>130.336<br>96.283<br>-183.672<br>-3.715                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V<br>RB2<br>V | F<br>F<br>LB1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                  | F<br>LB2<br>F<br>RB1<br>CS<br>RB1<br>RS2<br>F<br>LB2        | Val24<br>LB2<br>Hist3<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>L81<br>L81<br>LNH<br>R81<br>R81<br>R81<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Met35<br>LS1<br>Asp23<br>CS |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 128.667<br>95.060<br>138.365<br>5.384<br>1.1224<br>4.048<br>4.048<br>90.737<br>2.201134<br>1.224<br>4.048<br>90.737<br>2.201134<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.224<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.2444<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.244<br>1.2 | V<br>LB2<br>V | F<br>F<br>Rel<br>RNH<br>RS1             | F<br>RB2<br>F<br>LB1                         | Val24<br>RB2<br>Lys16<br>RS1<br>2<br>RB1 | Ala30               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic ΔEs Initial Orientation Total Energy Van der Waals electrostatic ΔEs Total Energy Van der Waals electrostatic ΔEs Total Energy Van der Waals electrostatic ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -186.161<br>-7.849<br>-1.769<br>-6.714<br>L<br>80.593<br>86.676<br>-226.071<br>-53.458<br>-9.594<br>-46.624<br>L<br>137.833<br>75.397<br>-261.177<br>-96.218<br>-20.873<br>-81.73<br>L<br>130.336<br>96.283<br>-133.275<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715<br>-3.715    | V<br>RB2<br>V | F<br>F<br>LB1<br>LS2<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                  | F<br>LB2<br>F<br>RB1<br>RS2<br>F<br>LB2                     | Val24<br>LB2<br>Hist3<br>RS1 | Lys28<br>L51<br>2<br>Lys16<br>L81<br>L51<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Met35                       |

|                                         | н                  | н   | Q | К            | L          | v | F | F            |       |       |                                         | н                | н | Q | к            | L          | v | F   | F   |       |
|-----------------------------------------|--------------------|-----|---|--------------|------------|---|---|--------------|-------|-------|-----------------------------------------|------------------|---|---|--------------|------------|---|-----|-----|-------|
| Initial Orientation                     | CS                 |     |   |              | RB1        |   |   |              |       |       | Initial Orientatio                      | CS<br>DB1        |   |   | DC1          | LB1        |   |     |     |       |
| rinal offentation                       | LS2                |     |   |              | KB1        |   |   |              |       |       | Fillal Offentation                      | RS2              |   |   | Rat          | 231        |   |     |     |       |
|                                         | LS1                |     |   |              |            |   |   |              |       |       |                                         | LB1              |   |   |              |            |   |     |     |       |
|                                         | -CH2-              |     |   |              |            |   |   |              |       |       |                                         | -CH2-            |   |   |              |            |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| van der Waals                           | 84.715             |     |   |              |            |   |   |              |       |       | van der Waals                           | 9.379<br>83.754  |   |   |              |            |   |     |     |       |
| electrostatic                           | -239.142           |     |   |              |            |   |   |              |       |       | electrostatic                           | -293.748         |   |   |              |            |   |     |     |       |
| ΔEs                                     | -67.207            |     |   |              |            |   |   |              |       |       | ΔEs                                     | -124.672         |   |   |              |            |   |     |     |       |
|                                         | -11.555            |     |   |              |            |   |   |              |       |       |                                         | -12.516          |   |   |              |            |   |     |     |       |
|                                         | -59.695            |     |   |              |            |   |   |              |       |       |                                         | -114.301         |   |   |              |            |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Initial Orientatio                      | RB1                | н   | Q | к            | L<br>LB1   | v | F | F            |       |       | Initial Orientatio                      | H<br>LB1         | н | Q | ĸ            | RB1        | v | F   | F   |       |
| Final Orientation                       | RB1                |     |   | LS1          | LS1        |   |   |              |       |       | Final Orientation                       | LS1              |   |   | LS2          | RB1        |   |     | CS  |       |
|                                         | LB1                |     |   |              |            |   |   |              |       |       |                                         | LB1              |   |   | 2            |            |   |     |     |       |
|                                         | LS1                |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
|                                         | -CH2-              |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Total Energy                            | 10.204             |     |   |              |            |   |   |              |       |       | Total Energy                            | 51.212           |   |   |              |            |   |     |     |       |
| electrostatic                           | -293.046           |     |   |              |            |   |   |              |       |       | electrostatic                           | -254.493         |   |   |              |            |   |     |     |       |
| AT-                                     | 122.047            |     |   |              |            |   |   |              |       |       | AE-                                     | 02.020           |   |   |              |            |   |     |     |       |
| ΔE8                                     | -123.847           |     |   |              |            |   |   |              |       |       | ΔES                                     | -82.839          |   |   |              |            |   |     |     |       |
|                                         | -113.599           |     |   |              |            |   |   |              |       |       |                                         | -75.046          |   |   |              |            |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Initial Origotation                     | H<br>PC4           | н   | Q | К            | L          | v | F | F            |       |       | Initial Origontation                    | H                | н | Q | к            | L<br>PP 1  | v | F   | F   |       |
| Final Orientation                       | RB1                | LS1 |   | RB2          | RS1        |   |   | RS1          |       |       | Final Orientation                       | LS1              |   |   |              | RB1        |   |     |     |       |
|                                         | RS2<br>RS1         |     |   | RS2*<br>RS1* | LB1        |   |   | -CH2-        |       |       |                                         | LNH<br>LB1       |   |   |              |            |   |     |     |       |
|                                         | CS                 |     |   | *-CH2-       |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Total Fnergy                            | 23 682             |     |   |              |            |   |   |              |       |       | Total Fnerov                            | 92 076           |   |   |              |            |   |     |     |       |
| van der Waals                           | 75.599             |     |   |              |            |   |   |              |       |       | van der Waals                           | 91.852           |   |   |              |            |   |     |     |       |
| electrostatic                           | -272.739           |     |   |              |            |   |   |              |       |       | electrostatic                           | -217.952         |   |   |              |            |   |     |     |       |
| ΔEs                                     | -110.369           |     |   |              |            |   |   |              |       |       | ΔEs                                     | -41.975          |   |   |              |            |   |     |     |       |
|                                         | -20.671            |     |   |              |            |   |   |              |       |       |                                         | -4.418           |   |   |              |            |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
|                                         | н                  | н   | 0 | к            | L          | v | F | F            | Ala21 |       |                                         | н                | н | 0 | к            | L          | v | F   | F   |       |
| Initial Orientatio                      | RS2                |     |   |              | LB1        |   |   |              |       |       | Initial Orientatio                      | LS2              |   |   |              | RB1        |   |     |     |       |
| Final Orientation                       | RS2                |     |   | RS1          | RB1<br>CS  |   |   | RS1          | CS    |       | Final Orientation                       | LB1<br>CS        |   |   | LS2          | RS2        |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         | LS1              |   |   |              |            |   |     |     |       |
| Total Energy                            | 39.8               |     |   |              |            |   |   |              |       |       | Total Energy                            | 45.783           |   |   |              |            |   |     |     |       |
| van der Waals                           | 80.655             |     |   |              |            |   |   |              |       |       | van der Waals                           | 87.014           |   |   |              |            |   |     |     |       |
| electrostatic                           | -260.73            |     |   |              |            |   |   |              |       |       | electrostatic                           | -261.583         |   |   |              |            |   |     |     |       |
| ΔEs                                     | -94.251            |     |   |              |            |   |   |              |       |       | ΔEs                                     | -88.268          |   |   |              |            |   |     |     |       |
|                                         | -15.615<br>-81.283 |     |   |              |            |   |   |              |       |       |                                         | -9.256           |   |   |              |            |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
|                                         | н                  | н   | Q | к            | L          | v | F | F            | Tyr10 | Val12 |                                         | н                | н | Q | к            | L          | v | F   | F   |       |
| Initial Orientation                     | LB1                | DD2 |   | 1.0.1*       | RB2        |   |   |              | D\$2  | 1.62  | Initial Orientatio                      | RB2              |   |   |              | LB1        |   |     |     |       |
| rinal Orientation                       | LS1                | RS2 |   | LS2*         | NDT        |   |   |              | C=0   | 1.32  | Fillal Offentation                      | RS1              |   |   |              | LB1        |   |     |     |       |
|                                         | RS2                |     |   | *-CH2-       |            |   |   |              |       |       |                                         | RNH<br>PB1       |   |   |              |            |   |     |     |       |
|                                         | RB1                |     |   | LDZ          |            |   |   |              |       |       |                                         | -CH2-            |   |   |              |            |   |     |     |       |
|                                         | LS2                |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Total Energy                            | 7.279              |     |   |              |            |   |   |              |       |       | Total Energy                            | 74.023           |   |   |              |            |   |     |     |       |
| van der Waals<br>electrostatic          | 75.279             |     |   |              |            |   |   |              |       |       | van der Waals<br>electrostatic          | 82.311           |   |   |              |            |   |     |     |       |
| ciccitostatic                           | 200.305            |     |   |              |            |   |   |              |       |       | ciccuosanc                              | 227.333          |   |   |              |            |   |     |     |       |
| ΔEs                                     | -126.772           |     |   |              |            |   |   |              |       |       | ΔEs                                     | -60.028          |   |   |              |            |   |     |     |       |
|                                         | -107.118           |     |   |              |            |   |   |              |       |       |                                         | -48.152          |   |   |              |            |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
|                                         | н                  | н   | Q | к            | L          | v | F | F            | Val12 |       |                                         | н                | н | Q | к            | L          | v | F   | F   | Ala21 |
| Initial Orientatio<br>Final Orientation | RB1                |     |   | RB2          | LB2<br>LB2 |   |   | RB2          | RS1   |       | Initial Orientatio<br>Final Orientation | LB2<br>LB1       |   |   |              | RB1<br>RS2 |   |     | RB2 | RB2   |
|                                         | RB1                |     |   |              |            |   |   |              |       |       |                                         | LS2              |   |   |              | CS         |   |     |     | RS2   |
|                                         | RNH<br>LNH         |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
|                                         | LS1                |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
|                                         | -CH2-              |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Total Energy                            | 29.606             |     |   |              |            |   |   |              |       |       | Total Energy                            | 66.542           |   |   |              |            |   |     |     |       |
| electrostatic                           | -272.141           |     |   |              |            |   |   |              |       |       | electrostatic                           | -231.777         |   |   |              |            |   |     |     |       |
| 15                                      |                    |     |   |              |            |   |   |              |       |       | 417                                     |                  |   |   |              |            |   |     |     |       |
| ΔES                                     | -104.445           |     |   |              |            |   |   |              |       |       | ΔES                                     | -67.509          |   |   |              |            |   |     |     |       |
|                                         | -92.694            |     |   |              |            |   |   |              |       |       |                                         | -52.33           |   |   |              |            |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Initial Origotati-                      | H                  | н   | Q | К            | L          | V | F | F            |       |       | Initial Orientation                     | H                | н | Q | К            | L          | v | F   | F   |       |
| Final Orientation                       | LB1                | RS2 |   | LB2          | RS2        |   |   | LB2          |       |       | Final Orientation                       | RB2              |   |   |              | LS2        |   |     |     |       |
|                                         | LS1<br>CS          |     |   | LS2          | RB1        |   |   | LS2<br>-CH2- |       |       |                                         | RS2              |   |   |              | LB2        |   |     |     |       |
|                                         | LS2                |     |   |              |            |   |   | J1 12"       |       |       |                                         |                  |   |   |              |            |   |     |     |       |
| Total Energy                            | 8,075              |     |   |              |            |   |   |              |       |       | Total Fnerøv                            | 74,534           |   |   |              |            |   |     |     |       |
| van der Waals                           | 77.121             |     |   |              |            |   |   |              |       |       | van der Waals                           | 88.056           |   |   |              |            |   |     |     |       |
| electrostatic                           | -284.229           |     |   |              |            |   |   |              |       |       | electrostatic                           | -232.745         |   |   |              |            |   |     |     |       |
| ΔEs                                     | -125.976           |     |   |              |            |   |   |              |       |       | ΔEs                                     | -59.517          |   |   |              |            |   |     |     |       |
|                                         | -19.149            |     |   |              |            |   |   |              |       |       |                                         | -8.214           |   |   |              |            |   |     |     |       |
|                                         | 104.782            |     |   |              |            |   |   |              |       |       |                                         | 33.238           |   |   |              |            |   |     |     |       |
|                                         | н                  | н   | 0 | к            | L          | v | F | F            |       |       |                                         | н                | н | 0 | к            | L          | v | F   | F   |       |
| Initial Orientatio                      | RB2                |     |   |              | LB2        |   |   | · · ·        |       |       | Initial Orientatio                      | LB2              |   |   |              | RB2        |   | · · |     |       |
| Final Orientation                       | RS2<br>RB2         |     |   |              | RB2        |   |   |              |       |       | Final Orientation                       | LS2<br>LS1       |   |   | LS2<br>-CH2- | RS2<br>RB2 |   |     |     |       |
|                                         |                    |     |   |              |            |   |   |              |       |       |                                         | ar -             |   |   |              |            |   |     |     |       |
| rotal Energy<br>van der Waals           | 83.202<br>93.067   |     |   |              |            |   |   |              |       |       | Total Energy<br>van der Waals           | 33.861<br>85.809 |   |   |              |            |   |     |     |       |
| electrostatic                           | -226.942           |     |   |              |            |   |   |              |       |       | electrostatic                           | -269.205         |   |   |              |            |   |     |     |       |
| ΔEs                                     | -50.8/9            |     |   |              |            |   |   |              |       |       | ΔEs                                     | -100 19          |   |   |              |            |   |     |     |       |
|                                         | -3.203             |     |   |              |            |   |   |              |       |       |                                         | -10.461          |   |   |              |            |   |     |     |       |
|                                         | 47.405             |     |   |              |            |   |   |              |       |       |                                         | -89 758          |   |   |              |            |   |     |     |       |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н    | Q                | к                                                                                                                                                                | L             | v   | F                  | F                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H Q        | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                   | V   | F      | F                                                                                  | Ala21                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|--------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|--------|------------------------------------------------------------------------------------|-------------------------------------|
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  | 1.00                                                                                                                                                             | 1.0.0         | RB2 |                    | 1.00                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   | LB2 |        |                                                                                    | 1.00                                |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LB1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -CH- |                  | -CH2-                                                                                                                                                            | RB1           |     |                    | LB2                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RB2<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RB1                                 | LB2 |        |                                                                                    | LS2<br>LB2                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |                                                                                                                                                                  | RB2           |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Casara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16 516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Tatal Caran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83.779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -274.942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -228.792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 117 505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| ΔES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -117.535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                  | -                                                                                                                                                                |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -56.696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -95.495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -49.345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н    | 0                | к                                                                                                                                                                | L             | v   | F                  | F                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н о        | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                   | v   | F      | F                                                                                  |                                     |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |                                                                                                                                                                  |               | LB2 |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     | RB2 |        |                                                                                    |                                     |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |                                                                                                                                                                  |               |     |                    | _                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72.544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91.978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -169.675                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -235.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -14.061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -61.507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -4.292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -10.426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -55.554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н    | Q                | к                                                                                                                                                                | L             | v   | F                  | F                                                                                                                             | Val12                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H Q        | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                   | v   | F      | F                                                                                  |                                     |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  | PS2                                                                                                                                                              |               |     | RB2<br>RB2         | RS2                                                                                                                           | 182                                                                                                                                                                                                                                                                                                                                                                                                                     | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |     | LB2    |                                                                                    |                                     |
| i indi orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  | 1002                                                                                                                                                             |               |     | 1052               | 1102                                                                                                                          | LS2                                                                                                                                                                                                                                                                                                                                                                                                                     | Tindi Offerhaddol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |     | LOL    |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Fnerey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Fnerey                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45.847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81.637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 90.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -259.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -263.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -97 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | AFs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -88 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -14.633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -6.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -80.229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -83.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н    | 0                | к                                                                                                                                                                | L             | v   | F                  | F                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н о        | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                   | v   | F      | F                                                                                  | Val12                               |
| Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |                                                                                                                                                                  | -             |     | LB2                |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                   |     | RB2    |                                                                                    |                                     |
| Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  | LB1                                                                                                                                                              |               |     | LB2                | CS                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                         | Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |     | RB2    |                                                                                    | LS2                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  | 2                                                                                                                                                                |               |     | 62                 |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | -CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  | CS                                                                                                                                                               |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  | RS2                                                                                                                                                              |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  | *G112*                                                                                                                                                           |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28.883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 81.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 85.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2/1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -266.728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -105.168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -93.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -15.269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -10.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -91.653                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -87.281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н    | Q                | к                                                                                                                                                                | L             | v   | F                  | F                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H Q        | к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                   | V   | F      | F                                                                                  |                                     |
| Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CS<br>DR1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                  | DC2                                                                                                                                                              | PC1           |     |                    | RB2                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CS I P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 1.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.62                                |     |        | LB2                                                                                |                                     |
| rinar orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                  | RS1                                                                                                                                                              | 131           |     |                    | RB2                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                         | rinai orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.52                                |     |        | LDZ                                                                                |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  | -CH2-                                                                                                                                                            |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     |     |        |                                                                                    |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Factory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43.322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45.795<br>83.012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.322<br>80.036<br>-257.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.795<br>83.012<br>-259.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.322<br>80.036<br>-257.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.795<br>83.012<br>-259.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                         | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               | -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         - | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |                                                                                                                                                                  |               |     |                    |                                                                                                                               | -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         - | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |     |        |                                                                                    |                                     |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Н    | Q                | ĸ                                                                                                                                                                | L             |     | F                  | F                                                                                                                             | Val12                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | н Q        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                   |     | F      | F                                                                                  | Val12                               |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Н    | Q                | K                                                                                                                                                                |               | V   | F                  | F<br>LB1                                                                                                                      | Val12                                                                                                                                                                                                                                                                                                                                                                                                                   | Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>H<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H Q        | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L                                   | V   | F      | F<br>RB1                                                                           | Val12                               |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H    | Q                | K<br>RB1<br>RS1                                                                                                                                                  | L             | v   | F                  | F<br>LB1<br>LS1<br>IR1                                                                                                        | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>H<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H Q        | K<br>CS<br>IS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                                   |     | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12                               |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H    | Q                | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         |               | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H Q        | К<br>С <u>S</u><br>LS2<br>-СH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L                                   | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H    | Q                | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         |               | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientatio<br>Final Orientatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035 | H Q        | К<br>СS<br>LS2<br>-СH2-<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                                   | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H    | Q                | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         | L             | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>S0.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H Q        | К<br>СS<br>LS2<br>-СH2-<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                                   | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2<br>50.923<br>82.805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H    | Q                | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         |               | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientatio<br>Final Orientatio<br>Total Energy<br>van der Waals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.795<br>83.012<br>-259.482<br>-259.482<br>-38.035<br>-80.035<br>-80.035<br>-13.258<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80                                                                                                                                                                                                                                                                                                                        | H Q        | К<br>СS<br>LS2<br>СН2-<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                   | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | K51<br>43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>R51<br>RS2<br>50.923<br>82.805<br>-253.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Н    | Q                | к<br>RB1<br>RS1<br>-CH2-                                                                                                                                         |               | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>-80.035<br>-13.258<br>-80.035<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.258<br>-13.                                                                                                                                                                                                                                                                                                                        | H Q        | К<br>СS<br>LS2<br>СН2<br>ЦВ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                   | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>KS1</li> <li>43.322</li> <li>80.036</li> <li>-257.37</li> <li>-90.729</li> <li>-16.234</li> <li>-77.923</li> <li>H</li> <li>RS2</li> <li>50.923</li> <li>82.805</li> <li>-253.044</li> <li>-83.128</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H    | Q                | к<br>RB1<br>RS1<br>-CH2-                                                                                                                                         |               | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>S0.248<br>S0.248<br>S0.711<br>-83.803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H Q        | К<br>С <u>S</u><br>LS2<br>-CH2-<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L                                   | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K51<br>43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2<br>50.923<br>82.805<br>-253.044<br>-83.128<br>-13.465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H    | Q                | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         | L             | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientatio<br>Final Orientatio<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>L51<br>L51<br>50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H Q        | К<br>СS<br>LS2<br>-СН2-<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H31<br>43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2<br>50.923<br>82.805<br>-253.044<br>-83.128<br>-33.405<br>-73.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H    | Q                | К<br>RB1<br>RS1<br>-CH2-                                                                                                                                         | L             | V   | F                  | F<br>L81<br>L81<br>L81<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>L51<br>L51<br>L51<br>-50.248<br>83.073<br>-250.771<br>-8.303<br>-13.197<br>-13.197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H Q        | К<br>СS<br>LS2<br>-CH2-<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Activity and der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H<br>43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2<br>-50.923<br>82.805<br>-253.044<br>-83.128<br>-13.465<br>-73.597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H    | Q                | К<br>R81<br>RS1<br>-CH2-                                                                                                                                         |               | V   | F                  | F<br>181<br>181<br>181<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>L51<br>L51<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H Q        | К<br>СS<br>LS2<br>-CH2-<br>ЦВ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>-77.923<br>-78.51<br>R51<br>R52<br>-83.28<br>-253.044<br>-83.128<br>-13.465<br>-73.597<br>-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H    | Q<br>Q           | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         |               | V   | F                  | F<br>LB1<br>LS1<br>LB1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>initial Orientatio<br>Final Orientatio<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45.795<br>83.012<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-71.324<br>-80.035<br>-71.324<br>-80.035<br>-71.324<br>-80.035<br>-71.324<br>-80.035<br>-71.324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H Q        | К К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | V   | F      | F<br>RB1<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H RS12<br>RS12<br>RS12<br>RS12<br>RS12<br>RS12<br>RS12<br>RS12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н    | Q.               | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         | L             | v   | F                  | F<br>LB1<br>LS1<br>LS1<br>CS                                                                                                  | Val12<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.795<br>83.012<br>-259.482<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>L51<br>L51<br>50.248<br>83.073<br>-326.771<br>-83.803<br>-13.197<br>-7.1324<br>H<br>L81<br>L97<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197<br>-1.197                                                                                                                                                                                                                                                                | H Q        | К<br>СS<br>LS2<br>-CH2-<br>LB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | V   | F      | F<br>R81<br>CS<br>RS1                                                              | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>H<br>R51<br>R52<br>-77.923<br>50.923<br>82.805<br>-253.044<br>-83.128<br>-13.465<br>-73.597<br>H<br>52<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H    | Q                | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         |               | v   | F<br>F<br>F<br>RS2 | F<br>L&1<br>LS1<br>LS1<br>CS<br>F<br>R&1<br>CS<br>R&1                                                                         | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Initial Orientation         Initial Orientation         Final Orientation         Initial Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.795<br>83.012<br>-255.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>LB1<br>RB1<br>RB1<br>S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H Q        | К<br>СS<br>LS2<br>-CH2-<br>LB1<br>К<br>К<br>К<br>RB2<br>RNH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                                   | V   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>RB2<br>RB2                                           | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H<br>43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2<br>50.923<br>82.805<br>-253.044<br>-83.128<br>-13.465<br>-73.597<br>H<br>H<br>LS2<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Н    | Q.               | K<br>RB1<br>RS1<br>-CH2-                                                                                                                                         | L             | V   | F<br>F<br>R82      | F<br>L81<br>L81<br>L81<br>CS<br>F<br>R81<br>CS<br>R81<br>R82                                                                  | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.795<br>83.012<br>-255.482<br>-88.256<br>-13.258<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-71.1325<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324<br>-71.1324                                                                                                                                                                                                                                                                                                                                                         | н Q        | К<br>СS<br>LS2<br>-CH2-<br>LB1<br>К<br>К<br>К<br>RB12<br>RNH<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L<br>L<br>LS1<br>LB1                | v   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>RB2<br>RB2                                           | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H<br>43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2<br>-77.923<br>82.805<br>-253.044<br>-83.128<br>-73.597<br>H<br>LS2<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H    | Q                | K<br>RB1<br>-CH2-<br>K<br>RS2                                                                                                                                    | L             | v   | F<br>F<br>RS2      | F<br>LB1<br>LB1<br>CS<br>F<br>RB1<br>RS2                                                                                      | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.795<br>83.012<br>-259.482<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>US1<br>US1<br>50.248<br>83.073<br>-350.791<br>-83.803<br>-13.197<br>-7.1324<br>H<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н          | K<br>CS2<br>-CH2-<br>LB1<br>K<br>RNH<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>L<br>LS1<br>LNH<br>LB1         | V   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>RB2<br>RB2                                           | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.322<br>80.036<br>-257.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>RS1<br>RS2<br>50.923<br>82.805<br>-253.044<br>-83.128<br>-13.465<br>-73.597<br>H<br>LS2<br>LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H    | Q.               | K<br>RB1<br>-CH2-<br>K<br>RS2                                                                                                                                    |               | V   | F<br>F<br>RS2      | F<br>LB1<br>LS1<br>LS1<br>CS<br>F<br>RB1<br>RS1<br>RB1<br>RS2                                                                 | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.795<br>83.012<br>-255.482<br>-255.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>LB1<br>RB1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>-84.256<br>-83.803<br>-13.197<br>-71.324<br>RB1<br>RB1<br>RB1<br>RS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | н Q        | K<br>CS<br>LS2<br>-CH2-<br>LB1<br>K<br>K<br>RNH<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L<br>L<br>LS1<br>LMH<br>LB1         | v   | F<br>F | F<br>R81<br>CS<br>RS1<br>F<br>R82<br>R82<br>R82                                    | Val12                               |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H           43.322           80.036           -257.37           -90.729           -90.729           H           RS1           RS2           50.923           82.805           -253.044           -83.128           -13.465           -73.597           H           LS2           LS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Н    | Q<br>Q           | к<br>R81<br>R81<br>-CH2-<br>К<br>R82                                                                                                                             | L             | v   | F<br>F<br>RS2      | F<br>LB1<br>LS1<br>LS1<br>CS<br>F<br>RB1<br>RB1<br>RB1<br>RB1<br>RS2                                                          | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.795<br>83.012<br>-255.482<br>-88.256<br>-13.258<br>-80.055<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>-80.055<br>-80.055<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н Q        | K<br>CS<br>-CH2-<br>LB1<br>K<br>RB2<br>RNH<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L<br>L<br>LS1<br>UNH<br>LB1         | v   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>RB2<br>RB2                                           | Vai12<br>L52<br>L51                 |
| Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Total Energy van der Waals electrostatic ΔEs Initial Orientation Final Orientation Final Orientation Total Energy To | H 43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.324<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322<br>43.322                                                                                                                                                    | н    | Q.               | K<br>R81<br>-0H2-<br>K<br>RS2                                                                                                                                    |               | v   | F<br>F<br>RS2      | F<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>F<br>RB1<br>RS2                                                                        | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 45.795<br>83.012<br>-255.482<br>-255.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>US1<br>US1<br>-50.248<br>83.073<br>-13.197<br>-7.1524<br>H<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>-240.2<br>US1<br>-250.492<br>US1<br>-270.492<br>US1<br>-270.492<br>US1<br>-270.492<br>US1<br>-270.492<br>US1<br>-270.492<br>US1<br>-270.492<br>US1<br>-270.492<br>US1<br>-270.492<br>US1<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270.492<br>-270                                                                                                                                                                                                                                                                                                                                              | н Q        | K<br>CS<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>K<br>RS2<br>RS2<br>RS4<br>RS4<br>RS4<br>RS4<br>RS4<br>RS4<br>S<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L<br>L<br>LS1<br>LNH<br>LB1         | v   | F      | F<br>R81<br>CS<br>RS1<br>F<br>RB2<br>RB2                                           | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H3 322<br>43 32<br>43 32<br>43<br>52<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н    | Q.               | K<br>R81<br>RS1<br>-CH2-<br>K<br>RS2                                                                                                                             |               | v   | F<br>F<br>RS2      | F<br>L81<br>L81<br>CS<br>F<br>R81<br>R81<br>R82                                                                               | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.795<br>83.012<br>-25.482<br>-25.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>L81<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н Q        | К<br>СS<br>LS2<br>CH2-<br>LB1<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>И<br>CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>LS1<br>UNH<br>LB1              | V   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>RB2<br>RB2                                           | Val12<br>L52<br>L51                 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N3<br>43 322<br>80.036<br>-253.37<br>-90.729<br>-16.234<br>-77.923<br>H<br>R51<br>R952<br>-55.044<br>-83.128<br>-73.507<br>H<br>L52<br>L52<br>L52<br>-73.507<br>H<br>252.224<br>R7.366<br>-73.3883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н    | Q.               | K<br>R81<br>R81<br>R81<br>R81<br>R81<br>R81<br>K<br>R82                                                                                                          |               | v   | F<br>F<br>R§2      | F<br>161<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163                                                       | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy<br>van der Waals<br>electrostatic<br>AE's<br>Initial Orientation<br>Final Orientation<br>Van der Waals<br>electrostatic<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45.795<br>83.012<br>-255.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>-80.035<br>-80.035<br>H<br>LS3<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н Q        | К<br>СS<br>US2<br>-СH2-<br>UB1<br>К<br>К<br>RNH<br>-CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L<br>LSI<br>UNH<br>LBI              | v   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>RB2<br>RB2                                           | Val12<br>L52<br>L51                 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N3 32<br>43.32<br>80.38<br>80.38<br>80.38<br>9-16.23<br>9-16.23<br>1-7.923<br>H<br>851<br>R82<br>9-16.23<br>1-7.923<br>R82<br>9-16.23<br>1-7.923<br>R82<br>9-16.23<br>1-7.923<br>R82<br>9-16.23<br>1-7.923<br>R82<br>9-16.23<br>1-7.923<br>R82<br>9-16.23<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.923<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>R82<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927<br>1-7.927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н    | Q.               | K<br>R81<br>-CH2-<br>K<br>R82                                                                                                                                    |               | v   | F<br>F<br>RS2      | F<br>UB1<br>UB1<br>CS<br>F<br>RB1<br>RS2                                                                                      | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         AEs                                                                                                                                                                                                                                                                                                                                                                                                                     | 45.795<br>83.012<br>-259.482<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>US1<br>US1<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035<br>-90.035                                                                                                                                                                                                                                                                                                                       | н Q        | K<br>CS<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>K<br>RS2<br>RS2<br>RS4<br>RS4<br>RS4<br>RS4<br>RS4<br>RS4<br>S<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>LS2<br>L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L<br>LS1<br>INH<br>IB1              | v   | F      | F<br>R81<br>CS<br>RS1<br>F<br>R82<br>R82                                           | Val12<br>LS2<br>LS1                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N3         N3           43.322         80.036           60.036         -257.37           90.729         -16.234           -16.234         -77.923           -16.234         -77.923           -16.234         -77.923           -16.234         -851           -253.044         -83.128           -13.465         -73.597           -13.455         -13.465           -233.833         -233.833           -233.833         -233.833           -233.833         -54.46*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н    | ٩                | K<br>R811<br>-CH2-<br>K<br>RS2                                                                                                                                   |               | v   | F<br>F<br>RS2      | F<br>LB1<br>LB1<br>CS<br>CS<br>F<br>RB1<br>CS<br>RB1<br>R52                                                                   | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic         Drientation         Final Orientation         Final Orientation         Final Orientation         AEs         AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.795<br>83.012<br>-25.482<br>-25.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>L81<br>LS1<br>LS1<br>-217.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-276.29<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277.275<br>-277                                                                                                                                                                                                                                                                                                                                                | H Q        | К<br>СS<br>LS2<br>CH2-<br>LB1<br>К<br>К<br>К<br>RNH<br>CH2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L<br>L<br>LS1<br>UNH<br>LB1         | v   | F      | F<br>R81<br>CS<br>R51                                                              | Val12<br>L52<br>L51                 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N3<br>43.322<br>80.036<br>-253.37<br>-90.729<br>-90.729<br>-90.729<br>-90.729<br>-16.234<br>-77.923<br>H<br>R51<br>R82<br>-753.044<br>-83.128<br>-73.507<br>H<br>L52<br>L52<br>L52<br>L52<br>-73.587<br>-73.587<br>-73.588<br>-73.3883<br>-61.827<br>-8.384.85<br>-6.3888<br>-6.34.436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н    | Q.               | K<br>R81<br>R81<br>R81<br>R81<br>R81<br>R82                                                                                                                      |               | v   | F<br>F<br>RS2      | F<br>LB1<br>LS1<br>LS1<br>CS<br>CS<br>RB1<br>RS2                                                                              | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         AEs         AEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45.795<br>83.012<br>-259.482<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-350.771<br>-53.803<br>-250.771<br>-33.907<br>-71.324<br>-43.803<br>-33.977<br>-71.324<br>-83.803<br>-33.977<br>-71.324<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-250.771<br>-83.803<br>-75.824<br>-77.324<br>-83.803<br>-75.80<br>-77.324<br>-83.975<br>-77.324<br>-83.975<br>-77.324<br>-83.975<br>-77.324<br>-83.975<br>-77.324<br>-83.975<br>-77.324<br>-75.58<br>-77.275<br>-75.58<br>-77.275<br>-75.58<br>-77.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>-79.824<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | н Q        | К<br>Сб<br>Ц52<br>СН2-<br>Ц51<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>2-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>3-<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С<br>К<br>С                                                                                                                                                          | L<br>LS1<br>JNH<br>JB1              | v   | F      | F<br>R81<br>CS<br>RS1                                                              | Val12<br>152<br>151                 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Cotal Energy         van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H3 32<br>43 32<br>43 32<br>43 32<br>43 32<br>43 32<br>43 32<br>45 32 | н    | Q.               | K<br>R81<br>-CH2<br>K<br>R82                                                                                                                                     |               | v   | F<br>F<br>RS2      | F<br>LB1<br>LS1<br>LS1<br>CS<br>CS<br>F<br>RB1<br>RS2                                                                         | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         AEs         Total Energy         van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45.795<br>83.012<br>-259.482<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>US1<br>US1<br>-50.248<br>83.073<br>-35.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>US1<br>US1<br>US1<br>US1<br>US1<br>-217.275<br>-116.352<br>-19.69<br>-97.652<br>-19.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н          | K<br>CS<br>LS2<br>Ort2-<br>UB1<br>KHM<br>Ort2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L<br>LS1<br>LNH<br>LB1              | v   | F      | F<br>R81<br>CS<br>R51<br>F<br>R82<br>R82                                           | Val12<br>L52<br>L51                 |
| Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Total Energy<br>van der Waals<br>electrostatic<br>ΔEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H 4 32<br>H 332<br>H 332<br>H 4332<br>H 83<br>H 83<br>H 83<br>H 15<br>H 15                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н    | ٩                | K<br>K<br>K                                                                                                                                                      |               | v   | F<br>RS2<br>F      | F<br>LB1<br>LB1<br>LB1<br>LB1<br>LB1<br>CS<br>CS<br>RB1<br>RS2<br>F<br>F<br>F<br>F                                            | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         AEs         Initial Orientation         Distal Energy         van der Waals         electrostatic         ΔEs         Initial Orientation                                                                                                                                                                                                                                                                                                                                                                                                                 | 45.795<br>83.012<br>-25.482<br>-25.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>LS1<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>L81<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS1<br>LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | н Q        | К<br>К<br>К<br>К<br>К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L<br>L<br>LS1<br>LNH<br>LB1         | v   | F      | F<br>RS1<br>CS<br>RS1<br>F<br>RB2<br>RB2<br>RB2                                    | Val12<br>L52<br>L51                 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N3<br>43.322<br>80.036<br>-253.37<br>-90.729<br>-90.729<br>-90.729<br>-90.729<br>-90.729<br>-90.729<br>-16.234<br>-77.923<br>H<br>R82<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927<br>-73.927                                                                                                                                                                                                                                                         | н    | Q<br>Q           | K<br>R81<br>R81<br>R81<br>R81<br>R82<br>K<br>K<br>K<br>LB1                                                                                                       | L             | v   | F<br>F<br>RS2      | F<br>LB1<br>LB1<br>LB1<br>CS<br>F<br>RB1<br>RS2<br>F<br>LB1<br>LB1                                                            | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                  | 45.795<br>83.012<br>-259.482<br>-259.482<br>-88.256<br>-13.258<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-30.071<br>-33.007<br>-13.197<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-13.197<br>-71.324<br>-83.003<br>-13.197<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-83.003<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71                                                                                                                                                                                                                                                                                                                        | н          | К<br>СS<br>LS2<br>CH2-<br>US1<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>Ц<br>Ц<br>1<br>СС<br>В<br>1<br>СС<br>В<br>1<br>СС<br>В<br>1<br>СС<br>В<br>1<br>СС<br>В<br>1<br>СС<br>В<br>1<br>СС<br>В<br>1<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>2<br>С<br>В<br>В<br>С<br>В<br>В<br>С<br>В<br>В<br>С<br>В<br>В<br>С<br>В<br>В<br>В<br>В | L<br>L31<br>JNH<br>L81              | v   | F      | F<br>RB1<br>RS1<br>F<br>RB2<br>RB2<br>F<br>RB1<br>RB1                              | Val12<br>L52<br>L51<br>Val12<br>L51 |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N3         N3           43.32         43.32           43.32         43.32           43.32         43.32           43.32         43.32           43.32         43.32           16.23         77.923           H         R51           R52         22.805           -77.923         48.128           -73.597         -73.597           H         152           L52         L52           L52         152           H         R02           R03         R03           H         R02           R04         R04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H    | Q<br>Q           | K<br>R81<br>-CH2<br>K<br>R82<br>K<br>K<br>LB1<br>LB1<br>LB1                                                                                                      | L             | v   | F<br>F<br>RS2<br>F | F<br>IB1<br>IS1<br>IB1<br>IB1<br>IB1<br>IB1<br>RB1<br>RB1<br>RB2<br>F<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1<br>IB1 | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         AEs         Initial Orientation         AEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.795<br>83.012<br>-259.482<br>-259.482<br>-80.035<br>H<br>US1<br>US1<br>50.248<br>83.073<br>-30.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>-260.771<br>-71.324<br>H<br>US1<br>-260.771<br>-71.324<br>H<br>US1<br>-260.771<br>-71.324<br>H<br>US1<br>-260.775<br>-116.352<br>-97.628<br>H<br>US2<br>-97.629<br>H<br>US2<br>-97.629<br>H<br>US2<br>-97.629<br>H<br>US2<br>-97.629<br>-97.629<br>H<br>US2<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629<br>-97.629                                                                                                                                                                                                                                                                                              | н          | K<br>CS<br>LS2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L<br>LS1<br>LH<br>LB1               | v   | F      | F<br>R81<br>CS<br>R81<br>F<br>R82<br>R82<br>R82                                    | Val12<br>L52<br>L51<br>Val12<br>L51 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N3         N3           43.32         43.32           43.32         43.32           43.32         43.32           43.32         43.32           90.729         -16.234           -16.234         7.7.933           90.79         -16.234           81.128         -7.7.937           91.46         83.128           -7.3.597         -13.465           -7.3.597         -13.465           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -7.3.597         -14.52           -15.2         -15.22           -15.2         -15.23           -15.2         -15.23           -15.2         -15.23           -15.2         -15.23           -15.23         -54.436           -15.23         -54.436           -15.23         -54.436           -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | н    | ٩                | K<br>RB11<br>RS1<br>RS1<br>CH2-<br>K<br>RS2<br>K<br>K<br>RS2<br>K<br>LB1<br>LD1<br>LD1<br>LD1<br>LD1<br>LD1<br>LD1<br>LD1<br>LD1<br>LD1<br>LD                    | L<br>L<br>851 | v   | F<br>RS2<br>F      | F<br>B1<br>LB1<br>LB1<br>C5<br>C5<br>F<br>RB1<br>C5<br>F<br>B1<br>LB1<br>LB1<br>C5                                            | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Van der Waals         electrostatic         AEs         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                       | 45.795<br>83.012<br>-25.482<br>-25.482<br>-88.256<br>-13.258<br>-80.035<br>H<br>LS1<br>LS1<br>LS1<br>-50.248<br>83.073<br>-71.324<br>H<br>L81<br>-71.324<br>H<br>L81<br>-71.324<br>-83.803<br>-13.197<br>-71.324<br>H<br>L81<br>-71.258<br>-77.275<br>-77.275<br>-71.6332<br>-19.69<br>-97.288<br>-97.288<br>-97.275<br>-96.82<br>-97.275<br>-96.82<br>-97.275<br>-96.82<br>-97.275<br>-96.82<br>-97.275<br>-96.82<br>-97.275<br>-96.82<br>-97.275<br>-96.82<br>-97.275<br>-97.275<br>-96.82<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275<br>-97.275                                                                                                                                                                                                                                                                                                             | н Q<br>н Q | К<br>СS<br>LS2<br>-CH2-<br>LB1<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К<br>К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>LS1<br>LNH<br>LB1              | v   | F      | F<br>R51<br>F<br>R52<br>R82<br>R82<br>R82<br>R82<br>R81                            | Val12<br>L52<br>L51                 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N3<br>43.322<br>80.036<br>-257.37<br>-90.729<br>-90.729<br>-90.729<br>-16.234<br>-77.923<br>-77.923<br>-77.923<br>-77.923<br>-75.044<br>-83.128<br>-73.507<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.597<br>-73.5                                                                                                                                                                                                                                                            | H    | Q<br>Q<br>Q<br>Q | K<br>R81<br>R81<br>-Ort2-<br>-Ort2-<br>-<br>-Ort2-<br>-<br>-<br>-Ort2-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | L<br>L<br>RS1 | v   | F<br>F<br>RS2      | F<br>LB1<br>LS1<br>LS1<br>LS1<br>CS<br>RB1<br>RS2<br>F<br>LB1<br>CS                                                           | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45.795<br>83.012<br>-259.482<br>-259.482<br>-80.035<br>H<br>US1<br>US1<br>-50.288<br>83.073<br>-250.771<br>-83.803<br>-13.107<br>-83.803<br>-71.524<br>H<br>US1<br>US1<br>US1<br>-71.524<br>H<br>US1<br>US1<br>US1<br>-71.524<br>H<br>US1<br>US1<br>US1<br>-71.524<br>H<br>US1<br>US1<br>US1<br>-71.524<br>H<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | н Q        | К<br>СЗ<br>152<br>-012-<br>183<br>-012-<br>183<br>-012-<br>8NH<br>-012-<br>8NH<br>-012-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L<br>L51<br>DVH<br>181              | v   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>R02<br>R02<br>R02<br>R02<br>R02<br>R02<br>R03<br>R03 | Val12<br>L52<br>L51<br>Val12<br>L51 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         AEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N3         N3           43.32         43.32           43.32         43.32           43.32         43.32           43.32         43.32           43.32         43.32           14.52         145.24           77.923         77.923           14.65         77.923           15.054         83.128           77.2224         83.128           15.054         152           152         152           152         152           152         152           152         152           162         77.224           172.224         87.36           18.2         85.31           18.2         83.43           18.2         83.43           18.12         8.32           18.12         8.33           18.12         8.34           19.36         9.34.45           19.37         8.81           19.38         8.81           19.35.054         35.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | н    | Q<br>Q           | к<br>R81<br>-CH2<br>К<br>R82<br>R82<br>К<br>К<br>R82<br>-CH2<br>-CH2-                                                                                            | L<br>L<br>RS1 | v   | F<br>F<br>R82<br>F | F<br>IB1<br>LS1<br>LS1<br>CS<br>CS<br>F<br>R81<br>R81<br>R82<br>F<br>LB1<br>LB1<br>CS                                         | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         AEs         Otal Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                         | 45.795<br>83.012<br>-259.482<br>-259.482<br>-80.035<br>H<br>US1<br>US1<br>US1<br>US1<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324<br>H<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1<br>US1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н а        | K<br>CS<br>LS2<br>LS2<br>LS1<br>LS1<br>RNH<br>-Cr12-<br>Cr12-<br>LB1<br>LB1<br>LB1<br>LB1<br>LS1*<br>*-Cr12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L<br>LS1<br>LMH<br>LB1              | v   | F      | F<br>R81<br>CS<br>R51<br>F<br>R02<br>R02<br>R02<br>F<br>R01<br>R01                 | Val12<br>L52<br>L51<br>Val12<br>L51 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N3         N3           43.32         43.32           43.32         43.32           43.32         43.32           43.32         43.32           90.729         -16.234           -16.234         7.7.933           H         H           82.805         -7.5307           H         H           13.465         -7.3597           H         H2           12.224         87.366           97.2224         85.436           41.22         -23.387           -54.436         -54.436           -881         R81           -881         R81           -55.054         R81           -55.054         83.764           -35.054         81.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | н    | a<br>a           | K<br>RB1<br>RS1<br>CH2-<br>CH2-<br>K<br>RS2<br>K<br>RS2<br>K<br>LB1<br>LD1<br>LD1<br>LS2<br>-CH2-                                                                | L<br>L<br>R51 | v   | F<br>F<br>F<br>F   | F<br>B1<br>LB1<br>LB1<br>C5<br>C5<br>F<br>F<br>B1<br>RB1<br>RS2<br>F<br>LB1<br>LB1<br>C5                                      | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Beterrotrostatic                                                                                                          | 45.795<br>83.012<br>-25.482<br>-25.482<br>-88.256<br>-13.258<br>-80.035<br>-13.258<br>-80.035<br>-13.258<br>-80.035<br>-13.258<br>-80.035<br>-13.258<br>-50.248<br>83.073<br>-250.771<br>-83.803<br>-13.197<br>-71.324<br>-71.324<br>-71.324<br>-71.324<br>-71.325<br>-116.332<br>-19.69<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.828<br>-97.8                                                                                                                                                                                                                                                                                                                        | н Q        | К<br>СS<br>LS2<br>CH2-<br>LB1<br>К<br>К<br>RNH<br>CH2-<br>СH2-<br>К<br>К<br>Ц<br>Ц<br>Ц<br>2<br>CH2-<br>LB1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L<br>LS1<br>LS1<br>LS1              | v   | F      | F<br>R51<br>F<br>R52<br>R82<br>R82<br>R82<br>R82                                   | Val12<br>L52<br>L51                 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N3<br>43 322<br>80.036<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>90.729<br>82.805<br>7.7397<br>H<br>KS1<br>KS2<br>KS2<br>KS2<br>KS2<br>KS2<br>KS2<br>KS2<br>KS2<br>KS2<br>KS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H    | Q<br>Q           | к<br>R81<br>R81<br>R91<br>R91<br>R91<br>R92<br>К<br>R92<br>К<br>R92<br>К<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91<br>L91                   | L<br>L<br>RS1 | v   | F<br>F<br>RS2      | F<br>LB1<br>LB1<br>LS1<br>LS1<br>CS<br>CS<br>CS<br>CS<br>RB1<br>RS2<br>F<br>LB1<br>LB1<br>CS                                  | Val12<br>RS1<br>Asp23<br>RS2<br>RS2                                                                                                                                                                                                                                                                                                                                                                                     | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation                                                                               | 45.795<br>83.012<br>-25.482<br>-25.482<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-35.071<br>-83.037<br>-33.037<br>-33.037<br>-33.037<br>-33.037<br>-33.037<br>-71.324<br>-83.03<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-83.037<br>-71.324<br>-84.25<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275<br>-77.275                                                                                                                                                                                                                                                                                                                        | н          | К<br>СЗ<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152<br>152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L<br>LS1<br>DVH<br>IB1              | v   | F      | F<br>RB1<br>CS<br>RS1<br>F<br>RB2<br>RB2<br>F<br>RB2<br>F<br>RB1<br>RB1            | Val12<br>L52<br>L51<br>Val12<br>L51 |
| Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Final Orientation         Final Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N3         N3           43.32         80.036           43.32         80.036           -257.37         90.729           16.234         -77.923           -77.923         -77.923           -8         -8           -73.507         -73.507           -73.507         -83.128           -73.507         -83.128           -73.507         -61.827           -61.827         -63.23.883           -81.28         -83.4436           -74.436         -73.5686                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | н    | Q<br>Q           | к<br>R81<br>-CH2<br>К<br>R82<br>R82<br>К<br>К<br>R82<br>-CH2<br>-<br>СH2<br>-<br>СH2<br>-<br>СH2<br>-<br>СH2                                                     | L<br>L<br>RS1 | v   | F<br>F<br>F        | F<br>IB1<br>LS1<br>LS1<br>CS<br>CS<br>F<br>RB1<br>RS2<br>F<br>LB1<br>LB1<br>LB1<br>CS                                         | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation | 45.795<br>83.012<br>-259.482<br>-259.482<br>-80.035<br>H<br>US1<br>US1<br>US1<br>-50.248<br>83.073<br>-30.77<br>-71.324<br>H<br>US1<br>US1<br>-71.324<br>H<br>US1<br>US1<br>-71.324<br>H<br>US1<br>-116.552<br>-19.69<br>-97.655<br>H<br>US2<br>-13.55<br>-13.258<br>-13.258<br>-13.258<br>-80.035<br>-13.258<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-80.035<br>-75.077<br>-71.324<br>-01.657<br>-97.699<br>-97.695<br>-97.635<br>-72.635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | н а        | K<br>CS<br>LS2<br>LS2<br>LS1<br>LS1<br>RNH<br>-Cr12-<br>Cr12-<br>LB1<br>LB1<br>LB1<br>LS1*<br>*-Cr12-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L<br>LS1<br>LMH<br>LB1              | v   | F      | F<br>RS1<br>CS<br>RS1<br>F<br>RD2<br>RD2<br>F<br>RD1<br>RB1                        | Val12<br>L52<br>L51<br>Val12<br>L51 |
| Total Energy<br>van der Waals<br>electrostatic<br>AEs<br>Initial Orientation<br>Final Orientation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N3         N3           43.32         43.32           43.32         43.32           43.32         43.32           43.32         43.32           90.729         -16.234           -16.234         -7.7923           -16.234         83.128           90.729         -253.034           -13.465         -7.5597           -13.465         -7.3597           -14.57         -4.3593           -54.436         -61.827           -61.827         -2.3883           -54.436         -61.827           -8.81         -8.61.827           -54.636         -61.827           -53.5054         H           -61.827         -98.997           -35.054         8.1.28           -35.054         8.1.28           -55.054         -6.98.997           -98.997         -98.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | н    | a<br>a           | к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к<br>к                                                                                               | L<br>L<br>RS1 | v   | F<br>RS2<br>F      | F<br>B1<br>LB1<br>LB1<br>C5<br>C5<br>F<br>RB1<br>C5<br>F<br>B1<br>LB1<br>LB1<br>C5                                            | Val12<br>RS1<br>Asp23<br>RS2                                                                                                                                                                                                                                                                                                                                                                                            | Total Energy         Van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Total Energy         van der Waals         electrostatic         ΔEs         Initial Orientation         Final Orientation         Van der Waals         electrostatic         AE's                                                                                                                                                                                                            | 45.795<br>83.012<br>-25.482<br>-25.482<br>-80.035<br>-80.035<br>-80.035<br>-13.258<br>-80.035<br>-13.258<br>-80.035<br>-13.197<br>-71.324<br>-83.803<br>-13.197<br>-71.324<br>-83.803<br>-13.197<br>-71.324<br>-83.803<br>-13.197<br>-71.255<br>-20.721<br>-71.255<br>-19.69<br>-97.255<br>-10.69<br>-97.255<br>-274.192<br>-116.352<br>-19.69<br>-97.255<br>-10.69<br>-97.255<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243.192<br>-243                                                                                                                                                                                                                                                                                                                                                              | н Q        | К<br>С<br>5<br>152<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L<br>L<br>L<br>S1<br>UNH<br>L<br>B1 | v   | F<br>F | F<br>R51<br>F<br>R52<br>R82<br>R82<br>R82<br>R82                                   | Val12<br>L52<br>L51                 |

|                     | н          | н        | 0 | К      | L        | V  | F | F        | Glv9  | Val12 |             |                 |                | н                | н | 0   | к    | L   | V | F | F        |       |
|---------------------|------------|----------|---|--------|----------|----|---|----------|-------|-------|-------------|-----------------|----------------|------------------|---|-----|------|-----|---|---|----------|-------|
| Initial Orientatio  | RB1        |          |   |        |          |    |   | LB2      |       |       |             | Initial Orienta | tio I          | LS1              |   |     |      |     |   |   | RB2      |       |
| Final Orientation   | RB1        |          |   |        |          |    |   |          | RS1   | RNH   |             | Final Orientat  | ior I          | LS1              |   |     | RB2  |     |   |   |          |       |
|                     | RNH        |          |   |        |          |    |   |          |       | RS1   |             |                 | _              |                  |   |     | RS1  |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       | RB2   |             |                 | _              |                  |   |     | RNH  |     |   |   |          |       |
| Total Enormy        | E0 E       |          |   |        |          |    |   |          |       |       |             | Total Enormy    | 49             | AEG              |   |     |      |     |   |   |          |       |
| van der Waals       | 85.837     |          |   |        |          |    |   |          |       |       |             | van der Waals   | 89             | .351             |   |     |      |     |   |   |          |       |
| electrostatic       | -246.252   |          |   |        |          |    |   |          |       |       |             | electrostatic   | -25            | 5.801            |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
| ΔEs                 | -74.551    |          |   |        |          |    |   |          |       |       |             | ΔEs             | -              | 85.595           |   |     |      |     |   |   |          |       |
|                     | -10.433    |          |   |        |          |    |   |          |       |       |             |                 |                | -6.919<br>76 354 |   |     |      |     |   | - |          |       |
|                     | 00.005     |          |   |        |          |    |   |          |       |       |             |                 |                | 10.334           |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     | н          | н        | Q | к      | L        | v  | F | F        | Val12 | Leu34 |             |                 |                | н                | н | Q   | К    | L   | v | F | F        | Val12 |
| Initial Orientatio  | RS1        |          |   |        |          |    |   | LB2      |       |       |             | Initial Orienta | tio I          | LS2              |   |     |      |     |   |   | RB2      |       |
| Final Orientation   | RNH<br>PC1 |          |   |        |          |    |   | LB2      | RB2   | LS1   |             | Final Orientat  | ior I          | LS2              |   |     | RS2  |     |   |   | RB2      | LB2   |
|                     | 1131       |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   | 11.52    |       |
| Total Energy        | 59.9       |          |   |        |          |    |   |          |       |       |             | Total Energy    | 70             | .777             |   |     |      |     |   |   |          |       |
| van der Waals       | 85.314     |          |   |        |          |    |   |          |       |       |             | van der Waals   | 87             | .763             |   |     |      |     |   |   |          |       |
| electrostatic       | -244.907   |          |   |        |          |    |   |          |       |       |             | electrostatic   | -24            | 0.671            |   |     |      |     |   |   |          |       |
| AFe                 | -74 151    |          |   |        |          |    |   |          |       |       |             | AFs             |                | 63 274           |   |     |      |     |   |   |          |       |
|                     | -10.956    |          |   |        |          |    |   |          |       |       |             |                 |                | -8.507           |   |     |      |     |   |   |          |       |
|                     | -65.46     |          |   |        |          |    |   |          |       |       |             |                 | -              | 61.224           |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 | _              |                  |   |     |      |     |   |   |          |       |
|                     |            |          | 0 | ~      |          | N/ |   |          |       |       |             |                 | _              |                  |   | 0   | K    |     |   |   |          |       |
| Initial Orientatio  | RS2        | п        | ų | ĸ      | L        | v  | r | F<br>1B2 |       |       |             | Initial Orienta | rtio F         | п<br>882         | - | ų   | ĸ    | L   | v | r | F<br>IB2 |       |
| Final Orientation   | RS2        |          |   | LS1    |          |    |   | LB2      |       |       |             | Final Orientat  | ior F          | RS1              |   |     | RS2  | RS2 |   |   |          |       |
|                     |            |          |   | -CH2-  |          |    |   |          |       |       |             |                 | F              | 352              |   |     |      | RB2 |   |   |          |       |
|                     |            |          |   | LS2    |          |    |   |          |       |       |             |                 | F              | RB2              |   |     |      |     |   |   |          |       |
| Total Energy        | 40.148     |          |   |        |          |    |   |          |       |       |             | Total Energy    | ¢.0            | 454              |   |     |      |     |   |   |          |       |
| van der Waals       | 89.025     |          |   |        |          |    |   |          |       |       |             | van der Waals   | 89             | 0.181            |   |     |      |     |   |   |          |       |
| electrostatic       | -264.186   |          |   |        |          |    |   |          |       |       |             | electrostatic   | -25            | 4.633            |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 | _              |                  |   |     |      |     |   |   |          |       |
| ΔEs                 | -93.903    |          |   |        |          |    |   |          |       |       |             | ΔEs             | -              | 80.597           |   |     |      |     |   |   |          |       |
|                     | - /.245    |          |   |        |          |    |   |          |       |       | 1           |                 | -              | -7.089<br>75.186 |   |     |      |     |   |   |          |       |
|                     | 51.733     |          |   |        |          |    |   |          |       |       |             |                 | -              |                  |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     | H          | н        | Q | к      | L        | v  | F | F        |       |       | -           |                 |                |                  |   |     |      |     |   |   |          |       |
| Initial Orientatio  | LB2        |          |   | 1.04*  | 102      |    |   | RB2      |       |       |             |                 | _              |                  |   |     |      |     |   |   |          |       |
| Final Orientation   | LS2<br>LS1 |          |   | LB2*   | LBZ      |    |   | LBZ      |       |       |             |                 | _              |                  |   |     |      |     |   |   |          |       |
|                     | LB2        |          |   | *-CH2- |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
| Total Energy        | 52.391     |          |   |        |          |    |   |          |       |       |             |                 | _              |                  |   |     |      |     |   |   |          |       |
| van der Waals       | 83.546     |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
| electrostatic       | -231.275   |          |   |        |          |    |   |          |       |       |             |                 | _              |                  |   |     |      |     |   |   |          |       |
| ΔEs                 | -81.66     |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     | -12.724    |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     | -71.832    |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
| Initial Orientation | н          | H        | Q | ĸ      | L<br>PP1 | v  | F | F        | Tyr10 |       | Initial Or  | iontation       | н              | H<br>CS          | Q | к   | L    | v   | F | F | GIy9     | _     |
| Final Orientation   | RS1        | CS       |   | _      | RS1      | _  |   |          | CS    |       | Final Ori   | entation        | RS1            | CS.              | _ |     | 1.51 | _   |   |   | RS1      | -     |
| iniai onentation    | Kol        | RB1      |   |        | 101      |    |   |          |       |       | i inai orii | entation        | 101            |                  |   |     | LST  |     |   |   | C=0      |       |
|                     |            | LB1      |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
| Total Energy        | 77.259     |          |   |        |          |    |   |          |       |       | Total Ene   | ergy 6          | 5.282          |                  |   |     |      |     |   |   |          |       |
| van der Waals       | 85.844     |          |   |        |          |    |   |          |       |       | van der V   | Vaals 8         | 6.499          |                  |   |     |      |     |   |   |          |       |
| electrostatic       | -226.598   |          |   |        |          |    |   |          |       |       | electrost   | atic -2         | 39.921         |                  |   | _   |      |     |   |   |          |       |
| ΔEs                 | -56.792    |          |   | _      |          |    |   |          |       |       | ΔEs         |                 | 68 769         |                  |   |     |      |     |   |   |          |       |
|                     | -10.426    | 5        |   |        |          |    |   |          |       |       |             |                 | -9.771         |                  |   |     |      |     |   |   |          |       |
|                     | -47.15     |          |   |        |          |    |   |          |       |       |             | -               | 60.474         |                  |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     |            |          | - |        |          |    | - | -        |       |       |             |                 |                |                  | - |     |      |     | - | - |          |       |
| Initial Orientation | н          | H<br>IS1 | Q | K      | L<br>PP1 | V  | F | F        |       |       | Initial Or  | iontation       | н              | H<br>DC1         | Q | к   | L    | V   | F | F | Tyr10    | _     |
| Final Orientation   | CS         | 151      |   |        | RB1      |    |   |          |       |       | Final Ori   | entation        |                | RS1              |   |     | CS   |     |   |   | RS1      |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
| Total Energy        | 90.871     |          |   |        |          |    |   |          |       |       | Total Ene   | rgy 9           | 3.142          |                  |   |     |      |     |   |   |          |       |
| van der Waals       | 89.245     |          |   |        |          |    |   |          |       |       | van der V   | Vaals 9         | 0.004          |                  |   |     |      |     |   |   |          |       |
| electrostatic       | -215.035   |          |   |        |          |    |   |          |       |       | electrost   | atic -2         | 13.537         |                  |   |     |      |     |   |   |          |       |
| AEs                 |            |          |   |        | -        |    |   |          | -     |       | ΔFe         |                 | 40 900         |                  | - |     |      | -   |   |   |          | -     |
|                     | -43.10     |          |   |        | -        |    |   |          |       | -     | 3           |                 | -6.266         |                  |   |     |      | -   |   |   | -        | -     |
|                     | -35.58     | 5        |   |        |          |    |   |          |       |       |             |                 | -34.09         |                  |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
|                     |            |          | - |        | · · ·    |    | - | -        | A1.07 |       |             |                 |                |                  | - |     |      |     | - | - |          | 7.47  |
| Initial Orientation | н          | RS2      | ų | ĸ      | IR1      | v  | F | F        | Ala21 | -     | Initial Or  | ientation       | п              | H<br> 52         | ų | ĸ   | RR1  | V   | F | F | GIV9     | 19110 |
| Final Orientation   | CS         | RS2      |   |        | RS2      |    |   | LS2      | LB2   |       | Final Ori   | entation        | RB1            | LS1              |   | RS2 | CS   | -   |   |   | LS2      | LS2   |
|                     | RS2        |          |   |        |          |    |   |          |       |       |             |                 | LB1            |                  |   |     | LS1  |     |   |   | C=O      | C=O   |
|                     | -CH2-      |          |   |        |          |    |   |          |       |       |             |                 | LS2            |                  |   |     |      |     |   |   |          |       |
| Total Case ::       | 40.000     |          |   |        |          |    |   |          |       |       | Tab:17      |                 | 3 703          |                  |   |     | _    | _   |   |   |          |       |
| van der Waale       | 46.934     |          |   |        | -        |    |   |          | -     |       | van doc'    | Naals 7         | 5.793<br>7 200 |                  | _ |     |      | _   |   |   | -        |       |
| electrostatic       | -249 746   |          |   |        | 1        | -  |   | -        | -     | -     | electrost   | atic -?         | 98,029         |                  | _ |     |      | -   |   |   | -        | -     |
|                     | 2-43.740   |          |   |        |          | 1  |   | 1        |       |       |             | 2               |                |                  |   |     |      |     |   |   |          |       |
| ΔEs                 | -87.11     | ,        |   |        |          |    |   |          |       |       | ΔEs         | -1              | 37.844         |                  |   |     |      |     |   |   |          |       |
|                     | -17.84     |          |   |        |          |    |   |          |       |       |             | -               | 18.971         |                  |   |     |      |     |   |   |          |       |
|                     | -70.299    | )        |   |        |          | -  |   |          |       | -     |             | -1              | 18.582         |                  | _ |     |      | _   |   |   |          | -     |
|                     | _          |          |   | _      |          |    |   |          |       |       |             |                 |                |                  | _ |     |      | _   |   |   |          |       |
|                     |            | - 12     | ~ | ~      |          | 14 | r | r        | Turto |       |             |                 | ч              |                  |   | ~   |      |     | - | - | T10      |       |
| Initial Orientation | н          | RR2      | ų | ĸ      | JB1      | v  | F | F        | iyrið | -     | Initial Or  | ientation       | п              | H<br>IR1         | ų | ĸ   | RB7  | V   | F | F | 19110    |       |
| Final Orientation   |            | RB2      |   |        | LB1      |    |   |          | RB2   |       | Final Ori   | entation        | RS1            | LB2              |   |     | RNH  |     |   |   | LS1      |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                | C=O              |   |     | RB2  |     |   |   |          |       |
|                     |            |          |   |        | -        |    |   |          |       |       |             |                 |                | LS1              |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                | LNH              |   |     |      |     |   |   |          |       |
|                     | _          |          | - | _      | -        | -  | - | -        |       | -     | -           |                 |                | LB1              | _ |     | -    | _   | _ |   | -        | _     |
| Total Energy        | 100.22     |          | - |        | 1        | -  |   | -        | -     | -     | Total Fra   | 7               | 1 514          |                  | _ |     | _    | _   | _ |   | -        | -     |
| van der Waals       | 89.63      |          |   |        | 1        |    |   |          | -     | -     | van der V   | Vaals 8         | 3.954          |                  |   |     |      |     |   |   |          |       |
| electrostatic       | -206.262   |          |   |        |          |    |   |          |       |       | electrost   | atic -2         | 36.534         |                  |   |     |      |     |   |   |          |       |
|                     |            |          |   |        |          |    |   |          |       |       |             |                 |                |                  |   |     |      |     |   |   |          |       |
| ΔEs                 | -33.83     |          |   |        |          |    |   |          |       |       | ΔEs         | -               | 62.537         |                  |   |     |      |     |   |   |          |       |
|                     | 6.6/       |          |   |        |          |    |   |          |       |       |             |                 | 12.316         |                  |   |     |      |     |   |   |          |       |

|                                | н                | н          | Q | к   | L          | V          | F   | F    |       |       |       |                               | н                | н          | Q | к  | L          | v        | F   | F | Tyr10      |
|--------------------------------|------------------|------------|---|-----|------------|------------|-----|------|-------|-------|-------|-------------------------------|------------------|------------|---|----|------------|----------|-----|---|------------|
| Initial Orientation            | 000              | LB2        |   |     | RB1        |            |     |      |       |       |       | Initial Orientation           |                  | RB1        |   |    | LB2        |          |     |   | 001        |
| Final Orientation              | RS2              | LB2<br>LB2 |   |     | 152        |            |     |      |       |       |       | Final Orientation             |                  | 2          |   |    |            |          |     |   | 851        |
|                                |                  | LS2*       |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  | RS2*       |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  | -0112-     |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Total Energy                   | 48.644           |            |   |     |            |            |     |      |       |       |       | Total Energy                  | 99.823           |            |   |    |            |          |     |   |            |
| electrostatic                  | -249.049         |            |   |     |            |            |     |      |       |       |       | electrostatic                 | -207.01          |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| ΔEs                            | -85.407          |            |   |     |            |            |     |      |       |       |       | ΔEs                           | -34.228          |            |   |    |            |          |     |   |            |
|                                | -69.602          |            |   |     |            |            |     |      |       |       |       |                               | -27.563          |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                | н                | н          | Q | к   | L          | v          | F   | F    | Tyr10 |       |       |                               | н                | н          | Q | к  | L          | v        | F   | F | Tyr10      |
| Initial Orientation            |                  | RS1        |   |     | LB2        |            |     | 1.00 |       |       |       | Initial Orientation           |                  | LS2        |   |    | RB2        |          |     |   | 100        |
| Final Orientation              |                  | RS1        |   |     | LB2<br>LB1 |            |     | LB2  | RS1   |       |       | Final Orientation             |                  | LSZ        |   |    | RB2<br>RS2 |          |     |   | LS2<br>LB2 |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Total Energy                   | 72.577           |            |   |     |            |            |     |      |       |       |       | Total Energy                  | 95.016           |            |   |    |            |          |     |   |            |
| electrostatic                  | -232.262         |            |   |     |            |            |     |      |       |       |       | electrostatic                 | -210.211         |            |   |    |            |          |     |   |            |
| 10                             |                  |            |   |     |            |            |     |      |       |       |       | 15                            |                  |            |   |    |            |          |     |   |            |
| ΔES                            | -61.474          |            |   |     |            |            |     |      |       |       |       | ΔES                           | -39.035          |            |   |    |            |          |     |   |            |
|                                | -52.815          |            |   |     |            |            |     |      |       |       |       |                               | -30.764          |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                | н                | н          | Q | к   | L          | v          | F   | F    | Tyr10 |       |       |                               | н                | н          | Q | к  | L          | v        | F   | F | Tyr10      |
| Initial Orientation            |                  | RS2        |   |     | LB2        |            |     |      |       |       |       | Initial Orientation           |                  | RB2        |   |    | LB2        |          |     |   |            |
| Final Orientation              |                  | RB2<br>RB2 |   |     | 152        |            |     |      | RB2   |       |       | Final Orientation             | LSZ              | RB2<br>RB2 |   |    |            |          |     |   | RB2        |
|                                |                  | RS2        |   |     |            |            |     |      |       |       |       |                               |                  | RS2        |   |    |            |          |     |   |            |
|                                |                  | LS2        |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Total Energy                   | 65.24            |            |   |     |            |            |     |      |       |       |       | Total Energy                  | 49.356           |            |   |    |            |          |     |   |            |
| van der Waals                  | 88.055           |            |   |     |            |            |     |      |       |       |       | van der Waals                 | 86.846           |            |   |    |            |          |     |   |            |
| electrostatic                  | -240.398         |            |   |     |            |            |     |      |       |       |       | electrostatic                 | -254.233         |            |   |    |            |          |     |   |            |
| ΔEs                            | -68.811          |            |   |     |            |            |     |      |       |       |       | ΔEs                           | -84.695          |            |   |    |            |          |     |   |            |
|                                | -8.215           |            |   |     |            |            |     |      |       |       |       |                               | -9.424           |            |   |    |            |          |     |   |            |
|                                | 00.551           |            |   |     |            |            |     |      |       |       |       |                               | 74.700           |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Initial Orientation            | н                | LB2        | ų | ĸ   | RB2        | v          | F   | F    | Iyriu | Ala21 | Val24 | Initial Orientation           | н                | CS         | ų | ĸ  | L          | RB2      | F   | F | Tyriu      |
| Final Orientation              | LS1              | LB2        |   |     | LB1        |            |     | RB2  | LB2   | RB2   | RB2   | Final Orientation             |                  | RB1        |   |    | RS2        | RB2      |     |   | CS         |
|                                | -CH2-            | LB2        |   |     | LNH<br>LS1 |            |     |      |       |       |       |                               |                  | RS1<br>RS2 |   |    | RB2        |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Total Energy                   | 57.091           |            |   |     |            |            |     |      |       |       |       | Total Energy                  | 90.963           |            |   |    |            |          |     |   |            |
| van der Waals                  | 78.053           |            |   |     |            |            |     |      |       |       |       | van der Waals                 | 80.522           |            |   |    |            |          |     |   |            |
| electrostatic                  | -243.77          |            |   |     |            |            |     |      |       |       |       | electrostatic                 | -210.739         |            |   |    |            |          |     |   |            |
| ΔEs                            | -76.96           |            |   |     |            |            |     |      |       |       |       | ΔEs                           | -43.088          |            |   |    |            |          |     |   |            |
|                                | -18.217          |            |   |     |            |            |     |      |       |       |       |                               | -15.748          |            |   |    |            |          |     |   |            |
|                                | -64.323          |            |   |     |            |            |     |      |       |       |       |                               | -31.292          |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Initial Orientation            | н                | H          | Q | к   | L          | V<br>182   | F   | F    | Tyr10 |       |       | Initial Orientation           | н                | H<br>RS1   | Q | к  | L          | V<br>IB1 | F   | F |            |
| Final Orientation              |                  | LB1        |   |     | LS1        | LUL        |     |      | CS    |       |       | Final Orientation             |                  | RS1        |   |    |            | LUI      |     |   |            |
|                                |                  | CS         |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  | 1.32       |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Total Energy                   | 83.418           |            |   |     |            |            |     |      |       |       |       | Total Energy                  | 98.591           |            |   |    |            |          |     |   |            |
| van der Waals<br>electrostatic | 87.137           |            |   |     |            |            |     |      |       |       |       | electrostatic                 | 92.959           |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| ΔEs                            | -50.633          |            |   |     |            |            |     |      |       |       |       | ΔEs                           | -35.46           |            |   |    |            |          |     |   |            |
|                                | -41.72           |            |   |     |            |            |     |      |       |       |       |                               | -32.373          |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                | н                | н          | Q | к   | L          | v          | F   | F    |       |       |       |                               | н                | н          | Q | к  | L          | v        | F   | F | Ala21      |
| Initial Orientation            |                  | LS1        |   |     |            | RB1        |     |      |       |       |       | Initial Orientation           |                  | LS2        |   |    |            | RB1      |     |   |            |
| Final Orientation              |                  | CS<br>C=O  |   |     | CS<br>LB1  | CS         |     |      |       |       |       | Final Orientation             |                  | LS2        |   |    |            | CS       |     |   | RS2        |
|                                |                  | LB1        |   |     | LS1        |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  | LS1        |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
| Total Energy                   | 78.18            |            |   |     |            |            |     |      |       |       |       | Total Energy                  | 96.793           |            |   |    |            |          |     |   |            |
| van der Waals                  | 83.27            |            |   |     |            |            |     |      |       |       |       | van der Waals                 | 89.176           |            |   |    |            |          |     |   |            |
| electrostatic                  | -223.074         |            |   |     |            |            |     |      |       |       |       | electrostatic                 | -210.347         |            |   |    |            |          |     |   |            |
| ΔEs                            | -55.871          |            |   |     |            |            |     |      |       |       |       | ΔEs                           | -37.258          |            |   |    |            |          |     |   |            |
|                                | -13              |            |   |     |            |            |     |      |       |       |       |                               | -7.094           |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                | н                | н          | 0 | ĸ   | 1          | v          | F   | F    | Glua  | Tyr10 | Ala21 |                               | н                | н          | 0 | ĸ  | 1          | v        | F   | F |            |
| Initial Orientation            |                  | RB2        | 4 | N   |            | LB1        | · · | · ·  | Ciyo  |       | /1021 | Initial Orientation           |                  | LB1        | 4 | n. | -          | RB2      | · · |   |            |
| Final Orientation              | RS2              | RNH        |   | LS2 | RB1        |            |     | LB2  | RB2   | RB2   | LB2   | Final Orientation             |                  |            |   |    |            | RB2      |     |   |            |
|                                | -CH2-            | RB2        |   |     | n.52       |            |     |      | 0=0   | -un-  | INT   |                               |                  |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       | m + 1-                        |                  |            |   |    |            |          |     |   |            |
| iotal Energy<br>van der Waals  | 24.442<br>69.829 |            |   |     |            |            |     |      |       |       |       | Total Energy<br>van der Waals | 80.491<br>91.347 |            |   |    |            |          |     |   |            |
| electrostatic                  | -267.783         |            |   |     |            |            |     |      |       |       |       | electrostatic                 | -226.847         |            |   |    |            |          |     |   |            |
| AFe                            | -100 600         |            |   |     |            |            |     |      |       |       |       | AFe                           | .52 77           |            |   |    |            |          |     |   |            |
|                                | -26.441          |            |   |     |            |            |     |      |       |       |       | 131.3                         | -55.56           |            |   |    |            |          |     |   |            |
|                                | -88.336          |            |   |     |            |            |     |      |       |       |       |                               | -47.4            |            |   |    |            |          |     |   |            |
|                                |                  |            |   |     |            |            |     |      |       |       |       |                               |                  |            |   |    |            |          |     |   |            |
|                                | н                | Н          | Q | К   | L          | V          | F   | F    | Tyr10 |       |       |                               | н                | Н          | Q | к  | L          | V        | F   | F |            |
| Initial Orientation            |                  | LB2        |   |     | LS1        | RB1<br>RB1 |     |      | LB2   |       | ++    | Initial Orientation           |                  | RB1<br>RB1 |   |    | RB2        | LB2      |     |   |            |
|                                |                  | LNH        |   |     |            |            |     |      |       |       |       | onentation                    |                  |            |   |    |            |          |     |   |            |
| Total Energy                   | 86.079           |            |   |     |            |            |     |      |       |       |       | Total From:                   | 81 747           |            |   |    |            |          |     |   |            |
| van der Waals                  | 85.075           |            |   |     |            |            |     |      |       |       |       | van der Waals                 | 88.262           |            |   |    |            |          |     |   |            |
| electrostatic                  | -216.206         |            |   |     |            |            |     |      |       |       |       | electrostatic                 | -225.136         |            |   |    |            |          |     |   |            |
| ΔEs                            | -47.073          |            |   |     |            |            |     |      |       |       | + +   | ΔEs                           | -52.304          |            |   |    |            |          |     |   |            |
|                                | -11.195          |            |   |     |            |            |     |      |       |       |       |                               | -8.008           |            |   |    |            |          |     |   |            |
|                                | -36.759          |            |   |     |            |            |     |      |       |       |       |                               | -45.689          |            |   |    |            |          |     |   |            |

|                               | н               | н          | Q   | К   | L   | V   | F   | F          | Tyr10      |           |                               | н               | н          | Q          | К     | L   | V   | F        | F          | Tyr10 |       |       |       |
|-------------------------------|-----------------|------------|-----|-----|-----|-----|-----|------------|------------|-----------|-------------------------------|-----------------|------------|------------|-------|-----|-----|----------|------------|-------|-------|-------|-------|
| Initial Orientation           |                 | LS1        |     |     |     | RB2 |     |            | 1.00       |           | Initial Orientation           |                 | RS1        |            |       |     | LB2 |          |            | 004   |       |       |       |
| Final Orientation             |                 | LB1        |     |     |     | RBZ |     |            | LB2<br>LS1 |           | Final Orientation             |                 | RNH        |            |       |     |     |          |            | RSI   |       |       |       |
|                               |                 | LNH        |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
| Total Energy                  | 92.823          |            |     |     |     |     |     |            |            |           | Total Energy                  | 94.166          |            |            |       |     |     |          |            |       |       |       |       |
| van der Waals                 | 88.827          |            |     |     |     |     |     |            |            |           | van der Waals                 | 90.885          |            |            |       |     |     |          |            |       |       |       |       |
| electrostatic                 | -215.378        |            |     |     |     |     |     |            |            |           | electrostatic                 | -213.501        |            |            |       |     |     |          |            |       |       |       |       |
| ΔEs                           | -41.228         |            |     |     |     |     |     |            |            |           | ΔEs                           | -39.885         |            |            |       |     |     |          |            |       |       |       |       |
|                               | -7.443          |            |     |     |     |     |     |            |            |           |                               | -5.385          |            |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
|                               | н               | н          | Q   | к   | L   | v   | F   | F          | Tyr10      |           |                               | н               | н          | Q          | к     | L   | v   | F        | F          |       |       |       |       |
| Initial Orientation           |                 | LS2        |     |     |     | RB2 |     |            | 1.00       |           | Initial Orientation           |                 | RB2        |            |       |     | LB2 |          |            |       |       |       |       |
| Final Orientation             |                 | 62         |     |     |     |     |     |            | LSZ        |           | Final Orientation             |                 |            |            |       |     |     |          |            |       |       |       |       |
| Total Energy                  | 87.259          |            |     |     |     |     |     |            |            |           | Total Energy                  | 114.157         |            |            |       |     |     |          |            |       |       |       |       |
| electrostatic                 | -220.125        |            |     |     |     |     |     |            |            |           | electrostatic                 | -197.683        |            |            |       |     |     |          |            |       |       |       |       |
| AEc                           | 46 702          |            |     |     |     |     |     |            |            |           | AEc                           | 10 904          |            |            |       |     |     |          |            |       |       |       |       |
| 41.5                          | -40.792         |            |     |     |     |     |     |            |            |           | 11.5                          | -19.894         |            |            |       |     |     |          |            |       |       |       |       |
|                               | -40.678         |            |     |     |     |     |     |            |            |           |                               | -18.236         |            |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
| Initial Orientation           | н               | H<br>LB2   | Q   | к   | L   | RB2 | F   | F          |            |           | Initial Orientation           | н               | H<br>LB2   | Q          | к     | L   | V   | F<br>RB1 | F          | Ser8  | Glu11 | Val12 |       |
| Final Orientation             |                 |            |     |     |     |     |     |            |            |           | Final Orientation             |                 |            | LNH        | RS1   |     |     |          | RS1        | RB2   | LB2   | RB2   |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            | LB1<br>RB1 |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            | RNH        |       |     |     |          |            |       |       |       |       |
| Total Energy                  | 120.465         |            |     |     |     |     |     |            |            |           | Total Energy                  | 78.218          |            |            |       |     |     |          |            |       |       |       |       |
| van der Waals                 | 94.053          |            |     |     |     |     |     |            |            |           | van der Waals                 | 78.163          |            |            |       |     |     |          |            |       |       |       |       |
| ciccitosture                  | 151.477         |            |     |     |     |     |     |            |            |           | ciccitostatic                 | 223.347         |            |            |       |     |     |          |            |       |       |       |       |
| ΔEs                           | -13.586         |            |     |     |     |     |     |            |            |           | ΔEs                           | -55.833         |            |            |       |     |     |          |            |       |       |       |       |
|                               | -12.03          |            |     |     |     |     |     |            |            |           |                               | -43.9           |            |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
| Initial Orientat's -          | н               | H<br>pc1   | Q   | к   | L   | v   | F   | F          | Tyr10      | Glu11     | Initial Orientation           | н               | H          | Q          | к     | L   | v   | F        | F          | Tyr10 |       |       |       |
| Final Orientation             |                 | RB1        | LNH |     |     |     | LDZ |            | RS1        | LB1       | Final Orientation             |                 | LB2        |            |       |     |     | RB2      |            | LS2   |       |       |       |
|                               |                 | RNH<br>RS1 | LB1 |     |     |     |     |            |            | CS<br>RB1 |                               |                 | LB2        |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
| van der Waals                 | 80.675          |            |     |     |     |     |     |            |            |           | van der Waals                 | 86.363          |            |            |       |     |     |          |            |       |       |       |       |
| electrostatic                 | -197.082        |            |     |     |     |     |     |            |            |           | electrostatic                 | -207.483        |            |            |       |     |     |          |            |       |       |       |       |
| ΔEs                           | -27.024         |            |     |     |     |     |     |            |            |           | ΔEs                           | -33.072         |            |            |       |     |     |          |            |       |       |       |       |
|                               | -15.595         |            |     |     |     |     |     |            |            |           |                               | -9.907          |            |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
|                               | н               | н          | Q   | к   | L   | v   | F   | F          | Tyr10      |           |                               | н               | н          | Q          | к     | L   | v   | F        | F          |       |       |       |       |
| Initial Orientation           |                 | RB2        |     |     |     |     | LB2 |            | 000        |           | Initial Orientation           |                 | LB2        | _          |       |     |     | RB2      |            |       |       |       |       |
| Final Orientation             |                 | ND2        |     |     |     |     |     |            | ND2        |           | Final Orientation             |                 | LB2        |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
| Total Energy                  | 116.207         |            |     |     |     |     |     |            |            |           | Total Energy                  | 115.821         |            |            |       |     |     |          |            |       |       |       |       |
| van der Waals                 | 93.486          |            |     |     |     |     |     |            |            |           | van der Waals                 | 88.545          |            |            |       |     |     |          |            |       |       |       |       |
| electrostatic                 | -137.304        |            |     |     |     |     |     |            |            |           | electrostatic                 | -105.104        |            |            |       |     |     |          |            |       |       |       |       |
| ΔEs                           | -17.844         |            |     |     |     |     |     |            |            |           | ΔEs                           | -18.23          |            |            |       |     |     |          |            |       |       |       |       |
|                               | -18.057         |            |     |     |     |     |     |            |            |           |                               | -9.737          |            |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
|                               | н               | н          | Q   | к   | L   | v   | F   | F          |            |           |                               | н               | н          | Q          | К     | L   | v   | F        | F          | Gly9  | Ala21 | Val24 | Lys28 |
| Final Orientation             | RB1             | LS1        |     | RS1 | LB1 |     |     | RB2<br>RB2 |            |           | Final Orientation             | RB2             | RS1<br>RS1 |            |       | RNH |     |          | LB2        | RB2   | LS1   | LB2   | LB2   |
|                               | LB1             |            |     | 2   | LNH |     |     | RS1        |            |           |                               |                 |            |            |       | RB1 |     |          |            | C=O   |       |       |       |
|                               | -CH2-           |            |     |     |     |     |     | CITZ       |            |           |                               |                 |            |            |       | LUI |     |          |            |       |       |       |       |
| Total Energy                  | 14.568          |            |     |     |     |     |     |            |            |           | Total Energy                  | 51.215          |            |            |       |     |     |          |            |       |       |       |       |
| van der Waals                 | 75.263          |            |     |     |     |     |     |            |            |           | van der Waals                 | 78.204          |            |            |       |     |     |          |            |       |       |       |       |
| electrostatic                 | -276.299        |            |     |     |     |     |     |            |            |           | electrostatic                 | -251./3/        |            |            |       |     |     |          |            |       |       |       |       |
| ΔEs                           | -119.483        |            |     |     |     |     |     |            |            |           | ΔEs                           | -82.836         |            |            |       |     |     |          |            |       |       |       |       |
|                               | -96.852         |            |     |     |     |     |     |            |            |           |                               | -72.29          |            |            |       |     |     |          |            |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 |            |            |       |     |     |          |            |       |       |       |       |
| International Action          | н               | Н          | Q   | к   | L   | v   | F   | F          | Tyr10      |           | lated The second              | н               | H          | Q          | к     | L   | v   | F        | F          | Tyr10 |       |       |       |
| Final Orientation             | LS2             | LS2        |     |     | LS2 |     |     | RB2        | LB2        |           | Final Orientation             | LS2             | RS2<br>RS1 |            | LS2   | LS2 |     |          | LB2<br>LB2 | RS1   |       |       |       |
|                               | -CH2-           | LB2        |     |     |     |     |     |            |            |           |                               | LS1             | RS2        |            | -CH2- | RS2 |     |          | LS2        |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               | -01             |            |            |       |     |     |          | CH2*       |       |       |       |       |
| Total Energy<br>van der Waals | 68.98<br>85.366 |            |     |     |     |     |     |            |            |           | Total Energy<br>van der Waals | 9.754<br>79.295 |            |            |       |     |     |          |            |       |       |       |       |
| electrostatic                 | -235.079        |            |     |     |     |     |     |            |            |           | electrostatic                 | -285.866        |            |            |       |     |     |          |            |       |       |       |       |
| ΔEs                           | -65.071         |            |     |     |     |     |     |            |            |           | ΔEs                           | -124.297        |            |            |       |     |     |          |            |       |       |       |       |
|                               | -10.904         |            |     |     |     |     |     |            |            |           |                               | -16.975         |            |            |       |     |     |          |            |       |       |       |       |
|                               | 55.032          |            |     |     |     |     |     |            |            |           |                               | 100.419         |            |            |       |     |     |          |            |       |       |       |       |
|                               | н               | н          | Q   | к   | L   | v   | F   | F          |            |           |                               | н               | н          | Q          | к     | L   | v   | F        | F          |       |       |       |       |
| Initial Orientation           |                 | LB2        |     |     |     |     |     | RB2        |            |           | Initial Orientation           | 0               | RB2        |            |       |     |     |          | LB2        |       |       |       |       |
| rinal Unentation              |                 |            |     |     |     |     |     | RB2        |            |           | Final Orientation             | -CH2-           | RB2        |            |       | RB2 |     |          | LBZ        |       |       |       |       |
|                               |                 |            |     |     |     |     |     |            |            |           |                               |                 | RS2        |            |       |     |     | -        |            |       |       |       |       |
| Total Energy                  | 109.895         |            |     |     |     |     |     |            |            |           | Total Energy                  | 66.026          |            |            |       |     |     |          |            |       |       |       |       |
| electrostatic                 | -197.193        |            |     |     |     |     |     |            |            |           | electrostatic                 | -237.137        |            |            |       |     |     |          |            |       |       |       |       |
| AFs                           | -7/ 154         |            |     |     |     |     |     |            |            |           | AFs                           | -68 075         |            |            |       |     |     |          |            |       |       |       |       |
|                               | -4.566          |            |     |     |     |     |     |            |            |           |                               | -12.379         |            |            |       |     |     |          |            |       |       |       |       |
|                               | -17.746         |            |     |     |     |     |     |            |            |           |                               | -57.69          |            |            |       |     |     |          |            |       |       |       |       |

|                     | н          | н   | Q | К          | L          | V   | F | F          | Val12 |                     | н           | н | Q   | К          | L          | V   | F   | F    | Val12      |
|---------------------|------------|-----|---|------------|------------|-----|---|------------|-------|---------------------|-------------|---|-----|------------|------------|-----|-----|------|------------|
| Initial Orientation |            |     |   | RB1        | LB1        |     |   |            |       | Initial Orientation |             |   |     | LB1        | RB1        |     |     |      |            |
| Final Orientation   | RB1        |     |   | RB2        | LS1        |     |   |            | RS1   | Final Orientation   | RB1         |   |     | LS1        | RS1        |     |     | CS   | LS1        |
|                     |            |     |   | RS1*       |            |     |   |            |       |                     | KNH<br>LB1  |   |     | CH2        | RB1        |     |     |      |            |
|                     |            |     |   | *-CH2-     |            |     |   |            |       |                     | INH         |   |     | -0112-     |            |     |     |      |            |
|                     |            |     |   | 0.12       |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| Total Energy        | 56.963     |     |   |            |            |     |   |            |       | Total Energy        | 37.019      |   |     |            |            |     |     |      |            |
| van der Waals       | 84.211     |     |   |            |            |     |   |            |       | van der Waals       | 82.135      |   |     |            |            |     |     |      |            |
| electrostatic       | -246.525   |     |   |            |            |     |   |            |       | electrostatic       | -2/2.413    |   |     |            |            |     |     |      |            |
| ΔEs                 | -77.088    |     |   |            |            |     |   |            |       | ΔEs                 | -97.032     |   |     |            |            |     |     |      |            |
|                     | -12.059    |     |   |            |            |     |   |            |       |                     | -14.135     |   |     |            |            |     |     |      |            |
|                     | -67.078    |     |   |            |            |     |   |            |       |                     | -92.966     |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
|                     |            |     | 0 | V          |            | V   |   | -          |       |                     |             |   | 0   | V          |            | V   |     | -    |            |
| Initial Orientation | п          | п   | ų | RS1        | LB1        | v   | r | F          |       | Initial Orientation | -           | - | ų   | LS1        | RB1        | v   | F   | r    |            |
| Final Orientation   | CS         |     |   | RS1        |            |     |   |            |       | Final Orientation   | LB1         |   |     | LS1        | RS1        |     |     |      |            |
|                     | RB1        |     |   | RB1        |            |     |   |            |       |                     | RB1         |   |     |            |            |     |     |      |            |
|                     |            |     |   | -CH2-      |            |     |   |            |       |                     | RNH         |   |     |            |            |     |     |      |            |
| Total Energy        | 71.655     |     |   |            |            |     |   |            |       | Total Energy        | 38 815      |   |     |            |            |     |     |      |            |
| van der Waals       | 87.512     |     |   |            |            |     |   |            |       | van der Waals       | 84.757      |   |     |            |            |     |     |      |            |
| electrostatic       | -233.177   |     |   |            |            |     |   |            |       | electrostatic       | -271.108    |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| ΔEs                 | -62.396    |     |   |            |            |     |   |            |       | ΔEs                 | -95.236     |   |     |            |            |     |     |      |            |
|                     | -6./30     |     |   |            |            |     |   |            |       |                     | -11.515     |   |     |            |            |     |     |      |            |
|                     | 33.73      |     |   |            |            |     |   |            |       |                     | 51.001      |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
|                     | н          | н   | Q | К          | L          | v   | F | F          |       |                     | н           | н | Q   | К          | L          | v   | F   | F    |            |
| Initial Orientation | 024        | 162 |   | RS2        | LB1        |     |   |            |       | Initial Orientation | 0.02        |   |     | LB1        | RB2        |     |     | 0.04 |            |
| i mai Urientation   | КВ1<br>LS2 | 152 | - | RS2        | LS1        | -   |   |            |       | rmai Urientation    | RB2         |   |     | LB1<br>[52 | RS2<br>RB2 |     | -   | KB1  |            |
|                     | -CH2-      |     |   |            |            |     |   |            |       |                     |             |   |     | LNH        |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     | RS2        |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     | -CH2-      |            |     |     |      |            |
| Total Frances       | 7.462      |     |   |            |            |     |   |            |       | Total Casara        | 22,200      |   |     |            |            |     |     |      |            |
| van der Waals       | 7.462      |     |   |            |            |     |   |            |       | van der Waals       | 23.709      |   |     |            |            |     |     |      |            |
| electrostatic       | -289.927   |     |   |            |            |     |   |            |       | electrostatic       | -274.36     |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| ΔEs                 | -126.589   |     |   |            |            |     |   |            |       | ΔEs                 | -110.342    |   |     |            |            |     |     |      |            |
|                     | -14.37     |     |   |            |            |     |   |            |       |                     | -17.842     |   |     |            |            |     |     |      |            |
|                     | -110.48    |     |   |            |            |     |   |            |       |                     | -94.913     |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
|                     | н          | н   | Q | К          | L          | v   | F | F          |       |                     | н           | н | Q   | к          | L          | v   | F   | F    | Val12      |
| Initial Orientation |            |     |   | RB2        | LB1        |     |   |            |       | Initial Orientation |             |   |     | RB1        | LB2        |     |     |      |            |
| Final Orientation   | RB1        |     |   | RB2        | LB1        |     |   | CS         |       | Final Orientation   | LB2         |   |     | RS2        | LB2        |     | RS2 | LS1  | RB1        |
|                     | RNH<br>RS1 |     |   | RNH*       |            |     |   | RB1<br>RB2 |       |                     | LS2         |   |     | -CH2-      | LSZ        |     |     |      |            |
|                     |            |     |   | *-CH2-     |            |     |   |            |       |                     |             |   |     | 0          |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| Total Energy        | 42.173     |     |   |            |            |     |   |            |       | Total Energy        | 8.517       |   |     |            |            |     |     |      |            |
| van der Waals       | 77.288     |     |   |            |            |     |   |            |       | van der Waals       | 76.027      |   |     |            |            |     |     |      |            |
| electrostatic       | -257.001   |     |   |            |            |     |   |            |       | electrostatic       | -280.887    |   |     |            |            |     |     |      |            |
| ΔEs                 | -91.878    |     |   |            |            |     |   |            |       | ΔEs                 | -125.534    |   |     |            |            |     |     |      |            |
|                     | -18.982    |     |   |            |            |     |   |            |       |                     | -20.243     |   |     |            |            |     |     |      |            |
|                     | -77.554    |     |   |            |            |     |   |            |       |                     | -101.44     |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
|                     |            | U   | 0 | v          |            | V   | E | 6          |       |                     |             |   | 0   | v          |            | V   | c   | E    | Acn 22     |
| Initial Orientation |            |     | ų | LB2        | RB1        |     |   |            |       | Initial Orientation |             |   | ų   | LS2        | RB2        |     |     |      | ropzo      |
| Final Orientation   | LB1        |     |   | LB2        | RS2        | RB2 |   | LB2        |       | Final Orientation   | RS2         |   |     | LS2        | RS2        |     | LB2 | RB2  | LB2        |
|                     | LS2        |     |   | LS2        | RB1        |     |   |            |       |                     |             |   |     | LB2        | RB2        |     |     |      |            |
|                     |            |     |   | -CH2-      |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| Total Energy        | 50.074     |     |   |            |            |     |   |            |       | Total Enormy        | 28.400      |   |     |            |            |     |     |      |            |
| van der Waals       | 78.384     |     |   |            |            |     |   |            |       | van der Waals       | 80.003      |   |     |            |            |     |     |      |            |
| electrostatic       | -246.862   |     |   |            |            |     |   |            |       | electrostatic       | -260.684    |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| ΔEs                 | -83.077    |     |   |            |            |     | - |            |       | ΔEs                 | -95.642     |   |     | -          |            |     | -   |      |            |
|                     | -17.886    |     |   |            |            |     |   |            |       |                     | -16.267     |   |     |            |            |     |     |      |            |
|                     | 07.413     |     |   |            |            |     |   |            |       |                     | 31.23/      |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
|                     | н          | н   | Q | К          | L          | v   | F | F          | Val12 |                     | н           | н | Q   | к          | L          | v   | F   | F    | Val12      |
| Initial Orientation | 100        |     |   | RS2        | LB2        |     |   | 1.04       | DCC   | Initial Orientation | 104         |   |     | RB2        | LB2        |     |     |      | 0.00       |
| rinal Urientation   | LB2        |     |   | RB1<br>RS1 | L52<br>187 |     |   | LB1        | RS2   | Final Orientation   | LB1<br>R\$2 | - |     | RS1<br>852 | LS2        |     |     |      | RB2<br>RS2 |
|                     |            |     |   | RS2*       | -02        |     |   |            |       |                     | LNH         |   |     | -CH2-      |            |     |     |      |            |
|                     |            |     |   | LS2*       |            |     |   |            |       |                     | LB2         |   |     |            |            |     |     |      |            |
|                     |            |     |   | *-CH2-     |            |     |   |            |       |                     | -CH2-       |   |     |            |            |     |     |      |            |
| Total Francis       | 45.435     |     |   |            |            |     |   |            |       | Table               | 22.004      |   |     |            |            |     |     |      |            |
| van der Waals       | 10.120     |     |   |            |            |     |   |            |       | van der Waals       | 22.004      |   |     |            |            |     |     |      |            |
| electrostatic       | -280.832   |     |   |            |            |     |   |            |       | electrostatic       | -277.767    |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| ΔEs                 | -117.925   |     |   |            |            |     |   |            |       | ΔEs                 | -112.047    |   |     |            |            |     |     |      |            |
|                     | -19.448    |     |   |            |            |     |   |            |       |                     | -13.967     |   |     |            |            |     |     |      |            |
|                     | -101.385   |     |   |            |            |     |   |            |       |                     | -98.32      |   |     |            |            |     |     |      |            |
|                     |            |     |   |            |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
|                     | н          | н   | Q | К          | L          | v   | F | F          | Val12 |                     | н           | н | Q   | к          | L          | v   | F   | F    |            |
| Initial Orientation |            |     |   | LB2        | RB2        |     |   |            |       | Initial Orientation |             |   |     | RB2        | _          | LB2 |     |      |            |
| Final Orientation   | RS2        |     |   | LB1        | RS2        |     |   | CS         | LS2   | Final Orientation   |             |   | LS2 | RS2        |            |     | RB2 |      |            |
|                     |            |     |   | LNH        |            |     |   | LB1        |       |                     |             |   | LB2 | RB2        |            |     | KB1 |      |            |
|                     |            |     |   | -CH2-      |            |     | - |            |       |                     |             |   |     |            |            |     | 101 |      |            |
|                     |            |     |   | 0112*      |            |     |   |            |       |                     |             |   |     |            |            |     |     |      |            |
| Total Energy        | 33.563     |     |   |            |            |     |   |            |       | Total Energy        | 69.53       |   |     |            |            |     |     |      |            |
| van der Waals       | 85.354     |     |   |            |            |     |   |            |       | van der Waals       | 83.006      |   |     |            |            |     |     |      |            |
| electrostatic       | -271.632   |     |   |            |            |     |   |            |       | electrostatic       | -233.739    |   |     |            |            |     |     |      |            |
| AFe                 | 100 400    |     |   |            |            |     | - |            |       | AEc                 | 64.534      |   |     |            |            |     |     |      |            |
| 1413                | -100.488   |     | - | -          |            | -   | - |            |       | 4125                | -64.521     |   |     | -          | -          |     | -   | -    |            |
|                     | -92.185    |     |   |            |            |     |   |            |       |                     | -54,292     |   |     |            |            |     |     |      |            |

|                     | н        | н | Q   | К     | L | V   | F   | F   | Val12  |                     | н        | н | Q   | К      | L | V | F     | F   |         |
|---------------------|----------|---|-----|-------|---|-----|-----|-----|--------|---------------------|----------|---|-----|--------|---|---|-------|-----|---------|
| Initial Orientation |          |   |     | LB2   |   | RB2 |     |     |        | Initial Orientation |          |   |     | CS     |   |   | RB1   |     |         |
| Final Orientation   |          |   | RB1 | LB2   |   |     | LB1 |     | LS1    | Final Orientation   | LS1      |   |     | LB1    |   |   | RS1   | LB2 |         |
|                     |          |   |     | LS1   |   |     | CS  |     |        |                     |          |   |     | LS1*   |   |   |       |     |         |
|                     |          |   |     | -CH2- |   |     | RB1 |     |        |                     |          |   |     | LNH*   |   |   |       |     |         |
|                     |          |   |     | LNH   |   |     |     |     |        |                     |          |   |     | *-CH2- |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     | RB1    |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| Total Energy        | 65.753   |   |     |       |   |     |     |     |        | Total Energy        | 42.235   |   |     |        |   |   |       |     |         |
| van der Waals       | 80.162   |   |     |       |   |     |     |     |        | van der Waals       | 82.418   |   |     |        |   |   |       |     |         |
| electrostatic       | -237.979 |   |     |       |   |     |     |     |        | electrostatic       | -260.461 |   |     |        |   |   |       |     |         |
| 15                  |          |   |     |       |   |     |     |     |        | 15                  |          |   |     |        |   |   |       |     |         |
| ΔES                 | -68.298  |   |     |       |   |     |     |     |        | ΔES                 | -91.816  |   |     |        |   |   |       |     |         |
|                     | -16.108  |   |     |       |   |     |     |     |        |                     | -13.852  |   |     |        |   |   |       |     |         |
|                     | -58.532  |   |     |       |   |     |     |     |        |                     | -81.014  |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     | -   | 14.140 |                     |          |   |     |        |   |   |       | -   | 14-14-2 |
| Initial Origotation | п        | п | ų   | 00    | L | v   | F   | F   | Vall2  | Initial Origotation | -        | • | ų   | DD 4   | L | v | F     | F   | VdI12   |
| Final Orientation   |          |   |     | DD1   |   |     | LD1 |     | DC1    | Final Orientation   | DC1      |   |     | I D 1  |   |   | LB1   |     | DC1     |
| This offentation    |          |   |     | RS2   |   |     | CS  |     | 1401   | rindi Orientation   | RS2      |   |     | RS2    |   |   | 201   |     | 101     |
|                     |          |   |     | CS    |   |     |     |     |        |                     | RB2      |   |     | -CH2-  |   |   |       |     |         |
|                     |          |   |     | RS1   |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     | -CH2- |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| Total Energy        | 55.47    |   |     |       |   |     |     |     |        | Total Energy        | 13.807   |   |     |        |   |   |       |     |         |
| van der Waals       | 85.598   |   |     |       |   |     |     |     |        | van der Waals       | 81.129   |   |     |        |   |   |       |     |         |
| electrostatic       | -251.039 |   |     |       |   |     |     |     |        | electrostatic       | -285.249 |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| ΔEs                 | -78.581  |   |     |       |   |     |     |     |        | ΔEs                 | -120.244 |   |     |        |   |   |       |     |         |
|                     | -10.672  |   |     |       |   |     |     |     |        |                     | -15.141  |   |     |        |   |   |       |     |         |
|                     | -71.592  |   |     |       |   |     |     |     |        |                     | -105.802 |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     | н        | н | Q   | К     | L | v   | F   | F   |        |                     | н        | н | Q   | К      | L | v | F     | F   | Asp23   |
| Initial Orientation |          |   |     | LB1   |   |     | RB1 |     |        | Initial Orientation |          |   |     | RS1    |   |   | LB1   |     |         |
| Final Orientation   | LS1      |   |     | LB1   |   |     | RS1 | LB2 |        | Final Orientation   |          |   |     | RB1    |   |   | LB1   |     | CS      |
|                     |          |   |     | LNH   |   |     |     |     |        |                     |          |   |     | RNH    |   |   | CS    |     |         |
|                     |          |   |     | LS1   |   |     |     |     |        |                     |          |   |     | RS1    |   |   | RB1   |     |         |
|                     |          |   |     | -CH2- |   |     |     |     |        |                     |          |   |     | -CH2-  |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| Total Energy        | 50.137   |   |     |       |   |     |     |     |        | Total Energy        | 79.257   |   |     |        |   |   |       |     |         |
| van der Waals       | 86.258   |   |     |       |   |     |     |     |        | van der Waals       | 89.235   |   |     |        |   |   |       |     |         |
| electrostatic       | -255.901 |   |     |       |   |     |     |     |        | electrostatic       | -228.17  |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| ΔEs                 | -83.914  |   |     |       |   |     |     |     |        | ΔEs                 | -54.794  |   |     |        |   |   |       |     |         |
|                     | -10.012  |   |     |       |   |     |     |     |        |                     | -7.035   |   |     |        |   |   |       |     |         |
|                     | -76.454  |   |     |       |   |     |     |     |        |                     | -48.723  |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     | н        | н | Q   | К     | L | v   | F   | F   |        |                     | н        | н | Q   | K      | L | v | F     | F   |         |
| Initial Orientation |          |   |     | LS1   |   |     | RB1 |     |        | Initial Orientation |          |   |     | RS2    |   |   | LB1   |     |         |
| Final Orientation   |          |   |     | LS1   |   |     | RB1 |     |        | Final Orientation   |          |   |     | RB1    |   |   | LB1   |     |         |
|                     |          |   |     | LNH   |   |     | CS  |     |        |                     |          |   |     | RNH    |   |   | RB1   |     |         |
|                     |          |   |     |       |   |     | LB1 |     |        |                     |          |   |     | RS2    |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     | -CH2-  |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| Total Energy        | 86.843   |   |     |       |   |     |     |     |        | Total Energy        | 67.171   |   |     |        |   |   |       |     |         |
| van der Waals       | 90.184   |   |     |       |   |     |     |     |        | van der Waals       | 85.633   |   |     |        |   |   |       |     |         |
| electrostatic       | -223.7   |   |     |       |   |     |     |     |        | electrostatic       | -233.86  |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| ΔEs                 | -47.208  |   |     |       |   |     |     |     |        | ΔEs                 | -66.88   |   |     |        |   |   |       |     |         |
|                     | -6.086   |   |     |       |   |     |     |     |        |                     | -10.637  |   |     |        |   |   |       |     |         |
|                     | -44.253  |   |     |       |   |     |     |     |        |                     | -54.413  |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     | н        | н | Q   | К     | L | v   | F   | F   | Val12  |                     | н        | н | Q   | К      | L | v | F     | F   |         |
| Initial Orientation |          |   |     | LS2   |   |     | RB1 |     |        | Initial Orientation |          |   |     | LB1    |   |   | RB2   |     |         |
| Final Orientation   | LS1      |   | RB2 | LB1   |   |     | RS2 |     | LS2    | Final Orientation   | LS1      |   | RS1 | RB1    |   |   | RB2   | LB2 |         |
|                     | LS2      |   |     | CS    |   |     |     |     |        |                     |          |   |     | LB1    |   |   | RS1   |     |         |
|                     | LB2      |   |     | RB1   |   |     |     |     |        |                     |          |   |     | RS1*   |   |   | -CH2- |     |         |
|                     |          |   |     | LS1   |   |     |     |     |        |                     |          |   |     | RNH    |   |   | RNH   |     |         |
|                     |          |   |     | -CH2- |   |     |     |     |        |                     |          |   |     | LNH*   |   |   | RB1   |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     | LS1*   |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     | *-CH2- |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| Total Energy        | 25.861   |   |     |       |   |     |     |     |        | Total Energy        | 16.924   |   |     |        |   |   |       |     |         |
| van der Waals       | 80.154   |   |     |       |   |     |     |     |        | van der Waals       | 73.618   |   |     |        |   |   |       |     |         |
| electrostatic       | -273.351 |   |     |       |   |     |     |     |        | electrostatic       | -279.528 |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| ΔEs                 | -108.19  |   |     |       |   |     |     |     |        | ΔEs                 | -117.127 |   |     |        |   |   |       |     |         |
|                     | -16.116  |   |     |       |   |     |     |     |        |                     | -22.652  |   |     |        |   |   |       |     |         |
|                     | -93.904  |   |     |       |   |     |     |     |        |                     | -100.081 |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
|                     | н        | н | Q   | К     | L | v   | F   | F   | Val12  |                     | н        | н | Q   | К      | L | v | F     | F   |         |
| Initial Orientation |          |   |     | RB2   |   |     | LB1 |     |        | Initial Orientation |          |   |     | RB1    |   |   | LB2   |     |         |
| Final Orientation   | RB2      |   | LS2 | RB1   |   |     | LB1 |     | RS2    | Final Orientation   | RS2      |   |     | RB1    |   |   | LB2   | RB2 |         |
|                     | RS2      |   | LB2 | LB1   |   |     | LNH |     |        |                     |          |   |     | LS2    |   |   | LS2   |     |         |
|                     |          |   |     | RS2   |   |     | LS1 |     |        |                     |          |   |     | 2      |   |   |       |     |         |
|                     |          |   |     | -CH2- |   |     | LB2 |     |        |                     |          |   |     | RS2    |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     | -CH2-  |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   | _ |       |     |         |
| Total Energy        | 23.031   |   |     |       |   |     |     |     |        | Total Energy        | 24.056   |   |     |        |   | _ |       |     |         |
| van der Waals       | 75.841   |   |     |       |   |     |     |     |        | van der Waals       | 81.324   |   |     |        |   |   |       |     |         |
| electrostatic       | -269.362 |   |     |       |   |     |     |     |        | electrostatic       | -275.906 |   |     |        |   | _ |       |     |         |
|                     |          |   |     |       |   |     |     |     | L      |                     |          |   |     |        |   |   |       |     |         |
| ΔEs                 | -111.02  |   |     |       |   |     |     |     | L      | ΔEs                 | -109.995 |   |     |        |   |   |       |     |         |
|                     | -20.429  |   |     |       |   |     |     |     |        |                     | -14.946  |   |     |        |   |   |       |     |         |
|                     | -89.915  |   |     |       |   |     |     |     | L      |                     | -96.459  |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     | L      |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     | L      |                     |          |   |     |        |   |   |       |     |         |
|                     | н        | н | Q   | К     | L | v   | F   | F   | L      |                     | н        | н | Q   | К      | L | v | F     | F   |         |
| Initial Orientation |          |   |     | LB2   |   |     | RB1 |     | L      | Initial Orientation |          |   |     | LS2    |   |   | RB2   |     |         |
| Final Orientation   | LB2      |   | RB2 | LB1   |   |     | RS2 |     | L      | Final Orientation   |          |   |     | LS2    |   |   | RS2   |     |         |
|                     | LS2      |   |     | LS2   |   |     | CS  |     |        |                     |          |   |     |        |   |   | RB2   |     |         |
|                     |          |   |     | -CH2- |   |     |     |     | L      |                     |          |   |     |        |   |   |       |     |         |
|                     |          |   |     |       |   |     |     |     |        |                     |          |   |     |        |   |   |       |     |         |
| Total Energy        | 52.479   |   |     |       |   |     |     |     |        | Total Energy        | 65.608   |   |     |        |   |   |       |     |         |
| van der Waals       | 82.673   |   |     |       |   |     |     |     | L      | van der Waals       | 85.755   |   |     |        |   |   |       |     |         |
| electrostatic       | -252.529 |   | -   | -     |   |     |     |     |        | electrostatic       | -234.425 |   |     |        |   | - | -     |     |         |
|                     |          |   |     |       |   |     |     |     |        | 15                  |          |   |     |        |   | - |       |     |         |
| ΔES                 | -81.572  |   | -   | -     |   |     |     |     |        | ΔEs                 | -68.443  |   |     |        |   | - |       |     |         |
|                     | -13.597  |   |     |       |   |     |     |     | L      |                     | -10.515  |   |     |        |   |   |       |     |         |
|                     | -73.082  |   |     |       |   |     |     |     |        |                     | -54.978  |   |     |        |   |   |       |     |         |

|                                | н               | н | Q | К           | L    | V | F   | F        |       |                               | н                  | н  | Q   | К            | L   | v | F     | F        |       |
|--------------------------------|-----------------|---|---|-------------|------|---|-----|----------|-------|-------------------------------|--------------------|----|-----|--------------|-----|---|-------|----------|-------|
| Initial Orientation            | DCO             |   |   | RS2         |      |   | LB2 | DD2      |       | Initial Orientation           | 063                |    |     | RB2          |     |   | LB2   | 003      |       |
| i mai onentation               | 102             |   |   | LS2         |      |   | LS2 | ND2      |       | i mai onentation              | 1.52               |    |     | LS2          |     |   | LB2   | NDZ      |       |
|                                |                 |   |   | LB1         |      |   |     |          |       |                               |                    |    |     | 2            |     |   |       |          |       |
|                                |                 |   |   | RS2         |      |   |     |          |       |                               |                    |    |     | RS2          |     |   |       |          |       |
|                                | -               |   |   | -CH2-       |      |   |     |          |       |                               |                    |    |     | -CH2-        |     |   |       |          |       |
| Total Energy                   | 18.122          |   |   |             |      |   |     |          |       | Total Energy                  | 23.823             |    |     |              |     |   |       |          |       |
| van der Waals                  | 76.043          |   |   |             |      |   |     |          |       | van der Waals                 | 79.669             |    |     |              |     |   |       |          |       |
| electrostatic                  | -276.205        |   |   |             |      |   |     |          |       | electrostatic                 | -2/1.045           |    |     |              |     |   |       |          |       |
| ΔEs                            | -115.929        |   |   |             |      |   |     |          |       | ΔEs                           | -110.228           |    |     |              |     |   |       |          |       |
|                                | -20.227         |   |   |             |      |   |     |          |       |                               | -16.601            |    |     |              |     |   |       |          |       |
|                                | -90.750         |   |   |             |      |   |     |          |       |                               | -92.190            |    |     |              |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
| Initial Origontation           | н               | н | Q | K IP2       | L    | V | F   | F        | Val12 | Initial Orientation           | н                  | н  | Q   | K            | L   | v | F     | F<br>PP1 | Leu34 |
| Final Orientation              | LS1             |   |   | RB1         |      |   | RB2 |          | LS2   | Final Orientation             | LS1                |    |     | LS1          |     |   |       | RS1      | RB2   |
|                                | LS2             |   |   | LS1         |      |   |     |          |       |                               |                    |    |     | -CH2-        |     |   |       |          |       |
|                                | LB2             |   |   | -CH2-       |      |   |     |          |       |                               |                    |    |     | LS2          |     |   |       |          |       |
| Total Energy                   | 4.929           |   |   |             |      |   |     |          |       | Total Energy                  | 36.753             |    |     |              |     |   |       |          |       |
| van der Waals                  | 77.427          |   |   |             |      |   |     |          |       | van der Waals                 | 82                 |    |     |              |     |   |       |          |       |
| electrostatic                  | -290.83         |   |   |             |      |   |     |          |       | electrostatic                 | -261.531           |    |     |              |     |   |       |          |       |
| ΔEs                            | -129.122        |   |   |             |      |   |     |          |       | ΔEs                           | -97.298            |    |     |              |     |   |       |          |       |
|                                | -18.843         |   |   |             |      |   |     |          |       |                               | -14.27             |    |     |              |     |   |       |          |       |
|                                | -111.383        |   |   |             |      |   |     |          |       |                               | -82.084            |    |     |              |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
| Initial Origonation            | н               | н | Q | K           | L    | V | F   | F        |       | Initial Origonation           | н                  | н  | Q   | K            | L   | v | F     | F        |       |
| Final Orientation              |                 |   |   | RB1         |      |   | RS1 | LB1      |       | Final Orientation             | LS1                |    |     | LB1          |     |   |       | CS       |       |
|                                |                 |   |   | RS2         |      |   |     |          |       |                               |                    |    |     | LS2          |     |   |       |          |       |
|                                |                 |   |   | 2           |      |   |     | -        |       |                               |                    |    |     | LS1          |     |   |       |          |       |
|                                |                 |   |   | 63          |      |   |     |          |       |                               |                    |    |     | -un2-        |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
| Total Energy                   | 83.264<br>90.21 |   |   |             |      |   |     |          |       | Total Energy<br>van der Waste | 42.564             |    |     |              |     |   |       |          |       |
| electrostatic                  | -223.895        |   |   |             |      |   |     |          |       | electrostatic                 | -257.212           |    |     |              |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
| ΔEs                            | -50.787         |   |   |             |      |   |     |          |       | ΔEs                           | -91.487            |    |     |              |     |   |       |          |       |
|                                | -44.448         |   |   |             |      |   |     |          |       |                               | -77.765            |    |     |              |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
|                                | н               | н | 0 | к           | 1    | v | F   | F        |       |                               | н                  | н  | 0   | к            | 1   | v | F     | F        |       |
| Initial Orientation            |                 |   |   | RB1         |      |   |     | LB1      |       | Initial Orientation           |                    |    |     | RS1          |     |   |       | LB1      |       |
| Final Orientation              | RS1             |   |   | RB1         |      |   |     | RB1      |       | Final Orientation             | RS1                |    |     | RB2          |     |   |       | RB1      |       |
|                                |                 |   |   | RS1         |      |   |     | LBI      |       |                               |                    |    |     | -CH2-        |     |   |       | LBI      |       |
|                                |                 |   |   | -CH2-       |      |   |     |          |       |                               |                    |    |     | RNH          |     |   |       |          |       |
|                                |                 |   |   | RB2         |      |   |     |          |       |                               |                    |    |     | RB1          |     |   |       |          |       |
| Total Energy                   | 56.54           |   |   |             |      |   |     |          |       | Total Energy                  | 56.549             |    |     |              |     |   |       |          |       |
| van der Waals                  | 82.067          |   |   |             |      |   |     |          |       | van der Waals                 | 81.96              |    |     |              |     |   |       |          |       |
| electrostatic                  | -246.773        |   |   |             |      |   |     |          |       | electrostatic                 | -247.355           |    |     |              |     |   |       |          |       |
| ΔEs                            | -77.511         |   |   |             |      |   |     |          |       | ΔEs                           | -77.502            |    |     |              |     |   |       |          |       |
|                                | -14.203         |   |   |             |      |   |     |          |       |                               | -14.31             |    |     |              |     |   |       |          |       |
|                                | -67.326         |   |   |             |      |   |     |          |       |                               | -67.908            |    |     |              |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
|                                | н               | н | Q | K           | L    | v | F   | F        |       |                               | н                  | н  | Q   | K            | L   | v | F     | F        |       |
| Final Orientation              |                 |   |   | LB1         |      |   |     | CS       |       | Final Orientation             | RS2                |    |     | RB1          |     |   |       | LS2      |       |
|                                |                 |   |   | LS2         |      |   |     |          |       |                               |                    |    |     | RS1          |     |   |       | LB1      |       |
|                                |                 |   |   | LS1         |      |   |     |          |       |                               |                    |    |     | RS2          |     |   |       | CS       |       |
|                                |                 |   |   | -0112-      |      |   |     |          |       |                               |                    |    |     | -0112-       |     |   |       |          |       |
| Total Energy                   | 56.821          |   |   |             |      |   |     |          |       | Total Energy                  | 41.902             |    |     |              |     |   |       |          |       |
| van der Waals<br>electrostatic | 87.112          |   |   |             |      |   |     |          |       | van der Waals                 | 80.786<br>-257 144 |    |     |              |     |   |       |          |       |
| cicciostate                    | 247.150         |   |   |             |      |   |     |          |       | ciccitostutic                 | 237.144            |    |     |              |     |   |       |          |       |
| ΔEs                            | -77.23          |   |   |             |      |   |     |          |       | ΔEs                           | -92.149            |    |     |              |     |   |       |          |       |
|                                | -9.158          |   |   |             |      |   |     |          |       |                               | -15.484            |    |     |              |     |   |       |          |       |
|                                | 551             |   |   |             |      |   |     |          |       |                               | ,,                 |    |     |              |     |   |       |          |       |
|                                |                 |   |   |             |      |   | -   |          | Velto |                               |                    | 12 | 0   |              | ,   |   | -     | -        |       |
| Initial Orientation            | н               | н | Q | K<br>LS2    | L    | V | F   | F<br>RB1 | vai12 | Initial Orientation           | н                  | н  | Q   | K<br>LB1     | L   | v | F     | F<br>RB2 |       |
| Final Orientation              |                 |   |   | LS1         |      |   |     | RS2      | LS2   | Final Orientation             | RS1                |    | LS2 | LB1          |     |   | LS2   | RS2      |       |
|                                |                 |   |   | LS2         |      |   |     | CS       |       |                               | RS2                |    | LB2 | RS2*         |     |   | -CH2- |          |       |
|                                |                 |   |   | -642-       |      |   |     | -        |       |                               |                    |    |     | *-CH2-       |     |   | LD2   |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
| van der Waals                  | 51.52           |   |   |             |      |   |     |          |       | Total Energy<br>van der Waals | 1.705              |    |     |              |     |   |       |          |       |
| electrostatic                  | -256.272        |   |   |             |      |   |     |          |       | electrostatic                 | -289.474           |    |     |              |     |   |       |          |       |
| AE-                            |                 |   |   |             |      |   |     |          |       | 41-                           |                    |    |     |              |     |   |       |          |       |
| 45                             | -82.531         |   |   | -           |      |   |     |          |       | 465                           | -132.346           |    |     |              |     |   |       |          |       |
|                                | -76.825         |   |   |             |      |   |     |          |       |                               | -110.027           |    |     |              |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     |              |     |   |       |          |       |
|                                | н               | н | Q | К           | L    | v | F   | F        | Val12 |                               | н                  | н  | Q   | К            | L   | v | F     | F        | Val12 |
| Initial Orientation            | 1.82            |   |   | RB2         | 160  |   |     | LB1      | pe?   | Initial Orientation           | 1.04               |    |     | RB1          | 104 |   | DC 4  | LB2      | DD 4  |
| ar orientation                 | LS2             |   |   | LS2*        | 1.52 |   |     | LB1      | 1\02  | r mai orientation             | LS1                |    |     | LS1*         | 631 |   | 1.01  | 102      | IND I |
|                                |                 |   |   | CS          |      |   |     | CS       |       |                               |                    |    |     | LNH*         |     |   |       |          |       |
|                                |                 |   | - | RS1<br>RS2* |      |   |     |          |       |                               |                    |    |     | LB1*<br>RNH* |     |   |       |          |       |
|                                |                 |   |   | *-CH2-      |      |   |     |          |       |                               |                    |    |     | RS1*         |     |   |       |          |       |
|                                |                 |   |   |             |      |   |     |          |       |                               |                    |    |     | *-CH2-       |     |   |       |          |       |
| Total Energy                   | 27.719          |   |   |             |      |   |     |          |       | Total Energy                  | 9.794              |    |     |              |     |   |       |          |       |
| van der Waals                  | 75.341          |   |   |             |      |   |     |          |       | van der Waals                 | 66.254             |    |     |              |     |   |       |          |       |
| electrostatic                  | -272.583        |   |   |             |      |   |     |          | T     | electrostatic                 | -285.952           |    |     |              |     |   |       |          |       |
| ΔEs                            | -111.832        |   |   | -           |      |   |     | -        |       | ΔEs                           | -124.257           |    |     |              |     |   |       |          |       |
|                                | -20.929         |   |   |             |      |   |     |          |       |                               | -30.016            |    |     |              |     |   |       |          |       |
|                                | -93.136         |   |   |             |      |   |     |          |       |                               | -106.505           |    |     |              |     |   |       |          |       |

|                     | н        | н | Q   | К     | L | V | F   | F   | Val12 |                     | н        | н        | Q | К     | L | V | F | F   | Leu34 |
|---------------------|----------|---|-----|-------|---|---|-----|-----|-------|---------------------|----------|----------|---|-------|---|---|---|-----|-------|
| Initial Orientation |          |   |     | LB2   |   |   |     | RB1 |       | Initial Orientation |          |          |   | RB2   |   |   |   | LB2 |       |
| Final Orientation   |          |   | LB2 | LB1   |   |   | LB2 | RS1 | LS2   | Final Orientation   |          |          |   | RNH   |   |   |   |     | LB2   |
|                     |          |   |     | RB1   |   |   |     | RNH |       |                     |          |          |   | RS1   |   |   |   |     |       |
|                     |          |   |     | LNH   |   |   |     | RB1 |       |                     |          |          |   | -CH2- |   |   |   |     |       |
|                     |          |   |     | LS2   |   |   |     |     |       |                     |          |          |   | RB2   |   |   |   |     |       |
|                     |          |   |     | -CH2- |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     |          |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
| Total Energy        | 41.947   |   |     |       |   |   |     |     |       | Total Energy        | 64.62    |          |   |       |   |   |   |     |       |
| van der Waals       | 79.667   |   |     |       |   |   |     |     |       | van der Waals       | 86.16    |          |   |       |   |   |   |     |       |
| electrostatic       | -256.988 |   |     |       |   |   |     |     |       | electrostatic       | -239.393 |          |   |       |   |   |   |     |       |
|                     |          |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
| ΔEs                 | -92.104  |   |     |       |   |   |     |     |       | ΔEs                 | -69.431  |          |   |       |   |   |   |     |       |
|                     | -16.603  |   |     |       |   |   |     |     |       |                     | -10.11   |          |   |       |   |   |   |     |       |
|                     | -77.541  |   |     |       |   |   |     |     |       |                     | -59.946  |          |   |       |   |   |   |     |       |
|                     |          |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     |          |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     | н        | н | Q   | K     | L | V | F   | F   | Val12 |                     |          |          |   |       |   |   |   |     |       |
| Initial Orientation |          |   |     | LB2   |   |   |     | RB2 |       |                     |          |          |   |       |   |   |   |     |       |
| Final Orientation   |          |   | LB2 | LB1   |   |   | LB2 | RS2 | LS2   |                     |          |          |   |       |   |   |   |     |       |
|                     |          |   |     | RB1   |   |   |     | RB1 |       |                     |          |          |   |       |   |   |   |     |       |
|                     |          |   |     | LS2   |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     |          |   |     | LB2   |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     |          |   |     | -CH2- |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     |          |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
| Total Energy        | 30.947   |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
| van der Waals       | 75.833   |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
| electrostatic       | -262.36  |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
| AFs                 | -103 104 |   |     |       |   |   |     |     |       |                     |          | $\vdash$ |   |       |   |   |   |     |       |
|                     | -20.437  |   |     |       |   |   |     |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     | 92 012   |   | -   |       |   |   | -   |     |       |                     |          |          |   |       |   |   |   |     |       |
|                     | -02.915  |   |     |       |   |   | 1   |     |       |                     |          |          |   |       |   |   |   |     |       |

## The gas phase results of solapsone and the 1Z0Q conformer of $\beta\text{-amyloid}$

|                    |          |      | 0 |       | CI-O  | T     |                    |          |       | 0 |        | T     |
|--------------------|----------|------|---|-------|-------|-------|--------------------|----------|-------|---|--------|-------|
|                    | н        | н    | ų | ĸ     | Giy9  | TYFIU |                    | н        | н     | ų | ĸ      | TYFIU |
| Initial Orientatio | CS       | LB1  |   |       |       |       | Initial Orientatio | LB1      | CS    |   |        |       |
| Final Orientatio   | RS1      | LS1  |   | RS1   | CS    | CS    | Final Orientation  | CS       | CS    |   | LS1    | CS    |
|                    | RB1      |      |   | 2     | C=O   | -CH-  |                    | -CH2-    | -NH-  |   | LS2    | -CH2- |
|                    |          |      |   |       |       |       |                    | LB1      | RS1   |   |        |       |
|                    | CS       |      |   |       |       |       |                    | LS1      |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
| Total Energy       | 139 591  |      |   |       |       |       | Total Energy       | 135 765  |       |   |        |       |
| van der Waals      | 117 425  |      |   |       |       |       | van der Waale      | 100 210  |       |   |        |       |
| variuer vvaais     | 264 244  |      |   |       |       |       |                    | 109.219  |       |   |        |       |
| electrostatic      | -201.241 |      |   |       |       |       | electrostatic      | -200.037 |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
| ΔEs                | -104.985 |      |   |       |       |       | ΔEs                | -108.811 |       |   |        |       |
|                    | -4.277   |      |   |       |       |       |                    | -12.483  |       |   |        |       |
|                    | -101     |      |   |       |       |       |                    | -100.396 |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
|                    | н        | н    | 0 | к     | Leu17 |       |                    | н        | н     | 0 | к      | GIv9  |
| Initial Orientatio | CS .     | RS1  | ~ |       |       |       | Initial Orientatio | RS1      | CS.   | _ |        |       |
| Final Orientatio   | CS<br>CS | DC1  |   | DC3   | DC 2  |       | Einal Orientation  | PC2      | 1 5 1 |   | DC1    | DC2   |
| Final Offentatio   | 0.0      | 131  |   | 6112  | 132   |       | Final Orientation  | 004      | 102   |   | 131    | 6.0   |
|                    | RSI      |      |   | -CHZ- |       |       |                    | RSI      | LSZ   |   |        | C=0   |
|                    | -CH2-    |      |   |       |       |       |                    |          |       |   |        |       |
|                    | LB1      |      |   |       |       |       |                    |          |       |   |        |       |
|                    | RB1      |      |   |       |       |       |                    |          |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
| Total Energy       | 161.738  |      |   |       |       |       | Total Energy       | 110.047  |       |   |        |       |
| van der Waals      | 109.638  |      |   |       |       |       | van der Waals      | 109.653  |       |   |        |       |
| electrostatic      | -233 306 |      |   |       |       |       | electrostatic      | -284 095 |       |   |        |       |
| ciccuostatic       | 233.300  |      |   |       |       |       | electrostatie      | 204.055  |       |   |        |       |
|                    |          |      |   |       |       |       | 1.5                |          |       |   |        |       |
| ΔES                | -82.838  |      |   |       |       |       | ΔES                | -134.529 |       |   |        |       |
|                    | -12.064  |      |   |       |       |       |                    | -12.049  |       |   |        |       |
|                    | -73.065  |      |   |       |       |       |                    | -123.854 |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
|                    | н        | н    | Q | к     |       |       |                    | н        | н     | Q | к      | Tyr10 |
| Initial Orientatio | CS       | LS1  |   |       |       |       | Initial Orientatio | LS1      | CS    |   |        |       |
| Final Orientatio   | RB1      | 152  |   | RS1   |       |       | Final Orientation  | 151      | RB1   |   | LB1    | CS    |
| i illar offentatio | DC1      | 151  |   | PP1   |       |       | i indi orientation |          | DCD   |   | 152    | CH3   |
|                    | 001      | 1.51 |   | DNU   |       |       |                    | CUD      | 102   |   | 2      | CHZ   |
|                    | R52      |      |   | KINH  |       |       |                    | -CH2-    |       |   | 2      |       |
|                    |          |      |   |       |       |       |                    |          | -NH-  |   | LS1    |       |
|                    |          |      |   |       |       |       |                    |          | RS1   |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
| Total Energy       | 105.307  |      |   |       |       |       | Total Energy       | 108.858  |       |   |        |       |
| van der Waals      | 110.471  |      |   |       |       |       | van der Waals      | 104.221  |       |   |        |       |
| electrostatic      | -291.8   |      |   |       |       |       | electrostatic      | -287.616 |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
| AEc                | 120 260  |      |   |       |       |       | AEc                | 125 719  |       |   |        |       |
| 41.5               | -139.209 |      |   |       |       |       | 41.5               | 17 401   |       |   |        |       |
|                    | -11.251  |      |   |       |       |       |                    | -17.461  |       |   |        |       |
|                    | -131.559 |      |   |       |       |       |                    | -127.375 |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
|                    | Н        | н    | Q | К     | Gly9  | Tyr10 |                    | Н        | н     | Q | к      | Leu17 |
| Initial Orientatio | CS       | RS2  |   |       |       |       | Initial Orientatio | RS2      | CS    |   |        |       |
| Final Orientatio   | LB1      | RS2  |   | LS2   | CS    | CS    | Final Orientation  | RS2      | LB1   |   | RS1    | CS    |
|                    | LS1      | RS1  |   | 2     | C=O   | -CH2- |                    |          | LS1   |   | CS     |       |
|                    | 152      |      |   | <br>  |       |       |                    |          | CS.   |   | -CH2-  |       |
|                    | 62       |      |   | CH2   |       |       |                    |          | 0     |   | -0112- |       |
|                    |          |      |   | -CH2- |       |       |                    |          |       |   |        |       |
|                    | 00.5     |      |   |       |       |       |                    |          |       |   |        |       |
| Iotal Energy       | 99.511   |      |   |       |       |       | Total Energy       | 113.757  |       |   |        |       |
| van der Waals      | 109.292  |      |   |       |       |       | van der Waals      | 105.47   |       |   |        |       |
| electrostatic      | -293.141 |      |   |       |       |       | electrostatic      | -278.627 |       |   |        |       |
|                    |          |      |   |       |       |       |                    |          |       |   |        |       |
| ΔEs                | -145.065 |      |   |       |       |       | ΔEs                | -130,819 |       |   |        |       |
| -                  | -12 /1   |      |   |       |       |       |                    | -16 232  |       |   |        |       |
|                    | 122.41   |      |   |       |       |       |                    | 110.2.52 |       |   |        |       |
|                    | -132.9   |      |   |       |       |       |                    | -110.300 |       |   |        |       |

|                     | н          | н          | Q        | К      | Leu17 |       |                    | н          | н          | Q | К     | Gly9    | Tyr10 |       |
|---------------------|------------|------------|----------|--------|-------|-------|--------------------|------------|------------|---|-------|---------|-------|-------|
| Initial Orientation | CS         | LS2        |          |        |       |       | Initial Orientatio | LS2        | CS         |   |       |         |       |       |
| Final Orientatio    | CS<br>DD1  | LS2        |          | LS1*   | LS1   |       | Final Orientation  | LS2        | RS1        |   |       | LB2     | LS1   |       |
|                     | RS2        |            |          | *-CH2- |       |       |                    | LBZ        |            |   |       | C=0     | -CH2- |       |
|                     | 102        |            |          | CS     |       |       |                    |            |            |   |       |         | -CH-  |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
| Total Energy        | 130.683    |            |          |        |       |       | Total Energy       | 139.606    |            |   |       |         |       |       |
| van der Waals       | 104.379    |            |          |        |       |       | van der Waals      | 112.806    |            |   |       |         |       |       |
| electrostatic       | -203.205   |            |          |        |       |       | electrostatic      | -237.474   |            |   |       |         |       |       |
| ΔEs                 | -113.893   |            |          |        |       |       | ΔEs                | -104.97    |            |   |       |         |       |       |
|                     | -17.323    |            |          |        |       |       |                    | -8.896     |            |   |       |         |       |       |
|                     | -103.024   |            |          |        |       |       |                    | -97.233    |            |   |       |         |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
|                     | н          | н          | 0        | к      | Glv9  | Tyr10 |                    | н          | н          | 0 | к     | GIV9    |       |       |
| Initial Orientati   | CS         | LB2        | <u> </u> | ĸ      | Giys  | 1,110 | Initial Orientatio | RB1        | LB1        | ~ | Ň     | Giys    |       |       |
| Final Orientatio    | LB1        | LS2        |          | LS1    | CS    | LS2   | Final Orientation  | RB1        | LS2        |   | LS1   | RB1     |       |       |
|                     | LS1        | LS1        |          | -CH2-  | C=O   | -CH2- |                    | RNH        | LS1        |   |       | C=O     |       |       |
|                     | -CH2-      | -CH-       |          |        |       |       |                    | RS1<br>RB2 |            |   |       |         |       |       |
|                     | 0.5        |            |          |        |       |       |                    | NDZ        |            |   |       |         |       |       |
| Total Energy        | 160.629    |            |          |        |       |       | Total Energy       | 106.001    |            |   |       |         |       |       |
| van der Waals       | 108.539    |            |          |        |       |       | van der Waals      | 105.858    |            |   |       |         |       |       |
| electrostatic       | -231.106   |            |          |        |       |       | electrostatic      | -288.005   |            |   |       |         |       |       |
| AEc                 | 92 047     |            |          |        |       |       | AEc                | 120 575    |            |   |       |         |       |       |
|                     | -13.163    |            |          |        |       |       | 41.5               | -15.844    |            |   |       |         |       |       |
|                     | -70.865    |            |          |        |       |       |                    | -127.764   |            |   |       |         |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
|                     |            |            | <u>^</u> |        |       |       |                    |            |            | • |       | <u></u> |       |       |
| Initial Orientation | H<br>LB1   | RB1        | ų        | ĸ      |       |       | Initial Orientatio | H<br>LB1   | RS1        | ų | ĸ     | GIV9    |       |       |
| Final Orientatio    | LS1        | RS1        |          | LS2    |       |       | Final Orientation  | LB1        | RS1        |   | LS2   | LS1     |       |       |
|                     |            |            |          | 2      |       |       |                    | CS         | CS         |   | 2     | C=O     |       |       |
|                     |            |            |          | LB1    |       |       |                    | -CH2-      | -CH-       |   | CS    |         |       |       |
|                     |            |            |          | -CH2-  |       |       |                    | LS1        |            |   | -CH2- |         |       |       |
|                     |            |            |          |        |       |       |                    | LSZ        |            |   |       |         |       |       |
| Total Energy        | 132.501    |            |          |        |       |       | Total Energy       | 121.79     |            |   |       |         |       |       |
| van der Waals       | 117.442    |            |          |        |       |       | van der Waals      | 110.988    |            |   |       |         |       |       |
| electrostatic       | -274.526   |            |          |        |       |       | electrostatic      | -275.435   |            |   |       |         |       |       |
| AE <sub>2</sub>     | 112.075    |            |          |        |       |       | A.E.a              | 122 796    |            |   |       |         |       |       |
| ALS                 | -112.075   |            |          |        |       |       | ALS                | -10 714    |            |   |       |         |       |       |
|                     | -114.285   |            |          |        |       |       |                    | -115.194   |            |   |       |         |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
|                     |            |            | -        |        |       |       |                    |            |            |   |       |         |       |       |
| Initial Orientatio  | H<br>DC1   | H<br>I P1  | Q        | К      | Gly9  |       | Initial Orientatio | H<br>DD1   | H<br>IS1   | Q | К     | Gly9    | Tyr10 | Leu17 |
| Final Orientatio    | RS1        | LB1<br>LS1 |          | RNH    | RS1   |       | Final Orientation  | RS1        | LS1<br>LS2 |   | LS1   | RS1*    | CS    | LS1   |
|                     |            |            |          |        | C=O   |       |                    | RB1        | LS1        |   | -CH2- | RB1*    | -CH2- |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       | *C=O    |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
| Total Energy        | 1/12 / 100 |            |          |        |       |       | Total Energy       | 134.4      |            |   |       |         |       |       |
| van der Waals       | 117.472    |            |          |        |       |       | van der Waals      | 106.173    |            |   |       |         |       |       |
| electrostatic       | -257.406   |            |          |        |       |       | electrostatic      | -260.158   |            |   |       |         |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
| ΔEs                 | -102.077   |            |          |        |       |       | ΔEs                | -110.176   |            |   |       |         |       |       |
|                     | -4.25      |            |          |        |       |       |                    | -15.529    |            |   |       |         |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   |       |         |       |       |
|                     | H          | Н          | Q        | К      |       |       |                    | H          | H          | Q | К     | Gly9    | Tyr10 |       |
| Final Orientatio    | RS1        | C2         |          | LB1    |       |       | Final Orientation  | LB1        | R52<br>R52 |   | 152   | CS.     | CS.   |       |
|                     | CS         | -CH-       |          | LS2    |       |       |                    | LS1        | RS1        |   | 2     | C=0     | -CH2- |       |
|                     | -CH2-      |            |          | 2      |       |       |                    | LS2        |            |   | RS2   |         |       |       |
|                     | LB1        |            |          | CS     |       |       |                    |            |            |   | -CH2- |         |       |       |
|                     | LS1        |            |          | -CH2-  |       |       |                    |            |            |   |       |         |       |       |
|                     |            |            |          | 1.51   |       |       |                    |            |            |   |       |         |       |       |
| Total Energy        | 126.537    |            |          |        |       |       | Total Energy       | 98.47      |            |   |       |         |       |       |
| van der Waals       | 114.699    |            |          |        |       |       | van der Waals      | 104.359    |            |   |       |         |       |       |
| electrostatic       | -279.398   |            |          |        |       |       | electrostatic      | -292.452   |            |   |       |         |       |       |
| AEs                 | -118 030   |            |          |        |       |       | AFs                | -146 106   |            |   |       |         |       |       |
|                     | -7.003     |            |          |        |       |       |                    | -17.343    |            |   |       |         |       |       |
|                     | -119.157   |            |          |        |       |       |                    | -132.211   |            |   |       |         |       |       |
|                     |            |            |          |        |       |       |                    |            |            |   | -     |         |       |       |
|                     | н          | н          | 0        | к      | Leu17 |       |                    | н          | н          | 0 | к     | Tvr10   |       |       |
| Initial Orientati   | RS2        | LB1        |          |        |       |       | Initial Orientatio | RB1        | LS2        | _ |       | ,       |       |       |
| Final Orientatio    | RS2        | LS2        |          | RS1    | CS    |       | Final Orientation  | RS2        | LS2        |   |       | LS2     |       |       |
|                     |            | LB1        |          | RS2    |       |       |                    |            |            |   |       | -CH2-   |       |       |
|                     |            | CS         |          |        |       |       |                    |            |            |   |       |         |       |       |
| Total Energy        | 121.293    |            |          |        |       |       | Total Fnerøv       | 153.461    |            |   |       |         |       |       |
| van der Waals       | 105.592    |            |          |        |       |       | van der Waals      | 112.18     |            |   |       |         |       |       |
| electrostatic       | -272.75    |            |          |        |       |       | electrostatic      | -244.615   |            |   |       |         |       |       |
| 45                  |            |            |          |        |       |       | 4.5                |            |            |   |       |         |       |       |
| ΔEs                 | -123.283   |            |          |        |       |       | ΔEs                | -91.115    |            |   |       |         |       |       |
|                     | -10.11     |            |          |        |       |       |                    | -9.522     |            |   |       |         |       |       |
|                     | -112.509   |            |          |        |       |       |                    | -04.374    |            |   |       |         |       |       |

|                     | н        | н     | 0 | K      | Glyg    | Tyr10        | 10117 | Val18    |                     |
|---------------------|----------|-------|---|--------|---------|--------------|-------|----------|---------------------|
|                     | 11       |       | ų | ĸ      | Gry 5   | 19110        | Leur/ | Valio    |                     |
| Initial Orientation | LS2      | RB1   |   |        |         |              |       |          | Initial Orientatio  |
| Final Orientatio    | LB1      | RB1   |   | LB2    | LS1     | CS           | RS2   | RS2      | Final Orientation   |
|                     | 162      | 65    |   | 152    | C=0     | CH3          |       |          |                     |
|                     | 632      | 0     |   | L32    | C-0     | -CH2-        |       |          |                     |
|                     | LS1      | -CH2- |   |        |         |              |       |          |                     |
|                     |          | RS1   |   |        |         |              |       |          |                     |
|                     |          | 000   |   |        |         |              |       |          |                     |
|                     |          | R52   |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| Total Energy        | 99.12    |       |   |        |         |              |       |          | Total Enermy        |
| Total Lifergy       | 99.1Z    |       |   |        |         |              |       |          | Total Lifelgy       |
| van der Waals       | 100.016  |       |   |        |         |              |       |          | van der Waals       |
| electrostatic       | -291.072 |       |   |        |         |              |       |          | electrostatic       |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| ΔEs                 | -145.456 |       |   |        |         |              |       |          | ΔEs                 |
|                     | 21 696   |       |   |        |         |              |       |          |                     |
|                     | -21.000  |       |   |        |         |              |       |          |                     |
|                     | -130.831 |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     | н        | н     | Q | K      | Tyr10   |              |       |          |                     |
| Initial Orientatio  | IB1      | RB2   |   |        |         |              |       |          | Initial Orientatio  |
| initial Offentatio  | LDI      | ND2   |   |        |         |              |       |          | initial Offentatio  |
| Final Orientatio    | RB1      | RB2   |   |        | RS2     |              |       |          | Final Orientation   |
|                     | 152      | RS2   |   |        | -CH2-   |              |       |          |                     |
|                     | LD4      |       |   |        |         |              |       |          |                     |
|                     | LDI      |       |   |        |         |              |       |          |                     |
|                     | CS       |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| Total Energy        | 128,469  |       |   |        |         |              |       |          | Total Energy        |
| uan dan Maala       | 104 222  |       |   |        |         |              |       |          | upp day Maple       |
| vanuer waals        | 104.222  |       |   |        |         |              |       |          | van uer waals       |
| electrostatic       | -263.496 |       |   |        |         |              |       |          | electrostatic       |
|                     |          |       |   |        |         |              |       |          |                     |
| AE <sub>a</sub>     | 140.000  |       | 1 | 1      |         |              |       | + +      | AT7-                |
| \DES                | -116.107 |       |   |        |         |              |       |          | ΔES                 |
|                     | -17.48   |       |   |        |         |              |       |          |                     |
|                     | -102 255 |       |   |        |         |              |       |          |                     |
|                     | -103.235 |       | - | -      |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       | - |        | e: ·    | <b>T</b> (1) |       | +        |                     |
|                     | н        | н     | Q | к      | Gly9    | Tyr10        |       |          |                     |
| Initial Orientatio  | RB1      | LB2   |   |        |         |              |       |          | Initial Orientation |
| Einal Origatati     | LP4      | 1.00  |   | DC2    | 1.04    | 1.04         |       |          | Final Orientation   |
| Final Orientatio    | LDI      | LDZ   |   | R52    | LDI     | LOI          |       |          | Final Orientation   |
|                     | RB1      | LS1   |   | RB1    | C=O     | LNH*         |       |          |                     |
|                     | PB1      |       |   |        |         | 181*         |       |          |                     |
|                     | TKD T    |       |   |        |         | 1.0110       |       |          |                     |
|                     | LNH      |       |   |        |         | *-CH2-       |       |          |                     |
|                     | -NH-     |       |   |        |         |              |       |          |                     |
|                     | DNUL     |       |   |        |         |              |       |          |                     |
|                     | RNH      |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| Total Energy        | 107 413  |       |   |        |         |              |       |          | Total Energy        |
| rotal Energy        | 1071-115 |       |   |        |         |              |       |          | rotal chergy        |
| van der Waals       | 97.731   |       |   |        |         |              |       |          | van der Waals       |
| electrostatic       | -275.241 |       |   |        |         |              |       |          | electrostatic       |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| ΔEs                 | -137.163 |       |   |        |         |              |       |          | ΔEs                 |
|                     | 22 071   |       |   |        |         |              |       |          |                     |
|                     | -23.571  |       |   |        |         |              |       |          |                     |
|                     | -115     |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     | н        | н     | Q | K      | Leu17   |              |       |          |                     |
| Initial Orientatio  | PS2      | 152   |   |        |         |              |       |          | Initial Orientatio  |
|                     | 102      | 202   |   |        |         |              |       |          | initial Orientatio  |
| Final Orientatio    | RB2      | LS2   |   | RS1    | CS      |              |       |          | Final Orientation   |
|                     | RS2      |       |   | RS2*   |         |              |       |          |                     |
|                     |          |       |   | 0044   |         |              |       |          |                     |
|                     |          |       |   | RDI    |         |              |       |          |                     |
|                     |          |       |   | CS*    |         |              |       |          |                     |
|                     |          |       |   | *-CH2- |         |              |       |          |                     |
|                     |          |       |   | -0112- |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| Total Energy        | 114.822  |       |   |        |         |              |       |          | Total Energy        |
|                     | 406 747  |       |   |        |         |              |       |          |                     |
| van uer Waais       | 100./1/  |       |   |        |         |              |       |          | van der waals       |
| electrostatic       | -279.908 |       |   |        |         |              |       |          | electrostatic       |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| ΔES                 | -129.754 |       |   |        |         |              |       |          | ΔEs                 |
|                     | -14.985  |       |   |        |         |              |       |          |                     |
|                     | 110 007  |       | 1 | 1      |         |              |       |          |                     |
|                     | -119.00/ |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       | ~ | v      | 1/0110  |              |       |          |                     |
|                     | - 11     |       | ų | N      | v al 10 |              |       |          |                     |
| Initial Orientation | LS2      | RB2   |   |        |         |              |       |          | Initial Orientatio  |
| Final Orientatio    | LS2      | RB2   |   | LS2    | RB2     |              |       |          | Final Orientation   |
|                     | 101      |       |   |        |         |              |       |          |                     |
|                     | LS1      |       | - | -      |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       | +        |                     |
|                     |          |       |   |        |         |              |       |          |                     |
| Total Energy        | 107.914  |       |   |        |         |              |       |          | Total Energy        |
| van der Weele       | 105 207  |       | 1 |        |         |              |       |          | van der Weels       |
| van uer waals       | 105.287  |       |   |        |         |              |       |          | vali uer Waals      |
| electrostatic       | -282.698 |       |   |        |         |              |       |          | electrostatic       |
|                     |          |       |   |        |         |              |       |          |                     |
| AEa                 | 100 000  |       |   | 1      |         |              |       |          | A 17-               |
| ΔES                 | -136.662 |       |   |        |         |              |       |          | ΔES                 |
|                     | -16.415  |       |   |        |         |              |       |          |                     |
|                     | -122 457 |       |   |        |         |              |       |          |                     |
|                     | -122.45/ |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       | ~ |        | 1 4: 17 | Maido        |       | + +      |                     |
|                     | н        | н     | ų | к      | Leu1/   | val18        |       | ļ        |                     |
| Initial Orientation | RS2      | LB2   |   |        |         |              |       |          | Initial Orientatio  |
| Final Orientatio    | RB2      | LB2   |   | RB1    | 1.52    | 1.52         |       |          | Final Orientation   |
| . mai orientatio    | 1.02     | 102   |   | T(D)   | 1.32    | 1.32         |       | +        | i mai Orientation   |
|                     | RS2      | LS2   |   | RS2    |         |              |       |          |                     |
|                     |          |       |   |        |         |              |       |          |                     |
|                     |          |       | 1 |        |         |              |       |          |                     |
|                     |          |       | - | -      |         |              |       |          |                     |
| Total Energy        | 124.503  |       |   |        |         |              |       |          | Total Energy        |
| van der Waals       | 109 776  |       |   |        |         |              |       |          | van der Waals       |
| alast vvaais        | 200.770  |       |   |        |         |              |       | +        |                     |
| electrostatic       | -2/6.707 |       |   |        |         |              |       |          | electrostatic       |
|                     |          |       |   |        |         |              |       |          |                     |
| AEc                 | 120.072  |       |   |        |         |              |       |          | AEc                 |
| \DES                | -120.073 |       | - |        |         |              |       |          | ΔES                 |
|                     | -11.926  |       |   |        |         |              |       |          |                     |
|                     | 110.400  |       |   |        |         |              |       | <u> </u> |                     |
|                     | -110.466 |       |   |        |         |              |       |          |                     |

|                     | н        | н    | Q | К     | Gly9  | Val18 |                    | н        | н   | Q | К      |
|---------------------|----------|------|---|-------|-------|-------|--------------------|----------|-----|---|--------|
| Initial Orientation | LB2      | RB2  |   |       |       |       | Initial Orientatio | LS1      | RS1 |   |        |
| Final Orientatio    | LB2      | RB2  |   |       | LB2   | RB2   | Final Orientation  | LB1      | RS1 |   | LB1    |
|                     |          | RS2  |   |       | C=O   |       |                    | LNH      | RB1 |   |        |
|                     |          |      |   |       |       |       |                    | LS1      |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
| Total Energy        | 195.363  |      |   |       |       |       | Total Energy       | 152.459  |     |   |        |
| van der Waals       | 115.52   |      |   |       |       |       | van der Waals      | 110.378  |     |   |        |
| electrostatic       | -209.830 |      |   |       |       |       | electrostatic      | -240.019 |     |   |        |
| AFe                 | -/10 213 |      |   |       |       |       | AFe                | -02 117  |     |   |        |
|                     | -6.182   |      |   |       |       |       | 1115               | -11.324  |     |   |        |
|                     | -49.595  |      |   |       |       |       |                    | -86.378  |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     | н        | н    | Q | к     | Tyr10 |       |                    | н        | н   | Q | К      |
| Initial Orientation | RS1      | LS1  |   |       |       |       | Initial Orientatio | CS       |     |   | RB1    |
| Final Orientatio    | RS1      | LS1  |   | RS1   | CS    |       | Final Orientation  | RB1      |     |   | RS2    |
|                     | RB1      | LB1  |   | RNH   | -CH2- |       |                    | CS       |     |   | 2      |
|                     |          | LINH |   |       |       |       |                    |          |     |   | -CH2-  |
|                     |          |      |   |       |       |       |                    |          |     |   | -0112- |
| Total Energy        | 129.888  |      |   |       |       |       | Total Energy       | 170.62   |     |   |        |
| van der Waals       | 106.317  |      |   |       |       |       | van der Waals      | 118.265  |     |   |        |
| electrostatic       | -269.602 |      |   |       |       |       | electrostatic      | -232.103 |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
| ΔEs                 | -114.688 |      |   |       |       |       | ΔEs                | -73.956  |     |   |        |
|                     | -15.385  |      |   |       |       |       |                    | -3.437   |     |   |        |
|                     | -109.361 |      |   |       |       |       |                    | -71.862  |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     | н        | н    | 0 | к     |       |       |                    | н        | н   | 0 | к      |
| Initial Orientatio  | RB1      |      | _ | CS    |       |       | Initial Orientatio | CS       | •   |   | LB1    |
| Final Orientatio    | RS1      |      |   | LS1   |       |       | Final Orientation  | -        |     |   | LS1    |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
| Total Energy        | 176.809  |      |   |       |       |       | Total Energy       | 174.098  |     |   |        |
| van der Waals       | 120.924  |      |   |       |       |       | van der Waals      | 122.367  |     |   |        |
| electrostatic       | -228.247 |      |   |       |       |       | electrostatic      | -232.98  |     |   |        |
| 15                  |          |      |   |       |       |       | 15                 |          |     |   |        |
| ΔES                 | -6/./6/  |      |   |       |       |       | ΔES                | - /0.4/8 |     |   |        |
|                     | -68.006  |      |   |       |       |       |                    | -72 720  |     |   |        |
|                     | -00.000  |      |   |       |       |       |                    | -12.135  |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     | н        | н    | Q | к     |       |       |                    | н        | н   | Q | к      |
| Initial Orientation | LB1      |      |   | CS    |       |       | Initial Orientatio | CS       |     |   | RS1    |
| Final Orientatio    | LS1      |      |   | RB1   |       |       | Final Orientation  | RB1      |     |   | RS2    |
|                     | 2        |      |   | RS1   |       |       |                    | CS       |     |   | RS1    |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
| Total Energy        | 167.609  |      |   |       |       |       | Total Energy       | 171.734  |     |   |        |
| electrostatic       | -222.674 |      |   |       |       |       | electrostatic      | -221 866 |     |   |        |
| electrostatic       | =255.074 |      |   |       |       |       | electrostatic      | =251.600 |     |   |        |
| ΔEs                 | -76.967  |      |   |       |       |       | ΔEs                | -72.842  |     |   |        |
|                     | -5.638   |      |   |       |       |       |                    | -5.166   |     |   |        |
|                     | -73.433  |      |   |       |       |       |                    | -71.625  |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     | н        | н    | Q | к     |       |       |                    | н        | н   | Q | к      |
| Initial Orientatio  | RS1      |      |   | CS    |       |       | Initial Orientatio | CS       |     |   | LS1    |
| Final Orientatio    | RS1      |      |   | RS2   |       |       | Final Orientation  | LB1      |     |   | LB2    |
|                     |          |      |   |       |       |       |                    | LNH      |     |   | LS1    |
|                     |          |      |   |       |       |       |                    | 201      |     |   | -0112- |
| Total Energy        | 167.973  |      |   |       |       |       | Total Energy       | 159.814  |     |   |        |
| van der Waals       | 116.407  |      |   |       |       |       | van der Waals      | 117.038  |     |   |        |
| electrostatic       | -232.764 |      |   |       |       |       | electrostatic      | -244.256 |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
| ΔEs                 | -76.603  |      |   |       |       |       | ΔEs                | -84.762  |     |   |        |
|                     | -5.295   |      |   |       |       |       |                    | -4.664   |     |   |        |
|                     | -72.523  |      |   |       |       |       |                    | -84.015  |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     | н        | н    | 0 | к     |       |       |                    | н        | н   | 0 | к      |
| Initial Orientatio  | LS1      |      | ~ | CS    |       |       | Initial Orientatio | CS       |     | - | RS2    |
| Final Orientatio    | LS1      |      |   | RB1   |       |       | Final Orientation  | RB1      |     |   | RS2    |
|                     |          |      |   | RS1   |       |       |                    | CS       |     |   | 2      |
|                     |          |      |   | RS2   |       |       |                    | RS1      |     |   | RS1    |
|                     | 407.7    |      |   | -     |       |       |                    | 455 -    |     |   |        |
| Iotal Energy        | 162.074  |      |   |       |       |       | Total Energy       | 153.152  |     |   |        |
| van der Waals       | 115.997  |      |   | -     |       |       | van der Waals      | 117.156  |     |   |        |
| ciecciostatic       | 233.328  |      |   |       |       |       | electrostatic      | -2.51.04 |     |   |        |
| ΔEs                 | -82.502  |      |   |       |       |       | ΔEs                | -91,474  |     |   |        |
|                     | -5.705   |      |   |       |       |       |                    | -4.546   |     |   |        |
|                     | -79.287  |      |   |       |       |       |                    | -91.399  |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
|                     | н        | н    | Q | К     |       |       |                    | н        | н   | Q | к      |
| Initial Orientatio  | RS2      |      |   | CS    |       |       | Initial Orientatio | CS       |     |   | LS2    |
| rmai Urientatio     | RS1      |      |   | LB1   |       |       | rinal Orientation  | 65       |     |   | LB2    |
|                     | RS2      |      |   | 1.92  |       |       |                    | L32      |     |   | 202    |
|                     |          |      |   | CS    |       |       |                    |          |     |   | -      |
|                     |          |      |   | -CH2- |       |       |                    |          |     |   |        |
|                     |          |      |   |       |       |       |                    |          |     |   |        |
| Total Energy        | 142.735  |      |   |       |       |       | Total Energy       | 179.787  |     |   |        |
| van der Waals       | 110.352  |      |   |       |       |       | van der Waals      | 120.458  |     |   |        |
| electrostatic       | -252.207 |      |   |       |       |       | electrostatic      | -224.119 |     |   |        |
| AEa                 | 101 04   |      |   |       |       |       | A E a              | 64 700   |     |   |        |
| AES                 | -101.841 |      |   |       |       |       | ΔES                | -64.789  |     |   |        |
|                     | -11.35   |      |   |       |       |       |                    | -1.244   |     |   |        |
|                     | 51.500   |      |   |       |       |       |                    | 00.070   |     |   |        |

|                     | н        | ч | 0 | K     |        |                     | н        | н | 0        | V     |      |      |
|---------------------|----------|---|---|-------|--------|---------------------|----------|---|----------|-------|------|------|
| Initial Orientatio  | 1.52     |   | Q | CS    |        | Initial Orientatio  | IB1      |   | ų        | RB1   |      |      |
| Final Orientatio    | 1.52     |   |   | CS    |        | Final Orientation   | LB1      |   |          | RS1   |      |      |
|                     | 1.51     |   |   |       |        |                     | 1.51     |   |          | 2     |      |      |
|                     | 201      |   |   |       |        |                     | 201      |   |          | -     |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| Total Casar         | 470.040  |   |   |       |        | Total Colores       | 477 447  |   |          |       |      |      |
| Total Energy        | 170.648  |   |   |       |        | Iotal Energy        | 110 216  |   |          |       |      |      |
| van der waars       | 120.774  |   |   |       |        | van der waals       | 226,626  |   |          |       |      |      |
| electrostatic       | -230.507 |   |   |       |        | electrostatic       | -220.030 |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| ΔEs                 | -73.928  |   |   |       |        | ΔEs                 | -67.459  |   |          |       |      |      |
|                     | -0.928   |   |   |       |        |                     | -2.486   |   |          |       |      |      |
|                     | -76.326  |   |   |       |        |                     | -66.395  |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     | н        | н | Q | К     |        |                     | н        | н | Q        | к     |      |      |
| Initial Orientation | RB1      |   |   | LB1   |        | Initial Orientatio  | LB1      |   |          | RS1   |      |      |
| Final Orientatio    | RS1      |   |   | LS1   |        | Final Orientation   | LB1      |   |          | RS2   |      |      |
|                     |          |   |   | 2     |        |                     | CS       |   |          | 2     |      |      |
|                     |          |   |   | LB1   |        |                     | RB1      |   |          | RS1   |      |      |
|                     |          |   |   | LNH   |        |                     |          |   |          | -CH2- |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| Total Energy        | 171.583  |   |   |       |        | Total Energy        | 151.125  |   |          |       |      |      |
| van der Waals       | 118.557  |   |   |       |        | van der Waals       | 114.134  |   |          |       |      |      |
| electrostatic       | -233.045 |   |   |       |        | electrostatic       | -245.77  |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| ΔEs                 | -72 993  |   |   |       |        | ΔFs                 | -93 451  |   |          |       |      |      |
| 111.0               | -2 1/15  |   |   |       |        | 111)                | -7 569   |   |          |       |      |      |
|                     | 72 904   |   |   |       |        |                     | 95 520   |   |          |       |      |      |
|                     | -72.004  |   |   |       |        |                     | -03.329  |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     | Ч        | н | 0 | v     |        |                     | P        | н | 0        | v     |      |      |
| Initial Origination | PP4      | п | ų | K ID4 | +      | Initial Orleaster'  | n DD4    | п | ų        | K     |      |      |
| Final Orientatio    | R51      |   | - | LB1   |        | Figs Orientatio     | 101      |   |          | 101   |      |      |
| rinai Orientatio    | RS1      |   |   | LS1   |        | Final Orientation   | LB1      |   |          | LS1   |      |      |
|                     |          |   |   | 2     |        |                     | LS1      |   |          |       |      |      |
|                     |          |   | - |       |        |                     |          |   |          |       |      |      |
| Total Energy        | 173.34   |   |   |       |        | Total Energy        | 161.759  |   |          |       |      |      |
| van der Waals       | 120.502  |   |   |       |        | van der Waals       | 117.462  |   |          |       |      |      |
| electrostatic       | -231.449 |   |   |       |        | electrostatic       | -240.766 |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| ΔEs                 | -71.236  |   |   |       |        | ΔEs                 | -82.817  |   |          |       |      |      |
|                     | -1.2     |   |   |       |        |                     | -4.24    |   |          |       |      |      |
|                     | -71.208  |   |   |       |        |                     | -80.525  |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     | н        | н | 0 | К     |        |                     | н        | н | 0        | к     | Glv9 |      |
| Initial Orientatio  | LS1      |   |   | RB1   |        | Initial Orientatio  | LB1      |   |          | RS2   |      |      |
| Final Orientatio    | LS1      |   |   | RS1   |        | Final Orientation   | 1.52     |   |          | RS2   | 1.52 |      |
|                     |          |   |   |       |        |                     |          |   |          | 2     |      |      |
|                     |          |   |   |       |        |                     |          |   |          | RS1   |      |      |
|                     |          |   |   |       |        |                     |          |   |          | 1101  |      |      |
| Total Enormy        | 174.046  |   |   |       |        | Total Enormy        | 150.29   |   |          |       |      |      |
| Total Energy        | 1/4.046  |   |   |       |        | Total Energy        | 150.38   |   |          |       |      |      |
| vali del vvaals     | 220,002  |   |   |       |        |                     | 254.000  |   |          |       |      |      |
| electrostatic       | -230.882 |   |   |       |        | electrostatic       | -251.666 |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| ΔEs                 | -70.53   |   |   |       |        | ΔEs                 | -94.196  |   |          |       |      |      |
|                     | -2.072   |   |   |       |        |                     | -7.214   |   |          |       |      |      |
|                     | -70.641  |   |   |       |        |                     | -91.425  |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     | н        | н | Q | К     |        |                     | н        | н | Q        | к     |      |      |
| Initial Orientation | RS2      |   |   | LB1   |        | Initial Orientatio  | RB1      |   |          | LS2   |      |      |
| Final Orientatio    | RS2      |   |   | LS2   |        | Final Orientation   | LB1      |   |          | LS2   |      |      |
|                     |          |   |   | 2     |        |                     | CS       |   |          | 2     |      |      |
|                     |          |   |   | LS1   |        |                     | RS2      |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| Total Energy        | 148 389  |   |   |       |        | Total Energy        | 153 37   |   |          |       |      |      |
| van der Waals       | 120 747  |   |   |       |        | van der Waals       | 116.054  |   |          |       |      |      |
| electrostatic       | -255.95  |   |   |       |        | electrostatic       | -249 262 |   |          |       |      |      |
| electrostatic       | -233.85  |   |   |       |        | electrostatic       | -240.202 |   |          |       |      |      |
| 1.5                 |          |   |   |       |        |                     |          |   |          |       |      |      |
| ΔES                 | -96.187  |   |   |       | -      | ΔES                 | -91.206  |   |          |       |      |      |
|                     | -0.955   |   |   |       |        |                     | -5.648   |   |          |       |      |      |
|                     | -95.609  |   |   |       | -      |                     | -88.021  |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     |          |   | - |       | Dhate  |                     |          |   | <u>^</u> |       | 01.5 |      |
| Initial Origination | H        | н | Q | K     | Phe 19 | Initial Orleast 1   | H        | н | ų        | K     | GIY9 |      |
| Linal Orientatio    | LS2      |   |   | KB1   | DDO    | finitial Orientatio | LB1      |   | -        | RB2   | 1.01 |      |
| Final Orientatio    | LS2      |   |   | RS2   | RB2    | Final Orientation   | LB1      |   |          | RB2   | LS1  |      |
|                     | 2        |   |   | RB1   | RS2    |                     | RS1      |   |          | RS1   | C=0  |      |
|                     |          |   |   |       |        |                     | RB1      |   |          | RNH   |      |      |
|                     |          |   |   |       |        |                     | LNH      |   |          |       |      |      |
|                     |          |   |   |       |        |                     | LS1      |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| Total Energy        | 147.54   |   |   |       |        | Total Energy        | 157.675  |   |          |       |      |      |
| van der Waals       | 113.929  |   |   |       |        | van der Waals       | 110.979  |   |          |       |      |      |
| electrostatic       | -253.465 |   |   |       |        | electrostatic       | -245.245 |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| ΔEs                 | -97.036  |   |   |       |        | ΔEs                 | -86.901  |   |          |       |      |      |
|                     | -7.773   |   |   |       |        |                     | -10.723  |   |          |       |      |      |
|                     | -93.224  |   |   |       |        |                     | -85.004  |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
|                     | н        | н | Q | к     |        |                     | н        | н | Q        | к     | Ser8 | Gly9 |
| Initial Orientatio  | RB2      |   |   | LB1   |        | Initial Orientatio  | RB1      |   |          | LB2   |      |      |
| Final Orientatio    | RNH      |   |   | LB1   |        | Final Orientation   | LB1      |   |          | LB2   | RS1  | RB1  |
|                     | RS1      |   |   | RB1   |        |                     | RB1      |   |          | 1.51  |      |      |
|                     | RB2      |   |   |       |        |                     | RB1      |   |          | -CH2- |      |      |
|                     | 1102     |   |   |       |        |                     | RNU      |   |          | I NH  |      |      |
|                     |          |   |   |       |        |                     | DCO      |   |          |       |      |      |
|                     |          |   | - |       |        |                     | R52      |   |          |       |      |      |
| Tabal Ca            | 467.040  |   |   |       |        | Tatal 7             | 146 169  |   |          |       |      |      |
| i otal Energy       | 167.219  |   |   |       |        | I otal Energy       | 146.163  |   |          |       |      |      |
| van der Waals       | 114.611  |   |   |       |        | van der Waals       | 107.697  |   |          |       |      |      |
| erectrostatic       | -233.144 |   |   |       |        | electrostatic       | -250.387 |   | -        |       |      |      |
|                     |          |   |   |       |        |                     |          |   |          |       |      |      |
| ΔEs                 | -77.357  |   |   |       |        | ΔEs                 | -98.413  |   |          |       |      |      |
|                     | -7.091   |   |   |       |        |                     | -14.005  |   |          |       |      |      |
|                     | -72.903  |   |   |       |        |                     | -90.146  |   |          |       |      |      |

|                       | н                             | н    | 0 | к     | Val12    |                     | н                               | н     | 0 | к      |        |       |
|-----------------------|-------------------------------|------|---|-------|----------|---------------------|---------------------------------|-------|---|--------|--------|-------|
| Initial Orientation   | 1.82                          |      | ų | RB1   | Vanz     | Initial Orientation | RS2                             |       | ~ | 1.52   |        |       |
| Einal Orientation     | 1.51                          |      |   | DB1   | 1.91     | Einal Orientation   | PS2                             |       |   | 1.52   |        |       |
| i illai Ollelitatioli |                               |      |   | 1.04  | LOT      | iniai onentation    | 1102                            |       |   | 2      |        |       |
|                       | LINH                          |      |   | LBT   |          |                     |                                 |       |   | 2      |        |       |
|                       | LB2                           |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| Total Energy          | 163.53                        |      |   |       |          | Total Energy        | 164.19                          |       |   |        |        |       |
| van der Waals         | 113.7                         |      |   |       |          | van der Waals       | 119.593                         |       |   |        |        |       |
| electrostatic         | -241.377                      |      |   |       |          | electrostatic       | -241.015                        |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| ΔEs                   | -81.046                       |      |   |       |          | ΔEs                 | -80.386                         |       |   |        |        |       |
|                       | -8.002                        |      |   |       |          |                     | -2.109                          |       |   |        |        |       |
|                       | -81.136                       |      |   |       |          |                     | -80.774                         |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       | н                             | н    | Q | К     |          |                     | н                               | н     | 0 | К      |        |       |
| Initial Orientation   | 1.52                          |      |   | RS2   |          | Initial Orientation | 1.52                            |       |   | RB2    |        |       |
| Final Orientation     | 1.52                          |      |   | RS2   |          | Final Orientation   |                                 |       |   | RS2    |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   | 1.52   |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   | RNH    |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| Total Enermy          | 167.65                        |      |   |       |          | Total Energy        | 152.95                          |       |   |        |        |       |
| rotal Lifetgy         | 107.05                        |      |   |       |          | iotal chergy        | 114.102                         |       |   |        |        |       |
| van der waars         | 121.30                        |      |   |       |          | van der waars       | 114.193                         |       |   |        |        |       |
| electrostatic         | -239.456                      |      |   |       |          | electrostatic       | -246.025                        |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| ΔEs                   | -76.926                       |      |   |       |          | ΔEs                 | -90.726                         |       |   |        |        |       |
|                       | -0.342                        |      |   |       |          |                     | -7.509                          |       |   |        |        |       |
|                       | -79.215                       |      |   |       |          |                     | -85.784                         |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       | Н                             | н    | Q | к     | Gly9     |                     | н                               | н     | Q | К      |        |       |
| Initial Orientation   | RB2                           |      |   | LS2   |          | Initial Orientation | LB2                             |       |   | RS2    |        |       |
| Final Orientation     | RB2                           |      |   | LS2   | RB2      | Final Orientation   | LB2                             |       |   | RS2    |        |       |
|                       | RS2                           |      |   | 2     |          |                     | LS2                             |       |   | 2      |        |       |
|                       |                               |      |   | -     |          |                     |                                 |       |   | -      |        |       |
| Total Energy          | 160 506                       |      |   | -     |          | Total Energy        | 163 21                          |       |   |        |        |       |
| van der Maale         | 116 154                       |      |   |       |          | wan dar Waals       | 110 226                         |       |   |        |        |       |
| van der waars         | 244.252                       |      |   |       |          | van der waars       | 242.072                         |       |   |        |        |       |
| electrostatic         | -244.352                      |      |   |       |          | electrostatic       | -243.973                        |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| ΔEs                   | -84.07                        |      |   |       |          | ΔEs                 | -81.366                         |       |   |        |        |       |
|                       | -5.548                        |      |   |       |          |                     | -2.466                          |       |   |        |        |       |
|                       | -84.111                       |      |   |       |          |                     | -83.732                         |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       | н                             | н    | Q | К     |          |                     | н                               | н     | Q | К      | Gly9   |       |
| Initial Orientation   | RS2                           |      |   | LB2   |          | Initial Orientation | RB2                             |       |   | LB2    |        |       |
| Final Orientation     | RS1                           |      |   | LS2   |          | Final Orientation   | RS2                             |       |   | LS2    | RB2    |       |
|                       | RS2                           |      |   | 1.82  |          |                     |                                 |       |   |        |        |       |
|                       | 1102                          |      |   | LOL   |          |                     |                                 |       |   |        |        |       |
| Total Coloma          | 121 201                       |      |   |       |          | Total Canada        | 100 400                         |       |   |        |        |       |
| Total Ellergy         | 131.291                       |      |   |       |          | Total Energy        | 100.430                         |       |   |        |        |       |
| van der waais         | 111.018                       |      |   |       |          | van der waais       | 116.234                         |       |   |        |        |       |
| electrostatic         | -266.759                      |      |   |       |          | electrostatic       | -234.492                        |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| ΔEs                   | -113.285                      |      |   |       |          | ΔEs                 | -78.14                          |       |   |        |        |       |
|                       | -10.684                       |      |   |       |          |                     | -5.468                          |       |   |        |        |       |
|                       | -106.518                      |      |   |       |          |                     | -74.251                         |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       | н                             | н    | Q | К     | Phe19    |                     | н                               | н     | Q | к      |        |       |
| Initial Orientation   | LB2                           |      |   | RB2   |          | Initial Orientation | LS1                             |       |   | RS1    |        |       |
| Final Orientation     | LS2                           |      |   | RS2   | RB2      | Final Orientation   | LB1                             |       |   | RB1    |        |       |
|                       | -                             |      |   | RB2   |          |                     | 1.51                            |       |   | RS2    |        |       |
|                       |                               |      |   |       |          |                     | 09                              |       |   | PS1    |        |       |
|                       |                               |      |   |       |          |                     | DB1                             |       |   | CH2    |        |       |
|                       |                               |      |   |       |          |                     | KB I                            |       |   | -012-  |        |       |
| T . 15                |                               |      |   |       |          | F . 1 F             |                                 |       |   |        |        |       |
| Total Energy          | 164.18                        |      |   |       |          | Iotal Energy        | 148.441                         |       |   |        |        |       |
| van der Waals         | 116.998                       |      |   |       |          | van der Waals       | 113.402                         |       |   |        |        |       |
| electrostatic         | -239.442                      |      |   |       |          | electrostatic       | -252.67                         |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| ΔEs                   | -80.396                       |      |   |       |          | ΔEs                 | -96.135                         |       |   |        |        |       |
|                       | -4.704                        |      |   |       |          |                     | -8.3                            |       |   |        |        |       |
|                       | -79.201                       |      |   |       |          |                     | -92.429                         |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       | н                             | н    | Q | к     |          |                     | н                               | н     | Q | К      | Tyr10  |       |
| Initial Orientation   | RS1                           |      |   | LS1   |          | Initial Orientation |                                 | CS    |   | RS2    |        |       |
| Final Orientation     | RB1                           |      |   | LB1   |          | Final Orientation   | RS2                             | LS1   |   | RS2    | LS2    |       |
|                       | RS1                           |      |   | LS1   |          |                     | CS                              | CS    |   | RS1    |        |       |
|                       | CS                            |      |   | 1.52  |          |                     | -CH2-                           | -CH-  |   | CS     |        |       |
|                       | 00                            |      |   | 002   |          |                     | -002-                           | -011- |   | _CH0   |        |       |
|                       |                               |      |   | -CH2  |          |                     |                                 |       |   | -0112- |        |       |
|                       | -                             |      |   | -CH2- |          |                     |                                 |       |   |        |        |       |
| Tabal C               | 407.07                        |      |   | -     |          | Total C             |                                 |       |   |        |        |       |
| I OTAL ENERGY         | 167.224                       |      |   |       |          | I otal Energy       | 110.367                         |       |   |        |        |       |
| van der Waals         | 112.638                       |      |   |       |          | van der Waals       | 106.661                         |       |   |        |        |       |
| electrostatic         | -234.371                      |      |   |       |          | electrostatic       | -285.894                        |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| ΔEs                   | -77.352                       |      |   |       |          | ΔEs                 | -134.209                        |       |   |        |        |       |
|                       | -9.064                        |      |   |       |          |                     | -15.041                         |       |   |        |        |       |
|                       | -74.13                        |      |   |       |          |                     | -125.653                        |       |   |        |        |       |
|                       | -                             |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       | н                             | н    | 0 | к     |          |                     | н                               | н     | 0 | к      | Tvr10  | Leu17 |
| Initial Orientation   |                               | CS   | ų | 1.52  |          | Initial Orientation |                                 | 1.52  | ~ | CS.    | .,     |       |
| Final Orientation     | LB1                           | RS1  |   | 1.52  |          | Final Orientation   | RS2                             | 1.52  |   | RR1    | 1.52   | 1.51  |
| . mai orientation     | 09                            | C9   |   | 102   |          | i mai onentation    | 162                             | _CU   |   | DQ1    | -CH2   | 201   |
|                       | 00                            | 03   |   | -     | <u> </u> |                     | L02                             | -url- |   | 101    | -0112- |       |
|                       | -CH2-                         | -UH- |   | -     |          |                     | -CH2-                           | LB2   |   | LS1    |        |       |
|                       | +                             |      |   |       |          |                     |                                 |       |   | -CH2-  |        |       |
|                       | 1.                            |      |   |       |          |                     |                                 |       |   |        |        |       |
| Total Energy          | 122.67                        |      |   |       |          | Total Energy        | 98.547                          |       |   |        |        |       |
| van der Waals         | 113.245                       |      |   |       |          | van der Waals       | 106.866                         |       |   |        |        |       |
| electrostatic         | -274.571                      |      |   |       |          | electrostatic       | -292.232                        |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
|                       |                               |      |   |       |          |                     |                                 |       |   |        |        |       |
| ΔEs                   | -121.906                      |      |   |       |          | ΔEs                 | -146.029                        |       |   |        |        |       |
| ΔEs                   | -121.906                      |      |   |       |          | ΔEs                 | -146.029                        |       |   |        |        |       |
| ΔEs                   | -121.906<br>-8.457<br>-114.33 |      |   |       |          | ΔEs                 | -146.029<br>-14.836<br>-131.991 |       |   |        |        |       |

|                     | н            | н    | 0      | к     | Tyr10   |        |       |       |                     | н        | н         | 0        | к      |        |       |
|---------------------|--------------|------|--------|-------|---------|--------|-------|-------|---------------------|----------|-----------|----------|--------|--------|-------|
| Initial Orientation |              | RS1  | ~<br>~ | IB1   | iyiio   |        |       |       | Initial Orientation |          | 1.51      | <u> </u> | RB1    |        |       |
| Final Orientation   | LB2          | RS1  |        | LS1   | RS1     |        |       |       | Final Orientation   | RS1      | LS1       |          | RS1    |        |       |
|                     |              |      |        | 2     | -CH2-   |        |       |       |                     |          |           |          | RB1    |        |       |
|                     |              |      |        | LNH   |         |        |       |       |                     |          |           |          | -CH2-  |        |       |
|                     |              |      |        | LB1   |         |        |       |       |                     |          |           |          | RNH    |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| Total Energy        | 133.918      |      |        |       |         |        |       |       | Total Energy        | 138.077  |           |          |        |        |       |
| van der Waals       | 110.293      |      |        |       |         |        |       |       | van der Waals       | 115.228  |           |          |        |        |       |
| electrostatic       | -263.54      |      |        |       |         |        |       |       | electrostatic       | -264.279 |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| ΔEs                 | -110.658     |      |        |       |         |        |       |       | ΔEs                 | -106.499 |           |          |        |        |       |
|                     | -11.409      |      |        |       |         |        |       |       |                     | -6.474   |           |          |        |        |       |
|                     | -103.299     |      |        |       |         |        |       |       |                     | -104.038 |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
|                     | н            | н    | Q      | К     | Tyr10   |        |       |       |                     | н        | н         | Q        | K      | Leu17  |       |
| Initial Orientation |              | RB2  |        | LB1   |         |        |       |       | Initial Orientation |          | LB2       |          | RB1    |        |       |
| Final Orientation   | RS2          | RB2  |        | LB1   | RS2     |        |       |       | Final Orientation   |          | LB2       |          | LB1    | LS2    |       |
|                     |              |      |        | LNH   | -CH-    |        |       |       |                     |          |           |          | RB1    |        |       |
|                     |              |      |        | LS2   |         |        |       |       |                     |          |           |          | LS2    |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          | -CH2-  |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| Total Energy        | 144.288      |      |        |       |         |        |       |       | Total Energy        | 170.308  |           |          |        |        |       |
| van der Waals       | 112.962      |      |        |       |         |        |       |       | van der Waals       | 112.966  |           |          |        |        |       |
| electrostatic       | -252.207     |      |        |       |         |        |       |       | electrostatic       | -227.995 |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| ΔĒs                 | -100.288     |      |        |       |         |        |       |       | ΔEs                 | -74.268  |           |          |        |        |       |
|                     | -8.74        |      |        |       |         |        |       |       |                     | -8.736   |           |          |        |        |       |
|                     | -91.966      |      |        |       |         |        |       |       |                     | -67.754  |           |          | -      |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
|                     |              |      |        |       | -       | _      |       |       |                     |          |           |          |        | _      |       |
|                     | н            | H    | Q      | K     | Gly9    | Tyr10  | Leu17 | Val18 |                     | н        | H         | Q        | K      | Tyr10  |       |
| Initial Orientation | 10           | RS2  |        | LS2   |         |        |       | Por   | Initial Orientation |          | LS2       |          | RS2    | 1.00   |       |
| Final Orientation   | LB1          | RS1  |        | LS2   | CS      | CS     | RS2   | RS2   | Final Orientation   | RS2      | LB2       |          | RS1    | LB2    |       |
|                     | LS1          | RS2  |        | 2     | C=O     | -CH2-  |       |       |                     |          | LB2       |          | RS2    |        |       |
|                     | CS           |      |        |       |         |        |       |       |                     |          | LS2       |          |        |        |       |
| <b>T</b> . 15       | 04.070       |      |        |       |         |        |       |       | <b>T</b> . 15       | 435.00   |           |          |        |        |       |
| Iotal Energy        | 94.272       |      |        |       |         |        |       |       | Total Energy        | 125.96   |           |          |        |        |       |
| van der waars       | 106.029      |      |        |       |         |        |       |       | van der waars       | 112.307  |           |          |        |        |       |
| electrostatic       | -295.616     |      |        |       |         |        |       |       | electrostatic       | -268.282 |           |          |        |        |       |
| AE <sub>2</sub>     | 150 204      |      |        |       |         |        |       |       | ΔE <sub>2</sub>     | 110 616  |           |          |        |        |       |
| ΔES                 | -150.304     |      |        |       |         |        |       |       | ΔES                 | -118.616 |           |          |        |        |       |
|                     | -15.673      |      |        |       |         |        |       |       |                     | -9.395   |           |          |        |        |       |
|                     | -135.375     |      |        |       |         |        |       |       |                     | -108.041 |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
|                     | н            | н    | 0      | K     | 1.0017  |        |       |       |                     | н        | н         | 0        | K      | 1.0017 |       |
| Initial Orientation |              | 192  | Q      | DB2   | Lean    |        |       |       | Initial Orientation |          | DB2       | ų        | 192    | Louin  |       |
| Final Orientation   |              | 182  |        | PS2   | PS2     |        |       |       | Final Orientation   | PS2      | DS2       |          | 1.52   | DB2    |       |
| That Offentation    |              | 182  |        | 2     | 1102    |        |       |       | i mai onentation    | -CH2-    | CH        |          | 2      | TIDZ   |       |
|                     |              | 1.52 |        | RB1   |         |        |       |       |                     | -0112-   | RB2       |          | LB1    |        |       |
|                     |              | 202  |        | RNH   |         |        |       |       |                     |          | HOL       |          | RS2*   |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          | BB2*   |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          | *-CH2- |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| Total Energy        | 156.298      |      |        |       |         |        |       |       | Total Energy        | 143.851  |           |          |        |        |       |
| van der Waals       | 111.346      |      |        |       |         |        |       |       | van der Waals       | 107.336  |           |          |        |        |       |
| electrostatic       | -249.523     |      |        |       |         |        |       |       | electrostatic       | -251.926 |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| ΔEs                 | -88.278      |      |        |       |         |        |       |       | ΔEs                 | -100.725 |           |          |        |        |       |
|                     | -10.356      |      |        |       |         |        |       |       |                     | -14.366  |           |          |        |        |       |
|                     | -89.282      |      |        |       |         |        |       |       |                     | -91.685  |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
|                     | н            | н    | Q      | к     | Val18   |        |       |       |                     | н        | н         | Q        | К      | Leu17  | Val18 |
| Initial Orientation |              | RS2  |        | LB2   |         |        |       |       | Initial Orientation |          | LB2       |          | RS2    |        |       |
| Final Orientation   | LB1          | RB2  |        | LB2   | RB2     |        |       |       | Final Orientation   | RB2      | LB2       |          | RS2    | CS     | LB2   |
|                     | CS           | RS2  |        | LS2   |         |        |       |       |                     | RS1      | LNH       |          | 2      |        |       |
|                     | -CH2-        | CS   |        |       |         |        |       |       |                     |          |           |          | CS     |        |       |
|                     | LS2          | -CH- |        |       |         |        |       |       |                     |          |           |          | -CH2-  |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          | RB1    |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| Total Energy        | 132.362      |      |        |       |         |        |       |       | Total Energy        | 116.633  |           |          |        |        |       |
| van der Waals       | 107.8        |      |        |       |         |        |       |       | van der Waals       | 104.698  |           |          |        |        |       |
| electrostatic       | -264.558     |      |        |       |         |        |       |       | electrostatic       | -275.832 |           |          | -      |        |       |
| 15                  |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| ΔES                 | -112.214     |      |        |       |         |        |       |       | ΔES                 | -127.943 |           |          |        |        |       |
|                     | -13.902      |      |        |       |         |        |       |       |                     | -17.004  |           |          |        |        |       |
|                     | -104.317     |      |        |       |         |        |       |       |                     | -115.591 |           |          | -      |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          | -      |        |       |
|                     |              |      | 0      | v     | Volto   | A1004  |       |       |                     |          |           | ~        | v      | Volto  |       |
| Initial Orientation | п            | 100  | ų      | DB2   | v di 10 | Aid2 I |       |       | Initial Orientation | п        | r1<br>PB2 | ų        | 182    | valiö  |       |
| Final Orientation   | RB2          |      |        | RS2   | 182     | 182    |       |       | Final Orientation   |          | RP2       |          | 1.82   | BB3    |       |
| mai orientation     | RB2<br>RS1   | LNP1 |        | 2     | L82     | L02    |       |       | i mai orientation   |          | RS2       |          | 182    | R82    |       |
|                     | DVID         | LOI  |        | DD1   |         |        |       |       |                     |          | rið2      |          | L82    |        |       |
|                     | RINFI<br>RP1 |      |        | -CH2- |         |        |       |       |                     |          |           |          |        |        |       |
|                     | NO I         |      |        | 0112- |         |        |       |       |                     |          |           |          |        |        |       |
| Total Energy        | 112 230      |      |        |       |         |        |       |       | Total Energy        | 159 255  |           |          |        |        |       |
| van der Waals       | 103.129      |      |        |       |         |        |       |       | van der Waals       | 115.368  |           |          |        |        |       |
| electrostatic       | -280.205     |      |        |       |         |        |       |       | electrostatic       | -240.963 |           |          |        |        |       |
|                     |              |      |        |       |         |        |       |       |                     |          |           |          |        |        |       |
| ΔEs                 | -132.337     |      |        |       |         |        |       |       | ΔEs                 | -85.321  |           |          |        |        |       |
|                     | -18.573      |      |        |       |         |        |       |       |                     | -6.334   |           |          |        |        |       |
|                     | -119.964     |      |        |       |         |        |       |       |                     | -80.722  |           |          |        |        |       |

|                     | L        | V   | F   | F   | His14  |       |       |                          | L        | v   | F   | F  | His14 | Lvs16  |
|---------------------|----------|-----|-----|-----|--------|-------|-------|--------------------------|----------|-----|-----|----|-------|--------|
| Initial Orientation | RB1      | LB1 |     |     | 11011  |       |       | Initial Orientation      | LB1      | RB1 |     |    | 11011 | 2,010  |
| Final Orientation   | RS1      | LB1 |     |     | 1.51   |       |       | Final Orientation        | LB1      |     |     |    | RS1   | 1.51   |
|                     | PB1      | 201 |     |     | 2      |       |       |                          | 1.51     |     |     |    |       | -CH2-  |
|                     | RB I     |     |     |     | 1 0 1  |       |       |                          | 231      |     |     |    |       | -0112- |
|                     |          |     |     |     | LDI    |       |       |                          |          |     |     |    |       |        |
|                     | 101.000  |     |     |     |        |       |       |                          | 170 555  |     |     |    |       |        |
| Total Energy        | 194.286  |     |     |     |        |       |       | Total Energy             | 1/8.555  |     |     |    |       |        |
| van der Waals       | 114.552  |     |     |     |        |       |       | van der Waals            | 111.697  |     |     |    |       |        |
| electrostatic       | -198.761 |     |     |     |        |       |       | electrostatic            | -221.045 |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
| ΔEs                 | -50.29   |     |     |     |        |       |       | ΔEs                      | -66.021  |     |     |    |       |        |
|                     | -7.15    |     |     |     |        |       |       |                          | -10.005  |     |     |    |       |        |
|                     | -38.52   |     |     |     |        |       |       |                          | -60.804  |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     | L        | V   | F   | F   | His14  | Lys16 |       |                          | L        | V   | F   | F  | His14 | Lys16  |
| Initial Orientation | LB1      | RB2 |     |     |        |       |       | Initial Orientation      | RB1      | LB2 |     |    |       |        |
| Final Orientation   | LB1      | RB2 |     |     | RB2    | LS2   |       | Final Orientation        | RB1      | LB2 |     |    | LB2   | RS1    |
|                     | RB1      |     |     |     | RS2    | 2     |       |                          | LB1      |     |     |    | 1.51  | 2      |
|                     |          |     |     |     |        | LB1   |       |                          |          |     |     |    |       | RNH    |
|                     |          |     |     |     |        | -CH2- |       |                          |          |     |     |    |       |        |
|                     | _        |     |     |     |        | 0112  |       |                          |          |     |     |    |       |        |
| Total Enormy        | 161 240  |     |     |     |        |       |       | Total Enormy             | 156 156  |     |     |    |       |        |
| von der Waals       | 110.052  |     |     |     |        |       |       | von der Waals            | 107.052  |     |     |    |       |        |
|                     | 222.700  |     |     |     |        |       |       |                          | 240.002  |     |     |    |       |        |
| electrostatic       | -233.708 |     |     |     |        |       |       | electrostatic            | -249.603 |     |     |    |       |        |
| 1.5                 |          |     |     |     |        |       |       | 4.5                      |          |     |     |    |       |        |
| ΔES                 | -83.327  |     |     |     |        |       |       | ΔES                      | -88.42   |     |     |    |       |        |
|                     | -11.649  |     |     |     |        |       |       |                          | -13.75   |     |     |    |       |        |
|                     | -73.467  |     |     |     |        |       |       |                          | -89.362  |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     | L        | V   | F   | F   | His14  |       |       |                          | L        | V   | F   | F  | His14 |        |
| Initial Orientation | LB2      | RB2 |     |     |        |       |       | Initial Orientation      | RB2      | LB2 |     |    |       |        |
| Final Orientation   |          | RB2 |     |     | RB2    |       |       | Final Orientation        |          |     |     |    | LB1   |        |
|                     |          |     | 1   |     | RS2    |       |       |                          |          |     |     |    |       |        |
|                     |          |     |     |     | 2      |       |       |                          |          |     |     |    |       |        |
|                     | _        |     |     |     | -      |       |       |                          |          |     |     |    |       |        |
| Total Enormy        | 202 604  |     |     |     |        |       |       | Total Enorgy             | 204 651  |     |     |    |       |        |
| van der Waals       | 116.065  |     |     |     |        |       |       | van der Waale            | 114 226  |     |     |    |       |        |
| vali uer vvaais     | 110.905  |     |     |     |        |       |       |                          | 114.250  |     |     |    |       |        |
| electrostatic       | -198.312 |     |     |     |        |       |       | electrostatic            | -195.208 |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
| ΔES                 | -40.882  |     |     |     |        |       |       | ΔEs                      | -39.925  |     |     |    |       |        |
|                     | -4.737   |     |     |     |        |       |       |                          | -7.466   |     |     |    |       |        |
|                     | -38.071  |     |     |     |        |       |       |                          | -34.967  |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     | L        | V   | F   | F   |        |       |       |                          | L        | V   | F   | F  | Lys16 |        |
| Initial Orientation | LB1      |     | RB1 |     |        |       |       | Initial Orientation      | RB1      |     | LB1 |    |       |        |
| Final Orientation   | LB1      |     |     |     |        |       |       | Final Orientation        | RS1      |     | CS  | CS | RS1   |        |
|                     |          |     |     |     |        |       |       |                          | RB1      |     | LB1 |    | 2     |        |
|                     |          |     |     |     |        |       |       |                          | CS       |     |     |    | RNH   |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    | RB1   |        |
|                     | _        |     |     |     |        |       |       |                          |          |     |     |    | 1.01  |        |
| Total Energy        | 221 76   |     |     |     |        |       |       | Total Energy             | 100.260  |     |     |    |       |        |
| von der Waals       | 118.00   |     |     |     |        |       |       | von der Waals            | 100.072  |     |     |    |       |        |
|                     | 118.03   |     |     |     |        |       |       |                          | 202 747  |     |     |    |       |        |
| electrostatic       | -170.46  |     |     |     |        |       |       | electrostatic            | -203.717 |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
| ΔEs                 | -12.816  |     |     |     |        |       |       | ΔEs                      | -45.207  |     |     |    |       |        |
|                     | -3.612   |     |     |     |        |       |       |                          | -12.63   |     |     |    |       |        |
|                     | -10.219  |     |     |     |        |       |       |                          | -43.476  |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    | -     |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     | L        | V   | F   | F   | Lys16  |       |       |                          | L        | V   | F   | F  | Lys16 |        |
| Initial Orientation | RB2      |     | LB1 |     |        |       |       | Initial Orientation      | LB1      |     | RB2 |    |       |        |
| Final Orientation   | RNH      |     | LB1 |     | RS2    |       |       | <b>Final Orientation</b> | LS2      |     |     |    | RS1   |        |
|                     |          |     |     |     | 2      |       |       |                          | LB1      |     |     |    | 2     |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    | RB1   |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    | RNH   |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
| Total Energy        | 193.33   |     |     |     |        |       |       | Total Energy             | 196.046  |     |     |    |       |        |
| van der Waals       | 111 22   |     |     |     |        |       |       | van der Waals            | 113 742  |     |     |    |       |        |
| electrostatic       | -212 215 |     |     | 1   | -      | -     |       | electroctatic            | -207.25  |     |     |    | -     | 1      |
| cicciostatic        | 213.313  |     |     |     | -      |       |       | ciccuostatic             | 207.23   |     |     |    | -     |        |
| AT-                 | F1 01-   |     |     |     |        |       |       | 417-                     | 40.00    |     |     |    |       |        |
| ΔES                 | -51.246  |     |     |     |        |       |       | ΔES                      | -48.53   |     |     |    |       |        |
|                     | -10.372  |     |     |     |        |       |       |                          | -7.96    |     |     |    |       |        |
|                     | -53.074  |     |     |     | -      |       |       |                          | -47.009  |     |     |    | -     |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
|                     | L        | V   | F   | F   | Val 12 | Gln15 | Lys16 |                          | L        | V   | F   | F  | Lys16 |        |
| Initial Orientation | LB2      |     | RB1 |     |        |       |       | Initial Orientation      | RB1      |     | LB2 |    |       |        |
| Final Orientation   | LB2      |     | RB1 | LS2 | RB2    | RB2   | RB1   | Final Orientation        | RB1      |     |     |    | LS2   |        |
|                     | LS2      |     | RS2 |     |        | -CH2- | RB2   |                          |          |     |     |    | 2     |        |
|                     |          |     |     |     |        |       | -CH-  |                          |          |     |     |    |       |        |
|                     |          |     |     |     |        |       |       |                          |          |     |     |    |       |        |
| Total Energy        | 164 34   |     |     |     |        |       |       | Total Energy             | 189,562  |     |     |    |       |        |
| van der Waale       | 107 = 22 |     |     |     | 1      |       |       | van der Waale            | 116 225  |     |     |    | 1     |        |
| electrostatic       | -226 501 |     |     |     |        |       |       | electroctatic            | -214 260 |     |     |    | 1     |        |
| ciccuosidit         | -220.391 |     |     |     |        |       |       | CIECUIOSIdIIL            | 214.206  |     |     |    |       |        |
| AT-                 | CO 00 -  |     |     |     | -      |       |       | 4.5-                     | FF 04 -  |     |     |    | -     |        |
| ΔES                 | -80.236  |     |     |     |        |       |       | ΔES                      | -55.014  |     |     |    |       |        |
|                     | -19.179  |     |     |     |        |       |       |                          | -5.467   |     |     |    |       |        |
|                     | -66.35   |     |     |     |        |       |       |                          | -54.027  |     |     |    |       |        |

|                     | 1        | V   | F   | F   | Lys16 |       |                     | 1        | v   | F   | F        |       |       |
|---------------------|----------|-----|-----|-----|-------|-------|---------------------|----------|-----|-----|----------|-------|-------|
| Initial Orientation | RB2      | •   | 182 |     | 2,510 |       | Initial Orientation | 182      | •   | RB2 |          |       |       |
| Final Orientation   | RB2      |     | LDL |     | RS2   |       | Final Orientation   | LDL      |     | no. |          |       |       |
| rindi Offentation   | RS2      |     |     |     | 1.52  |       | i ildi oriciidation |          |     |     |          |       |       |
|                     | R32      |     |     |     |       |       |                     |          |     |     |          |       |       |
| Total Coordin       | 101 274  |     |     |     |       |       | Total Engrand       | 220.20   |     |     |          |       |       |
| van der Waals       | 116 744  |     |     |     |       |       | van der Waals       | 110 106  |     |     |          |       |       |
| electrostatic       | -215 099 |     |     |     |       |       | electrostatic       | -175 8/3 |     |     |          |       |       |
| ciccuostatic        | 215.055  |     |     |     |       |       | cicciostatic        | 17 5.045 |     |     |          |       |       |
| ΔEs                 | -53 302  |     |     |     |       |       | ΔEs                 | -14 286  |     |     |          |       |       |
| 41.5                | -4 958   |     |     |     |       |       | <u> </u>            | -2 596   |     |     |          |       |       |
|                     | -54 858  |     |     |     |       |       |                     | -15 602  |     |     |          |       |       |
|                     | 54.650   |     |     |     |       |       |                     | 15.002   |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     | L        | v   | F   | F   | Lvs16 |       |                     | L        | v   | F   | F        | Lvs16 |       |
| Initial Orientation | LB1      |     |     | RB1 | 1     |       | Initial Orientation | RB1      |     |     | LB1      |       |       |
| Final Orientation   | LS1      |     |     | RS1 | LS1   |       | Final Orientation   | CS       |     |     | LS1      | RS1   |       |
|                     | LNH      |     |     |     | 2     |       |                     | RB1      |     |     | LB1      |       |       |
|                     |          |     |     |     |       |       |                     | RS1      |     |     | CS       |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
| Total Energy        | 195.942  |     |     |     |       |       | Total Energy        | 198.721  |     |     |          |       |       |
| van der Waals       | 115.771  |     |     |     |       |       | van der Waals       | 111.209  |     |     |          |       |       |
| electrostatic       | -207.059 |     |     |     |       |       | electrostatic       | -203.974 |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
| ΔEs                 | -48.634  |     |     |     |       |       | ΔEs                 | -45.855  |     |     |          |       |       |
|                     | -5.931   |     |     |     |       |       |                     | -10.493  |     |     |          |       |       |
|                     | -46.818  |     |     |     |       |       |                     | -43.733  |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     | L        | v   | F   | F   |       |       |                     | L        | v   | F   | F        | Lys16 |       |
| Initial Orientation | RB2      |     |     | LB1 |       |       | Initial Orientation | LB1      |     |     | RB2      |       |       |
| Final Orientation   |          |     |     | RB1 |       |       | Final Orientation   |          |     |     | RB2      | LS1   |       |
|                     |          |     |     | LB1 |       |       |                     |          |     |     |          | LB1   |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
| Total Energy        | 226.908  |     |     |     |       |       | Total Energy        | 201.558  |     |     |          |       |       |
| van der Waals       | 115.31   |     |     |     |       |       | van der Waals       | 113.045  |     |     |          |       |       |
| electrostatic       | -174.796 |     |     |     |       |       | electrostatic       | -204.193 |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     | ļ        |       |       |
| ΔEs                 | -17.668  |     |     |     |       |       | ΔEs                 | -43.018  |     |     |          |       |       |
|                     | -6.392   |     |     |     |       |       |                     | -8.657   |     |     |          |       |       |
|                     | -14.555  |     |     |     |       |       |                     | -43.952  |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     | _   |          |       |       |
|                     | L        | V   | F   | F   | Lys16 | Lys28 |                     | L        | v   | F   | F        | Lys16 |       |
| Initial Orientation | LB2      |     |     | RB1 |       |       | Initial Orientation | RB1      |     |     | LB2      |       |       |
| Final Orientation   | LB2      |     |     | RB1 | LB2   | RS1   | Final Orientation   | RS1      |     |     |          | RB2   |       |
|                     |          |     |     | LB1 |       | 2     |                     | RNH      |     |     |          | RS1   |       |
|                     |          |     |     |     |       | RNH   |                     |          |     |     |          | -CH2- |       |
| Tables              | 467.000  |     |     |     |       |       | Tabel Forester      | 404.004  |     |     |          |       |       |
| Iotal Energy        | 167.303  |     |     |     |       |       | Total Energy        | 191.881  |     |     |          |       |       |
| van der Waals       | 108.215  |     |     |     |       |       | van der Waals       | 114.006  |     |     |          |       |       |
| electrostatic       | -233.085 |     |     |     |       |       | electrostatic       | -205.315 |     |     |          |       |       |
| 15                  |          |     |     |     |       |       | 10                  |          |     |     |          |       |       |
| ΔES                 | -//.2/3  |     |     |     |       |       | ΔES                 | -52.695  |     |     |          |       |       |
|                     | -13.487  |     |     |     |       |       |                     | -7.696   |     |     |          |       |       |
|                     | -72.844  |     |     |     |       |       |                     | -45.074  |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     |          | V   | -   | -   |       |       |                     |          |     | -   | -        |       |       |
| Initial Orientation | DD2      | v   | r   | 182 |       |       | Initial Orightation | 182      | v   | - F | F<br>882 |       |       |
|                     | RB2      |     |     | LDZ |       |       | Final Orientation   | LDZ      |     | 1   | KD2      |       |       |
| Final Orientation   | RD2      |     |     |     |       |       | Final Orientation   |          |     |     |          |       |       |
| Total Enormy        | 240.059  |     |     |     |       |       | Total Enormy        | 241 045  |     |     |          |       |       |
| van der Waals       | 120 179  |     |     |     |       |       | van der Waals       | 120 477  |     |     |          |       |       |
| electrostatic       | -163 310 |     |     |     |       |       | electrostatic       | -162 1/0 |     |     |          |       |       |
| ciccuostatic        | -103.313 |     |     |     |       |       | cicciostatic        | 102.143  |     |     |          |       |       |
| AEc                 | 2 619    |     |     |     |       |       | AEc                 | 2 621    |     |     |          |       |       |
|                     | -3.018   |     |     |     |       |       | 616                 | -2.031   |     |     |          |       |       |
|                     | -3.078   |     |     |     |       |       |                     | -1 908   |     |     |          |       |       |
|                     | 5.078    |     |     |     |       |       |                     | 1.500    |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     | L        | V   | F   | F   | Gln15 | Lys16 |                     | L        | v   | F   | F        |       |       |
| Initial Orientation |          | LB2 | RB1 |     |       |       | Initial Orientation |          | RB2 | LB2 |          |       |       |
| Final Orientation   |          |     | RB1 |     | LB2   | RS2   | Final Orientation   |          |     |     |          |       |       |
|                     |          |     | LB1 |     |       |       |                     |          |     |     |          |       |       |
|                     |          |     | RNH |     |       |       |                     |          |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
| Total Energy        | 200.011  |     |     |     |       |       | Total Energy        | 210.003  |     |     |          |       |       |
| van der Waals       | 110.909  |     |     |     |       |       | van der Waals       | 124.992  |     |     |          |       |       |
| electrostatic       | -212.006 |     |     |     |       |       | electrostatic       | -202.226 |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
| ΔEs                 | -44.565  |     |     |     |       |       | ΔEs                 | -34.573  |     |     |          |       |       |
|                     | -10.793  |     |     |     |       |       |                     | 3.29     |     |     |          |       |       |
|                     | -51.765  |     |     |     |       |       |                     | -41.985  |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
|                     | L        | V   | F   | F   |       |       |                     | L        | v   | F   | F        | His14 | Ala21 |
| Initial Orientation |          | LB2 | RB2 |     |       |       | Initial Orientation |          | RB2 |     | LB1      |       |       |
| Final Orientation   |          | LB2 |     |     |       |       | Final Orientation   | RS2      |     |     | LB1      | RB2   | RNH   |
|                     |          |     |     |     |       |       |                     |          |     |     | LNH      |       | RB1   |
|                     |          |     |     |     |       |       |                     |          |     |     |          |       |       |
| Total Energy        | 213.07   |     |     |     |       |       | Total Energy        | 209.598  |     | -   | -        |       |       |
| van der Waals       | 123.133  |     |     |     |       |       | van der Waals       | 111.414  |     |     | -        |       |       |
| electrostatic       | -197.274 |     |     |     |       |       | electrostatic       | -187.31  |     |     |          |       |       |
| 15                  | a :      |     |     |     |       |       | 417                 | a        |     |     |          |       |       |
| ΔES                 | -31.506  |     |     |     |       |       | ΔEs                 | -34.978  |     |     |          |       |       |
|                     | 1.431    |     |     |     |       |       |                     | -10.288  |     |     | -        |       |       |
|                     | -37.033  |     |     |     |       |       |                     | -27.069  |     |     |          |       |       |

|                                |                     | L        | ١ | v          | F        | F          | His14 |        |       |                                |                     | L        | v   | F            | F   | His14      | Lys16 | Ala21 | Glu22   |
|--------------------------------|---------------------|----------|---|------------|----------|------------|-------|--------|-------|--------------------------------|---------------------|----------|-----|--------------|-----|------------|-------|-------|---------|
| Initial Orienta                | ation               |          | R | B2         |          | LB2        | PB7   | -      |       | Initial Orien                  | tation              | 151      | LB2 |              | RB2 | 182        | 151   | 182   | 182     |
| Fillal Offerita                | tion                |          |   |            |          | LDZ        | ND2   |        |       | Final Offerin                  | ation               | LNH      | LDZ |              | RB2 | LB2<br>LS2 | -CH2  | LB2   | -CH2-   |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     | LB1      |     |              |     | LS1        |       |       |         |
| Total Energy                   |                     | 212.466  |   |            |          |            |       |        |       | Total Energy                   | v                   | 161.657  |     | _            |     |            |       |       |         |
| van der Waals                  | s                   | 116.952  |   |            |          |            |       |        |       | van der Wa                     | ,<br>als            | 104.25   |     |              |     |            |       |       |         |
| electrostatic                  |                     | -189.568 | 8 |            |          |            |       |        |       | electrostati                   | с                   | -233.256 |     |              |     |            |       |       |         |
| ΔEs                            |                     | -32.11   | L |            |          |            |       |        |       | ΔEs                            |                     | -82.919  |     |              |     |            |       |       |         |
|                                |                     | -4.75    | 5 |            |          |            |       |        |       |                                |                     | -17.452  |     |              |     |            |       |       |         |
|                                |                     | -29.327  | 7 |            |          |            |       |        |       |                                |                     | -73.015  |     |              |     |            |       |       |         |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     |          |     |              |     |            |       |       |         |
|                                |                     | L        | 1 | v          | F        | F          | Asp23 | Val 24 | Lys28 |                                |                     | L        | v   | F            | F   | Val24      | Lys28 |       |         |
| Final Orienta                  | ation<br>tion       |          |   |            | LB1      | RB1<br>RB1 | CS    | RS1    | RB1   | Final Orient                   | ation               |          |     | RB1<br>RS1   | LB1 | 151        | 151   |       |         |
|                                |                     |          |   |            |          | CS         |       | RB1    | RS2   |                                |                     |          |     |              | RB1 |            | LNH   |       |         |
|                                |                     |          |   |            |          | -CH-       |       |        |       |                                |                     |          |     | _            |     |            |       |       |         |
| Total Energy                   |                     | 172.908  |   |            |          |            |       |        |       | Total Energy                   | v                   | 172.552  |     | _            | _   |            |       |       |         |
| van der Waals                  | s                   | 107.527  |   |            |          |            |       |        |       | van der Wa                     | als                 | 110.958  |     |              |     |            |       |       |         |
| electrostatic                  |                     | -217.621 |   |            |          |            |       |        |       | electrostati                   | с                   | -223.017 |     | _            |     |            |       |       |         |
| ΔEs                            |                     | -71.668  | 3 |            |          |            |       |        |       | ΔEs                            |                     | -72.024  |     | _            | _   |            |       | _     |         |
|                                |                     | -14.175  | 5 |            |          |            |       |        |       |                                |                     | -10.744  |     |              |     |            |       |       |         |
|                                |                     | -57.38   | 3 |            |          |            |       |        |       |                                |                     | -62.776  |     | _            |     |            |       |       |         |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     |          |     |              |     |            |       |       |         |
|                                |                     | L        | ١ | v          | F        | F          | Asp23 | Val 24 | Lys28 |                                |                     | L        | v   | F            | F   | Gln15      | 5     |       |         |
| Initial Orienta                | ation<br>tion       | 152      |   |            | RB2      | LB1<br>RB2 | 882   | 852    | P52   | Initial Orient                 | ntation             |          |     | LB1          | RB2 | 182        |       |       |         |
| Final Offenta                  | tion                | 1.52     |   |            |          | RS2        | KB2   | K32    | 2     | Final Offerin                  | ation               |          |     | LS1          | KB2 | LDZ        |       |       |         |
|                                |                     |          |   |            |          | RB1        |       |        | RB2   |                                |                     |          |     | LB2          |     |            |       |       |         |
|                                |                     |          |   |            |          | CS         |       |        |       |                                |                     |          |     |              | _   |            |       |       |         |
|                                |                     |          |   |            |          | 1.52       |       |        |       |                                |                     |          |     |              |     |            |       |       |         |
| Total Energy                   |                     | 179.186  |   |            |          |            |       |        |       | Total Energy                   | y                   | 196.419  |     |              |     |            |       |       |         |
| van der Waals                  | S                   | 108.954  | : |            |          |            |       |        |       | van der Wa                     | als<br>c            | 113.229  |     |              | _   |            |       |       |         |
| electrostatic                  |                     | -210.050 |   |            |          |            |       |        |       | electrostati                   |                     | -205.104 |     |              |     |            |       |       |         |
| ΔEs                            |                     | -65.39   | Ð |            |          |            |       |        |       | ΔEs                            |                     | -48.157  |     |              |     |            |       |       |         |
|                                |                     | -12.748  | 3 |            |          |            |       |        |       |                                |                     | -8.473   |     |              | _   |            |       |       |         |
|                                |                     | -30.39.  | 2 |            |          |            |       |        |       |                                |                     | -42.525  |     |              |     |            |       |       |         |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     |          |     |              |     |            |       |       |         |
| Initial Orient:                | ation               | L        | , | V          | F<br>182 | F<br>RB1   |       |        |       | Initial Orier                  | tation              | L        | v   | F<br>RB1     | F   | Lys16      | •     |       |         |
| Final Orientat                 | tion                |          |   |            | LOL      | RS1        |       |        |       | Final Orient                   | ation               | LNH      |     | RB1          |     | LS1        |       |       |         |
|                                |                     |          |   |            |          | RB1        |       |        |       |                                |                     | LS1      |     | LB1          |     | LB1        |       |       |         |
| Total Energy                   |                     | 227.137  |   |            |          |            |       |        |       | Total Energy                   | v                   | 197.716  |     |              | _   |            |       |       |         |
| van der Waals                  | s                   | 117.459  |   |            |          |            |       |        |       | van der Wa                     | ,<br>als            | 108.556  |     |              |     |            |       |       |         |
| electrostatic                  |                     | -175.095 | i |            |          |            |       |        |       | electrostati                   | с                   | -202.957 |     |              |     |            |       |       |         |
| ΔEs                            |                     | -17 439  |   |            |          |            |       |        |       | ΔEs                            |                     | -46.86   |     |              | -   |            |       |       |         |
|                                |                     | -4.24    | 3 |            |          |            |       |        |       |                                |                     | -13.146  |     |              |     |            |       |       |         |
|                                |                     | -14.854  | 1 |            |          |            |       |        |       |                                |                     | -42.716  |     | _            |     |            |       |       |         |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     |          |     |              |     |            |       |       |         |
|                                |                     | L        | ١ | v          | F        | F          |       |        |       |                                |                     | L        | v   | F            | F   | Lys28      | :     |       |         |
| Initial Orienta                | ation<br>tion       |          |   |            | RB2      | LB2        | -     |        |       | Initial Orient                 | tation              |          |     | LB2          | RB2 | DC1        |       | _     |         |
| i mai orienta                  | lion                |          |   |            |          |            |       |        |       | Thia Offeria                   | acion               |          |     |              |     | 2          |       |       |         |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     |          |     |              |     | RNH        |       |       |         |
| Total Energy                   |                     | 226 642  |   |            |          |            |       |        |       | Total Energy                   |                     | 107 573  |     |              | _   |            |       |       |         |
| van der Waals                  | s                   | 119.917  |   |            |          |            |       |        |       | van der Wa                     | ,<br>als            | 116.823  |     |              |     |            |       |       |         |
| electrostatic                  |                     | -181.38  |   |            |          |            |       |        |       | electrostati                   | с                   | -203.015 |     |              |     |            |       |       |         |
| ΔEs                            |                     | -17.934  | 1 |            |          |            |       |        |       | ΔEs                            |                     | -47.003  |     | _            | _   |            |       |       |         |
|                                |                     | -1.785   | 5 |            |          |            |       |        |       |                                |                     | -4.879   |     |              |     |            |       |       |         |
|                                | н                   | -21.139  | 9 | ĸ          |          | V          | F     | F      |       |                                | н                   | -42.774  | 0   | ĸ            | 1   | V          | F     | F     |         |
| Initial Orientatio             | RS1                 |          | Q | ĸ          | LB       | 1          |       |        |       | Initial Orientatio             | LS1                 |          | ų   | ĸ            | RB1 | •          |       |       |         |
| Final Orientation              | RS1                 |          |   | RS1<br>RB1 | LS       | 1<br>H     |       |        |       | Final Orientation              | LS1                 |          |     | RB1<br>LB1   | RS1 |            |       |       |         |
|                                |                     |          |   | -CH2-      | LB       | 1          |       |        |       |                                |                     |          |     |              |     |            |       |       |         |
|                                |                     |          |   | PSINH      |          |            |       |        |       |                                |                     |          |     |              |     |            |       |       |         |
| Total Energy<br>van der Waals  | 159.81<br>117.508   |          |   |            |          |            |       |        |       | Total Energy<br>van der Waals  | 148.251<br>117.809  |          |     |              |     |            |       |       |         |
| electrostatic                  | -242.976            |          |   |            |          |            |       |        |       | electrostatic                  | -258.276            | 5        |     |              |     |            |       |       |         |
| ΔEs                            | -84.766             |          |   |            |          |            |       |        |       | ΔEs                            | -96.32              | 5        |     |              |     |            |       |       |         |
|                                | -4.194              |          |   |            |          |            |       |        |       |                                | -3.89               | 3        |     |              |     |            |       |       |         |
|                                | 02.735              |          |   |            |          |            |       |        |       |                                | 50.05               |          |     |              |     |            |       |       |         |
|                                | н                   | н        | Q | к          | L        | v          | F     | F      | Gly9  |                                | н                   | н        | Q   | к            | L   | v          | F     | F Gly | 9 Tyr10 |
| Initial Orientatio             | LB1                 |          |   | Per        | RB       | 2          |       |        | 1.81  | Initial Orientatio             | RB2                 |          |     | 1.91         | LB1 |            |       | DO    | 803     |
| rinai orientatioi              | LS1                 |          |   | RNH        |          |            |       |        | LOT   | rinai onentation               | NDZ                 | -CH-     |     | LNH*         | 201 |            |       | C=C   | -CH2-   |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     | RS1      |     | LB1*<br>RB1* |     |            |       |       |         |
|                                |                     |          |   |            |          |            |       |        |       |                                |                     |          |     | *-CH2-       |     |            |       |       |         |
| Total Energy                   | 160.8               |          |   |            |          |            |       |        |       | Total Energy                   | 136.874             |          |     |              |     |            |       |       |         |
| van der Waals<br>electrostatic | 110.705<br>-238.069 |          |   |            |          |            |       |        |       | van der Waals<br>electrostatic | 104.652<br>-255.21F | ;        |     |              |     |            |       |       |         |
| AEa                            |                     |          |   | _          |          |            |       |        |       | AEa                            | 407 -               | 2        |     |              |     |            |       |       |         |
| ΔES                            | -83.776<br>-10.997  |          |   |            |          |            |       |        |       | ΔES                            | -107.70<br>-17.0    | 5        |     |              |     |            |       |       |         |
|                                | -77.828             |          |   |            |          |            |       |        |       |                                | -94.97              | 5        |     |              |     |            |       |       |         |

|                                | H                                                                                                               | н         | Q     | К          | L        | v   | F          | F |       |       |       | Inter Original                          | H                   | н    | Q | к     | L          | v   | F          | F |       |       |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-------|------------|----------|-----|------------|---|-------|-------|-------|-----------------------------------------|---------------------|------|---|-------|------------|-----|------------|---|-------|-------|
| Final Orientation              | RS1                                                                                                             |           |       |            | LBZ      |     |            |   |       |       |       | Final Orientation                       | LB2                 |      |   | LS1   | RB1<br>RB1 |     |            |   |       |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         | LNH<br>-CH2-        |      |   | LB1   |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         | LS1                 |      |   |       |            |     |            |   |       |       |
| Total Energy                   | 188.254                                                                                                         |           |       |            |          |     |            |   |       |       |       | Total Energy                            | 163.546             |      |   |       |            |     |            |   |       |       |
| van der Waals                  | 119.565                                                                                                         |           |       |            |          |     |            |   |       |       |       | van der Waals                           | 113.652             |      |   |       |            |     |            |   |       |       |
| electrostatic                  | -213.403                                                                                                        |           |       |            |          |     |            |   |       |       |       | electrostatic                           | -237.977            |      |   |       |            |     |            |   |       |       |
| ΔEs                            | -56.322                                                                                                         |           |       |            |          |     |            |   |       |       |       | ΔEs                                     | -81.03              |      |   |       |            |     |            |   |       |       |
|                                | -53.162                                                                                                         |           |       |            |          |     |            |   |       |       |       |                                         | -77.736             |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
| Initial Origetatio             | H                                                                                                               | н         | Q     | к          | L        | v   | F          | F |       |       |       | Initial Orientatio                      | H                   | н    | Q | к     | L          | V   | F          | F |       |       |
| Final Orientation              | LB2                                                                                                             | LB2       |       | LB1        | RB2      |     |            |   |       |       |       | Final Orientation                       | RB2                 |      |   | RS2   | LB2        |     |            |   |       |       |
|                                | LS1                                                                                                             | -CH-      |       | RB1<br>LNH |          |     |            |   |       |       |       |                                         | RB1<br>RNH          |      |   | RB1   |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       | RNH        |          |     |            |   |       |       |       |                                         | RS1                 |      |   |       |            |     |            |   |       |       |
| Total Energy                   | 137.401                                                                                                         |           |       |            |          |     |            |   |       |       |       | Total Energy                            | 145.721             |      |   |       |            |     |            |   |       |       |
| van der Waals<br>electrostatic | 107.183                                                                                                         |           |       |            |          |     |            |   |       |       |       | van der Waals<br>electrostatic          | 107.642             |      |   |       |            |     |            |   |       |       |
| 15                             |                                                                                                                 |           |       |            |          |     |            |   |       |       |       | 15                                      |                     |      |   |       |            |     |            |   |       |       |
| ΔES                            | -107.175<br>-14.519                                                                                             |           |       |            |          |     |            |   |       |       |       | ΔES                                     | -98.855             |      |   |       |            |     |            |   |       |       |
|                                | -104.477                                                                                                        |           |       |            |          |     |            |   |       |       |       |                                         | -91.736             |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           | _     |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
| Initial Orientatio             | H<br>LS2                                                                                                        | н         | Q     | к          | RB2      | v   | F          | F |       |       |       | Initial Orientatio                      | RS2                 | н    | Q | к     | L<br>LB2   | V   | F          | F | GIY9  | Tyr10 |
| Final Orientation              | LS2                                                                                                             |           |       | LB1<br>PS2 | RS2      |     |            |   |       |       |       | Final Orientation                       | RS2<br>RS1          |      |   | LS2   | LB2        |     |            |   | RS1   | RS2   |
|                                |                                                                                                                 |           |       | -CH2-      |          |     |            |   |       |       |       |                                         | 101                 |      |   | LUI   |            |     |            |   | 0-0   | RB2   |
| Total Energy                   | 127.725                                                                                                         |           |       |            |          |     |            |   |       |       |       | Total Energy                            | 127.705             |      |   |       |            |     |            |   |       | -CH2- |
| van der Waals                  | 109.474                                                                                                         |           |       |            |          |     |            |   |       |       |       | van der Waals                           | 112.236             |      |   |       |            |     |            |   |       |       |
| electrostatic                  | -205.921                                                                                                        |           |       |            |          |     |            |   |       |       |       | electrostatic                           | -207.955            |      |   |       |            |     |            |   |       |       |
| ΔEs                            | -116.851                                                                                                        |           |       |            |          |     |            |   |       |       |       | ΔEs                                     | -116.871            |      |   |       |            |     |            |   |       |       |
|                                | -105.68                                                                                                         |           |       |            |          |     |            |   |       |       |       |                                         | -107.714            |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
| Initial Orientatio             | H<br>IR2                                                                                                        | н         | Q     | К          | L<br>RR7 | v   | F          | F |       |       |       | Initial Orientatio                      | H<br>RR2            | н    | Q | К     | L<br>LR2   | v   | F          | F | Gly9  |       |
| Final Orientation              | 1                                                                                                               |           |       |            |          |     |            |   |       |       |       | Final Orientation                       | RS1                 |      |   | RS2   | LS2        |     |            |   | RB2   |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         | RS2                 |      |   | RB1   |            |     |            |   | C=O   |       |
| Total Energy                   | 234.875                                                                                                         |           |       |            |          |     |            |   |       |       |       | Total Energy                            | 148.457             |      |   |       |            |     |            |   |       |       |
| electrostatic                  | -168.242                                                                                                        |           |       |            |          |     |            |   |       |       |       | electrostatic                           | -257.555            |      |   |       |            |     |            |   |       |       |
| ΔEs                            | -9.701                                                                                                          |           |       |            |          |     |            |   |       |       |       | ΔEs                                     | -96.119             |      |   |       |            |     |            |   |       |       |
|                                | -2.677                                                                                                          |           |       |            |          |     |            |   |       |       |       |                                         | -8.238              |      |   |       |            |     |            |   |       |       |
|                                | -8.001                                                                                                          |           |       |            |          |     |            |   |       |       |       |                                         | -97.314             |      |   |       |            |     |            |   |       |       |
|                                | н                                                                                                               | н         | Ö     | К          | L        | v   | F          | F | Glv9  | Tvr10 | Ala21 |                                         | н                   | н    | 0 | К     | L          | v   | F          | F | Ala21 |       |
| Initial Orientatio             | LS1                                                                                                             | 004       |       | 1.04       |          | RB1 |            |   | 1.04  | 164   | 054   | Initial Orientatio                      | RB2                 | 1.04 |   | 201   | 1.00       | LB2 |            |   | 102   |       |
| That Orientation               | 201                                                                                                             | LB1       |       | LS2        |          | nor |            |   | C=0   | -CH-  | 101   | That Orientation                        | RB1                 | 201  |   | RS2   | LOL        |     |            |   | LDL   |       |
|                                |                                                                                                                 | CS<br>RNH |       | 2<br>CS    |          |     |            |   |       |       |       |                                         |                     |      |   | 2     |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       | -CH2-      |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
| Total Energy                   | 125.601                                                                                                         |           |       |            |          |     |            |   |       |       |       | Total Energy                            | 108.835             |      |   |       |            |     |            |   |       |       |
| van der Waals<br>electrostatic | 102.169                                                                                                         |           |       |            |          |     |            |   |       |       |       | van der Waals<br>electrostatic          | 105.351             |      |   |       |            |     |            |   |       |       |
| 15                             |                                                                                                                 |           |       |            |          |     |            |   |       |       |       | 15                                      |                     |      |   |       |            |     |            |   |       |       |
| ΔES                            | -118.975<br>-19.533                                                                                             |           |       |            |          |     |            |   |       |       |       | ΔES                                     | -135.741<br>-16.351 |      |   |       |            |     |            |   |       |       |
|                                | -102.327                                                                                                        |           |       |            |          |     |            |   |       |       |       |                                         | -125.361            |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           | _     |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            | _ |       |       |
| Initial Orientatio             | H<br>LB2                                                                                                        | н         | Q     | к          | L        | RB2 | F          | F |       |       |       | Initial Orientatio                      | H<br>LS1            | н    | Q | к     | L          | V   | RB1        | F | Val12 |       |
| Final Orientation              | 1                                                                                                               | RB2       |       |            | RB2      | RB2 |            |   |       |       |       | Final Orientation                       | LS2                 |      |   | LS1   |            |     |            |   | LB1   |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         |                     |      |   | C. T. |            |     |            |   |       |       |
| Total Energy                   | 211.82                                                                                                          |           |       |            |          |     |            |   |       |       |       | Total Energy                            | 144.693             |      |   |       |            |     |            |   |       |       |
| van der Waals<br>electrostatic | 114.733                                                                                                         |           |       |            |          |     |            |   |       |       |       | van der Waals                           | 112.524             |      |   |       |            |     |            |   |       |       |
| cicciostatic                   | 130.424                                                                                                         |           |       |            |          |     |            |   |       |       |       | ciectiostatie                           | 231.123             |      |   |       |            |     |            |   |       |       |
| ΔEs                            | -32.756                                                                                                         |           |       |            |          |     |            |   |       |       |       | ΔEs                                     | -99.883<br>-9.178   |      |   |       |            |     |            |   |       |       |
|                                | -30.183                                                                                                         |           |       |            |          |     |            |   |       |       |       |                                         | -90.884             |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
| Initial Orientatio             | H<br>RS1                                                                                                        | н         | Q     | к          | L        | V   | F<br>LB1   | F |       |       |       | Initial Orientatio                      | H<br>LB1            | н    | Q | к     | L          | V   | F<br>RB2   | F |       |       |
| Final Orientation              | RS1                                                                                                             |           | CS    | RB1        |          |     | CS         |   |       |       |       | Final Orientation                       | LB1                 |      |   | LS2   |            |     | RB2        |   |       |       |
|                                |                                                                                                                 |           | -CH2- | RS1        |          |     | LB1<br>LS1 |   |       |       |       |                                         | LNH<br>LS1          |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       | CS<br>C=O  |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
| Tabal Di                       | 403.000                                                                                                         |           |       |            |          |     |            |   |       |       |       | T-1-1                                   | 453                 |      |   |       |            |     |            |   |       |       |
| van der Waals                  | 102.892                                                                                                         |           |       |            |          |     |            |   |       |       |       | van der Waals                           | 152.11/             |      |   |       |            |     |            |   |       |       |
| electrostatic                  | -231.074                                                                                                        |           |       |            |          |     |            |   |       |       |       | electrostatic                           | -243.86             |      |   |       |            |     |            |   |       |       |
| ΔEs                            | -81.684                                                                                                         |           |       |            |          |     |            |   |       |       |       | ΔEs                                     | -92.459             |      |   |       |            |     |            |   |       |       |
|                                | -12.495<br>-70.833                                                                                              |           |       |            |          |     |            |   |       |       |       |                                         | -15.216<br>-83.619  |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
|                                | н                                                                                                               | н         | Q     | К          | L        | v   | F          | F | Val12 |       |       |                                         | н                   | н    | Q | к     | L          | v   | F          | F |       |       |
| Final Orientation              | RB2                                                                                                             |           |       | RS1        |          |     | LB1        |   | RB2   |       |       | Initial Orientatio<br>Final Orientation | KB1<br>RB1          |      |   | LS2   |            |     | LB2<br>LB2 |   |       |       |
|                                |                                                                                                                 |           |       | 2<br>RNH   |          |     |            |   |       |       |       |                                         | RS2                 |      |   | 2     |            |     |            |   |       |       |
| T-+-1 -                        | 407.1                                                                                                           |           |       |            |          |     |            |   |       |       |       |                                         | 455.5               |      |   |       |            |     |            |   |       |       |
| Iotal Energy<br>van der Waals  | 166.199<br>115.723                                                                                              |           |       |            |          |     |            |   |       |       |       | Total Energy<br>van der Waals           | 156.212<br>112.105  |      |   |       |            |     |            |   |       |       |
| electrostatic                  | -239.148                                                                                                        |           |       |            |          |     |            |   |       |       |       | electrostatic                           | -240.948            |      |   |       |            |     |            |   |       |       |
| ΔEs                            | -78.377                                                                                                         |           |       |            |          |     |            |   |       |       |       | ΔEs                                     | -88.364             |      |   |       |            |     |            |   |       |       |
|                                | -5.979<br>-78 907                                                                                               |           |       |            |          |     |            |   |       |       |       |                                         | -9.597<br>-80.707   |      |   |       |            |     |            |   |       |       |
|                                |                                                                                                                 |           |       |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
|                                | н                                                                                                               | н         | Q     | к          | L        | v   | F          | F | Val12 |       |       |                                         | н                   | н    | Q | к     | L          | v   | F          | F | Val12 |       |
| Initial Orientation            | LB2                                                                                                             |           |       | RB1        |          |     | RB1        |   | LS1   |       |       | Initial Orientatio<br>Final Orientation | LS1<br>LB1          |      |   | LS2   |            |     | RB2        |   | CS    |       |
|                                | LS1                                                                                                             |           |       | LB1        |          |     |            |   |       |       |       |                                         | LNH                 |      |   |       |            |     |            |   | LB1   |       |
|                                |                                                                                                                 |           |       | -CH2-      |          |     |            |   |       |       |       |                                         | 151                 |      |   |       |            |     |            |   |       |       |
| Total Energy                   | 127.698                                                                                                         |           |       |            |          |     |            |   |       |       |       | Total Energy                            | 143.235             |      |   |       |            |     |            |   |       |       |
| van der Waals                  | 109.278                                                                                                         |           |       |            |          |     |            |   |       |       |       | van der Waals                           | 107.775             |      |   |       |            |     |            |   |       |       |
| electrostatic                  | the second se |           |       |            |          |     |            |   |       |       |       | electrostatic                           | -249.145            |      |   |       |            |     |            |   |       |       |
|                                | -267.899                                                                                                        |           |       |            |          |     |            |   |       |       |       |                                         |                     |      |   |       |            |     |            |   |       |       |
| ΔEs                            | -267.899<br>-116.878<br>-12 424                                                                                 |           |       |            |          |     |            |   |       |       |       | ΔEs                                     | -101.341            |      |   |       |            |     |            |   |       |       |

|                      |                                | н           |          | н   | Q | К            | L   | v | F          | F          |                                   | н          | н                | 0          |   | к            | L          | v    | F   | F   |      |
|----------------------|--------------------------------|-------------|----------|-----|---|--------------|-----|---|------------|------------|-----------------------------------|------------|------------------|------------|---|--------------|------------|------|-----|-----|------|
| In                   | itial Orienta                  | tic RS1     |          |     |   | 1.04         |     |   | LB2        |            | Initial Orientatio                | LS2        |                  |            |   |              |            |      | RB2 |     |      |
| FI                   | nal Orientati                  | or RS1<br>2 |          |     |   | LB1          |     |   | LB2        |            | Final Orientation                 | r LS2      |                  |            |   | RS2<br>RB2   |            |      | RB2 |     |      |
| _                    |                                | _           | -        |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
| то                   | tal Energy                     | 170.614     |          |     |   |              |     |   |            |            | Total Energy                      | 159.764    |                  |            |   |              |            |      |     |     |      |
| va                   | in der Waals<br>ectrostatic    | -232.64     | 1        |     |   |              |     | - |            |            | van der Waals<br>electrostatic    | -238.264   |                  |            |   |              |            |      |     |     |      |
|                      | P-                             | 70.0        |          |     |   |              |     |   |            |            | 412-                              |            |                  |            |   |              |            |      |     |     |      |
| Δ                    | ES                             | -73.96      | .5       |     |   |              |     |   |            |            | ΔEs                               | -84.812    | 3                |            |   |              |            |      |     |     |      |
|                      |                                | -72.40      | 13       |     |   |              |     |   |            |            |                                   | -78.023    | 3                |            |   |              |            |      |     |     |      |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      |                                | Н           |          | н   | Q | к            | L   | v | F          | F          |                                   | Н          | н                | 0          | L | к            | L          | V    | F   | F   |      |
| ln<br>Fi             | itial Orienta<br>nal Orientati | or RS1      |          |     |   | RS2          |     |   | LB2<br>LB2 |            | Final Orientation                 | RB2<br>RS1 |                  |            |   | LNH          |            |      | LB2 |     |      |
|                      |                                | RS2         |          |     |   |              |     |   |            |            |                                   | RB2        |                  |            |   |              |            |      |     |     |      |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   | RS2        |                  |            |   |              |            |      |     |     |      |
| Тс                   | tal Energy                     | 135.225     |          |     |   |              |     |   |            |            | Total Energy                      | 150.552    |                  |            |   |              |            |      |     |     |      |
| el                   | in der Waals<br>ectrostatic    | -267.73     | •        |     |   |              |     |   |            |            | electrostatic                     | -255.13    |                  |            |   |              |            |      |     |     |      |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
| Δ                    | ES                             | -109.39     | 8        |     |   |              |     |   |            |            | ΔES                               | -94.024    | 3                |            |   |              |            |      |     |     |      |
|                      |                                | -107.49     | 18       |     |   |              |     |   |            |            |                                   | -94.889    | •                |            |   |              |            |      |     |     |      |
|                      |                                |             | -        |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      |                                | н           |          | н   | Q | к            | L   | v | F          | F          |                                   | н          | н                | 0          |   | к            | L          | V    | F   | F   |      |
| In<br>Fi             | itial Orienta<br>nal Orientati | or LNH      | L        | .B2 |   | RB1          |     |   | RB2<br>RB2 |            | Initial Orientatio                | LB2        |                  |            |   | LS2          | RS2        |      |     | RB2 |      |
|                      |                                | LS1         | -(       | CH- |   | LB1          |     |   |            |            |                                   | LS2        |                  |            |   | LNH          | RB2        |      |     |     |      |
| -                    |                                | -CH2-       | -        |     |   | LB2<br>-CH2- |     |   |            |            |                                   |            |                  |            |   | LB1          |            |      |     |     |      |
|                      |                                | CITZ        |          |     |   | Oniz         |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
| To                   | otal Energy                    | 143.735     |          |     |   |              |     |   |            |            | Total Energy                      | 166.637    |                  |            |   |              |            |      |     |     |      |
| el                   | ectrostatic                    | -252.84     |          |     |   |              |     |   |            |            | electrostatic                     | -234.523   |                  |            |   |              |            |      |     |     |      |
|                      | P-                             | 100.0       |          |     |   |              |     |   |            |            | 417-                              | 77.020     |                  |            |   |              |            |      |     |     |      |
| Δ                    | 1.0                            | - 100.84    | 1        |     |   |              |     |   |            |            | 405                               | -7.795     | 5                |            |   |              |            |      |     |     |      |
|                      |                                | -92         | .6       |     |   |              |     |   |            |            |                                   | -74.282    | 2                |            |   |              |            |      |     |     |      |
|                      |                                |             | -        |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      |                                | H           |          | н   | Q | к            | L   | V | F          | F          |                                   |            |                  |            |   |              |            |      |     |     |      |
| Fi                   | nal Orientat                   | or RS2      | -        |     |   | LB1          | LB2 |   |            | LB2<br>LB2 |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      |                                | RB2         |          |     |   | RB1          | LS1 |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      |                                |             | -        |     |   | RS2          |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
| Тс                   | tal Energy                     | 146.922     |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
| el                   | in der Waals<br>ectrostatic    | -251.276    | 5        |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      | <b>C</b> -                     | 07.0        |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      | ES                             | -97.65      | 14<br>16 |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      |                                | -91.0       | 15       |     | _ |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
| Orientati            | on                             | CS          | ų        | ĸ   | R | B1           | v   | r | r iyi      | IU Lysza   | Initial Orienta                   | ation      | n                | CS         | ų | ĸ            | LB1        | V    |     | F   | Tyr  |
| Drientatio           | n                              | LB1<br>LB1  |          |     |   |              |     |   | -CH        | RS1        | Final Orientat                    | tion       |                  | CS<br>RB1  |   |              | LS1        |      |     |     | RS:  |
|                      |                                | LS1         |          |     |   |              |     |   |            |            |                                   |            |                  | 101        |   |              |            |      |     |     | criz |
|                      |                                | -CH2-       |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      |                                | LS2         |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
| nergy                | 139.226                        |             |          |     |   |              |     |   |            |            | Total Energy                      | 180        | 0.587            |            |   |              |            |      |     |     |      |
| r Waals              | 107.27                         |             |          |     |   |              |     |   |            |            | van der Waals                     | 5 114      | 4.075            |            |   |              |            |      |     |     | _    |
| SLULL                | -251.901                       |             |          |     |   |              |     |   |            |            | electrostatic                     | -22        | 2.078            |            |   |              |            |      |     |     |      |
|                      | -105.35                        |             |          |     |   |              |     |   |            |            | ΔEs                               | -6         | 53.989           |            |   |              |            |      | _   |     |      |
|                      | -14.432                        |             |          |     |   |              |     |   |            |            |                                   | -6         | 51.837           |            |   |              |            |      |     |     |      |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      | н                              | н           | Q        | к   |   | L            | v   | F | F His      | 6 Tyr10    |                                   |            | н                | н          | Q | к            | L          | v    | F   | F   | Tyr1 |
| Orientati            | on PS2                         | CS<br>RB1   |          |     | R | B2           |     |   | 15         | 2 IB1      | Initial Orienta                   | ation      |                  | CS<br>LB1  |   | 1.51         | LB2        | 1.52 |     |     | CS   |
| ····aut              |                                | RB1         |          |     |   |              |     |   |            | CS         | - mar oriental                    |            |                  | LS2        |   | -CH2-        |            |      |     |     |      |
|                      |                                | RS1<br>RS2  |          |     |   |              |     |   |            | RS2        |                                   |            |                  | CS<br>CH2- |   |              |            |      |     |     |      |
|                      |                                | -CH2-       |          |     |   |              |     |   |            | 0.112      |                                   |            |                  | LS1        |   |              |            |      |     |     | -    |
|                      |                                |             |          |     | _ |              |     |   |            |            |                                   |            |                  | -CH-       |   |              |            |      |     |     |      |
| nergy                | 125.618                        |             |          |     |   |              |     |   |            |            | Total Energy                      | 144        | 4.585            |            |   |              |            |      |     |     | -    |
| r Waals<br>ostatic   | 104.951                        |             |          |     | _ |              |     |   |            |            | van der Waals<br>electrostatic    | -24        | 9.131<br>7.972   |            |   |              | -          |      | -   |     |      |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     | -    |
|                      | -118.958                       |             |          |     | _ |              |     |   |            |            | ΔEs                               | -9<br>-1   | 99.991<br>12.571 |            |   |              |            |      |     |     |      |
|                      | -99.838                        |             |          |     |   |              |     |   |            |            |                                   | -8         | 37.731           |            |   |              |            |      | -   |     |      |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      | Н                              | H           | Q        | к   |   | L            | v   | F | F          |            |                                   |            | н                | H          | Q | к            | L          | v    | F   | F   | _    |
| rientatio            | in l                           | RS1         |          |     | 1 | S1           |     |   |            |            | Final Orienta                     | tion       |                  | LS1<br>LS2 |   |              | RS1        |      |     |     | -    |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  | LB1        |   |              | -          |      | -   |     |      |
| nergy                | 193.612                        |             |          |     |   |              |     |   |            |            | Total Energy                      | 19         | 6.56             |            |   |              |            |      |     |     | -    |
| Waals                | 116.732<br>-208.82             |             |          |     | _ |              |     |   |            |            | van der Waals<br>electrostatic    | 5 116      | 5.449<br>3.336   |            |   |              |            |      |     |     |      |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     |      |
|                      | -50.964                        |             |          |     | _ |              |     |   |            |            | ΔEs                               | -4         | 48.016<br>-5.253 |            |   |              |            |      |     |     |      |
|                      | -48.579                        |             |          |     |   |              |     |   |            |            |                                   | -4         | 13.095           |            |   |              |            |      |     |     | -    |
|                      | +                              |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     | _   |      |
|                      | н                              | н           | Q        | к   |   | L            | v   | F | F          |            |                                   |            | н                | н          | Q | к            | L          | v    | F   | F   |      |
| rientati<br>ientatic | on<br>In                       | RS1<br>RS1  |          |     | L | B1           |     |   |            |            | Initial Orienta<br>Final Orientat | tion       |                  | LS1<br>LS1 |   | RS1          | RB1<br>RB1 |      |     |     | -    |
|                      |                                |             |          |     |   |              |     |   |            |            |                                   |            |                  | 2          |   | 2            | RNH        |      |     |     |      |
|                      | +                              |             |          |     | _ |              |     |   |            |            |                                   |            |                  |            |   | RB1<br>-CH2- | -          |      | -   |     |      |
|                      | 100 7                          |             |          |     |   |              |     |   |            |            |                                   |            |                  |            |   |              |            |      |     |     | -    |
| waals                | 199.718                        |             |          |     |   |              |     |   |            |            | van der Waals                     | 174        | +.061<br>3.922   |            |   |              |            |      |     |     | -    |
| tatic                | -207.434                       |             |          |     |   |              |     |   |            |            | electrostatic                     | -23        | 1.044            |            |   |              |            |      | _   |     | _    |
|                      | -44.858                        |             |          |     |   |              |     |   |            |            | ΔEs                               | -6         | 59.895           |            |   |              |            |      |     |     | +    |
|                      | -2.917                         |             |          |     |   |              |     |   |            |            |                                   |            | -7.78            |            |   |              |            |      |     |     |      |
|                      | -47.193                        |             |          |     |   |              |     |   |            |            |                                   | -7         | 10.803           |            |   |              |            |      |     |     |      |

|                                          | н                  | н          | Q | к     | L          | v   | F        | F        |       |                                          | н                  | н           | Q | к      | L         | v   | F        | F        |       |
|------------------------------------------|--------------------|------------|---|-------|------------|-----|----------|----------|-------|------------------------------------------|--------------------|-------------|---|--------|-----------|-----|----------|----------|-------|
| Initial Orientation<br>Final Orientation |                    | RS2<br>RS2 |   | CS    | LB1<br>LS2 |     |          |          |       | Initial Orientation<br>Final Orientation |                    | LS2<br>LS2  |   |        | RB1<br>CS |     |          |          |       |
|                                          |                    |            |   | -CH2- | LS1        |     |          |          |       |                                          |                    |             |   |        | RB1       |     |          |          |       |
|                                          |                    |            |   |       | LBI        |     |          |          |       |                                          |                    |             |   |        |           |     |          |          |       |
| Total Energy<br>van der Waals            | 170.96<br>115.096  |            |   |       |            |     |          |          |       | Total Energy<br>van der Waals            | 179.174<br>115.093 |             |   |        |           |     |          |          |       |
| electrostatic                            | -230.888           |            |   |       |            |     |          |          |       | electrostatic                            | -221.564           |             |   |        |           |     |          |          |       |
| ΔEs                                      | -73.616            |            |   |       |            |     |          |          |       | ΔEs                                      | -65.402            |             |   |        |           |     |          |          |       |
|                                          | -6.606             |            |   |       |            |     |          |          |       |                                          | -6.609             |             |   |        |           |     |          |          |       |
|                                          |                    |            |   |       |            |     |          |          |       |                                          |                    |             |   |        |           |     |          |          |       |
|                                          | н                  | н          | Q | к     | L          | v   | F        | F        |       |                                          | н                  | н           | Q | к      | L         | v   | F        | F        |       |
| Initial Orientation                      |                    | LB1        |   | RS1   | RB2<br>RB2 |     |          |          |       | Initial Orientation                      |                    | RB2<br>RB2  |   | 1.52   | LB1       |     | LB1      | 182      |       |
|                                          |                    | LS1        |   | -CH2- |            |     |          |          |       |                                          |                    | RS2         |   | CS*    | LB2       |     | LB2      |          |       |
|                                          |                    |            |   |       |            |     |          |          |       |                                          |                    |             |   | *-CH2- |           |     |          |          |       |
| Total Energy                             | 178 192            |            |   |       |            |     |          |          |       | Total Energy                             | 158 538            |             |   |        |           |     |          |          |       |
| van der Waals                            | 112.803            |            |   |       |            |     |          |          |       | van der Waals                            | 106.371            |             |   |        |           |     |          |          |       |
| electrostatic                            | -219.722           |            |   |       |            |     |          |          |       | electrostatic                            | -238.411           |             |   |        |           |     |          |          |       |
| ΔEs                                      | -66.384            |            |   |       |            |     |          |          |       | ΔEs                                      | -86.038            |             |   |        |           |     |          |          |       |
|                                          | -59.481            |            |   |       |            |     |          |          |       |                                          | -13.331            |             |   |        |           |     |          |          |       |
|                                          |                    |            |   |       |            |     |          |          |       |                                          |                    |             |   |        |           |     |          |          |       |
| Initial Orientation                      | н                  | H<br>PP1   | Q | к     | L          | V   | F        | F        | Glu22 | Initial Orientation                      | н                  | H           | Q | к      | L<br>PD1  | v   | F        | F        | Tyr10 |
| Final Orientation                        |                    | LS2        |   | LS2   | LB2        |     |          |          | RB2   | Final Orientation                        | LS1                | LB2         |   | LS1    | RS1       |     |          |          | LS1   |
|                                          |                    | RS2        |   | -CH2- | LS2        |     |          |          |       |                                          | -CH2-              | LS1<br>-CH- |   | -CH2-  | RB1       |     |          |          | -CH-  |
|                                          | 100 864            |            |   |       |            |     |          |          |       |                                          | 100.100            |             |   |        |           |     |          |          |       |
| van der Waals                            | 168.751            |            |   |       |            |     |          |          |       | van der Waals                            | 160.103            |             |   |        |           |     |          |          |       |
| electrostatic                            | -223.984           |            |   |       |            |     |          |          |       | electrostatic                            | -237.017           |             |   |        |           |     |          |          |       |
| ΔEs                                      | -75.825            |            |   |       |            |     |          |          |       | ΔEs                                      | -84.473            |             |   |        |           |     |          |          |       |
|                                          | -14.077<br>-63.743 |            |   |       |            |     |          |          |       |                                          | -13.516            |             |   |        |           |     |          |          |       |
|                                          |                    |            |   |       |            |     |          |          |       |                                          |                    |             |   |        |           |     |          |          |       |
|                                          | н                  | н          | Q | к     | L          | v   | F        | F        | Tyr10 |                                          | н                  | н           | Q | к      | L         | v   | F        | F        |       |
| Initial Orientation<br>Final Orientation |                    | LS2<br>LB2 |   |       | RB2<br>RB2 |     |          |          | LB2   | Initial Orientation<br>Final Orientation |                    | RS2<br>RS2  |   | LB2    | LB2       | RS2 |          |          | -     |
|                                          |                    | LB2        |   |       |            |     |          |          |       |                                          |                    |             |   | LS2    |           |     |          |          |       |
|                                          |                    | 152        |   |       |            |     |          |          |       |                                          |                    |             |   |        |           |     |          |          |       |
| Total Energy<br>van der Waals            | 196.786<br>115.584 |            |   |       |            |     |          |          |       | Total Energy<br>van der Waals            | 166.669<br>113.785 |             |   |        |           |     |          |          |       |
| electrostatic                            | -204.162           |            |   |       |            |     |          |          |       | electrostatic                            | -226.407           |             |   |        |           |     |          |          |       |
| ΔEs                                      | -47.79             |            |   |       |            |     |          |          |       | ΔEs                                      | -77.907            |             |   |        |           |     |          |          |       |
|                                          | -6.118             |            |   |       |            |     |          |          |       |                                          | -7.917             |             |   |        |           |     |          |          |       |
|                                          | 45.511             |            |   |       |            |     |          |          |       |                                          | 00.100             |             |   |        |           |     |          |          |       |
|                                          | н                  | н          | Q | к     | L          | v   | F        | F        |       |                                          | н                  | н           | Q | к      | L         | v   | F        | F        | Tyr10 |
| Initial Orientation                      |                    | RB2<br>RB2 |   |       | LB2        |     |          |          |       | Initial Orientation                      |                    | LB2         |   |        | RB2       |     |          |          | 182   |
|                                          |                    | RS2        |   |       |            |     |          |          |       | That offertation                         |                    | LB2         |   |        |           |     |          |          | LUL   |
| Total Energy                             | 193.975            |            |   |       |            |     |          |          |       | Total Energy                             | 196.406            |             |   |        |           |     |          |          |       |
| van der Waals                            | 118.191            |            |   |       |            |     |          |          |       | van der Waals                            | 115.722            |             |   |        |           |     |          |          |       |
| electrostatic                            | -212.378           |            |   |       |            |     |          |          |       | electrostatic                            | -207.449           |             |   |        |           |     |          |          |       |
| ΔEs                                      | -50.601            |            |   |       |            |     |          |          |       | ΔEs                                      | -48.17             |             |   |        |           |     |          |          |       |
|                                          | -52.137            |            |   |       |            |     |          |          |       |                                          | -47.208            |             |   |        |           |     |          |          |       |
|                                          |                    |            |   |       |            |     |          |          |       |                                          |                    |             |   |        |           |     |          |          |       |
| Initial Orientation                      | н                  | H<br>PB2   | Q | к     | L          | V   | F<br>LB2 | F        |       | Initial Orientation                      | н                  | H<br>LB2    | Q | к      | L         | V   | F<br>PB2 | F        |       |
| Final Orientation                        |                    | 1052       |   |       |            |     | LUL      |          |       | Final Orientation                        |                    | LUL         |   |        |           |     | TOL      |          |       |
| Total Energy                             | 243.903            |            |   |       |            |     |          |          |       | Total Energy                             | 248.63             |             |   |        |           |     |          |          |       |
| van der Waals                            | 120.118            |            |   |       |            |     |          |          |       | van der Waals                            | 119.979            |             |   |        |           |     |          |          |       |
| ciccuosidic                              | 102.505            |            |   |       |            |     |          |          |       | ciccuostate                              | 151.400            |             |   |        |           |     |          |          |       |
| ΔEs                                      | -0.673             |            |   |       |            |     |          |          |       | ΔEs                                      | 4.054              |             |   |        |           |     |          |          |       |
|                                          | -2.342             |            |   |       |            |     |          |          |       |                                          | 8.833              |             |   |        |           |     |          |          |       |
|                                          |                    |            |   |       |            |     |          |          |       |                                          |                    |             |   |        |           |     |          |          |       |
| Initial Orientation                      | н                  | H<br>LS1   | Q | к     | L          | V   | F        | F<br>RB1 |       | Initial Orientation                      | н                  | H<br>LB1    | Q | к      | L         | V   | F        | F<br>RB2 |       |
| Final Orientation                        |                    | LS1        |   |       | CS         | LS1 |          | RS1      |       | Final Orientation                        |                    | LS1         |   |        | RB1       |     |          |          |       |
|                                          |                    | 2          |   |       |            |     |          |          |       |                                          |                    | LB1         |   |        | RS1       |     |          |          |       |
| Total Energy                             | 195.091            |            |   |       |            |     |          |          |       | Total Energy                             | 191.612            |             |   |        |           |     |          |          |       |
| electrostatic                            | -201.888           |            |   |       |            |     |          |          |       | electrostatic                            | -203.88            |             |   |        |           |     |          |          |       |
| ΔEs                                      | -49,485            |            |   |       |            |     |          |          |       | ΔEs                                      | -52.964            |             |   |        |           |     |          |          |       |
|                                          | -7.672             |            |   |       |            |     |          |          |       |                                          | -8.16              |             |   |        |           |     |          |          |       |
|                                          | -41.647            |            |   |       |            |     |          |          |       |                                          | -43.639            |             |   |        |           |     |          |          |       |
|                                          | н                  | н          | 0 | к     | L          | v   | F        | F        | Ala21 |                                          | н                  | н           | 0 | к      | L         | v   | F        | F        | Ala21 |
| Initial Orientation                      |                    | RB2        | _ |       |            |     |          | LB1      |       | Initial Orientation                      |                    | RB1         | _ |        |           |     |          | LB2      |       |
| rinal Urientation                        |                    | RB2        |   |       | LB2        |     |          | LB1      | RB1   | Final Orientation                        |                    | RS1         |   |        |           |     |          |          | LB1   |
| Total Energy                             | 221.174            |            |   |       |            |     |          |          |       | Total Energy                             | 189.882            |             |   |        |           |     |          |          |       |
| electrostatic                            | -178.988           |            |   |       |            |     |          |          |       | electrostatic                            | -217.454           |             |   |        |           |     |          |          |       |
| ΔEs                                      | -23.402            |            |   |       |            |     |          |          | + +   | ΔEs                                      | -54.694            |             |   |        |           |     |          |          |       |
|                                          | -7.575             |            |   |       |            |     |          |          |       |                                          | -5.32              |             |   |        |           |     |          |          |       |
|                                          | - 18.747           |            |   |       |            |     |          |          |       |                                          | -57.213            |             |   |        |           |     |          |          |       |
|                                          | н                  | н          | 0 | к     | 1          | v   | F        | F        |       |                                          | н                  | н           | 0 | к      | 1         | v   | F        | F        |       |
| Initial Orientation                      |                    | LS1        | 4 |       |            |     | · ·      | RB2      |       | Initial Orientation                      |                    | RS1         | 4 |        |           |     | · ·      | LB2      |       |
| Final Orientation                        |                    | LS1        |   |       | RS1<br>RNH |     |          |          | + +   | Final Orientation                        |                    | RS1         |   |        |           |     |          |          |       |
| Total Engra                              | 105.003            |            |   |       |            |     |          |          |       | Total Engran                             | 107 575            |             |   |        |           |     |          |          |       |
| van der Waals                            | 195.862            |            |   |       |            |     |          |          |       | van der Waals                            | 197.571            |             |   |        |           |     |          |          | -     |
| electrostatic                            | -207.55            |            |   |       |            |     |          |          | +     | electrostatic                            | -198.882           |             |   |        |           |     |          |          |       |
| ΔEs                                      | -48.714            |            |   |       |            |     |          |          |       | ΔEs                                      | -47.005            |             |   |        |           |     |          |          |       |
|                                          | -6.146<br>-47.309  |            |   |       |            |     |          |          |       |                                          | -6.756             |             |   |        |           |     |          |          |       |

|                    | н        | н        | 0  |   | к                | 1   | v   | F   | F   | Val2 | 4             |          |             | н        | н   | 0     | к   | 1   | v   | F   | F     |
|--------------------|----------|----------|----|---|------------------|-----|-----|-----|-----|------|---------------|----------|-------------|----------|-----|-------|-----|-----|-----|-----|-------|
| Initial Orientatio | n        | LS2      |    |   |                  |     |     |     | RB2 |      |               | Initial  | Orientatio  | n        | RS2 |       |     |     |     |     | LB2   |
| Final Orientation  | 1        | LS2      |    |   |                  |     | LS2 |     |     | RB2  | 2             | Final (  | Orientation |          | RS2 |       |     | LS2 |     |     |       |
|                    |          | 2        |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    |          | LB2      |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
| Total Energy       | 193.896  |          |    | _ |                  |     |     |     |     |      |               | Total    | Energy      | 201.567  |     |       |     |     |     |     |       |
| van der Waals      | 113.618  |          | _  | _ |                  |     |     |     | _   |      |               | van de   | er Waals    | 117.327  |     |       |     |     |     |     |       |
| electrostatic      | -205.409 |          | _  | - |                  |     |     |     |     |      |               | electi   | USLALIC     | -199.007 |     |       |     |     |     |     |       |
| ΔFs                | -50.68   |          |    |   |                  |     |     |     |     |      |               | AFs      |             | -43 009  |     |       |     |     |     |     |       |
| 41.5               | - 30.08  |          | _  | - |                  |     |     |     |     |      |               | AL3      |             | -43.005  |     |       |     |     |     |     |       |
|                    | -43.228  |          |    |   |                  |     |     |     |     |      |               | -        |             | -39.366  |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    | н        | н        | Q  |   | К                | L   | v   | F   | F   |      |               |          |             | н        | н   | Q     | К   | L   | v   | F   | F     |
| Initial Orientatio | n        | RB2      | _  |   |                  |     |     |     | LB2 |      |               | Initial  | Orientatio  | n        | LB2 |       |     |     |     |     | RB2   |
| Final Orientation  | 1        | RB2      |    | _ |                  |     |     |     |     |      |               | Final    | Orientation |          | LS2 |       |     |     |     |     |       |
|                    |          | RS2      |    | _ |                  |     |     |     |     |      |               | _        |             |          | LB2 |       |     |     |     |     |       |
| Total Energy       | 200 391  |          | _  | - |                  |     |     |     |     |      |               | Total    | Fnergy      | 200 265  |     |       |     |     |     |     |       |
| van der Waals      | 119 23   |          |    |   |                  |     |     |     |     |      |               | van de   | er Waals    | 116 54   |     |       |     |     |     |     |       |
| electrostatic      | -201.534 |          |    |   |                  |     |     |     |     |      |               | electr   | ostatic     | -200.836 |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
| ΔEs                | -44.185  |          |    |   |                  |     |     |     |     |      |               | ΔEs      |             | -44.311  |     |       |     |     |     |     |       |
|                    | -2.472   |          |    |   |                  |     |     |     |     |      |               |          |             | -5.162   |     |       |     |     |     |     |       |
|                    | -41.293  |          |    |   |                  |     |     |     |     |      |               |          |             | -40.595  |     |       |     |     |     |     |       |
|                    | н        | 1        | -  | Q | К                | L   | v   | F   | F   |      |               |          | н           | н        | Q   | К     | L   | v   | F   | F   | Val12 |
| Initial Orientatio | on       |          |    |   | CS               | RB1 |     |     |     |      | Initial Orien | tation   |             |          |     | CS    | LB1 |     |     |     |       |
| Final Orientation  | n LS2    | _        |    |   | LB1              | RS1 | _   |     |     |      | Final Orient  | ation    | RS2         |          |     | RB1   |     |     |     |     | RS1   |
|                    |          |          |    |   | LS1 <sup>-</sup> |     | _   | _   |     |      |               |          | RS1         |          |     | CH2   |     |     |     |     |       |
|                    |          | -        |    |   | RS1*             |     |     |     |     |      |               |          |             |          |     | 0112- |     |     |     |     |       |
|                    |          | -        |    |   | *-CH2-           |     |     |     |     |      |               |          |             |          |     | 1     |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
| Total Energy       | 148.7    | 5        |    |   |                  |     |     |     |     |      | Total Energy  | /        | 148.531     |          |     |       |     |     |     |     |       |
| van der Waals      | 113.86   | 51       |    |   |                  |     |     |     |     |      | van der Waa   | als      | 112.791     |          |     |       |     |     |     |     |       |
| electrostatic      | -252.04  | \$1      |    |   |                  |     |     |     |     |      | electrostatio | c        | -251.384    |          |     |       |     |     |     |     |       |
| 412-               |          |          |    |   |                  |     |     |     |     |      | AT-           |          | 00.01       |          |     |       |     |     |     |     |       |
| ΔES                | -95.8    | 10       |    |   |                  |     |     |     |     |      | ΔES           |          | -96.045     |          |     |       |     |     |     |     |       |
|                    | -7.8     | 41       |    |   |                  |     |     |     |     |      |               |          | -8.911      |          |     |       |     |     |     |     |       |
|                    | -9.      | 1.8      |    |   |                  |     | _   | _   |     |      |               |          | -91.143     |          |     |       |     |     |     |     |       |
|                    |          | _        |    |   |                  |     | -   |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    | н        |          | -  | 0 | К                | L   | v   | F   | F   |      |               |          | н           | н        | 0   | К     | L   | v   | F   | F   |       |
| Initial Orientatio | on       |          |    | _ | RB1              | LB1 |     |     |     |      | Initial Orien | tation   |             |          | _   | LB1   | RB1 |     |     |     |       |
| Final Orientation  | n        |          |    |   | RS1              | CS  |     |     |     |      | Final Orient  | ation    |             |          |     | LB1   | RS1 |     |     | RS1 |       |
|                    |          |          |    |   | 2                | LB1 |     |     |     |      |               |          |             |          |     | LS2   | RB1 |     |     |     |       |
|                    |          |          |    |   | RNH              |     |     |     |     |      |               |          |             |          |     | 2     |     |     |     |     |       |
|                    |          | _        |    |   | RB1              |     |     |     |     |      |               |          |             |          |     | LS1   |     |     |     |     |       |
|                    |          | _        |    |   |                  |     | _   |     |     |      |               |          |             |          |     | -CH2- |     |     |     |     |       |
| Total Factory      | 404.04   |          |    |   |                  | _   | _   | _   |     |      | Total Factor  |          | 450.200     |          |     |       |     |     |     |     |       |
| Total Energy       | 194.84   | 4        |    |   |                  |     |     |     |     |      | Total Energy  | /        | 159.296     |          |     |       |     |     |     |     |       |
| electrostatic      | -210.90  | 97       |    |   |                  |     |     |     |     |      | electrostatio | 115<br>r | -241 318    |          |     |       |     |     |     |     |       |
| electrostatic      | -210.5   | ,,       |    |   |                  | _   |     |     |     |      | electrostatio |          | -241.510    |          |     |       |     |     |     |     |       |
| AEs                | -49.7    | 32       |    |   |                  |     | _   |     |     |      | AEs           |          | -85.28      |          |     |       |     |     |     |     |       |
|                    | -1.0     | 34       |    |   |                  |     |     |     |     |      |               |          | -7.191      |          |     |       |     |     |     |     |       |
|                    | -50.7    | 56       |    |   |                  |     |     |     |     |      |               |          | -81.077     |          |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    | н        |          | 4  | Q | к                | L   | v   | F   | F   |      |               |          | н           | н        | Q   | К     | L   | v   | F   | F   |       |
| Initial Orientatio | on       | _        |    |   | RS1              | LB1 |     |     |     |      | Initial Orien | tation   |             |          |     | LS1   | RB1 |     |     |     |       |
| Final Orientation  | n        | _        |    |   | 851              | CS  | _   |     | LS  |      | Final Orient  | ation    |             |          |     | LBT   | RB1 |     |     |     |       |
|                    |          | -        |    |   | 2<br>RB1         | _   | -   |     |     | _    |               |          |             |          |     | 2     |     |     |     |     |       |
|                    |          |          |    |   | TILD I           |     |     |     |     |      |               |          |             |          |     | LS1   |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     | -CH2- |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
| Total Energy       | 192.16   | 3        |    |   |                  |     |     |     |     |      | Total Energy  | /        | 164.666     |          |     |       |     |     |     |     |       |
| van der Waals      | 119.62   | 1        |    |   |                  |     |     |     |     |      | van der Waa   | als      | 114.47      |          |     |       |     |     |     |     |       |
| electrostatic      | -211.74  | 19       |    |   |                  |     |     |     |     |      | electrostatio | c        | -236.204    |          |     |       |     |     |     |     |       |
| 412-               |          | 42       |    |   |                  |     |     | _   |     |      | AT-           |          |             |          |     |       |     |     |     |     |       |
| AES .              | -52.4    | 81       |    |   |                  |     |     |     |     | _    | LAES .        |          | - /9.91     |          |     |       |     |     |     |     |       |
| -                  | -2.0     | 08       |    |   |                  | -   |     |     |     |      |               |          | -7.232      |          |     | -     |     |     |     |     |       |
|                    |          | -        |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    | н        |          | 4  | Q | К                | L   | v   | F   | F   |      |               |          | н           | н        | Q   | к     | L   | V   | F   | F   |       |
| Initial Orientatio | on       |          |    |   | RS2              | LB1 | _   |     |     |      | Initial Orien | tation   |             |          |     | LS2   | RB1 |     |     |     |       |
| Final Orientation  | n        | _        |    |   | RB1              | LS2 | _   | _   | LS  | L    | Final Orient  | ation    | -           |          |     | LS2   | RS2 |     | RS2 | RS2 | -     |
|                    |          | _        |    |   | RS1              | LB1 | -   | -   |     |      |               |          | -           |          |     | 2     |     |     | RB2 | RB2 | -     |
|                    |          | -        |    |   | Roz              | 05  |     |     |     |      |               |          |             |          |     | -     |     |     |     |     |       |
| Total Energy       | 165.77   | 6        |    |   |                  |     |     |     |     |      | Total Enerry  | ,        | 172.668     |          |     |       |     |     |     |     |       |
| van der Waals      | 114.65   | 9        |    |   |                  |     |     |     |     |      | van der Waa   | als      | 111.733     |          |     |       |     |     |     |     |       |
| electrostatic      | -234.2   | 7        |    |   |                  |     |     |     |     |      | electrostatio | c        | -222.956    |          |     |       |     |     |     |     |       |
|                    |          |          |    |   |                  |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
| ΔEs                | -78.     | 85       |    |   |                  | _   |     |     |     |      | ΔEs           |          | -71.908     |          |     |       |     |     |     |     |       |
|                    | -7.0     | 43       |    |   |                  |     | _   | _   |     |      |               |          | -9.969      |          |     |       |     |     |     |     |       |
|                    | -74.0    | 29       |    |   |                  |     |     | _   |     |      |               |          | -62.715     |          |     |       |     |     |     |     |       |
|                    | _        |          |    |   |                  |     |     | _   |     | _    |               |          |             |          |     |       |     |     |     |     |       |
|                    | н        |          |    | 0 | ĸ                | 1   | v   |     | C   |      |               |          | н           | н        | 0   | к     | 1   | v   | F   | F   |       |
| Initial Orientatio | on       |          | •  | ~ | LB1              | RB2 |     | - F | F   | -    | Initial Orien | tation   |             |          | 4   | RB2   | LB1 |     |     |     |       |
| Final Orientation  | n RS1    | R        | 52 |   | LS2              |     |     |     |     |      | Final Orient  | ation    |             |          |     | RB2   | LB1 |     |     |     |       |
|                    | RS2      | R        | 32 |   | LB1              |     |     |     |     |      |               |          |             |          |     | RS2   |     |     |     |     |       |
|                    | -CH2     |          |    |   | RS2              |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    |          |          |    |   | -CH2-            |     |     |     |     |      |               |          |             |          |     |       |     |     |     |     |       |
|                    |          |          |    |   | -                |     | _   | _   |     |      |               |          |             |          |     |       |     |     |     |     |       |
| Iotal Energy       | 114.52   | 2        |    |   |                  |     |     | _   |     |      | Iotal Energy  | /        | 195.63      |          |     |       |     |     |     |     |       |
| van der Waals      | 109.92   | .o<br>13 |    |   |                  |     |     |     |     | _    | van der Waa   | 115<br>r | 110.705     |          |     |       |     |     |     |     |       |
| CIECHOSIdUL        | -204.90  |          |    |   |                  | -   |     |     |     |      | CIECCIUSIdII  | •        | -203.99/    |          |     | -     |     |     |     |     |       |
| ΔEs                | -130 0   | 54       |    |   |                  |     |     |     |     |      | ΔEs           |          | -48.946     |          |     |       |     |     |     |     |       |
|                    | -11.7    | 74       |    |   |                  |     | -   |     |     |      | -             |          | -4.997      |          |     |       |     |     |     |     |       |
|                    | -124.6   | 62       |    |   |                  |     |     |     |     |      |               |          | -45.756     |          |     |       |     |     |     |     |       |

|                                | н         | н   | Q | к          | L   | V        | F   | F   |       |                     | н        | н          | Q | к         | L   | V          | F   | F |        |
|--------------------------------|-----------|-----|---|------------|-----|----------|-----|-----|-------|---------------------|----------|------------|---|-----------|-----|------------|-----|---|--------|
| Initial Orientation            |           |     |   | RB1        | LB2 |          |     |     |       | Initial Orientation |          |            |   | LB2       | RB1 |            |     |   |        |
| Final Orientation              |           |     |   | LB1        | LB2 |          |     |     |       | Final Orientation   |          |            |   | LB1       | RNH |            |     |   |        |
|                                |           |     |   | RB1        |     |          |     |     |       |                     |          |            |   | LNH       | RB1 |            |     |   |        |
|                                | _         |     |   | LNH*       |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                |           |     |   | *-CH2-     |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| Total Energy                   | 162.287   |     |   |            |     |          |     |     |       | Total Energy        | 203.41   |            |   |           |     |            |     |   |        |
| van der Waals                  | 114.769   |     |   |            |     |          |     |     |       | van der Waals       | 115.398  |            |   |           |     |            |     |   |        |
| electrostatic                  | -242.039  |     |   |            |     |          |     |     |       | electrostatic       | -201.393 |            |   |           |     |            |     |   |        |
| ΔEs                            | -82.289   |     |   |            |     |          |     |     |       | ΔEs                 | -41.166  |            |   |           |     |            |     |   |        |
|                                | -6.933    |     |   |            |     |          |     |     |       |                     | -6.304   |            |   |           |     |            |     |   |        |
|                                | -81.798   |     |   |            |     |          |     |     |       |                     | -41.152  |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                | н         | н   | 0 | к          | L   | v        | F   | F   |       |                     | н        | н          | 0 | к         | L   | v          | F   | F |        |
| Initial Orientation            |           |     |   | LS2        | RB2 |          |     |     |       | Initial Orientation |          |            |   | RS2       | LB2 |            |     |   |        |
| Final Orientation              | LS2       | RS2 |   | LS2        | RS2 |          |     |     |       | Final Orientation   | RB2      |            |   | RS2       | LB2 |            |     |   |        |
|                                |           |     |   | LS1        |     |          |     |     |       |                     | RS2      |            |   | RB1       | LS2 |            |     |   |        |
|                                |           |     |   | LB1<br>DS2 |     |          |     |     |       |                     |          |            |   | RS1       |     |            |     |   |        |
|                                |           |     |   | -CH2-      |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| Total Energy                   | 121.887   |     |   |            |     |          |     |     |       | Total Energy        | 169.22   |            |   |           |     |            |     |   |        |
| van der Waals                  | 113.119   |     |   |            |     |          |     |     |       | van der Waals       | 114.423  |            |   |           |     |            |     |   |        |
| electrostatic                  | -2/1.152  |     |   |            |     |          |     |     |       | electrostatic       | -235.432 |            |   |           |     |            |     |   |        |
| ΔEs                            | -122.689  |     |   |            |     |          |     |     |       | ΔEs                 | -75.356  |            |   |           |     |            |     |   |        |
|                                | -8.583    |     |   |            |     |          |     |     |       |                     | -7.279   |            |   |           |     |            |     |   |        |
|                                | -117.511  |     |   |            |     |          |     |     |       |                     | -75.191  |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                | н         | н   | Q | к          | L   | v        | F   | F   |       |                     | н        | н          | Q | к         | L   | v          | F   | F |        |
| Initial Orientation            |           |     |   | LB2        | RB2 |          |     |     |       | Initial Orientation |          |            |   | RB2       | LB2 |            |     |   |        |
| Final Orientation              |           |     |   | LS2        | RB2 |          |     | RB2 |       | Final Orientation   | RB2      |            |   | RB1       | LB2 |            |     |   |        |
|                                |           |     |   |            | RS2 |          |     |     |       |                     | RS2      |            |   | CS<br>LB1 | LS2 |            |     |   |        |
|                                |           |     | - |            |     | -        |     |     |       |                     |          |            |   | -CH2-     |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   | RS2       |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| Total Energy                   | 178.578   |     | - | -          |     |          |     |     | -     | Total Energy        | 161.177  |            |   |           |     | -          |     |   |        |
| van der waais<br>electrostatic | .224.83   |     |   |            |     |          |     |     |       | van der waals       | -233.026 |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| ΔEs                            | -65.998   |     |   |            |     |          |     |     |       | ΔEs                 | -83.399  |            |   |           |     |            |     |   |        |
|                                | -3.858    |     |   |            |     |          |     |     |       |                     | -9.586   |            |   |           |     |            |     |   |        |
|                                | -04.569   |     |   |            |     |          |     |     |       |                     | -72.765  |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                | н         | н   | Q | к          | L   | v        | F   | F   |       |                     | н        | н          | Q | к         | L   | v          | F   | F | Tyr10  |
| Initial Orientation            |           |     |   | LB1        |     | RB2      |     |     |       | Initial Orientation |          |            |   | RB1       |     | LB2        |     |   |        |
| Final Orientation              | RS2       | RS2 |   | LB1        |     |          |     |     |       | Final Orientation   | LS1      | LB2        |   | RB1       | LS2 | LB2        |     |   | LS1    |
|                                | -0112-    | RB2 |   | LNH        |     |          |     |     |       |                     | LNH      | -NH-       |   | RNH       | LDZ |            |     |   | -0112- |
|                                |           |     |   | RS2        |     |          |     |     |       |                     | -CH2-    |            |   | LNH       |     |            |     |   |        |
|                                |           |     |   | -CH2-      |     |          |     |     |       |                     |          |            |   | -CH2-     |     |            |     |   |        |
|                                | 404.007   |     |   |            |     |          |     |     |       | T                   | 443.465  |            |   |           |     |            |     |   |        |
| van der Waals                  | 109.864   |     |   |            |     |          |     |     |       | van der Waals       | 142.465  |            |   |           |     |            |     |   |        |
| electrostatic                  | -261.229  |     |   |            |     |          |     |     |       | electrostatic       | -248.714 |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| ΔEs                            | -112.579  |     |   |            |     |          |     |     |       | ΔEs                 | -102.111 |            |   |           |     |            |     |   |        |
|                                | -11.838   |     |   |            |     |          |     |     |       |                     | -16.657  |            |   |           |     |            |     |   |        |
|                                | -100.300  |     |   |            |     |          |     |     |       |                     | -00.473  |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                | н         | н   | Q | к          | L   | v        | F   | F   |       |                     | н        | н          | Q | к         | L   | v          | F   | F | Ala21  |
| Initial Orientation            | 1.00      | 000 |   | LS2        |     | RB2      |     |     |       | Initial Orientation | DC4      | 1.04       |   | RS2       | 104 | LB2        |     |   | 1.0.2  |
| Final Orientation              | LSZ       | RS2 | _ | L NH       |     | RD2      |     |     |       | Final Orientation   | RNH      | LST<br>LB2 |   | 2         | LOI | LST<br>LB2 |     |   | LDZ    |
|                                |           |     |   | LB1        |     |          |     |     |       |                     | RB1      |            |   |           |     |            |     |   |        |
|                                |           |     |   | RS2        |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                |           |     |   | -CH2-      |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| Total Energy                   | 122.12    |     |   |            |     |          |     |     |       | Total Energy        | 118 876  |            |   |           |     |            |     |   |        |
| van der Waals                  | 112.056   |     |   |            |     |          |     |     |       | van der Waals       | 106.614  |            |   |           |     |            |     |   |        |
| electrostatic                  | -274.468  |     |   |            |     |          |     |     |       | electrostatic       | -276.187 |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| ΔES                            | -122.456  |     |   |            |     |          |     |     |       | ΔES                 | -125.7   |            |   |           |     |            |     |   |        |
|                                | - 114.227 |     |   |            |     |          |     |     |       |                     | -115.946 |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          | -   | -   |       |                     |          |            | - |           |     |            | -   | - |        |
| Initial Orientation            | н         | н   | Q | K          | L   | V<br>LP2 | F   | F   | Ala21 | Initial Origotation | н        | н          | Q | K         | L   | V<br>RP2   | F   | F |        |
| Final Orientation              | RS1       | LB2 |   | RS2        | -   | LB2      |     |     | LB2   | Final Orientation   |          | RB2        |   | LS2       |     | 1502       |     |   |        |
|                                |           |     |   | RB1        |     |          |     |     |       |                     |          | RS2        |   | LB2       |     |            |     |   |        |
|                                |           |     |   | RNH        |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| Total Case:                    | 105 774   |     |   |            |     |          |     |     |       | Total Cr.           | 153.227  |            |   |           |     |            |     |   |        |
| van der Waals                  | 125.774   |     |   |            |     |          |     |     |       | van der Waals       | 152.234  |            |   |           |     |            |     |   |        |
| electrostatic                  | -267.813  |     |   |            |     |          |     |     |       | electrostatic       | -245.883 |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| ΔEs                            | -118.802  |     |   |            |     |          |     |     |       | ΔEs                 | -92.342  |            |   |           |     |            |     |   |        |
|                                | -12.954   |     |   |            |     |          |     |     |       |                     | -6.473   |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| Initial Origentation           | н         | н   | Q | K          | L   | v        | F   | F   |       | Initial Origentati  | н        | н          | Q | K         | L   | v          | F   | F |        |
| Final Orientation              |           |     | 1 | LS1        | -   |          | RS1 |     |       | Final Orientation   |          |            |   | RB1       | CS  | -          | LD1 |   |        |
|                                |           |     |   | 2          |     |          |     |     |       |                     |          |            |   | RS1       |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   | CS        |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   | RS2       |     |            |     |   |        |
| Total Frenzy                   | 207 692   |     |   |            |     |          |     |     |       | Total Foorm         | 171 207  |            |   |           |     |            |     |   |        |
| van der Waals                  | 119.986   |     |   |            |     |          |     |     |       | van der Waals       | 114.218  |            |   |           |     |            |     |   |        |
| electrostatic                  | -200.146  |     |   |            |     |          |     |     |       | electrostatic       | -229.993 |            |   |           |     |            |     |   |        |
|                                |           |     |   |            |     |          |     |     |       |                     |          |            |   |           |     |            |     |   |        |
| ΔĒs                            | -36.894   |     |   |            |     |          |     |     |       | ΔEs                 | -73.179  |            |   |           |     |            |     |   |        |
|                                | -1./16    |     |   |            |     |          |     |     |       |                     | -7.484   |            |   |           |     |            |     |   |        |

|                                          | н                  | н | Q | к          | L   | v | F          | F |                                          | н                  | н | Q | к          | L   | v | F        | F |
|------------------------------------------|--------------------|---|---|------------|-----|---|------------|---|------------------------------------------|--------------------|---|---|------------|-----|---|----------|---|
| Initial Orientation<br>Final Orientation |                    |   |   | CS<br>RB1  | RS1 |   | RB2<br>RS2 |   | Initial Orientation<br>Final Orientation |                    |   |   | CS<br>LB1  |     |   | LB2      |   |
|                                          |                    |   |   | RS1        |     |   |            |   |                                          |                    |   |   | LS1        |     |   |          |   |
|                                          |                    |   |   | RS2        |     |   |            |   |                                          |                    |   |   | LS2        |     |   |          |   |
| Total Energy                             | 197.374            |   |   |            |     |   |            |   | Total Energy                             | 186.299            |   |   |            |     |   |          |   |
| van der Waals<br>electrostatic           | 116.266            |   |   |            |     |   |            |   | van der Waals                            | -215 419           |   |   |            |     |   |          |   |
| ciccuostatic                             | 207.200            |   |   |            |     |   |            |   | ciccitostutic                            | 215.415            |   |   |            |     |   |          |   |
| ΔEs                                      | -47.202            |   |   |            |     |   |            |   | ΔEs                                      | -58.277            |   |   |            |     |   |          |   |
|                                          | -46.967            |   |   |            |     |   |            |   |                                          | -55.178            |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
|                                          | н                  | н | Q | к          | L   | v | F          | F |                                          | н                  | н | Q | к          | L   | v | F        | F |
| Initial Orientation                      | DC1                |   |   | RB1        |     |   | LB1        |   | Initial Orientation                      | 1.61               |   |   | LB1        |     |   | RB1      |   |
| i mar orientation                        |                    |   |   | RS1        |     |   |            |   | This offertation                         | LS2                |   |   | 2          |     |   | 1101     |   |
|                                          |                    |   | - | RS2        |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| Total Energy                             | 157.162            |   |   |            |     |   |            |   | Total Energy                             | 169.272            |   |   |            |     |   |          |   |
| van der Waals<br>electrostatic           | -242.832           |   |   |            |     |   |            |   | van der Waals<br>electrostatic           | -233.396           |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| ΔEs                                      | -87.414            |   |   |            |     |   |            |   | ΔEs                                      | -75.304            |   |   |            |     |   |          |   |
|                                          | -82.591            |   |   |            |     |   |            |   |                                          | -73.155            |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
|                                          | н                  | н | Q | К          | L   | v | F          | F |                                          | н                  | н | Q | к          | L   | v | F        | F |
| Final Orientation                        | RS1                |   |   | RS1<br>RS2 |     |   | LB1        |   | Final Orientation                        |                    |   |   | LS1<br>LS1 |     |   | RB1      |   |
|                                          | 2                  |   |   |            |     |   |            |   |                                          |                    |   |   | 2          |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   | LNH        |     |   |          |   |
| Total Energy                             | 159.948            |   |   |            |     |   |            |   | Total Energy                             | 192.522            |   |   |            |     |   |          |   |
| electrostatic                            | -243.4             |   |   |            |     |   |            |   | electrostatic                            | -211.935           |   |   |            |     |   |          |   |
| 15                                       |                    |   |   |            |     |   |            |   | 15                                       |                    |   |   |            |     |   |          |   |
| ΔES                                      | -84.628            |   |   |            |     |   |            |   | ΔES                                      | -52.054            |   |   |            |     |   |          |   |
|                                          | -83.159            |   |   |            |     |   |            |   |                                          | -51.694            |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
|                                          | н                  | н | Q | к          | L   | v | F          | F |                                          | н                  | н | Q | к          | L   | v | F        | F |
| Initial Orientation<br>Final Orientation |                    |   |   | RS2<br>RS1 |     |   | LB1<br>CS  |   | Initial Orientation<br>Final Orientation |                    |   |   | LS2<br>LS2 |     |   | RB1      |   |
|                                          |                    |   |   | RS2        |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
|                                          |                    |   |   | 2          |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| Total Energy                             | 185.586            |   |   |            |     |   |            |   | Total Energy                             | 192.351            |   |   |            |     |   |          |   |
| electrostatic                            | -218.594           |   |   |            |     |   |            |   | electrostatic                            | -211.533           |   |   |            |     |   |          |   |
| 15                                       |                    |   |   |            |     |   |            |   | 15                                       |                    |   |   |            |     |   |          |   |
| ΔES                                      | -58.99             |   |   |            |     |   |            |   | ΔES                                      | -52.225            |   |   |            |     |   |          |   |
|                                          | -58.353            |   |   |            |     |   |            |   |                                          | -51.292            |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
|                                          | н                  | н | Q | K          | L   | v | F          | F | Land Balance                             | н                  | н | Q | K          | L   | v | F        | F |
| Final Orientation                        |                    |   |   | LB1        |     |   | RNH        |   | Final Orientation                        |                    |   |   | RS1        |     |   | LBT      |   |
|                                          |                    |   |   | LNH        |     |   |            |   |                                          |                    |   |   | RNH        |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| Total Energy<br>van der Waals            | 190.876            |   |   |            |     |   |            |   | Total Energy<br>yan der Waals            | 203.322            |   |   |            |     |   |          |   |
| electrostatic                            | -212.534           |   |   |            |     |   |            |   | electrostatic                            | -201.592           |   |   |            |     |   |          |   |
| AFs                                      | -53.7              |   |   |            |     |   |            |   | AFs                                      | -41 254            |   |   |            |     |   |          |   |
|                                          | -6.455             |   |   |            |     |   |            |   |                                          | -7.247             |   |   |            |     |   |          |   |
|                                          | -52.293            |   |   |            |     |   |            |   |                                          | -41.351            |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| Initial Orientation                      | н                  | н | Q | K<br>RB1   | L   | v | F<br>LB2   | F | Initial Orientation                      | н                  | н | Q | K<br>LB2   | L   | v | F<br>RB1 | F |
| Final Orientation                        | RS1                |   |   | RS2        |     |   | LS2        |   | Final Orientation                        |                    |   |   | LB2        | LS2 |   |          |   |
|                                          |                    |   |   | LB1        |     |   | LB2        |   |                                          |                    |   |   | LS2        |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| van der Waals                            | 132.817<br>114.731 |   |   |            |     |   |            |   | van der Waals                            | 191.069<br>114.698 |   |   |            |     |   |          |   |
| electrostatic                            | -265.211           |   |   |            |     |   |            |   | electrostatic                            | -212.215           |   |   |            |     |   |          |   |
| ΔEs                                      | -111.759           |   |   |            |     |   |            |   | ΔEs                                      | -53.507            |   |   |            |     |   |          |   |
|                                          | -6.971             |   |   |            |     |   |            |   |                                          | -7.004             |   |   |            |     |   |          |   |
|                                          | -104.97            |   |   |            |     |   |            |   |                                          | -51.974            |   |   |            |     |   |          |   |
|                                          |                    |   | ~ | v          |     |   | -          |   |                                          |                    |   | ~ | v          |     |   |          | - |
| Initial Orientation                      | н                  | н | ų | K<br>LS2   | L   | v | RB2        | F | Initial Orientation                      | н                  | н | ų | RS2        | L   | v | LB2      | r |
| Final Orientation                        | LS2                |   |   | LS2        |     |   | RS2        |   | Final Orientation                        | RS1                |   |   | LB1        |     |   | LB2      |   |
|                                          |                    |   |   | LD1        |     |   | RD2        |   |                                          | Ro2                |   |   | RB1<br>RS2 |     |   |          |   |
|                                          |                    |   |   |            |     |   |            | T |                                          | + T                |   |   | -CH2-      |     |   |          |   |
| Total Energy                             | 174.215            |   |   |            |     |   |            |   | Total Energy                             | 119.08             |   |   |            |     |   |          |   |
| van der Waals<br>electrostatic           | -226.624           |   |   |            |     |   |            |   | van der Waals<br>electrostatic           | -279.964           |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| ΔEs                                      | -70.361            |   |   |            |     |   |            |   | ΔEs                                      | -125.496           |   |   |            |     |   |          |   |
|                                          | -66.383            |   |   |            |     |   |            |   |                                          | -119.723           |   |   |            |     |   |          |   |
|                                          |                    |   |   |            |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| Initial Chinese it                       | н                  | н | Q | K          | L   | v | F          | F | Initial Contract                         | н                  | н | Q | K          | L   | v | F        | F |
| Final Orientation                        | RS1                |   |   | RB1        |     |   | LB2        |   | Final Orientation                        | LS2                |   |   | LB2<br>LS2 |     |   | RB2      |   |
|                                          | RS2                |   |   | RS2        |     |   |            |   |                                          | LB2                |   |   | LS1        |     |   |          |   |
|                                          |                    |   |   | -UHZ-      |     |   |            |   |                                          |                    |   |   |            |     |   |          |   |
| Total Energy                             | 144.843            |   |   |            |     |   |            |   | Total Energy                             | 164.467            |   |   |            |     |   |          |   |
| electrostatic                            | -251.977           |   |   |            |     |   |            |   | electrostatic                            | -235.955           |   |   |            |     |   |          |   |
| AFs                                      | 00 733             |   |   |            |     |   |            | T | AFs                                      | . 00 100           |   |   |            |     |   |          |   |
|                                          | - 99.733           |   |   |            |     |   |            |   |                                          | -5.693             |   |   |            |     |   |          |   |
|                                          | -91.736            |   |   |            |     |   |            |   |                                          | -75.714            |   |   |            |     |   |          |   |

|                                | н        | н | 0   | К      | L   | V  | F   | F    | Val12 |                     | н        | н | 0        | К        | L    | v  | F   | F     |
|--------------------------------|----------|---|-----|--------|-----|----|-----|------|-------|---------------------|----------|---|----------|----------|------|----|-----|-------|
| Initial Orientation            |          |   |     | CS     |     |    |     | RB2  |       | Initial Orientation |          |   |          | CS       |      |    |     | LB2   |
| Final Orientation              | LS2      |   |     | LB1    | RS2 |    | RS2 | RB2  | LS2   | Final Orientation   |          |   |          | LS2      | LS2  |    | LS2 | LB2   |
|                                | LS1      |   |     | LS2    |     |    |     |      |       |                     |          |   |          | LB1      |      |    | LS1 | LS2   |
|                                |          |   |     | -CH2-  |     |    |     |      |       |                     |          |   |          |          |      |    |     | -CH2- |
|                                |          |   |     | 0112   |     |    |     |      |       |                     |          |   |          |          |      |    |     | OTIL  |
| Total Energy                   | 142 078  |   |     |        |     |    |     |      |       | Total Energy        | 189 807  |   |          |          |      |    |     |       |
| van der Waals                  | 106 753  |   |     |        |     |    |     |      |       | van der Waals       | 109 772  |   |          |          |      |    |     |       |
| electrostatic                  | -255.052 |   |     |        |     |    |     |      |       | electrostatic       | -208.218 |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
| AFe                            | -107.499 |   |     |        |     |    |     |      |       | AFe                 | -54 760  |   |          |          |      |    |     |       |
| 11.3                           | -102.430 |   |     |        |     |    |     |      |       | 41.5                | -34.703  |   |          |          |      |    |     |       |
|                                | -14.343  |   |     |        |     |    |     |      |       |                     | -11.93   |   |          |          |      |    |     |       |
|                                | -34.011  |   |     |        |     |    |     |      |       |                     | -47.377  |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          |   | 0   | ×.     |     | V  | -   | -    |       |                     |          |   | 0        | V        | 1    | N/ | -   | -     |
| Internal Option and the second | п        | п | ų   | N DOL  | L.  | v  | r   | F    |       | latital October and | п        | п | ų        | N 1.01   | L.   | v  | r.  | F     |
| Final Orientation              |          |   |     | Ro1    |     |    |     | LDI  |       | Final Orientation   |          |   |          | LOI      | LD4  |    | 00  | CCC   |
| Final Orientation              |          |   |     | 2      |     |    |     | LOI  |       | Final Orientation   |          |   |          | 2        | LDI  |    | 03  | CLID  |
|                                |          |   |     | 2      |     |    |     |      |       |                     |          |   |          | 2        |      |    |     | -CH2- |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     | RDI   |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     | Roi   |
| Total Energy                   | 202 192  |   |     |        |     |    |     |      |       | Total Factory       | 100 741  |   |          |          |      |    |     |       |
| uon dor Moole                  | 116.061  |   |     |        |     |    |     |      |       | Total citergy       | 196.741  |   |          |          |      |    |     |       |
| vali uer vvaais                | 110.001  |   |     |        |     |    |     |      |       | Vali del VVadis     | 111.454  |   |          |          |      |    |     |       |
| electrostatic                  | -190.009 |   |     |        |     |    |     |      |       | electrostatic       | -199.69  |   |          |          |      |    |     |       |
| 4.5                            |          |   |     |        |     |    |     |      |       | 45                  |          |   |          |          |      |    |     |       |
| ΔES                            | -41.394  |   |     |        |     |    |     |      |       | ΔES                 | -45.835  |   |          |          |      |    |     |       |
|                                | -5.641   |   |     |        |     |    |     |      |       |                     | -10.268  |   |          |          |      |    |     |       |
|                                | -30.308  |   |     |        |     |    |     |      |       |                     | -39.649  |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          |   | -   |        |     | 1. | -   | -    |       |                     |          |   | -        |          |      |    | -   | -     |
| Initial Order of the           | н        | н | Q   | K      | £   | V  | F   | F    |       | Indiana and a state | н        | н | Q        | K        | L    | v  | F   | F     |
| Initial Orientation            |          |   |     | LB1    |     |    |     | RB2  |       | Initial Orientation |          |   |          | RB2      |      |    |     | LB1   |
| Final Orientation              |          |   |     | LS1    |     |    | RS1 | RB2  |       | Final Orientation   |          |   |          | RB2      | RS1  |    |     | LB1   |
|                                | -        |   |     | LB1    |     |    |     |      |       |                     |          |   |          | RS1      |      |    |     |       |
|                                |          |   |     | LNH    |     |    |     |      |       |                     |          |   |          | 2        | +    |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
| Total Energy                   | 195.371  |   |     |        |     |    |     |      |       | Total Energy        | 191.594  |   |          |          |      |    |     |       |
| van der Waals                  | 117.58   |   |     |        |     |    |     |      |       | van der Waals       | 112.661  |   |          |          |      |    |     |       |
| electrostatic                  | -206.786 |   |     |        |     |    |     |      |       | electrostatic       | -218.147 |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
| ΔEs                            | -49.205  |   |     |        |     |    |     |      |       | ΔEs                 | -52.982  |   |          |          |      |    |     |       |
|                                | -4.122   |   |     |        |     |    |     |      |       |                     | -9.041   |   |          |          |      |    |     |       |
|                                | -46.545  |   |     |        |     |    |     |      |       |                     | -57.906  |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                | н        | н | Q   | к      | L   | v  | F   | F    |       |                     | н        | н | Q        | К        | L    | v  | F   | F     |
| Initial Orientation            |          |   |     | RB1    |     |    |     | LB2  |       | Initial Orientation |          |   |          | LB2      |      |    |     | RB1   |
| Final Orientation              |          |   |     | RS1    |     |    |     |      |       | Final Orientation   |          |   |          | LB2      |      |    |     | CS    |
|                                |          |   |     | 2      |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          |   |     | RNH    |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          |   |     | RB1    |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
| Total Energy                   | 190.747  |   |     |        |     |    |     |      |       | Total Energy        | 206.743  |   |          |          |      |    |     |       |
| van der Waals                  | 120.251  |   |     |        |     |    |     |      |       | van der Waals       | 111.73   |   |          |          |      |    |     |       |
| electrostatic                  | -212.815 |   |     |        |     |    |     |      |       | electrostatic       | -199.399 |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
| AFs                            | -53 879  |   |     |        |     |    |     |      |       | AFs                 | -37 833  |   |          |          |      |    |     |       |
|                                | -1.451   |   |     |        |     |    |     |      |       |                     | -9.972   |   |          |          |      |    |     |       |
|                                | -52.574  |   |     |        |     |    |     |      |       |                     | -39.158  |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                | н        | н | 0   | ĸ      | 1   | v  | F   | F    |       |                     | н        | н | 0        | к        | 1    | v  | F   | F     |
| Initial Orientation            |          |   | ~   | 1.51   | -   | •  |     | RB2  |       | Initial Orientation |          |   | ų        | RS1      | -    |    |     | 182   |
| Final Orientation              |          |   |     | 1.51   |     |    |     | TIDE |       | Final Orientation   |          |   |          | DS1      | 1.01 |    |     | LUL   |
| i ilui olicitation             |          |   |     |        |     |    |     |      |       | indi onentation     |          |   |          | 2        | 201  |    |     |       |
|                                |          |   |     | 1.02   |     |    |     |      |       |                     |          |   |          | 2<br>DD1 |      |    |     |       |
|                                |          |   |     | CH2    |     |    |     |      |       |                     |          |   |          | DNILL    |      |    |     |       |
|                                |          |   | -   | 0112-  |     |    |     |      |       |                     |          |   |          | - STAFT  | +    |    |     |       |
| Total Energy                   | 195 155  |   |     |        |     |    |     |      |       | Total Energy        | 102.02   |   |          |          |      |    |     |       |
| van der Waale                  | 117 92   |   |     | -      |     |    |     |      |       | van der Maale       | 117 669  |   |          |          |      |    |     |       |
| electrostatio                  | 217.65   |   |     |        |     |    |     |      |       | electrostatio       | 200.561  |   |          |          |      |    |     |       |
|                                | 21/.300  |   |     | -      |     |    |     |      |       | cicciostatic        | 203.301  |   |          |          |      |    |     |       |
| AFe                            | -50.424  |   | 1   |        |     |    |     |      |       | AFe                 | 52 554   |   |          |          | 1    |    |     |       |
| 1113<br>1                      | -59.421  |   |     |        |     |    |     |      |       | 141:5               | -52.556  |   |          |          |      |    |     |       |
|                                | -3.072   |   | -   | -      |     |    |     |      |       |                     | _40.034  |   |          |          |      |    |     |       |
|                                | 57.525   |   | -   | -      |     |    |     |      |       |                     | 49.32    |   |          |          | +    |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          | ц | 0   | v      |     | v  | c   | c    |       |                     | н        | Ч | 0        | v        |      | V  | c   | c     |
| Initial Orientation            |          |   | , u | 1.52   | -   |    |     | RR2  |       | Initial Orientation |          |   | <u> </u> | PS2      |      | v  | · · | 182   |
| Final Orientation              | 1.92     |   |     | 1.92   |     |    |     |      |       | Final Orientation   |          |   |          | pe2      |      |    |     | 182   |
| . mai orientation              | 1.02     |   | 1   | RD1    |     |    |     |      |       | . mar orientation   |          |   |          | 2        |      |    |     | 182   |
|                                |          |   | -   | INH    |     |    |     |      |       |                     |          |   |          | -        | +    |    |     |       |
|                                |          |   |     | EINI I |     |    |     |      |       |                     |          |   |          |          | +    |    |     |       |
| Total Energy                   | 175 851  |   | 1   | -      |     |    |     |      |       | Total Energy        | 191 771  |   |          | -        | 1    |    |     |       |
| van der Waals                  | 118 061  |   | -   | -      |     |    |     |      |       | van der Waals       | 119 17   |   |          |          | +    |    |     |       |
| electrostatic                  | -227 /05 |   |     |        |     |    |     |      |       | electrostatic       | -210.96  |   |          |          |      |    |     |       |
|                                | 227.403  |   |     |        |     |    |     |      |       | cicciostatic        | 210.00   |   |          |          |      |    |     |       |
| AFe                            | .co 775  |   |     |        |     |    |     |      |       | AFe                 | 52.255   |   |          |          |      |    |     |       |
| 1113<br>1                      | -08.725  |   |     |        |     |    |     |      |       | 141:5               | -03.355  |   |          |          |      |    |     |       |
|                                | -5.041   |   |     |        |     |    |     |      |       |                     | -2.332   |   |          |          |      |    |     |       |
|                                | -07.104  |   |     |        |     |    |     |      |       |                     | -20.019  |   |          |          | +    |    |     |       |
|                                |          |   |     |        |     |    |     |      |       |                     |          |   |          |          |      |    |     |       |
|                                |          | ы | ~   | v      |     |    | -   | -    |       |                     | P        | P | ~        | v        |      |    | -   | -     |
| Initial Onicenter's            | н        | н | Q   | K      | £   | V  | F   | F    |       | Initial Orderstati  | н        | н | Q        | K        | L    | v  | F   | F     |
| Final Origination              | -        |   | -   | RB2    |     |    |     | LB2  |       | Initial Orientation |          |   |          | LB2      |      |    |     | RB2   |
| rinal Urientation              |          |   | -   | RB2    |     |    |     | LB2  |       | Final Orientation   |          |   |          | LB2      |      |    |     |       |
|                                |          |   | -   | R52    |     |    |     |      |       |                     |          |   |          | 152      |      |    |     |       |
|                                |          |   |     | 2      |     |    |     |      |       |                     |          |   |          | 2        | +    |    |     |       |
| Total Energy                   | 200.04   |   |     |        |     |    |     |      |       | Total Economi       | 201 222  |   |          |          | +    |    |     |       |
| uan der Marte                  | 200.04   |   | -   | -      |     |    |     |      |       | rotar chergy        | 201.232  |   |          |          |      |    |     |       |
| van der waals                  | 118.514  |   |     |        |     |    |     |      |       | van der Waals       | 122.045  |   |          |          |      |    |     |       |
| erectrostatic                  | -205.77  |   |     |        |     |    |     |      |       | electrostatic       | -205.845 |   |          |          |      |    |     |       |
| AT-                            |          |   | -   | -      |     |    |     |      |       | 417-                |          |   |          |          |      |    |     |       |
| ΔES                            | -44.536  |   |     |        |     |    |     |      |       | ΔES                 | -43.344  |   |          |          |      |    |     |       |
|                                | -3.188   |   |     |        |     |    |     |      |       |                     | 0.343    |   |          |          |      |    |     |       |
|                                | -43.529  |   |     |        |     |    |     |      |       |                     | -45.604  |   |          |          |      |    |     |       |